S. Michel, Circulatory system, Larousse

A. M. , Essentials of anatomy & physiology 4th edition martini/bartholomew

Y. C. Chai, A. Carlier, and J. Bolander, Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies, Acta Biomater, vol.8, issue.11, pp.3876-3887, 2012.

X. Wang, S. Xu, and S. Zhou, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials, vol.83, pp.127-141, 2016.

C. C. Dufort, M. J. Paszek, and V. M. Weaver, Balancing forces: Architectural control of mechanotransduction, Nat Rev Mol Cell Biol, vol.12, issue.5, pp.308-319, 2011.

G. S. Hussey, J. L. Dziki, and S. F. Badylak, Extracellular matrix-based materials for regenerative medicine, Nat Rev Mater, vol.3, issue.7, pp.159-173, 2018.

I. J. Uings and S. N. Farrow, Cell receptors and cell signalling, Mol Pathol, vol.53, issue.6, pp.295-299, 2000.

P. Ten-dijke and H. M. Arthur, Extracellular control of TGF? signalling in vascular development and disease, Nat Rev Mol Cell Biol, vol.8, issue.11, pp.857-869, 2007.

R. N. Wang, J. Green, and Z. Wang, Bone Morphogenetic Protein (BMP) signaling in development and human diseases, Genes Dis, vol.1, issue.1, pp.87-105, 2014.

B. P. Eliceiri, Integrin and growth factor receptor crosstalk, Circ Res, vol.89, issue.12, pp.1104-1110, 2001.

F. Long, Building strong bones : molecular regulation of the osteoblast lineage, Nat Rev Mol Cell Biol, vol.13, 2012.

J. C. Crockett, M. J. Rogers, F. P. Coxon, L. J. Hocking, and M. H. Helfrich, Bone remodelling at a glance, J Cell Sci, vol.124, issue.7, pp.991-998, 2011.

B. Viswanath, R. Raghavan, U. Ramamurty, N. Ravishankar, B. Viswanath et al., Mechanical properties and anisotropy in hydroxyapatite single crystals, Scr Mater, vol.57, issue.4, pp.361-364, 2007.

Y. Bala and E. Seeman, Bone's material constituents and their contribution to bone strength in health, disease, and treatment, Calcif Tissue Int, vol.97, issue.3, pp.308-326, 2015.

R. Weinkamer and P. Fratzl, Mechanical adaptation of biological materials -The examples of bone and wood, Mater Sci Eng C, vol.31, issue.6, pp.1164-1173, 2011.

S. Ogata and H. Uhthoff, The early development and ossification of the human clavicle--an embryologic study, Acta Orthop Scand, vol.61, issue.4, 1990.

M. A. Hill, Embryology timeline human development

, Creative Commons Attribution 4.0 International License. Anatomy and physiology

A. Bonomo, A. C. Monteiro, T. Gonçalves-silva, E. Cordeiro-spinetti, R. G. Galvani et al., A T Cell View of the Bone Marrow, Front Immunol, vol.7, 2016.

P. Bankoff and A. D. , Biomechanical characteristics of the bone, Human Musculoskeletal Biomechanics. InTech, 2012.

A. Ho-shui-ling, J. Bolander, L. E. Rustom, A. Wagoner, F. P. Luyten et al., Bone regeneration strategies : Engineered scaffolds , bioactive molecules and stem cells current stage and future perspectives, The Orthopaedic Industry Annual Report, vol.180, pp.2010-2011, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01979184

V. Austin, Bones and skeletal tissues. Bluegrass Technical and Community College

D. Holmes, Non-union bone fracture: a quicker fix, Nature, vol.550, issue.7677, pp.193-193, 2017.

E. Seeman, Bone quality: The material and structural basis of bone strength, J Bone Miner Metab, vol.26, issue.1, pp.1-8, 2008.

L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn, Fracture healing as a postnatal developmental process: Molecular, spatial, and temporal aspects of its regulation, J Cell Biochem, vol.88, issue.5, pp.5-7, 2003.

L. Claes, S. Recknagel, and A. Ignatius, Fracture healing under healthy and inflammatory conditions, Nat Rev Rheumatol, vol.8, p.133, 2012.

P. Kolar, K. Schmidt-bleek, and H. Schell, The early fracture hematoma and Its potential role in fracture healing, Tissue Eng Part B Rev, vol.16, issue.4, pp.427-434, 2000.

K. Prystaz, K. Kaiser, and A. Kovtun, Distinct effects of IL-6 classic and trans-signaling in bone fracture healing, Am J Pathol, vol.188, issue.2, pp.474-490, 2018.

C. Schlundt, T. El, and A. Serra, Macrophages in bone fracture healing : Their essential role in endochondral ossi fi cation ?. Bone, vol.106, pp.78-89, 2018.

L. Gerstenfeld, T. Kon, and T. Aizawa, Impaired fracture healing in the absence of TNF-a signaling: The role of TNF-a in endochondral cartilage resorption, J Bone Miner Res, vol.18, issue.9, pp.1584-1592, 2003.

X. Yang, B. F. Ricciardi, A. Hernandez-soria, Y. Shi, P. Camacho et al., Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice, Bone, vol.41, issue.6, pp.928-936, 2007.

L. J. Raggatt, M. E. Wullschleger, and K. A. Alexander, Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification, Am J Pathol, vol.184, issue.12, pp.3192-3204, 2014.

B. K. Hall and T. Miyake, All for one and one for all: condensations and the initiation of skeletal development, BioEssays, vol.22, issue.2, pp.138-147, 2000.

B. K. Hall and T. Miyake, Divide, accumulate, differentiate: Cell condensation in skeletal development revisited, Int J Dev Biol, vol.39, issue.6, pp.881-893, 1995.

L. Dunlop and B. K. Hall, Relationships between cellular condensation, preosteoblast formation and epithelial-mesenchymal interactions in initiation of osteogenesis, Int J Dev Biol, vol.39, issue.2, pp.357-371, 1995.

C. Colnot, Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration, J Bone Miner Res, vol.24, issue.2, pp.274-282, 2009.

D. De-lageneste, O. Julien, A. Abou-khalil, and R. , Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin, Nat Commun, vol.9, issue.1, pp.1-15, 2018.

A. Schindeler, M. M. Mcdonald, P. Bokko, and D. G. Little, Bone remodeling during fracture repair: The cellular picture, Semin Cell Dev Biol, vol.19, issue.5, pp.459-466, 2008.

Z. S. Ai-aql, A. S. Alagl, D. T. Graves, L. C. Gerstenfeld, and T. A. Einhorn, Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis, J Dent Res, vol.87, issue.2, pp.107-118, 2008.

R. C. Riddle and T. L. Clemens, Bone cell bioenergetics and skeletal energy homeostasis, Physiol Rev, vol.97, issue.2, pp.667-698, 2017.

Z. Thompson, T. Miclau, D. Hu, and J. Heims, A model for intramembranous bone healing during fracture repair, J Orthop Res, vol.20, issue.0, pp.1091-1098, 2002.

X. Shen, C. Wan, and G. Ramaswamy, Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice, J Orthop Res, vol.27, issue.10, pp.1298-1305, 2009.

L. C. Gerstenfeld, T. J. Cho, and T. Kon, Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling, Cells Tissues Organs, vol.169, issue.3, pp.285-294, 2001.

G. J. Schmid, C. Kobayashi, L. J. Sandell, and D. M. Ornitz, Fibroblast growth factor expression during skeletal fracture healing in mice, Dev Dyn, vol.238, issue.3, pp.766-774, 2009.

Y. Y. Yu, S. Lieu, C. Lu, T. Miclau, R. S. Marcucio et al., Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair, Bone, vol.46, issue.3, pp.841-851, 2010.

P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, Bone substitutes: An update, Injury, vol.36, issue.3, pp.20-27, 2005.

C. Laurencin, Y. Khan, and S. F. El-amin, Bone graft substitutes, Expert Rev Med Devices, vol.3, issue.1, pp.49-57, 2006.

T. Whitehead, Tissue engineering and regenerative medicine

J. Vanderstappen, J. Lammens, P. Berger, and A. Laumen, Ilizarov bone transport as a treatment of congenital pseudarthrosis of the tibia: a long-term follow-up study, J Child Orthop, vol.9, issue.4, pp.319-324, 2015.

T. A. Einhorn and L. C. Gerstenfeld, Fracture healing: Mechanisms and interventions, Nat Rev Rheumatol, vol.11, issue.1, pp.45-54, 2015.

T. Albrektsson and C. Johansson, Osteoinduction, osteoconduction and osseointegration, Eur Spine J, vol.10, pp.96-101, 2001.

B. D. Ratner and S. J. Bryant, Biomaterials: where we have been and where we are going, Annu Rev Biomed Eng, vol.6, issue.1, pp.41-75, 2004.

C. Piconi and A. A. Porporati, Bioinert ceramics: zirconia and alumina, Handbook of Bioceramics and Biocomposites, vol.2016, pp.59-89

. Renovis®, Total hip replacement information for patients

C. Ohtsuki, M. Kamitakahara, and T. Miyazaki, Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration, J R Soc Interface, vol.6, pp.349-360, 2009.

L. L. Hench, Bioceramics: From concept to clinic, J Am Ceram Soc, vol.74, issue.7, pp.1487-1510, 1991.

M. M. Stevens, Biomaterials for bone Materials that enhance bone regeneration have a wealth of potential, Mater Today, vol.11, issue.5, pp.18-25, 2008.

A. Göpferich, Mechanisms of polymer degradation and erosion, Biomaterials, vol.17, issue.2, pp.103-114, 1996.

M. Navarro, A. Michiardi, O. Castano, and J. Planell, Biomaterials in orthopaedics, J R Soc Interface, vol.5, issue.27, pp.1137-1158, 2008.

C. Gao, Y. Deng, and P. Feng, Current progress in bioactive ceramic scaffolds for bone repair and regeneration, Int J Mol Sci, vol.15, issue.3, pp.4714-4732, 2014.

L. Roseti, V. Parisi, and M. Petretta, Scaffolds for bone tissue engineering: State of the art and new perspectives, Mater Sci Eng C, vol.78, pp.1246-1262, 2017.

A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, Bone tissue engineering: Recent advances and challenges, Crit Rev Biomed Eng, vol.40, issue.5, pp.363-408, 2013.

. Wikipedia, Metallic bonding

M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants -A review, Prog Mater Sci, vol.54, issue.3, pp.397-425, 2009.

X. Z. Zhang, M. Leary, H. P. Tang, T. Song, and M. Qian, Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges, Curr Opin Solid State Mater Sci, vol.22, issue.3, pp.75-99, 2018.

T. Hanawa, Research and development of metals for medical devices based on clinical needs

, Sci Technol Adv Mater, vol.6996, 2012.

S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications : A review on corrosion , biocompatibility and surface modi fi cations, Mater Sci Eng C, vol.68, pp.948-963, 2016.

R. K. Quinn and N. R. Armstrong, Electrochemical and surface analytical characterization of titanium and titanium hydride thin film electrode oxidation, J Electrochem Soc, vol.125, issue.11, pp.1790-1796, 1978.

C. N. Elias, J. Lima, R. Valiev, and M. A. Meyers, Biomedical applications of titanium and its alloys, JOM, vol.60, issue.3, pp.46-49, 2008.

H. J. Rack and J. I. Qazi, Titanium alloys for biomedical applications, Mater Sci Eng C, vol.26, pp.1269-1277, 2006.

. Kobelco, Manufacturing Processes

S. Trotman, Orthopaedics machining case study

D. Beeby, Design and manufacture considerations for medical implants, TCT Mag

T. Pallone, The making of a dental implant

C. W. Kang and F. Z. Fang, State of the art of bioimplants manufacturing: part I, Adv Manuf, vol.6, issue.1, pp.20-40, 2018.

J. Kerns, Powder-metallurgy processes

W. E. Frazier, Metal additive manufacturing: A review, J Mater Eng Perform, vol.23, issue.6, pp.1917-1928, 2014.

S. L. Sing, J. An, W. Y. Yeong, and F. E. Wiria, Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs, J Orthop Res, vol.34, issue.3, pp.369-385, 2016.

L. E. Murr, S. M. Gaytan, and D. A. Ramirez, Metal fabrication by Additive Manufacturing using Laser and Electron Beam Melting technologies, J Mater Sci Technol, vol.28, issue.1, pp.1-14, 2012.

V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, vol.26, issue.27, pp.5474-5491, 2005.

A. Zadpoor, Bone tissue regeneration: the role of scaffold geometry, Biomater Sci, vol.3, issue.2, pp.231-245, 2015.

L. E. Murr, S. M. Gaytan, and F. Medina, Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays, Philos Trans R Soc A Math Phys Eng Sci, vol.368, pp.1999-2032, 1917.

S. Amin-yavari, R. Wauthle, and J. Van-der-stok, Fatigue behavior of porous biomaterials manufactured using selective laser melting, Mater Sci Eng C, vol.33, issue.8, pp.4849-4858, 2013.

S. Amin-yavari, S. M. Ahmadi, and R. Wauthle, Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials, J Mech Behav Biomed Mater, vol.43, pp.91-100, 2015.

Y. Kuboki, H. Takita, and D. Kobayashi, BMP-Induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis, J Biomed Mater Res, vol.39, issue.2, pp.190-199, 1998.

S. F. Hulbert, F. A. Young, R. S. Mathews, J. J. Klawitter, C. D. Talbert et al., Potential of ceramic materials as permanently implantable skeletal prostheses, J Biomed Mater Res, vol.4, issue.3, pp.433-456, 1970.

Q. Zhang, H. Lu, N. Kawazoe, and G. Chen, Pore size effect of collagen scaffolds on cartilage regeneration, Acta Biomater, vol.10, issue.5, pp.2005-2013, 2014.

T. Doktor, J. Valach, D. Kytyr, and O. Jirou?ek, Pore Size Distribution of Human Trabecular Bone -Comparison of Intrusion Measurements with Image Analysis, 2011.

M. Rumpler, A. Woesz, J. Dunlop, J. T. Van-dongen, and P. Fratzl, The effect of geometry on threedimensional tissue growth, J R Soc Interface, vol.5, issue.27, pp.1173-1180, 2008.

M. Paris, A. Götz, and I. Hettrich, Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface, Acta Biomater, vol.2017, pp.1-17

S. Dobbenga, L. E. Fratila-apachitei, and A. A. Zadpoor, Nanopattern-induced osteogenic differentiation of stem cells -A systematic review, Acta Biomater, vol.46, pp.3-14, 2016.

R. A. Gittens, T. Mclachlan, and R. Olivares-navarrete, The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation, Biomaterials, vol.32, issue.13, pp.3395-3403, 2011.

M. S. Lord, M. Foss, and F. Besenbacher, Influence of nanoscale surface topography on protein adsorption and cellular response, Nano Today, vol.5, issue.1, pp.66-78, 2010.

R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F. Nealey, Effects of synthetic micro-and nano-structured surfaces on cell behavior, Biomaterials, vol.20, issue.6, pp.573-588, 1999.

M. Nikkhah, F. Edalat, S. Manoucheri, and A. Khademhosseini, Engineering microscale topographies to control the cell-substrate interface, Biomaterials, vol.33, issue.21, pp.5230-5246, 2012.

M. G. Holthaus, J. Stolle, L. Treccani, and K. Rezwan, Orientation of human osteoblasts on hydroxyapatite-based microchannels, Acta Biomater, vol.8, issue.1, pp.394-403, 2012.

G. Kirmizidis and M. A. Birch, Microfabricated grooved substrates influence cell-cell communication and osteoblast differentiation in vitro, Tissue Eng Part A, vol.15, issue.6, pp.1427-1436, 2008.

J. Fu, Y. K. Wang, and M. T. Yang, Mechanical regulation of cell function with geometrically modulated elastomeric substrates, Nat Methods, vol.7, issue.9, pp.733-736, 2010.

V. Goriainov, R. Cook, J. M. Latham, D. G. Dunlop, and R. Oreffo, Bone and metal : An orthopaedic perspective on osseointegration of metals, Acta Biomater, vol.10, issue.10, pp.4043-4057, 2014.

J. Sharan, S. Lale, V. Koul, M. Mishra, and O. P. Kharbanda, An overview of surface modifications of Titanium and its alloys for biomedical applications, Trends Biomater Artif Organs, vol.29, issue.2, pp.176-187, 2015.

A. Wennerberg and T. Albrektsson, Effects of titanium surface topography on bone integration: A systematic review, Clin Oral Implants Res, vol.20, pp.172-184, 2009.

R. A. Gittens, R. Olivares-navarrete, Z. Schwartz, and B. D. Boyan, Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants, Acta Biomater, vol.10, issue.8, pp.3363-3371, 2014.

P. Heinl, L. Müller, C. Körner, R. F. Singer, and F. A. Müller, Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomater, vol.4, issue.5, pp.1536-1544, 2008.

X. Li, Y. Feng, and C. Wang, Evaluation of Biological Properties of Electron Beam Melted Ti6Al4V Implant with Biomimetic Coating In Vitro and In Vivo, PLoS One, vol.7, issue.12, p.52049, 2012.

S. Amin-yavari, J. Van-der-stok, and Y. C. Chai, Bone regeneration performance of surfacetreated porous titanium, Biomaterials, vol.35, issue.24, pp.6172-6181, 2014.

X. Li, L. Wang, and X. Yu, Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation, Mater Sci Eng C, vol.33, issue.5, pp.2987-2994, 2013.

X. Li, P. Gao, and P. Wan, Novel bio-functional magnesium coating on porous Ti6Al4V orthopaedic implants: in vitro and in vivo study, Sci Rep, vol.7, issue.1, p.40755, 2017.

, Ceramed. Medical coatings

, DOT. Dental Coatings -PVD Coating. Medical implant solutions

A. C. Carreira, G. G. Alves, W. F. Zambuzzi, M. C. Sogayar, and J. M. Granjeiro, Bone Morphogenetic Proteins: Structure, biological function and therapeutic applications, Arch Biochem Biophys, vol.561, pp.64-73, 2014.

N. S. Gandhi and R. L. Mancera, Prediction of heparin binding sites in bone morphogenetic proteins (BMPs), Biochim Biophys Acta -Proteins Proteomics, vol.1824, issue.12, pp.1374-1381, 2012.

E. J. Carragee, E. L. Hurwitz, and B. K. Weiner, A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: Emerging safety concerns and lessons learned, Spine J, vol.11, issue.6, pp.471-491, 2011.

M. C. Simmonds, Food and Drug Administration executive summary for P050036 Medtronic's AMPLIFY TM rhBMP-2 Matrix Orthopaedic and Rehabilitation Devices Advisory Panel, FDA, p.2013, 2010.

J. N. Zara, R. K. Siu, and X. Zhang, High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo, Tissue Eng Part A, vol.17, issue.9, pp.1389-1399, 2011.

J. W. Kim, I. H. Jeong, K. Lee, and . Il, Volumetric bone regenerative efficacy of biphasic calcium phosphate-collagen composite block loaded with rhBMP-2 in vertical bone augmentation model of a rabbit calvarium, J Biomed Mater Res -Part A, vol.100, issue.12, pp.3304-3313, 2012.

D. Y. Hwang, S. W. On, and S. I. Song, Bone regenerative effect of recombinant human bone morphogenetic protein-2 after cyst enucleation, Maxillofac Plast Reconstr Surg, vol.38, issue.1, p.22, 2016.

J. H. Cho, J. H. Lee, and J. S. Yeom, Efficacy of Escherichia coli-derived recombinant human bone morphogenetic protein-2 in posterolateral lumbar fusion: an open, active-controlled, randomized, multicenter trial, Spine J, vol.17, issue.12, pp.1866-1874, 2017.

W. J. King and P. H. Krebsbach, Growth factor delivery : How surface interactions modulate release in vitro and in vivo ?, Adv Drug Deliv Rev, vol.64, issue.12, pp.1239-1256, 2012.

I. El-bialy, W. Jiskoot, R. Nejadnik, and M. , Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration, Pharm Res, vol.34, issue.6, pp.1152-1170, 2017.

X. Yu, D. Suárez-gonzález, A. S. Khalil, and W. L. Murphy, How does the pathophysiological context influence delivery of bone growth factors?, Adv Drug Deliv Rev, vol.84, pp.68-84, 2015.

. R&dsystems, Recombinant human BMP-7 protein, 2018.

G. Mitu and R. Hirschberg, Bone morphogenetic protein-7 (BMP7) in chronic kidney disease, Front Biosci, vol.13, pp.4726-4739, 2008.

S. Cecchi, S. J. Bennet, and M. Arora, Bone morphogenetic protein-7: Review of signalling and efficacy in fracture healing, J Orthop Transl, vol.4, pp.28-34, 2016.

K. Wei, Z. Yin, and Y. Xie, Roles of the kidney in the formation, remodeling and repair of bone, J Nephrol, vol.29, issue.3, pp.349-357, 2016.

J. C. Reichert, A. Cipitria, and D. R. Epari, A tissue engineering solution for segmental defect regeneration in load-bearing long bones, Sci Transl Med, vol.4, issue.141, pp.141-93, 2012.

Y. Ozaki, M. Nishimura, and K. Sekiya, Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells, Stem Cells Dev, vol.16, issue.1, pp.119-129, 2007.

C. W. Digiovanni, S. S. Lin, and J. F. Baumhauer, Recombinant human platelet-derived growth factor-BB and beta-tricalcium phosphate (rhPDGF-BB/?-TCP): An alternative to autogenous bone graft, JBJS, issue.13, p.95, 2013.

C. W. Digiovanni, S. S. Lin, and T. R. Daniels, The importance of sufficient graft material in achieving foot or ankle Fusion, JBJS, vol.98, issue.15, 2016.

I. Arrighi, S. Mark, M. Alvisi, B. Von-rechenberg, J. A. Hubbell et al., Bone healing induced by local delivery of an engineered parathyroid hormone prodrug, Biomaterials, vol.30, issue.9, pp.1763-1771, 2009.

. Kuros, KUR-111, Kuros Biosciences

A. Fuerst, S. Derungs, V. Rechenberg, B. Auer, J. A. Schense et al., Use of a parathyroid hormone peptide (PTH1?34)-enriched fibrin hydrogel for the treatment of a subchondral cystic lesion in the proximal interphalangeal joint of a warmblood filly, J Vet Med Ser A, vol.54, issue.2, pp.107-112, 2007.

J. Van-der-stok, H. Wang, A. Yavari, and S. , Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time-and dose-controlled delivery of dual growth factors, Tissue Eng Part A, vol.19, pp.2605-2614, 2013.

J. Van-der-stok, D. Lozano, and Y. C. Chai, Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats, Tissue Eng Part A, vol.21, issue.9, pp.1495-1506, 2015.

J. Van-der-stok, M. Koolen, D. Maat, and M. , Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels, Eur Cells Mater, vol.29, pp.141-154, 2015.

M. Hess, R. G. Jones, and J. Kahovec, Terminology of polymers containing ionizable or ionic groups and of polymers containing ions (IUPAC Recommendations, Pure Appl Chem, vol.78, issue.11, pp.2067-2074, 2006.

G. Decher, Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science (80-), vol.277, pp.1232-1237, 1997.

A. Guyomard, G. Muller, and K. Glinel, Buildup of multilayers based on amphiphilic polyelectrolytes, Macromolecules, vol.38, issue.13, pp.5737-5742, 2005.

S. A. Sukhishvili and G. S. Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly, Macromolecules, vol.35, issue.1, pp.301-310, 2002.

F. Wang, N. Ma, Q. Chen, W. Wang, and L. Wang, Halogen bonding as a new driving force for layerby-layer assembly, Langmuir, vol.23, pp.9540-9542, 2007.

G. B. Sukhorukov, E. Donath, and H. Lichtenfeld, Layer-by-layer self assembly of polyelectrolytes on colloidal particles, Colloids Surfaces A Physicochem Eng Asp, vol.137, issue.1-3, pp.253-266, 1998.

G. B. Sukhorukov, H. Möhwald, G. Decher, and Y. M. Lvov, Assembly of polyelectrolyte multilayer films by consecutively alternating adsorption of polynucleotides and polycations, Thin Solid Films, issue.95, pp.220-223, 1996.

T. Boudou, T. Crouzier, K. Ren, G. Blin, and C. Picart, Multiple functionalities of polyelectrolyte multilayer films: New biomedical applications, Adv Mater, vol.22, issue.4, pp.441-467, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00670215

L. Richert, F. Boulmedais, and P. Lavalle, Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking, Biomacromolecules, vol.5, issue.2, pp.284-294, 2004.

. Thermofisherscientific, Carbodiimide crosslinker chemistry

J. Johansson, T. Halthur, M. Herranen, L. Söderberg, U. Elofsson et al., Build-up of collagen and hyaluronic acid polyelectrolyte multilayers, Biomacromolecules, vol.6, issue.3, pp.1353-1359, 2005.

J. D. Mendelsohn, C. J. Barrett, V. V. Chan, A. J. Pal, A. M. Mayes et al., Fabrication of microporous thin films from polyelectrolyte multilayers, Langmuir, vol.16, issue.11, pp.5017-5023, 2000.

T. Crouzier, K. Ren, C. Nicolas, C. Roy, and C. Picart, Layer-by-layer films as a biomimetic reservoir for rhBMP-2 delivery: Controlled differentiation of myoblasts to osteoblasts, Small, vol.5, issue.5, pp.598-608, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00496287

A. Schneider, G. Francius, and R. Obeid, Polyelectrolyte multilayers with a tunable young's modulus: Influence of film stiffness on cell adhesion, Langmuir, vol.22, issue.3, pp.1193-1200, 2006.

M. Bouyer, R. Guillot, and J. Lavaud, Surface delivery of tuneable doses of BMP-2 from an adaptable polymeric scaffold induces rapid bone regeneration, Biomaterials, vol.104, pp.168-181, 2016.

J. Almodóvar, R. Guillot, and C. Monge, Spatial patterning of BMP-2 and BMP-7 on biopolymeric films and the guidance of muscle cell fate, Biomaterials, vol.35, issue.13, pp.3975-3985, 2014.

T. Crouzier, F. Sailhan, P. Becquart, R. Guillot, D. Logeart-avramoglou et al., The performance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating, Biomaterials, vol.32, issue.30, pp.7543-7554, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01067511

R. Guillot, F. Gilde, and P. Becquart, The stability of BMP loaded polyelectrolyte multilayer coatings on titanium, Biomaterials, vol.34, issue.23, pp.5737-5746, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01067513

J. C. Reichert, S. Saifzadeh, and M. E. Wullschleger, The challenge of establishing preclinical models for segmental bone defect research, Biomaterials, vol.30, issue.12, pp.2149-2163, 2009.

Y. Li, S. Chen, L. Li, L. Qin, X. Wang et al., Bone defect animal models for testing efficacy of bone substitute biomaterials, J Orthop Transl, vol.3, issue.3, pp.95-104, 2015.

L. M. Wancket, Animal models for evaluation of bone implants and devices: Comparative bone structure and common model uses, Vet Pathol, vol.52, issue.5, pp.842-850, 2015.

M. Peric, I. Dumic-cule, and D. Grcevic, The rational use of animal models in the evaluation of novel bone regenerative therapies, Bone, vol.70, pp.73-86, 2015.

J. Lammens, M. Maréchal, and L. Geris, Warning about the use of critical-size defects for the translational study of bone repair: Analysis of a sheep tibial model, Tissue Eng Part C Methods, vol.23, issue.11, pp.694-699, 2017.

R. Colquhoun and K. E. Tanner, Mechanical behaviour of degradable phosphate glass fibres and composites -A review, Biomed Mater, vol.11, issue.1, 2015.

M. M. Martino, P. S. Briquez, K. Maruyama, and J. A. Hubbell, Extracellular matrix-inspired growth factor delivery systems for bone regeneration, Adv Drug Deliv Rev, vol.94, pp.41-52, 2015.

G. Mani, M. D. Feldman, D. Patel, and C. M. Agrawal, Coronary stents: A materials perspective, Biomaterials, vol.28, issue.9, pp.1689-1710, 2007.

M. Ashby, Designing architectured materials, Scr Mater, vol.68, issue.1, pp.4-7, 2013.

A. B. Arcam, Ti6Al4V ELI Titanium Alloy

M. Suard, Characterization and optimization of lattice structures made by Electron Beam Melting, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01241583

V. Petrovic, J. V. Haro, J. R. Blasco, L. Portolés, and . Biomedicine, , 2012.

J. Parthasarathy, B. Starly, S. Raman, and A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM), J Mech Behav Biomed Mater, vol.3, issue.3, pp.249-259, 2010.

A. B. Arcam and . Hardware,

M. Suard, P. Lhuissier, R. Dendievel, J. Blandin, F. Vignat et al., Towards stiffness prediction of cellular structures made by electron beam melting (EBM), Powder Metall, vol.57, issue.3, pp.190-195, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00997282

J. H. Park, R. Olivares-navarrete, and R. E. Baier, Effect of cleaning and sterilization on titanium implant surface properties and cellular response, Acta Biomater, vol.8, issue.5, pp.1966-1975, 2012.

E. N. Landis, D. T. Keane, and . X-ray-microtomography, Mater Charact, vol.61, issue.12, pp.1305-1316, 2010.

R. Ketcham, . X-ray-computed, and . Tomography,

C. Tomographe,

M. Suard, G. Martin, and P. Lhuissier, Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by Electron Beam Melting, Addit Manuf, vol.8, pp.124-131, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01240214

R. J. Narayan, P. N. Kumta, and W. R. Wagner, Advances in biomedical and biomimetic materials, Advances in Biomedical and Biomimetic Materials. The Americ, 2008.

M. Hyldgaard, T. Mygind, B. S. Vad, M. Stenvang, and D. E. Otzen, The antimicrobial mechanism of action of epsilon-poly-L-lysine, Appl Environ Microbiol, vol.80, issue.24, pp.7758-7770, 2014.

K. Ren, T. Crouzier, C. Roy, and C. Picart, Polyelectrolyte multilayer films of controlled stiffness modulate myoblast cell differentiation, Adv Funct Mater, vol.18, issue.9, pp.1378-1389, 2008.

P. Machillot, C. Quintal, F. Dalonneau, L. Hermant, P. M. et al., Automated buildup of biomimetic films in cell culture microplates for high-throughput screening of cellular behaviors, Adv Mater, vol.1801097, pp.1-8, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01979186

. Wikipedia and . Fluorophore,

, GE. Spectrophotometry Handbook. GE Healthcare Life Sciences

. Visualprotein, Dual-Range TM BCA Protein Assay Kit

. Leica, . Leica, and . Apo-a,

. Thermofisherscientific, Epifluorescence microscope basics

O. Harsh, . Confocal, and . Quora,

, Introduction to Confocal Microscopy

. Claudionico, Electron interaction with matter, Wikimedia Commons

B. J. Inkson, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, vol.2016, pp.17-43

K. Arvidson, B. M. Abdallah, and L. A. Applegate, Bone regeneration and stem cells, J Cell Mol Med, vol.15, issue.4, pp.718-746, 2011.

D. Diduch,

M. Coe,

C. Joyner and M. E. Owen,

G. Balian, Two cell lines from bone marrow that differ in terms of collagen synthesis, osteogenic characteristics, and matrix mineralization, J Bone Jt Surg, 1993.

, Cellosaurus D1 ORL UVA (CVCL_6495)

. Greinerbioone,

S. Gilde, Présentation de la BMP-2 par un film biomimétique : structure de la protéine , stabilité à long terme et internalisation cellulaire, 2014.

Y. C. Chai, S. J. Roberts, S. Bael, and . Van, Multi-level factorial analysis of Ca 2 + / P i supplementation as bio-instructive media for in vitro biomimetic, Tissue Eng Part C, vol.18, issue.2, pp.90-103, 2012.

. Thermofisherscientific, CyQUANT Cell proliferation assays

E. E. Golub and K. Boesze-battaglia, The role of alkaline phosphatase in mineralization, Curr Opin Orthop, vol.18, issue.5, pp.444-448, 2007.

. Info-m-helfen, Alkaline phosphatase lewis structure

U. Sharma, D. Pal, and R. Prasad, Alkaline phosphatase: An overview, Indian J Clin Biochem, vol.29, issue.3, pp.269-278, 2014.

J. Guerrero, Devenir des cellules souches mesenchymateuse humaines dans un environnement tridimensionnel: application à l'ingénieurie du tissu osseux, 2014.

. Sigma-aldrich, Colorimetric alkaline phosphatase and peroxidase substrate detection systems, 2008.

, Module 2 : Spectroscopic Methods

A. Bakhshian-nik, J. D. Hutcheson, and E. Aikawa, Extracellular vesicles as mediators of cardiovascular calcification, Front Cardiovasc Med, vol.4, 2017.

J. An, S. Leeuwenburgh, J. Wolke, and J. Jansen, 4 -Mineralization processes in hard tissue: Bone, Biomineralization and Biomaterials, vol.2016, pp.129-146

F. Langenbach, J. Handschel, and P. Robey, Effects of dexamethasone, ascorbic acid and bglycerophosphate on the osteogenic differentiation of stem cells in vitro, Stem Cell Res Ther, vol.4, issue.5, p.117, 2013.

T. Moriguchi, K. Yano, S. Nakagawa, and F. Kaji, Elucidation of adsorption mechanism of bonestaining agent alizarin red S on hydroxyapatite by FT-IR microspectroscopy, J Colloid Interface Sci, vol.260, issue.1, pp.19-25, 2003.

F. Bobbert, K. Lietaert, and A. A. Eftekhari, Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomater, vol.53, pp.572-584, 2017.

M. Ridzwan, S. Shuib, A. Y. Hassan, A. A. Shokri, M. Ibrahim et al., Problem of stress shielding and improvement to the hip implant designs: A review, J Med Sci, vol.7, issue.3, pp.460-467, 2007.

K. K. Papachroni, D. N. Karatzas, K. A. Papavassiliou, E. K. Basdra, and A. G. Papavassiliou, Mechanotransduction in osteoblast regulation and bone disease, Trends Mol Med, vol.15, issue.5, pp.208-216, 2009.

S. B. Goodman, Z. Yao, M. Keeney, and F. Yang, The future of biologic coatings for orthopaedic implants, Biomaterials, vol.34, issue.13, pp.3174-3183, 2013.

K. W. Lo, B. D. Ulery, K. M. Ashe, and C. T. Laurencin, Studies of bone morphogenetic protein-based surgical repair ?, Adv Drug Deliv Rev, vol.64, issue.12, pp.1277-1291, 2012.

B. Elmengaard, J. E. Bechtold, and K. Søballe, In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants, Biomaterials, vol.26, issue.17, pp.3521-3526, 2005.

S. Rammelt, T. Illert, S. Bierbaum, D. Scharnweber, H. Zwipp et al., Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate, Biomaterials, vol.27, issue.32, pp.5561-5571, 2006.

F. Gilde, L. Fourel, and R. Guillot, Stiffness-dependent cellular internalization of matrix-bound BMP-2 and its relation to Smad and non-Smad signaling, Acta Biomater, vol.46, pp.55-67, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01465594

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat Methods, vol.9, issue.7, pp.671-675, 2012.

T. Barr, A. Mcnamara, G. Sándor, C. Clokie, and S. Peel, Comparison of the osteoinductivity of bioimplants containing recombinant human bone morphogenetic proteins 2 (Infuse) and 7 (OP-1). Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology, vol.109, pp.531-540, 2010.

C. Lu, Z. Xing, Y. Yu, C. Colnot, T. Miclau et al., Recombinant human bone morphogenetic protein-7 enhances fracture healing in an ischemic environment, J Orthop Res, vol.28, issue.5, pp.687-696, 2010.

A. Berner, J. D. Boerckel, and S. Saifzadeh, Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration, Cell Tissue Res, vol.347, issue.3, pp.603-612, 2012.

K. Lee, C. E. Taghavi, S. S. Murray, K. Song, G. Keorochana et al., BMP induced inflammation: A comparison of rhBMP-7 and rhBMP-2, J Orthop Res, vol.30, issue.12, pp.1985-1994, 2012.

J. C. Williams, S. Maitra, M. J. Anderson, B. A. Christiansen, A. H. Reddi et al., BMP-7 and bone regeneration: evaluation of dose-response in a rodent segmental defect model, J Orthop Trauma, vol.29, issue.9, pp.336-377, 2015.

T. Makino, D. J. Hak, S. J. Hazelwood, S. Curtiss, and . Reddi-a-h, Prevention of atrophic nonunion development by recombinant human bone morphogenetic protein-7, J Orthop Res, vol.23, issue.3, pp.632-638, 2005.

J. Parthasarathy, B. Starly, and S. Raman, A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications, J Manuf Process, vol.13, issue.2, pp.160-170, 2011.

R. Guillot, I. Pignot-paintrand, and J. Lavaud, Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle, Acta Biomater, vol.36, pp.310-322, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01465575

N. K. Kanakaris, G. M. Calori, and R. Verdonk, Application of BMP-7 to tibial non-unions: A 3-year multicenter experience, Injury, vol.39, pp.70019-70025, 2008.

M. Papanagiotou, Z. H. Dailiana, and T. Karachalios, Heterotopic ossification after the use of recombinant human bone morphogenetic protein-7, World J Orthop, vol.8, issue.1, pp.36-41, 2017.

V. Madhu, C. J. Li, A. S. Dighe, G. Balian, and Q. Cui, BMP-non-responsive Sca1+CD73+CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation, PLoS One, vol.9, issue.7, pp.1-11, 2014.

P. Lhuissier, C. De-formanoir, G. Martin, R. Dendievel, and S. Godet, Geometrical control of lattice structures produced by EBM through chemical etching: Investigations at the scale of individual struts, Mater Des, vol.110, pp.485-493, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01451275

E. H. Schemitsch, Size matters: defining critical size in bone defect, J Orthop Trauma, vol.31, issue.10, pp.20-22, 2017.

C. M. Bidan, K. P. Kommareddy, and M. Rumpler, How linear tension converts to curvature: Geometric control of bone tissue growth, PLoS One, vol.7, issue.5, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00805013

C. M. Bidan, F. M. Wang, and J. Dunlop, A three-dimensional model for tissue deposition on complex surfaces, Comput Methods Biomech Biomed Engin, vol.16, issue.10, pp.1056-1070, 2013.

J. Bolander, J. W. Geris, and L. , The combined mechanism of bone morphogenetic protein-and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells, Eur Cells Mater, vol.31, pp.11-25, 2016.

J. Bolander, J. W. Leijten, and J. , Healing of a large long-bone defect through serum-free in vitro priming of human periosteum-derived cells, Stem Cell Reports, vol.8, issue.3, pp.758-772, 2017.

G. Chen, C. Deng, and Y. P. Li, TGF-? and BMP signaling in osteoblast differentiation and bone formation, Int J Biol Sci, vol.8, issue.2, pp.272-288, 2012.

K. M. Sinha and X. Zhou, Genetic and molecular control of osterix in skeletal formation, J Cell Biochem, vol.114, issue.5, pp.975-984, 2013.

R. Marom, I. Shur, R. Solomon, and D. Benayahu, Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells, J Cell Physiol, vol.202, issue.1, pp.41-48, 2005.

J. E. Aubin, Regulation of osteoblast formation and function, Rev Endocr Metab Disord, vol.2, issue.1, pp.81-94, 2001.

J. Markhoff, J. Wieding, V. Weissmann, J. Pasold, A. Jonitz-heincke et al., Influence of different three-dimensional open porous titanium scaffold designs on human osteoblasts behavior in static and dynamic cell investigations, Materials (Basel), vol.8, issue.8, pp.5490-5507, 2015.