C. G. Adair, S. P. Gorman, B. M. Feron, L. M. Byers, D. S. Jones et al., Implications of endotracheal tube biofilm for ventilator-associated pneumonia, Intensive Care Med, vol.25, pp.1072-1076, 1999.

M. D. Alcántar-curiel, D. Blackburn, Z. Saldaña, C. Gayosso-vázquez, N. Iovine et al., Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation, Virulence, vol.4, pp.129-138, 2013.

M. Alhede, T. Bjarnsholt, P. Ø. Jensen, R. K. Phipps, C. Moser et al., Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes, Microbiology, vol.155, pp.3500-3508, 2009.

D. G. Allison, B. Ruiz, C. Sanjose, A. Jaspe, and P. Gilbert, Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms, FEMS Microbiol Lett, vol.167, pp.179-184, 1998.

D. T. Amari, C. Marques, and D. G. Davies, The putative enoyl-coenzyme A hydratase DspI is required for production of the Pseudomonas aeruginosa biofilm dispersion autoinducer cis-2-decenoic acid, J Bacteriol, vol.195, pp.4600-4610, 2013.

D. Amikam and M. Y. Galperin, PilZ domain is part of the bacterial c-di-GMP binding protein, Bioinformatics, vol.22, pp.3-6, 2006.

S. An, J. Wu, and L. Zhang, Modulation of Pseudomonas aeruginosa Biofilm Dispersal by a Cyclic-Di-GMP Phosphodiesterase with a Putative Hypoxia-Sensing Domain, Appl Environ Microbiol, vol.76, pp.8160-8173, 2010.

J. K. Anderson, J. Y. Huang, C. Wreden, E. G. Sweeney, J. Goers et al., Chemorepulsion from the Quorum Signal Autoinducer-2 Promotes Helicobacter pylori, Biofilm Dispersal. mBio, vol.6, pp.379-394, 2015.

L. Andresen, T. Tenson, and V. Hauryliuk, Cationic bactericidal peptide 1018 does not specifically target the stringent response alarmone (p), Sci Rep, vol.6, p.36549, 2016.

T. E. Angelini, M. Roper, R. Kolter, D. A. Weitz, and M. P. Brenner, Bacillus subtilis spreads by surfing on waves of surfactant, Proc Natl Acad Sci U S A, vol.106, pp.18109-18113, 2009.

J. Arenas and J. Tommassen, Meningococcal Biofilm Formation: Let's Stick Together, Trends Microbiol, vol.25, pp.113-124, 2017.

J. W. Austin, G. Sanders, W. W. Kay, and S. K. Collinson, Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation, FEMS Microbiol Lett, vol.162, pp.295-301, 1998.

M. Avila, D. M. Ojcius, and Ö. Yilmaz, The Oral Microbiota: Living with a Permanent Guest, DNA Cell Biol, vol.28, pp.405-411, 2009.

N. Bagge, M. Hentzer, J. B. Andersen, O. Ciofu, M. Givskov et al., Dynamics and Spatial Distribution of ?-Lactamase Expression in Pseudomonas aeruginosa Biofilms, Antimicrob Agents Chemother, vol.48, pp.1168-1174, 2004.

S. T. Bagley, Habitat association of Klebsiella species, Infect Control IC, vol.6, pp.52-58, 1985.

P. Baker, G. B. Whitfield, P. J. Hill, D. J. Little, M. J. Pestrak et al., Characterization of the Pseudomonas aeruginosa Glycoside Hydrolase PslG Reveals That Its Levels Are Critical for Psl Polysaccharide Biosynthesis and Biofilm Formation, J Biol Chem, vol.290, pp.28374-28387, 2015.

N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, Bacterial Persistence as a Phenotypic Switch, Science, vol.305, pp.1622-1625, 2004.

D. Balestrino, J. Ghigo, N. Charbonnel, J. Haagensen, and C. Forestier, The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides, Environ Microbiol, vol.10, pp.685-701, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01901837

D. Balestrino, J. Haagensen, C. Rich, and C. Forestier, Characterization of Type 2 Quorum Sensing in Klebsiella pneumoniae and Relationship with Biofilm Formation, J Bacteriol, vol.187, pp.2870-2880, 2005.

M. M. Barnhart and M. R. Chapman, Curli Biogenesis and Function, Annu Rev Microbiol, vol.60, pp.131-147, 2006.

N. Barraud, D. J. Hassett, S. Hwang, S. A. Rice, S. Kjelleberg et al., Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa, J Bacteriol, vol.188, pp.7344-7353, 2006.

N. Barraud, J. A. Moscoso, J. Ghigo, and A. Filloux, Methods for studying biofilm dispersal in Pseudomonas aeruginosa, Methods Mol Biol Clifton NJ, vol.1149, pp.643-651, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02017392

N. Barraud, D. Schleheck, J. Klebensberger, J. S. Webb, D. J. Hassett et al., Nitric Oxide Signaling in Pseudomonas aeruginosa Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic Di-GMP Levels, and Enhanced Dispersal, J Bacteriol, vol.191, pp.7333-7342, 2009.

N. Barraud, M. V. Storey, Z. P. Moore, J. S. Webb, R. Sa et al., Nitric oxidemediated dispersal in single-and multi-species biofilms of clinically and industrially relevant microorganisms, Microb Biotechnol, vol.2, pp.370-378, 2009.

A. Basu-roy and K. Sauer, Diguanylate cyclase NicD based signaling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa, Mol Microbiol, vol.94, pp.774-793, 2014.

A. M. Baty, C. C. Eastburn, S. Techkarnjanaruk, A. E. Goodman, and G. G. Geesey, Spatial and Temporal Variations in Chitinolytic Gene Expression and Bacterial Biomass Production during Chitin Degradation, Appl Environ Microbiol, vol.66, pp.3574-3585, 2000.

K. W. Bayles, The biological role of death and lysis in biofilm development, Nat Rev Microbiol, vol.5, pp.721-726, 2007.

K. E. Beenken, H. Spencer, L. M. Griffin, and M. S. Smeltzer, Impact of Extracellular Nuclease Production on the Biofilm Phenotype of Staphylococcus aureus under In Vitro and In Vivo Conditions, Infect Immun, vol.80, pp.1634-1638, 2012.

R. Belas, Biofilms, flagella, and mechanosensing of surfaces by bacteria, Trends Microbiol, vol.22, pp.517-527, 2014.

C. Beloin, A. Roux, and J. Ghigo, Escherichia coli biofilms, Curr Top Microbiol Immunol, vol.322, pp.249-289, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00473297

C. Beloin, J. Valle, P. Latour-lambert, P. Faure, M. Kzreminski et al., Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression, Mol Microbiol, vol.51, pp.659-674, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-02080937

C. O. Beltrame, M. F. Côrtes, R. R. Bonelli, A. Côrrea-ab-de, A. Botelho et al., Inactivation of the Autolysis-Related Genes lrgB and yycI in Staphylococcus aureus Increases Cell Lysis-Dependent eDNA Release and Enhances Biofilm Development In Vitro and In Vivo, PLoS ONE, vol.10, p.138924, 2015.

H. C. Berg and R. A. Anderson, Bacteria Swim by Rotating their Flagellar Filaments, Nature, vol.245, pp.380-382, 1973.

A. Bhattacharjee, T. D. Nusca, and A. I. Hochbaum, Rhamnolipids Mediate an Interspecies Biofilm Dispersal Signaling Pathway, ACS Chem Biol, vol.11, pp.3068-3076, 2016.

D. Bieber, S. W. Ramer, C. Wu, W. J. Murray, T. T. Fernandez et al., Type IV Pili, Transient Bacterial Aggregates, and Virulence of Enteropathogenic Escherichia coli, Science, vol.280, pp.2114-2118, 1998.

K. M. Blair, L. Turner, J. T. Winkelman, H. C. Berg, and D. B. Kearns, A Molecular Clutch Disables Flagella in the Bacillus subtilis Biofilm, Science, vol.320, pp.1636-1638, 2008.

J. M. Blander and R. Medzhitov, Regulation of Phagosome Maturation by Signals from Toll-Like Receptors, Science, vol.304, pp.1014-1018, 2004.

P. C. Bogino, M. Oliva, M. Sorroche, F. G. , and G. W. , The Role of Bacterial Biofilms and Surface Components in Plant-Bacterial Associations, Int J Mol Sci, vol.14, pp.15838-15859, 2013.

B. R. Boles and A. R. Horswill, agr-Mediated Dispersal of Staphylococcus aureus Biofilms, PLoS Pathog, vol.4, p.1000052, 2008.

B. R. Boles, M. Thoendel, and P. K. Singh, Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms, Mol Microbiol, vol.57, pp.1210-1223, 2005.

L. Bonnichsen, N. Bygvraa-svenningsen, M. Rybtke, I. De-bruijn, J. M. Raaijmakers et al., Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms, Microbiology, vol.161, pp.2289-2297, 2015.

V. B. Borisov, R. B. Gennis, J. Hemp, and M. I. Verkhovsky, The cytochrome bd respiratory oxygen reductases, Biochim Biophys Acta, vol.1807, pp.1398-1413, 2011.

B. R. Borlee, A. D. Goldman, K. Murakami, R. Samudrala, D. J. Wozniak et al., , 2010.

, Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix, Mol Microbiol, vol.75, pp.827-842

A. Boyd and A. M. Chakrabarty, Role of alginate lyase in cell detachment of Pseudomonas aeruginosa, Appl Environ Microbiol, vol.60, pp.2355-2359, 1994.

S. S. Branda, F. Chu, D. B. Kearns, R. Losick, and R. Kolter, A major protein component of the Bacillus subtilis biofilm matrix, Mol Microbiol, vol.59, pp.1229-1238, 2006.

S. Brisse, F. Grimont, and P. Grimont, The genus Klebsiella. Prokaryotes Handb Biol Bact, 2006.

S. Brisse, V. Passet, A. B. Haugaard, A. Babosan, N. Kassis-chikhani et al., wzi Gene Sequencing, a Rapid Method for Determination of Capsular Type for Klebsiella Strains, J Clin Microbiol, vol.51, pp.4073-4078, 2013.

J. L. Brissette, M. Russel, L. Weiner, and P. Model, Phage shock protein, a stress protein of Escherichia coli, Proc Natl Acad Sci, vol.87, pp.862-866, 1990.

S. A. Brown and M. Whiteley, A Novel Exclusion Mechanism for Carbon Resource Partitioning in Aggregatibacter actinomycetemcomitans, J Bacteriol, vol.189, pp.6407-6414, 2007.

L. S. Cairns, V. L. Marlow, E. Bissett, A. Ostrowski, and N. R. Stanley-wall, A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis, Mol Microbiol, vol.90, pp.6-21, 2013.

G. Capitani, O. Eidam, R. Glockshuber, and M. G. Grütter, Structural and functional insights into the assembly of type 1 pili from Escherichia coli, Microbes Infect, vol.8, pp.2284-2290, 2006.

M. Q. Carter, J. W. Louie, D. Feng, W. Zhong, and M. T. Brandl, Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation, Food Microbiol, vol.57, pp.81-89, 2016.

G. Carvalho, C. Guilhen, D. Balestrino, C. Forestier, and J. Mathias, Relating switching rates between normal and persister cells to substrate and antibiotic concentrations: a mathematical modeling approach supported by experiments, Microb Biotechnol, 2017.

, Antibiotic Resistance Threats in the United States, Centers for Disease Control and Prevention, 2013.

K. N. Chacón, T. D. Mealman, M. M. Mcevoy, and N. J. Blackburn, Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins, Proc Natl Acad Sci U S A, vol.111, pp.15373-15378, 2014.

P. Chaignon, I. Sadovskaya, C. Ragunah, N. Ramasubbu, J. B. Kaplan et al., Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition, Appl Microbiol Biotechnol, vol.75, pp.125-132, 2007.

J. R. Chambers and K. Sauer, Small RNAs and their role in biofilm formation, Trends Microbiol, vol.21, pp.39-49, 2013.

D. Chatterjee, R. B. Cooley, C. D. Boyd, R. A. Mehl, G. A. O'toole et al., , 2014.

, Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP, vol.3, p.3650

J. Chaves, M. G. Ladona, C. Segura, A. Coira, R. Reig et al., SHV-1 ?-Lactamase Is Mainly a Chromosomally Encoded Species-Specific Enzyme in Klebsiella pneumoniae, Antimicrob Agents Chemother, vol.45, pp.2856-2861, 2001.

C. Chen, V. Krishnan, K. Macon, K. Manne, S. Narayana et al., Secreted Proteases Control Autolysin-mediated Biofilm Growth of Staphylococcus aureus, J Biol Chem, vol.288, pp.29440-29452, 2013.

K. Chen, M. Chiang, M. Wang, H. Ho, M. Lu et al., The role of pgaC in Klebsiella pneumoniae virulence and biofilm formation, Microb Pathog, vol.77, pp.89-99, 2014.

D. S. Chertow and M. J. Memoli, Bacterial coinfection in influenza: a grand rounds review, JAMA, vol.309, pp.275-282, 2013.

F. Chevance and K. T. Hughes, Coordinating assembly of a bacterial macromolecular machine, Nat Rev Microbiol, vol.6, pp.455-465, 2008.

S. Chhibber, S. Bansal, and S. Kaur, Disrupting the mixed-species biofilm of Klebsiella pneumoniae B5055 and Pseudomonas aeruginosa PAO using bacteriophages alone or in combination with xylitol, Microbiology, vol.161, pp.1369-1377, 2015.

W. Chiang, M. Nilsson, P. Ø. Jensen, N. Høiby, T. E. Nielsen et al., , 2013.

, Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms, Antimicrob Agents Chemother, vol.57, pp.2352-2361

C. Cho, A. Chande, L. Gakhar, L. O. Bakaletz, J. A. Jurcisek et al., Role of the Nuclease of Nontypeable Haemophilus influenzae in Dispersal of Organisms from Biofilms, Infect Immun, vol.83, pp.950-957, 2015.

C. Cho, A. Chande, L. Gakhar, L. O. Bakaletz, J. A. Jurcisek et al., Role of the Nuclease of Nontypeable Haemophilus influenzae in Dispersal of Organisms from Biofilms, Infect Immun, pp.2601-2615, 2014.

K. Choi, T. Mima, Y. Casart, D. Rholl, A. Kumar et al., Genetic Tools for Select-Agent-Compliant Manipulation of Burkholderia pseudomallei, Appl Environ Microbiol, vol.74, pp.1064-1075, 2008.

K. Choi and H. P. Schweizer, mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa, Nat Protoc, vol.1, pp.153-161, 2006.

S. Chou and M. Y. Galperin, Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms, J Bacteriol, vol.198, pp.32-46, 2015.

J. Chouler and M. D. Lorenzo, Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?, Biosensors, vol.5, p.450, 2015.

L. D. Christensen, M. Van-gennip, M. T. Rybtke, H. Wu, W. Chiang et al., Clearance of Pseudomonas aeruginosa Foreign-Body Biofilm Infections through Reduction of the Cyclic Di-GMP Level in the Bacteria, Infect Immun, vol.81, pp.2705-2713, 2013.

S. K. Christensen, M. Mikkelsen, K. Pedersen, and K. Gerdes, RelE, a global inhibitor of translation, is activated during nutritional stress, Proc Natl Acad Sci, vol.98, pp.14328-14333, 2001.

S. L. Chua, L. D. Hultqvist, M. Yuan, M. Rybtke, T. E. Nielsen et al., In Vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation, Nat Protoc, vol.10, pp.1165-1180, 2015.

S. L. Chua, Y. Liu, J. Yam, Y. Chen, R. M. Vejborg et al., Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles, Nat Commun, vol.5, p.4462, 2014.

P. Y. Chung, The emerging problems of Klebsiella pneumoniae infections: carbapenem resistance and biofilm formation, FEMS Microbiol Lett, vol.363, p.1093, 2016.

N. G. Cogan, J. M. Harro, P. Stoodley, and M. E. Shirtliff, Predictive Computer Models for Biofilm Detachment Properties in Pseudomonas aeruginosa, mBio, vol.7, pp.815-831, 2016.

S. K. Collinson, S. C. Clouthier, J. L. Doran, P. A. Banser, and W. W. Kay, Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae, J Bacteriol, vol.178, pp.662-667, 1996.

K. L. Connolly, A. L. Roberts, R. C. Holder, and S. D. Reid, Dispersal of Group A Streptococcal Biofilms by the Cysteine Protease SpeB Leads to Increased Disease Severity in a Murine Model, PLoS ONE, vol.6, p.18984, 2011.

R. B. Cooley, O. Sondermann, and H. , Coincidence detection and bi-directional transmembrane signaling control a bacterial second messenger receptor, vol.5, p.21848, 2016.

J. W. Costerton, Cystic fibrosis pathogenesis and the role of biofilms in persistent infection, Trends Microbiol, vol.9, pp.50-52, 2001.

J. W. Costerton, G. G. Geesey, and K. J. Cheng, How bacteria stick, Sci Am, vol.238, pp.86-95, 1978.

J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-scott, Microbial biofilms, Annu Rev Microbiol, vol.49, pp.711-745, 1995.

J. W. Costerton, Z. Lewandowski, D. Debeer, D. Caldwell, D. Korber et al., Biofilms, the customized microniche, J Bacteriol, vol.176, pp.2137-2142, 1994.

J. W. Costerton and P. S. Stewart, Battling biofilms, Sci Am, vol.285, pp.74-81, 2001.

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, Bacterial Biofilms: A Common Cause of Persistent Infections, Science, vol.284, pp.1318-1322, 1999.

S. Da-re, L. Quéré, B. Ghigo, J. Beloin, and C. , Tight Modulation of Escherichia coli Bacterial Biofilm Formation through Controlled Expression of Adhesion Factors, Appl Environ Microbiol, vol.73, pp.3391-3403, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00331439

R. O. Darouiche, M. D. Mansouri, P. V. Gawande, and S. Madhyastha, Antimicrobial and antibiofilm efficacy of triclosan and DispersinB® combination, J Antimicrob Chemother, vol.64, pp.88-93, 2009.

A. J. Darwin, Stress Relief during Host Infection: The Phage Shock Protein Response Supports Bacterial Virulence in Various Ways, PLoS Pathog, vol.9, p.1003388, 2013.

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc Natl Acad Sci U S A, vol.97, pp.6640-6645, 2000.

M. E. Davey, N. C. Caiazza, and G. A. O'toole, Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1, J Bacteriol, vol.185, pp.1027-1036, 2003.

M. E. Davey and G. A. O'toole, Microbial Biofilms: from Ecology to Molecular Genetics, Microbiol Mol Biol Rev, vol.64, p.847, 2000.

D. Davies, Understanding biofilm resistance to antibacterial agents, Nat Rev Drug Discov, vol.2, pp.114-122, 2003.

D. G. Davies, Biofilm Dispersion, Biofilm Highlights, 2011.

D. G. Davies and C. Marques, A Fatty Acid Messenger Is Responsible for Inducing Dispersion in Microbial Biofilms, J Bacteriol, vol.191, pp.1393-1403, 2009.

D. Araujo, C. Balestrino, D. Roth, L. Charbonnel, N. Forestier et al., Quorum sensing affects biofilm formation through lipopolysaccharide synthesis in Klebsiella pneumoniae, Res Microbiol, vol.161, pp.595-603, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01901822

M. De-rienzo and P. J. Martin, Effect of Mono and Di-rhamnolipids on Biofilms Preformed by Bacillus subtilis BBK006, Curr Microbiol, vol.73, pp.183-189, 2016.

S. N. Dean, M. Chung, M. L. Hoek, and . Van, Burkholderia Diffusible Signal Factor Signals to Francisella novicida To Disperse Biofilm and Increase Siderophore Production, Appl Environ Microbiol, vol.81, pp.7057-7066, 2015.

D. Martino, P. Cafferini, N. Joly, B. Darfeuille-michaud, and A. , Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces, Res Microbiol, vol.154, pp.9-16, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01951130

L. Diancourt, V. Passet, J. Verhoef, P. Grimont, and S. Brisse, Multilocus Sequence Typing of Klebsiella pneumoniae Nosocomial Isolates, J Clin Microbiol, vol.43, pp.4178-4182, 2005.

D. A. Diavatopoulos, K. R. Short, J. T. Price, J. J. Wilksch, L. E. Brown et al., , 2010.

, Influenza A virus facilitates Streptococcus pneumoniae transmission and disease, FASEB J, vol.24, pp.1789-1798

S. P. Diggle, R. E. Stacey, C. Dodd, M. Cámara, P. Williams et al., The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa, Environ Microbiol, vol.8, pp.1095-1104, 2006.

C. Dobell, Antony van Leeuwenhoek and his 'Little animals'. Harcourt, Brace and Company, 1932.

C. D. Doern, A. L. Roberts, W. Hong, J. Nelson, S. Lukomski et al., Biofilm formation by group A Streptococcus: a role for the streptococcal regulator of virulence (Srv) and streptococcal cysteine protease (SpeB), Microbiol Read Engl, vol.155, pp.46-52, 2009.

N. Doherty, M. Holden, S. N. Qazi, P. Williams, and K. Winzer, Functional Analysis of luxS in Staphylococcus aureus Reveals a Role in Metabolism but Not Quorum Sensing, J Bacteriol, vol.188, pp.2885-2897, 2006.

J. Domka, J. Lee, and T. K. Wood, YliH (BssR) and YceP (BssS) Regulate Escherichia coli K-12 Biofilm Formation by Influencing Cell Signaling, Appl Environ Microbiol, vol.72, pp.2449-2459, 2006.

T. Dong and H. E. Schellhorn, Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933, BMC Genomics, vol.10, p.349, 2009.

Y. Dong, X. Zhang, A. Xu, J. Zhang, and L. , A novel two-component system BqsS-BqsR modulates quorum sensing-dependent biofilm decay in Pseudomonas aeruginosa, Commun Integr Biol, vol.1, pp.88-96, 2008.

R. M. Donlan and J. W. Costerton, Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms, Clin Microbiol Rev, vol.15, pp.167-193, 2002.

A. Dötsch, D. Eckweiler, M. Schniederjans, A. Zimmermann, V. Jensen et al., The Pseudomonas aeruginosa Transcriptome in Planktonic Cultures and Static Biofilms Using RNA Sequencing, PLoS ONE, vol.7, p.31092, 2012.

J. M. Dow, L. Crossman, K. Findlay, Y. He, J. Feng et al., Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants, Proc Natl Acad Sci U S A, vol.100, pp.10995-11000, 2003.

A. Driks, Tapping into the biofilm: insights into assembly and disassembly of a novel amyloid fibre in Bacillus subtilis, Mol Microbiol, vol.80, pp.1133-1136, 2011.

E. Duque, J. De-la-torre, P. Bernal, M. A. Molina-henares, M. Alaminos et al., Identification of reciprocal adhesion genes in pathogenic and non-pathogenic Pseudomonas, Environ Microbiol, vol.15, pp.36-48, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01458233

E. Mo and R. V. Miller, Study of the Response of a Biofilm Bacterial Community to UV Radiation, Appl Environ Microbiol, vol.65, p.2025, 1999.

S. Elias and E. Banin, Multi-species biofilms: living with friendly neighbors, FEMS Microbiol Rev, vol.36, pp.990-1004, 2012.

R. A. Fasani and M. A. Savageau, Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype, Proc Natl Acad Sci U S A, vol.110, pp.2528-2537, 2013.

M. Fazli, H. Almblad, M. L. Rybtke, M. Givskov, L. Eberl et al., Regulation of biofilm formation in Pseudomonas and Burkholderia species, Environ Microbiol, vol.16, pp.1961-1981, 2014.

T. Ferenci, Hungry bacteria--definition and properties of a nutritional state, Environ Microbiol, vol.3, pp.605-611, 2001.

L. Ferrieres, G. Hemery, T. Nham, A. Guerout, D. Mazel et al., Silent Mischief: Bacteriophage Mu Insertions Contaminate Products of Escherichia coli Random Mutagenesis Performed Using Suicidal Transposon Delivery Plasmids Mobilized by Broad-Host-Range RP4 Conjugative Machinery, J Bacteriol, vol.192, pp.6418-6427, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01372302

H. Flemming, T. R. Neu, and D. J. Wozniak, The EPS Matrix: The 'House of Biofilm Cells, J Bacteriol, vol.189, pp.7945-7947, 2007.

H. Flemming and J. Wingender, The biofilm matrix, Nat Rev Microbiol, vol.8, pp.623-633, 2010.

H. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, R. Sa et al., Biofilms: an emergent form of bacterial life, Nat Rev Microbiol, vol.14, pp.563-575, 2016.

M. Foucault, L. Thomas, S. Goussard, B. R. Branchini, and C. Grillot-courvalin, In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice, Appl Environ Microbiol, vol.76, pp.264-274, 2010.

S. Fournet-fayard, J. B. Forestier, and C. , Transformation of wild type Klebsiella pneumoniae with plasmid DNA by electroporation, J Microbiol Methods, vol.24, pp.49-54, 1995.

C. G. Frank, V. Reguerio, M. Rother, D. Moranta, A. P. Maeurer et al., Klebsiella pneumoniae targets an EGF receptor-dependent pathway to subvert inflammation, Cell Microbiol, vol.15, pp.1212-1233, 2013.

G. M. Fraser and C. Hughes, Swarming motility, Curr Opin Microbiol, vol.2, pp.630-635, 1999.

R. Freeman, H. Geier, K. M. Weigel, J. Do, T. E. Ford et al., Roles for cell wall glycopeptidolipid in surface adherence and planktonic dispersal of Mycobacterium avium, Appl Environ Microbiol, vol.72, pp.7554-7558, 2006.

C. De-la-fuente-núñez, F. Reffuveille, E. F. Haney, S. K. Straus, and R. Hancock, Broad-Spectrum Anti-biofilm Peptide That Targets a Cellular Stress Response, PLoS Pathog, vol.10, p.1004152, 2014.

C. A. Fux, J. W. Costerton, P. S. Stewart, and P. Stoodley, Survival strategies of infectious biofilms, Trends Microbiol, vol.13, pp.34-40, 2005.

S. Geibel and G. Waksman, The molecular dissection of the chaperone-usher pathway, Biochim Biophys Acta BBA -Mol Cell Res, vol.1843, pp.1559-1567, 2014.

L. Gelens, L. Hill, A. Vandervelde, J. Danckaert, and L. R. , A General Model for Toxin-Antitoxin Module Dynamics Can Explain Persister Cell Formation in E. coli, PLoS Comput Biol, vol.9, p.1003190, 2013.

B. Giwercman, E. T. Jensen, N. Høiby, A. Kharazmi, and J. W. Costerton, Induction of betalactamase production in Pseudomonas aeruginosa biofilm, Antimicrob Agents Chemother, vol.35, pp.1008-1010, 1991.

M. Gjermansen, M. Nilsson, L. Yang, and T. Tolker-nielsen, Characterization of starvationinduced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms, Mol Microbiol, vol.75, pp.815-826, 2010.

M. Gjermansen, P. Ragas, C. Sternberg, S. Molin, and T. Tolker-nielsen, Characterization of starvation-induced dispersion in Pseudomonas putida biofilms, Environ Microbiol, vol.7, pp.894-904, 2005.

R. Glick, C. Gilmour, J. Tremblay, S. Satanower, O. Avidan et al., Increase in Rhamnolipid Synthesis under Iron-Limiting Conditions Influences Surface Motility and Biofilm Formation in Pseudomonas aeruginosa, J Bacteriol, vol.192, pp.2973-2980, 2010.

C. Guilhen, N. Charbonnel, N. Parisot, N. Gueguen, A. Iltis et al., Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells, BMC Genomics, vol.17, p.237, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394069

C. Guilhen, C. Forestier, and D. Balestrino, Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties, Mol Microbiol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01626948

C. Guilhen, A. Iltis, C. Forestier, and D. Balestrino, , 2015.

, Genome Sequence of a Clinical Klebsiella pneumoniae Sequence Type 6 Strain, Genome Announc, vol.3, pp.1311-1326

C. Guilhen, M. Taha, and F. J. Veyrier, Role of transition metal exporters in virulence: the example of Neisseria meningitidis, Front Cell Infect Microbiol, vol.3, p.102, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02093303

S. B. Guttenplan and D. B. Kearns, Regulation of flagellar motility during biofilm formation, FEMS Microbiol Rev, vol.37, pp.849-871, 2013.

D. Ha and G. A. O'toole, c-di-GMP and its Effects on Biofilm Formation and Dispersion: a, Pseudomonas aeruginosa Review. Microbiol Spectr, vol.3, p.3, 2015.

R. Haidar, Antoni van Leeuwenhoek. Photoniques 19-24, 2016.

M. R. Hall, E. Mcgillicuddy, and L. J. Kaplan, Biofilm: Basic Principles, Pathophysiology, and Implications for Clinicians, Surg Infect, vol.15, pp.1-7, 2014.

L. Hall-stoodley, J. W. Costerton, and P. Stoodley, Bacterial biofilms: from the Natural environment to infectious diseases, Nat Rev Microbiol, vol.2, pp.95-108, 2004.

S. Hamilton, R. J. Bongaerts, F. Mulholland, B. Cochrane, J. Porter et al., The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms, BMC Genomics, vol.10, p.599, 2009.

M. Hammar, A. Arnqvist, Z. Bian, A. Olsén, and S. Normark, Expression of two csg operons is required for production of fibronectin-and congo red-binding curli polymers in Escherichia coli K-12, Mol Microbiol, vol.18, pp.661-670, 1995.

J. W. Hastings, Chemistries and colors of bioluminescent reactions: a review, Gene, vol.173, pp.5-11, 1996.

V. Hauryliuk, G. C. Atkinson, K. S. Murakami, T. Tenson, and K. Gerdes, Recent functional insights into the role of (p)ppGpp in bacterial physiology, Nat Rev Microbiol, vol.13, pp.298-309, 2015.

A. J. Hay and J. Zhu, Host Intestinal Signal-Promoted Biofilm Dispersal Induces Vibrio cholerae Colonization, Infect Immun, vol.83, pp.317-323, 2015.

H. Hayashi, H. Seiki, S. Tsuneda, A. Hirata, and H. Sasaki, Influence of growth phase on bacterial cell electrokinetic characteristics examined by soft particle electrophoresis theory, J Colloid Interface Sci, vol.264, pp.565-568, 2003.

F. Heinzel, M. Sadick, B. Holaday, R. Coffman, and R. Locksley, Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets, J Exp Med, vol.169, pp.59-72, 1989.

R. Hengge, Principles of c-di-GMP signalling in bacteria, Nat Rev Microbiol, vol.7, pp.263-273, 2009.

A. T. Henrici, Studies of Freshwater Bacteria, J Bacteriol, vol.25, pp.277-287, 1933.

M. Hentzer, K. Riedel, T. B. Rasmussen, A. Heydorn, J. B. Andersen et al., Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound, Microbiology, vol.148, pp.87-102, 2002.

F. J. Hernandez, L. Huang, M. E. Olson, K. M. Powers, L. I. Hernandez et al., Non-invasive Imaging of Staphylococcus aureus Infections with a Nuclease-Activated Probe, Nat Med, vol.20, pp.301-306, 2014.

S. M. Hinsa, M. Espinosa-urgel, J. L. Ramos, and G. A. O'toole, Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein, Mol Microbiol, vol.49, pp.905-918, 2003.

K. E. Holt, H. Wertheim, R. N. Zadoks, S. Baker, C. A. Whitehouse et al., , 2015.

, Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health, Proc Natl Acad Sci, vol.112, p.3574

T. J. Inglis, M. R. Millar, J. G. Jones, and D. A. Robinson, Tracheal tube biofilm as a source of bacterial colonization of the lung, J Clin Microbiol, vol.27, 1989.

Y. Irie, G. A. O'toole, and Y. M. , Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms, FEMS Microbiol Lett, vol.250, pp.237-243, 2005.

Y. Itoh, J. D. Rice, C. Goller, A. Pannuri, J. Taylor et al., Roles of pgaABCD Genes in Synthesis, Modification, and Export of the Escherichia coli Biofilm Adhesin Poly-?-1,6-N-Acetyl-d-Glucosamine, J Bacteriol, vol.190, pp.3670-3680, 2008.

T. Iwase, Y. Uehara, H. Shinji, A. Tajima, H. Seo et al., Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization, Nature, vol.465, pp.346-349, 2010.

V. S. Iyer and L. E. Hancock, Deletion of ?54 (rpoN) Alters the Rate of Autolysis and Biofilm Formation in Enterococcus faecalis, J Bacteriol, vol.194, pp.368-375, 2012.

E. A. Izano, M. A. Amarante, W. B. Kher, and J. B. Kaplan, Differential Roles of Poly-N-Acetylglucosamine Surface Polysaccharide and Extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis Biofilms, Appl Environ Microbiol, vol.74, pp.470-476, 2008.

K. J-w-costerton, G. Cheng, T. Geesey, J. Ladd, . Nickel et al., Bacterial Biofilms in Nature and Disease, Annu Rev Microbiol, vol.41, pp.435-464, 1987.

E. Jaillette, G. Ledoux, R. Lawson, B. Misset, and S. Nseir, Ventilator-Associated Pneumonia: What's New in, Réanimation, vol.25, pp.83-91, 2016.

L. K. Jennings, K. M. Storek, H. E. Ledvina, C. Coulon, L. S. Marmont et al., , 2015.

, Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix, Proc Natl Acad Sci U S A, vol.112, pp.11353-11358

P. Ø. Jensen, T. Bjarnsholt, R. Phipps, T. B. Rasmussen, H. Calum et al., Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensingcontrolled production of rhamnolipid by Pseudomonas aeruginosa, Microbiology, vol.153, pp.1329-1338, 2007.

J. G. Johnson and S. Clegg, Role of MrkJ, a Phosphodiesterase, in Type 3 Fimbrial Expression and Biofilm Formation in Klebsiella pneumoniae, J Bacteriol, vol.192, pp.3944-3950, 2010.

L. Johnson, S. R. Horsman, L. Charron-mazenod, A. L. Turnbull, H. Mulcahy et al., Extracellular DNA-induced antimicrobial peptide resistance in Salmonella enterica serovar Typhimurium, BMC Microbiol, vol.13, p.115, 2013.

R. N. Jones, Microbial Etiologies of Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia, Clin Infect Dis, vol.51, pp.81-87, 2010.

H. Joo and M. Otto, Molecular basis of in-vivo biofilm formation by bacterial pathogens, Chem Biol, vol.19, pp.1503-1513, 2012.

J. B. Kaplan, Biofilm Dispersal, J Dent Res, vol.89, pp.205-218, 2010.

J. B. Kaplan, Therapeutic potential of biofilm-dispersing enzymes, Int J Artif Organs, vol.32, pp.545-554, 2009.

J. B. Kaplan and D. H. Fine, Biofilm Dispersal of Neisseria subflava and Other Phylogenetically Diverse Oral Bacteria, Appl Environ Microbiol, vol.68, pp.4943-4950, 2002.

J. B. Kaplan, K. Lovetri, S. T. Cardona, S. Madhyastha, I. Sadovskaya et al., Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci, J Antibiot (Tokyo), vol.65, pp.73-77, 2012.

J. B. Kaplan, C. Ragunath, N. Ramasubbu, and D. H. Fine, Detachment of Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous ?-Hexosaminidase Activity, J Bacteriol, vol.185, pp.4693-4698, 2003.

J. B. Kaplan, C. Ragunath, K. Velliyagounder, D. H. Fine, and N. Ramasubbu, Enzymatic Detachment of Staphylococcus epidermidis Biofilms, Antimicrob Agents Chemother, vol.48, pp.2633-2636, 2004.

E. Karatan and P. Watnick, Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms, Microbiol Mol Biol Rev, vol.73, pp.310-347, 2009.

M. M. Karim, T. Hisamoto, T. Matsunaga, Y. Asahi, Y. Noiri et al., LuxS affects biofilm maturation and detachment of the periodontopathogenic bacterium Eikenella corrodens, J Biosci Bioeng, vol.116, pp.313-318, 2013.

F. Khater, D. Balestrino, N. Charbonnel, J. F. Dufayard, S. Brisse et al., In Silico Analysis of Usher Encoding Genes in Klebsiella pneumoniae and Characterization of Their Role in Adhesion and Colonization, PLoS ONE, vol.10, p.116215, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01393629

M. R. Kiedrowski, H. A. Crosby, F. J. Hernandez, C. L. Malone, J. O. Mcnamara et al., Staphylococcus aureus Nuc2 Is a Functional, Surface-Attached Extracellular Nuclease, PLoS ONE, vol.9, p.95574, 2014.

M. R. Kiedrowski, J. S. Kavanaugh, C. L. Malone, J. M. Mootz, J. M. Voyich et al., Nuclease Modulates Biofilm Formation in Community-Associated Methicillin-Resistant Staphylococcus aureus, PLoS ONE, vol.6, p.26714, 2011.

T. Kikuchi, Y. Mizunoe, A. Takade, S. Naito, and S. Yoshida, Curli Fibers Are Required for Development of Biofilm Architecture in Escherichia coli K-12 and Enhance Bacterial Adherence to Human Uroepithelial Cells, Microbiol Immunol, vol.49, pp.875-884, 2005.

S. Kim and J. Lee, Biofilm dispersion in Pseudomonas aeruginosa, J Microbiol Seoul Korea, vol.54, pp.71-85, 2016.

S. M. Kim, J. H. Park, H. S. Lee, W. B. Kim, J. M. Ryu et al., LuxR Homologue SmcR Is Essential for Vibrio vulnificus Pathogenesis and Biofilm Detachment, and Its Expression is Induced by Host Cells, Infect Immun, vol.81, pp.3721-3730, 2013.

R. F. Kinsinger, D. B. Kearns, H. M. Fall, and R. , Genetic Requirements for Potassium Ion-Dependent Colony Spreading in Bacillus subtilis, J Bacteriol, vol.187, pp.8462-8469, 2005.

R. F. Kinsinger, M. C. Shirk, and R. Fall, Rapid Surface Motility in Bacillus subtilis Is Dependent on Extracellular Surfactin and Potassium Ion, J Bacteriol, vol.185, pp.5627-5631, 2003.

I. Kolodkin-gal, D. Romero, S. Cao, J. Clardy, R. Kolter et al., Amino Acids Trigger Biofilm Disassembly. Science, vol.328, pp.627-629, 2010.

K. N. Kragh, J. B. Hutchison, G. Melaugh, C. Rodesney, A. Roberts et al., Role of Multicellular Aggregates in Biofilm Formation, mBio, vol.7, pp.237-253, 2016.

D. Kuczy?ska-wi?nik, E. Matuszewska, and E. Laskowska, Escherichia coli heat-shock proteins IbpA and IbpB affect biofilm formation by influencing the level of extracellular indole, Microbiol Read Engl, vol.156, pp.148-157, 2010.

I. Kuiper, E. L. Lagendijk, R. Pickford, J. P. Derrick, G. Lamers et al., Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms, Mol Microbiol, vol.51, pp.97-113, 2004.

M. Kvist, V. Hancock, and P. Klemm, Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation, Appl Environ Microbiol, vol.74, p.7376, 2008.

L. L. Laichalk, S. L. Kunkel, R. M. Strieter, J. M. Danforth, M. B. Bailie et al., Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia, Infect Immun, vol.64, pp.5211-5218, 1996.

R. Lange and R. Hengge-aronis, Identification of a central regulator of stationary-phase gene expression in Escherichia coli, Mol Microbiol, vol.5, pp.49-59, 1991.

M. Lappann, C. H. Van-alen, T. Harmsen, M. Elias, J. Molin et al., A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis, Mol Microbiol, vol.75, pp.1355-1371, 2010.

H. Lappin-scott, S. Burton, and P. Stoodley, Revealing a world of biofilms -the pioneering research of Bill Costerton, Nat Rev Microbiol, vol.12, pp.781-787, 2014.

I. Lasa and J. R. Penadés, Bap: A family of surface proteins involved in biofilm formation, Res Microbiol, vol.157, pp.99-107, 2006.

K. J. Lauderdale, C. L. Malone, B. R. Boles, J. Morcuende, and A. R. Horswill, Biofilm dispersal of community-associated methicillin-resistant Staphylococcus aureus on orthopedic implant material, J Orthop Res, vol.28, pp.55-61, 2010.

C. Launes, M. De-sevilla, L. Selva, G. Pallares, R. Muñoz-almagro et al., Viral coinfection in children less than five years old with invasive pneumococcal disease, Pediatr Infect Dis J, vol.31, pp.650-653, 2012.

G. Laverty, S. P. Gorman, and B. F. Gilmore, Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation, Pathogens, vol.3, pp.596-632, 2014.

J. R. Lawrence, G. Swerhone, U. Kuhlicke, and T. R. Neu, In situ evidence for microdomains in the polymer matrix of bacterial microcolonies, Can J Microbiol, vol.53, pp.450-458, 2007.

M. B. Lawrenz, R. A. Fodah, M. G. Gutierrez, and J. Warawa, Intubation-mediated Intratracheal (IMIT) Instillation: A Noninvasive, Lung-specific Delivery System, J Vis Exp JoVE, p.52261, 2014.

K. Y. Le, S. Dastgheyb, T. V. Ho, and M. Otto, Molecular determinants of staphylococcal biofilm dispersal and structuring, Front Cell Infect Microbiol, vol.4, p.167, 2014.

D. Lebeaux, J. Ghigo, and C. Beloin, Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics, Microbiol Mol Biol Rev MMBR, vol.78, pp.510-543, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01370744

S. F. Lee, Y. H. Li, and G. H. Bowden, Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity, Infect Immun, vol.64, pp.1035-1038, 1996.

V. T. Lee, J. M. Matewish, J. L. Kessler, M. Hyodo, Y. Hayakawa et al., A cyclic-di-GMP receptor required for bacterial exopolysaccharide production, Mol Microbiol, vol.65, pp.1474-1484, 2007.

J. G. Leid, Bacterial Biofilms Resist Key Host Defenses, vol.4, pp.66-70, 2009.

S. A. Leiman, J. M. May, M. D. Lebar, D. Kahne, R. Kolter et al., d-Amino Acids Indirectly Inhibit Biofilm Formation in Bacillus subtilis by Interfering with Protein Synthesis, J Bacteriol, vol.195, pp.5391-5395, 2013.

K. P. Lemon, D. E. Higgins, and R. Kolter, Flagellar Motility Is Critical for Listeria monocytogenes Biofilm Formation, J Bacteriol, vol.189, pp.4418-4424, 2007.

K. Lewis, Persister Cells, Annu Rev Microbiol, vol.64, pp.357-372, 2010.

K. Lewis, Persister cells, dormancy and infectious disease, Nat Rev Microbiol, vol.5, pp.48-56, 2007.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, pp.1754-1760, 2009.

Y. Li, O. E. Petrova, S. Su, G. W. Lau, W. Panmanee et al., BdlA, DipA and Induced Dispersion Contribute to Acute Virulence and Chronic Persistence of Pseudomonas aeruginosa, PLoS Pathog, vol.10, p.1004168, 2014.

J. Y. Lim, J. M. May, and L. Cegelski, Dimethyl Sulfoxide and Ethanol Elicit Increased Amyloid Biogenesis and Amyloid-Integrated Biofilm Formation in Escherichia coli, Appl Environ Microbiol, vol.78, pp.3369-3378, 2012.

J. L. Lister and A. R. Horswill, Staphylococcus aureus biofilms: recent developments in biofilm dispersal, Front Cell Infect Microbiol, vol.4, p.178, 2014.

K. Liu, A. N. Bittner, and J. D. Wang, Diversity in (p)ppGpp metabolism and effectors, Curr Opin Microbiol, vol.24, pp.72-79, 2015.

Y. Liu and R. A. Burne, The Major Autolysin of Streptococcus gordonii Is Subject to Complex Regulation and Modulates Stress Tolerance, Biofilm Formation, and Extracellular-DNA Release?, J Bacteriol, vol.193, pp.2826-2837, 2011.

B. E. Logan, Exoelectrogenic bacteria that power microbial fuel cells, Nat Rev Microbiol, vol.7, pp.375-381, 2009.

D. Lopez, H. Vlamakis, and R. Kolter, Biofilms. Cold Spring Harb Perspect Biol, vol.2, p.398, 2010.

C. A. Lowery, T. J. Dickerson, and K. D. Janda, Interspecies and interkingdom communication mediated by bacterial quorum sensing, Chem Soc Rev, vol.37, pp.1337-1346, 2008.

P. Lüthje and A. Brauner, Virulence factors of uropathogenic E. coli and their interaction with the host, Adv Microb Physiol, vol.65, pp.337-372, 2014.

L. Ma, M. Conover, H. Lu, M. R. Parsek, K. Bayles et al., Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix, PLoS Pathog, vol.5, p.1000354, 2009.

L. Ma, H. Lu, A. Sprinkle, M. R. Parsek, and D. J. Wozniak, Pseudomonas aeruginosa Psl Is a Galactose-and Mannose-Rich Exopolysaccharide, J Bacteriol, vol.189, pp.8353-8356, 2007.

K. D. Mackenzie, Y. Wang, D. J. Shivak, C. S. Wong, L. Hoffman et al., Bistable Expression of CsgD in Salmonella enterica Serovar Typhimurium Connects Virulence to Persistence, Infect Immun, vol.83, pp.2312-2326, 2015.

R. M. Macnab, How Bacteria Assemble Flagella, Annu Rev Microbiol, vol.57, pp.77-100, 2003.

J. G. Malone, Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs, Infect Drug Resist, vol.8, pp.237-247, 2015.

E. E. Mann, K. C. Rice, B. R. Boles, J. L. Endres, D. Ranjit et al., Modulation of eDNA Release and Degradation Affects Staphylococcus aureus Biofilm Maturation, PLoS ONE, vol.4, p.5822, 2009.

S. Manuel, C. Ragunath, H. Sait, E. A. Izano, J. B. Kaplan et al., Role of active-site residues of dispersin B, a biofilm-releasing ?-hexosaminidase from a periodontal pathogen, in substrate hydrolysis, FEBS J, vol.274, pp.5987-5999, 2007.

L. R. Marks, B. A. Davidson, P. R. Knight, and A. P. Hakansson, Interkingdom Signaling Induces Streptococcus pneumoniae Biofilm Dispersion and Transition from Asymptomatic Colonization to Disease, vol.4, pp.438-451, 2013.

L. R. Marks, G. I. Parameswaran, and A. P. Hakansson, Pneumococcal Interactions with Epithelial Cells Are Crucial for Optimal Biofilm Formation and Colonization In Vitro and In Vivo, Infect Immun, vol.80, pp.2744-2760, 2012.

C. Marquès, J. Tasse, A. Pracros, V. Collin, C. Franceschi et al., Effects of antibiotics on biofilm and unattached cells of a clinical Staphylococcus aureus isolate from bone and joint infection, J Med Microbiol, vol.64, pp.1021-1026, 2015.

C. Marques, D. G. Davies, and K. Sauer, Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid, Pharm Basel Switz, vol.8, pp.816-835, 2015.

L. C. Martínez and V. Vadyvaloo, Mechanisms of post-transcriptional gene regulation in bacterial biofilms, Front Cell Infect Microbiol, vol.4, p.38, 2014.

L. Masoud-landgraf, G. Zarfel, T. Kaschnigg, S. Friedl, G. Feierl et al., Analysis and Characterization of Staphylococcus aureus Small Colony Variants Isolated From Cystic Fibrosis Patients in Austria, Curr Microbiol. e0994, 2016.

B. Y. Matsuyama, P. V. Krasteva, C. Baraquet, C. S. Harwood, H. Sondermann et al., Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa, Proc Natl Acad Sci U S A, vol.113, pp.209-218, 2016.

D. Mcdougald, S. A. Rice, N. Barraud, P. D. Steinberg, and S. Kjelleberg, Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal, Nat Rev Microbiol, vol.10, pp.39-50, 2012.

E. A. Meighen, Bacterial bioluminescence: organization, regulation, and application of the lux genes, FASEB J, vol.7, pp.1016-1022, 1993.

J. H. Merritt, D. Ha, K. N. Cowles, W. Lu, D. K. Morales et al., Specific Control of Pseudomonas aeruginosa Surface-Associated Behaviors by Two c-di-GMP Diguanylate Cyclases, vol.1, pp.183-193, 2010.

F. Mika and R. Hengge, Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli, RNA Biol, vol.11, pp.494-507, 2014.

C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill, M-1/M-2 Macrophages and the Th1/Th2 Paradigm, J Immunol, vol.164, pp.6166-6173, 2000.

S. Miquel, R. Lagrafeuille, B. Souweine, and C. Forestier, Anti-biofilm Activity as a Health Issue, Front Microbiol, vol.7, p.592, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394090

L. Montanaro, A. Poggi, L. Visai, S. Ravaioli, D. Campoccia et al., Extracellular DNA in biofilms, Int J Artif Organs, vol.34, pp.824-831, 2011.

D. E. Moormeier, J. L. Endres, E. E. Mann, M. R. Sadykov, A. R. Horswill et al., Use of Microfluidic Technology To Analyze Gene Expression during Staphylococcus aureus Biofilm Formation Reveals Distinct Physiological Niches, Appl Environ Microbiol, vol.79, pp.3413-3424, 2013.

D. Moranta, V. Regueiro, C. March, E. Llobet, J. Margareto et al., Klebsiella pneumoniae Capsule Polysaccharide Impedes the Expression of ?-Defensins by Airway Epithelial Cells, Infect Immun, vol.78, pp.1135-1146, 2010.

R. Morgan, S. Kohn, S. Hwang, D. J. Hassett, and K. Sauer, BdlA, a Chemotaxis Regulator Essential for Biofilm Dispersion in Pseudomonas aeruginosa, J Bacteriol, vol.188, pp.7335-7343, 2006.

E. J. Muñoz-elías, J. Marcano, and A. Camilli, Isolation of Streptococcus pneumoniae Biofilm Mutants and Their Characterization during Nasopharyngeal Colonization, Infect Immun, vol.76, pp.5049-5061, 2008.

C. N. Murphy and S. Clegg, Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation, Future Microbiol, vol.7, pp.991-1002, 2012.

C. N. Murphy, M. S. Mortensen, K. A. Krogfelt, and S. Clegg, Role of Klebsiella pneumoniae Type 1 and Type 3 Fimbriae in Colonizing Silicone Tubes Implanted into the Bladders of Mice as a Model of Catheter-Associated Urinary Tract Infections, Infect Immun, vol.81, pp.3009-3017, 2013.

G. B. Nair and M. S. Niederman, Ventilator-associated pneumonia: present understanding and ongoing debates, Intensive Care Med, vol.41, pp.34-48, 2015.

M. Navarro, P. D. Newell, P. V. Krasteva, D. Chatterjee, D. R. Madden et al., Structural Basis for c-di-GMP-Mediated Inside-Out Signaling Controlling Periplasmic Proteolysis, PLoS Biol, vol.9, p.1000588, 2011.

P. D. Newell, C. D. Boyd, H. Sondermann, and G. A. O'toole, A c-di-GMP Effector System Controls Cell Adhesion by Inside-Out Signaling and Surface Protein Cleavage, PLoS Biol, vol.9, p.1000587, 2011.

P. Nordmann, G. Cuzon, and T. Naas, The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria, Lancet Infect Dis, vol.9, pp.228-236, 2009.

A. Oliver, R. Cantón, P. Campo, F. Baquero, and J. Blázquez, High Frequency of Hypermutable Pseudomonas aeruginosa in Cystic Fibrosis Lung Infection, Science, vol.288, pp.1251-1253, 2000.

A. Olsén, A. Jonsson, and S. Normark, Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli, Nature, vol.338, pp.652-655, 1989.

C. Y. Ong, S. A. Beatson, M. Totsika, C. Forestier, A. G. Mcewan et al., Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species, BMC Microbiol, vol.10, p.183, 2010.

Á. D. Ortega, G. Portillo, and F. G. , Dynamics of Salmonella small RNA expression in non-growing bacteria located inside eukaryotic cells, RNA Biol, vol.9, pp.469-488, 2012.

G. O'toole, H. B. Kaplan, and R. Kolter, Biofilm Formation as Microbial Development, Annu Rev Microbiol, vol.54, pp.49-79, 2000.

G. A. O'toole, Classic Spotlight: Before They Were Biofilms, J Bacteriol, vol.198, pp.5-5, 2016.

. O'toole, . Ga, and R. Kolter, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol Microbiol, vol.30, pp.295-304, 1998.

M. Otto, Phenol-soluble modulins, Int J Med Microbiol, vol.304, pp.164-169, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01352689

M. Otto, Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity, Annu Rev Med, vol.64, pp.175-188, 2013.

M. K. Paczosa and J. Mecsas, Klebsiella pneumoniae: Going on the Offense with a Strong Defense, Microbiol Mol Biol Rev, vol.80, pp.629-661, 2016.

S. J. Pamp and T. Tolker-nielsen, Multiple Roles of Biosurfactants in Structural Biofilm Development by Pseudomonas aeruginosa, J Bacteriol, vol.189, pp.2531-2539, 2007.

Y. Pan, T. Lin, Y. Chen, C. Hsu, P. Hsieh et al., Capsular Types of Klebsiella pneumoniae Revisited by wzc Sequencing, PLoS ONE, vol.8, p.80670, 2013.

C. S. Pereira, J. A. Thompson, and K. B. Xavier, AI-2-mediated signalling in bacteria, FEMS Microbiol Rev, vol.37, pp.156-181, 2013.

S. Periasamy, S. S. Chatterjee, G. Cheung, and M. Otto, Phenol-soluble modulins in staphylococci, Commun Integr Biol, vol.5, pp.275-277, 2012.

S. Periasamy, H. Joo, A. C. Duong, T. Bach, V. Y. Tan et al., How Staphylococcus aureus biofilms develop their characteristic structure, Proc Natl Acad Sci U S A, vol.109, pp.1281-1286, 2012.

A. Peschel and M. Otto, Phenol-soluble modulins and staphylococcal infection, Nat Rev Microbiol, vol.11, pp.667-673, 2013.

O. E. Petrova, K. E. Cherny, and K. Sauer, The Diguanylate Cyclase GcbA Facilitates Pseudomonas aeruginosa Biofilm Dispersion by Activating BdlA, J Bacteriol, vol.197, pp.174-187, 2015.

O. E. Petrova and K. Sauer, Escaping the biofilm in more than one way: desorption, detachment or dispersion, Curr Opin Microbiol, vol.30, pp.67-78, 2016.

O. E. Petrova and K. Sauer, PAS Domain Residues and Prosthetic Group Involved in BdlA-Dependent Dispersion Response by Pseudomonas aeruginosa Biofilms, J Bacteriol, vol.194, pp.5817-5828, 2012.

M. M. Pettigrew, J. F. Gent, R. B. Pyles, A. L. Miller, J. Nokso-koivisto et al., Viral-Bacterial Interactions and Risk of Acute Otitis Media Complicating Upper Respiratory Tract Infection, J Clin Microbiol, vol.49, pp.3750-3755, 2011.

M. M. Pettigrew, L. R. Marks, Y. Kong, J. F. Gent, H. Roche-hakansson et al., , 2014.

, Dynamic Changes in the Streptococcus pneumoniae Transcriptome during Transition from Biofilm Formation to Invasive Disease upon Influenza A Virus Infection, Infect Immun, vol.82, pp.4607-4619

P. L. Phillips and G. S. Schultz, Molecular Mechanisms of Biofilm Infection: Biofilm Virulence Factors, Adv Wound Care, vol.1, pp.109-114, 2012.

M. Pihl, A. Arvidsson, M. Skepö, M. Nilsson, M. Givskov et al., Biofilm formation by Staphylococcus epidermidis on peritoneal dialysis catheters and the effects of extracellular products from Pseudomonas aeruginosa, Pathog Dis, vol.67, pp.192-198, 2013.

R. Podschun and U. Ullmann, Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors, Clin Microbiol Rev, vol.11, pp.589-603, 1998.

J. R. Porter, Antony van Leeuwenhoek: tercentenary of his discovery of bacteria, Bacteriol Rev, vol.40, pp.260-269, 1976.

L. A. Pratt and R. Kolter, Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili, Mol Microbiol, vol.30, pp.285-293, 1998.

E. B. Purcell and R. Tamayo, Cyclic diguanylate signaling in Gram-positive bacteria, FEMS Microbiol Rev, vol.40, pp.753-773, 2016.

K. Rabaey, G. Lissens, S. D. Siciliano, and W. Verstraete, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol Lett, vol.25, pp.1531-1535, 2003.

R. M. Reddinger, N. R. Luke-marshall, A. P. Hakansson, and A. A. Campagnari, Host Physiologic Changes Induced by Influenza A Virus Lead to Staphylococcus aureus Biofilm Dispersion and Transition from Asymptomatic Colonization to Invasive Disease, vol.7, pp.1235-1251, 2016.

F. Reffuveille, C. De-la-fuente-núñez, S. Mansour, and R. Hancock, A Broad-Spectrum Antibiofilm Peptide Enhances Antibiotic Action against Bacterial Biofilms, Antimicrob Agents Chemother, vol.58, pp.5363-5371, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02528651

V. Regueiro, D. Moranta, C. G. Frank, E. Larrarte, J. Margareto et al., Klebsiella pneumoniae subverts the activation of inflammatory responses in a NOD1-dependent manner, Cell Microbiol, vol.13, pp.135-153, 2011.

A. Resch, S. Leicht, M. Saric, L. Pásztor, J. A. Götz et al., Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling, PROTEOMICS, vol.6, pp.1867-1877, 2006.

K. C. Rice, E. E. Mann, J. L. Endres, E. C. Weiss, J. E. Cassat et al., The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus, Proc Natl Acad Sci U S A, vol.104, pp.8113-8118, 2007.

S. A. Rice, K. S. Koh, S. Y. Queck, M. Labbate, K. W. Lam et al., Biofilm Formation and Sloughing in Serratia marcescens Are Controlled by Quorum Sensing and Nutrient Cues, J Bacteriol, vol.187, pp.3477-3485, 2005.

S. A. Rice, C. H. Tan, P. J. Mikkelsen, V. Kung, J. Woo et al., The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage, ISME J, vol.3, pp.271-282, 2009.

J. J. Richards and C. Melander, Controlling Bacterial Biofilms, ChemBioChem, vol.10, pp.2287-2294, 2009.

A. H. Rickard, P. Gilbert, N. J. High, P. E. Kolenbrander, and P. S. Handley, Bacterial coaggregation: an integral process in the development of multi-species biofilms, Trends Microbiol, vol.11, pp.94-100, 2003.

A. I. Rissman, B. Mau, B. S. Biehl, A. E. Darling, J. D. Glasner et al., Reordering contigs of draft genomes using the Mauve Aligner, Bioinformatics, vol.25, pp.2071-2073, 2009.

A. L. Roberts, R. C. Holder, and S. D. Reid, Allelic replacement of the streptococcal cysteine protease SpeB in a ?srv mutant background restores biofilm formation, BMC Res Notes, vol.3, p.281, 2010.

C. Rollet, L. Gal, and J. Guzzo, Biofilm-detached cells, a transition from a sessile to a planktonic phenotype: a comparative study of adhesion and physiological characteristics in Pseudomonas aeruginosa, FEMS Microbiol Lett, vol.290, pp.135-142, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00453481

D. Romero, C. Aguilar, R. Losick, and R. Kolter, Amyloid fibers provide structural integrity to Bacillus subtilis biofilms, Proc Natl Acad Sci U S A, vol.107, pp.2230-2234, 2010.

D. Romero, H. Vlamakis, R. Losick, and R. Kolter, An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms, Mol Microbiol, vol.80, pp.1155-1168, 2011.

D. Romero, H. Vlamakis, R. Losick, and R. Kolter, Functional Analysis of the Accessory Protein TapA in Bacillus subtilis Amyloid Fiber Assembly, J Bacteriol, vol.196, pp.1505-1513, 2014.

U. Römling, Z. Bian, M. Hammar, W. D. Sierralta, and S. Normark, Curli Fibers Are Highly Conserved between Salmonella typhimurium and Escherichia coli with Respect to Operon Structure and Regulation, J Bacteriol, vol.180, pp.722-731, 1998.

U. Römling, M. Y. Galperin, and M. Gomelsky, Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger, Microbiol Mol Biol Rev MMBR, vol.77, pp.1-52, 2013.

F. S. Rossmann, T. Racek, D. Wobser, J. Puchalka, E. M. Rabener et al., Phagemediated Dispersal of Biofilm and Distribution of Bacterial Virulence Genes Is Induced by Quorum Sensing, PLoS Pathog, vol.11, p.1004653, 2015.

V. Roussel-jazédé, J. Grijpstra, V. Van-dam, J. Tommassen, and P. Van-ulsen, Lipidation of the autotransporter NalP of Neisseria meningitidis is required for its function in the release of cell-surface-exposed proteins, Microbiology, vol.159, pp.286-295, 2013.

V. Roussel-jazédé, I. Jongerius, M. P. Bos, J. Tommassen, and P. Van-ulsen, NalP-Mediated Proteolytic Release of Lactoferrin-Binding Protein B from the Meningococcal Cell Surface, Infect Immun, vol.78, pp.3083-3089, 2010.

D. Roux, C. Cywes-bentley, Y. Zhang, S. Pons, M. Konkol et al., Identification of Poly-N-acetylglucosamine as a Major Polysaccharide Component of the Bacillus subtilis Biofilm Matrix, J Biol Chem, vol.290, pp.19261-19272, 2015.

A. B. Roy, O. E. Petrova, and K. Sauer, The Phosphodiesterase DipA (PA5017) Is Essential for Pseudomonas aeruginosa Biofilm Dispersion, J Bacteriol, vol.194, pp.2904-2915, 2012.

S. Rumbo-feal, M. J. Gómez, C. Gayoso, L. Álvarez-fraga, M. P. Cabral et al., Whole transcriptome analysis of Acinetobacter baumannii assessed by RNAsequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells, PloS One, vol.8, p.72968, 2013.

R. P. Ryan and J. M. Dow, Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria, Trends Microbiol, vol.19, pp.145-152, 2011.

M. Rybtke, J. Berthelsen, L. Yang, N. Høiby, M. Givskov et al., The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface, vol.4, pp.917-930, 2015.

M. R. Sadykov and K. W. Bayles, The control of death and lysis in staphylococcal biofilms: a coordination of physiological signals, Curr Opin Microbiol, vol.15, pp.211-215, 2012.

H. Sahly and R. Podschun, Clinical, bacteriological, and serological aspects of Klebsiella infections and their spondylarthropathic sequelae, Clin Diagn Lab Immunol, vol.4, pp.393-399, 1997.

L. Saiman, B. C. Marshall, N. Mayer-hamblett, J. L. Burns, A. L. Quittner et al., Azithromycin in Patients With Cystic Fibrosis Chronically Infected With Pseudomonas aeruginosa: A Randomized Controlled Trial, JAMA, vol.290, pp.1749-1756, 2003.

L. M. Sanchez, A. T. Cheng, C. Warner, L. Townsley, K. C. Peach et al., , 2016.

, Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids, PLOS ONE, vol.11, p.149603

K. Sauer, A. H. Rickard, and D. G. Davies, Biofilms and biocomplexity, vol.2, pp.347-353, 2007.

M. A. Schembri, J. Blom, K. A. Krogfelt, and P. Klemm, Capsule and Fimbria Interaction in Klebsiella pneumoniae, Infect Immun, vol.73, pp.4626-4633, 2005.

M. A. Schembri, K. Kjaergaard, and P. Klemm, Global gene expression in Escherichia coli biofilms, Mol Microbiol, vol.48, pp.253-267, 2003.

S. R. Schooling, U. K. Charaf, A. Dg, and P. Gilbert, A role for rhamnolipid in biofilm dispersion, Biofilms, vol.1, pp.91-99, 2004.

C. Schroll, K. B. Barken, K. A. Krogfelt, and C. Struve, Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation, BMC Microbiol, vol.10, p.179, 2010.

M. P. Schultz, J. A. Bendick, E. R. Holm, and W. M. Hertel, Economic impact of biofouling on a naval surface ship, Biofouling, vol.27, pp.87-98, 2011.

P. Scott, P. Natovitz, R. Coffman, P. E. , and S. A. , Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens, J Exp Med, vol.168, pp.1675-1684, 1988.

G. Sherlock, Analysis of large-scale gene expression data, Curr Opin Immunol, vol.12, pp.201-205, 2000.

X. Shi and X. Zhu, Biofilm formation and food safety in food industries, Trends Food Sci Technol, vol.20, pp.407-413, 2009.

A. S. Shon, R. Bajwa, and T. A. Russo, Hypervirulent (hypermucoviscous) Klebsiella pneumoniae, Virulence, vol.4, pp.107-118, 2013.

P. K. Singh, A. L. Schaefer, M. R. Parsek, T. O. Moninger, M. J. Welsh et al., , 2000.

, Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms, Nature, vol.407, pp.762-764

R. Singh, D. Paul, and R. K. Jain, Biofilms: implications in bioremediation, Trends Microbiol, vol.14, pp.389-397, 2006.

C. Solano, M. Echeverz, and I. Lasa, Biofilm dispersion and quorum sensing, Curr Opin Microbiol, vol.18, pp.96-104, 2014.

C. Solano, B. García, J. Valle, C. Berasain, J. Ghigo et al., Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose, Mol Microbiol, vol.43, pp.793-808, 2002.

A. Stacy, N. Abraham, P. Jorth, and M. Whiteley, Microbial Community Composition Impacts Pathogen Iron Availability during Polymicrobial Infection, PLoS Pathog, vol.12, p.1006084, 2016.

A. Stacy, J. Everett, P. Jorth, U. Trivedi, K. P. Rumbaugh et al., Bacterial fightand-flight responses enhance virulence in a polymicrobial infection, Proc Natl Acad Sci, vol.111, pp.7819-7824, 2014.

C. T. Steichen, C. Cho, J. Q. Shao, and M. A. Apicella, The Neisseria gonorrhoeae Biofilm Matrix Contains DNA, and an Endogenous Nuclease Controls Its Incorporation, Infect Immun, vol.79, pp.1504-1511, 2011.

P. S. Stewart and M. J. Franklin, Physiological heterogeneity in biofilms, Nat Rev Microbiol, vol.6, pp.199-210, 2008.

P. S. Stewart, W. Costerton, and J. , Antibiotic resistance of bacteria in biofilms, The Lancet, vol.358, pp.135-138, 2001.

P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, Biofilms as Complex Differentiated Communities, Annu Rev Microbiol, vol.56, pp.187-209, 2002.

M. Strathmann, J. Wingender, and H. Flemming, Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa, J Microbiol Methods, vol.50, pp.237-248, 2002.

C. Struve, M. Bojer, and K. A. Krogfelt, Characterization of Klebsiella pneumoniae Type 1 Fimbriae by Detection of Phase Variation during Colonization and Infection and Impact on Virulence, Infect Immun, vol.76, pp.4055-4065, 2008.

C. Struve and K. A. Krogfelt, Pathogenic potential of environmental Klebsiella pneumoniae isolates, Environ Microbiol, vol.6, pp.584-590, 2004.

M. Sturme, M. Kleerebezem, J. Nakayama, A. Akkermans, E. E. Vaugha et al., Cell to cell communication by autoinducing peptides in gram-positive bacteria, Antonie Van Leeuwenhoek, vol.81, pp.233-243, 2002.

S. Sugimoto, T. Iwamoto, K. Takada, K. Okuda, A. Tajima et al., Staphylococcus epidermidis Esp Degrades Specific Proteins Associated with Staphylococcus aureus Biofilm Formation and Host-Pathogen Interaction, J Bacteriol, vol.195, pp.1645-1655, 2013.

I. W. Sutherland, The biofilm matrix -an immobilized but dynamic microbial environment, Trends Microbiol, vol.9, pp.222-227, 2001.

H. Takada, M. Morita, Y. Shiwa, R. Sugimoto, S. Suzuki et al., Cell motility and biofilm formation in Bacillus subtilis are affected by the ribosomal proteins, S11 and S21, Biosci Biotechnol Biochem, vol.78, pp.898-907, 2014.

J. Tang, R. Zhou, X. Shi, M. Kang, H. Wang et al., Two thermostable nucleases coexisted in Staphylococcus aureus: evidence from mutagenesis and In Vitro expression, FEMS Microbiol Lett, vol.284, pp.176-183, 2008.

F. Tao, S. Swarup, and L. Zhang, Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation, Environ Microbiol, vol.12, pp.3159-3170, 2010.

M. Thoendel and A. R. Horswill, Chapter 4 -Biosynthesis of Peptide Signals in Gram-Positive Bacteria, Advances in Applied Microbiology, vol.71, pp.91-112, 2010.

V. C. Thomas, Y. Hiromasa, N. Harms, L. Thurlow, J. Tomich et al., A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis, Mol Microbiol, vol.72, pp.1022-1036, 2009.

V. C. Thomas, L. R. Thurlow, D. Boyle, and L. E. Hancock, Regulation of Autolysis-Dependent Extracellular DNA Release by Enterococcus faecalis Extracellular Proteases Influences Biofilm Development, J Bacteriol, vol.190, pp.5690-5698, 2008.

K. M. Thormann, R. M. Saville, S. Shukla, and A. M. Spormann, Induction of Rapid Detachment in Shewanella oneidensis MR-1 Biofilms, J Bacteriol, vol.187, pp.1014-1021, 2005.

D. Tielker, S. Hacker, R. Loris, M. Strathmann, J. Wingender et al., , 2005.

, Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation, Microbiol Read Engl, vol.151, pp.1313-1323

A. Toledo-arana, O. Dussurget, G. Nikitas, N. Sesto, H. Guet-revillet et al., The Listeria transcriptional landscape from saprophytism to virulence, Nature, vol.459, pp.950-956, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01901828

E. Tuomanen, R. Cozens, W. Tosch, Z. O. Tomasz, and A. , The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth, J Gen Microbiol, vol.132, pp.1297-1304, 1986.

H. H. Tuson and D. B. Weibel, Bacteria-surface interactions, Soft Matter, vol.9, pp.4368-4380, 2013.

A. Ueda and T. K. Wood, Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas aeruginosa through Tyrosine Phosphatase TpbA (PA3885), PLoS Pathog, vol.5, p.1000483, 2009.

P. Uppuluri, A. K. Chaturvedi, A. Srinivasan, M. Banerjee, A. K. Ramasubramaniam et al., Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle, PLoS Pathog, vol.6, p.1000828, 2010.

J. Valle, S. Da-re, S. Schmid, D. Skurnik, D. 'ari et al., The Amino Acid Valine Is Secreted in Continuous-Flow Bacterial Biofilms, J Bacteriol, vol.190, pp.264-274, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00195548

D. Vallenet, E. Belda, A. Calteau, S. Cruveiller, S. Engelen et al., MicroScope-an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data, Nucleic Acids Res, vol.41, pp.636-647, 2013.

D. Vallenet, L. Labarre, Z. Rouy, V. Barbe, S. Bocs et al., MaGe: a microbial genome annotation system supported by synteny results, Nucleic Acids Res, vol.34, pp.53-65, 2006.

J. J. Van-aartsen and K. Rajakumar, An optimized method for suicide vector-based allelic exchange in Klebsiella pneumoniae, J Microbiol Methods, vol.86, pp.313-319, 2011.

P. Van-ulsen, L. Van-alphen, T. Hove, J. Fransen, F. Van-der-ley et al., A Neisserial autotransporter NalP modulating the processing of other autotransporters, Mol Microbiol, vol.50, pp.1017-1030, 2003.

I. Vandecandelaere, P. Depuydt, H. J. Nelis, and T. Coenye, Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms, Pathog Dis, vol.70, pp.321-331, 2014.

C. E. Vanorsdel, S. Bhatt, R. J. Allen, E. P. Brenner, J. J. Hobson et al., The Escherichia coli CydX Protein Is a Member of the CydAB Cytochrome bd Oxidase Complex and Is Required for Cytochrome bd Oxidase Activity, J Bacteriol, vol.195, pp.3640-3650, 2013.

N. Vats and S. F. Lee, Active detachment of Streptococcus mutans cells adhered to eponhydroxylapatite surfaces coated with salivary proteins In Vitro, Arch Oral Biol, vol.45, pp.305-314, 2000.

O. Vidal, R. Longin, C. Prigent-combaret, C. Dorel, M. Hooreman et al., Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression, J Bacteriol, vol.180, pp.2442-2449, 1998.

O. V. Vieira, R. J. Botelho, and S. Grinstein, Phagosome maturation: aging gracefully, Biochem J, vol.366, pp.689-704, 2002.

W. M. Vos and . De, Microbial biofilms and the human intestinal microbiome, Npj Biofilms Microbiomes, vol.1, p.15005, 2015.

H. Vu, L. M. Yoshida, M. Suzuki, H. Nguyen, C. Nguyen et al., Association between nasopharyngeal load of Streptococcus pneumoniae, viral coinfection, and radiologically confirmed pneumonia in Vietnamese children, Pediatr Infect Dis J, vol.30, pp.11-18, 2011.

C. Vuong, S. Kocianova, Y. Yao, A. B. Carmody, and M. Otto, Increased Colonization of Indwelling Medical Devices by Quorum-Sensing Mutants of Staphylococcus epidermidis In Vivo, J Infect Dis, vol.190, pp.1498-1505, 2004.

R. D. Waite, A. Paccanaro, A. Papakonstantinopoulou, J. M. Hurst, M. Saqi et al., Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles, BMC Genomics, vol.7, p.162, 2006.

T. S. Walker, K. L. Tomlin, G. S. Worthen, K. R. Poch, J. G. Lieber et al., Enhanced Pseudomonas aeruginosa Biofilm Development Mediated by Human Neutrophils, Infect Immun, vol.73, pp.3693-3701, 2005.

H. Wang, J. J. Wilksch, R. A. Strugnell, and M. L. Gee, Role of Capsular Polysaccharides in Biofilm Formation: An AFM Nanomechanics Study, ACS Appl Mater Interfaces, vol.7, pp.13007-13013, 2015.

J. Wang, B. Yu, D. Tian, and M. Ni, Rhamnolipid but not motility is associated with the initiation of biofilm seeding dispersal of Pseudomonas aeruginosa strain PA17, J Biosci, vol.38, pp.149-156, 2013.

R. Wang, B. A. Khan, G. Cheung, T. Bach, J. et al., Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice, J Clin Invest, vol.121, pp.238-248, 2011.

C. M. Waters and B. L. Bassler, Quorum sensing: cell-to-cell communication in bacteria, Annu Rev Cell Dev Biol, vol.21, pp.319-346, 2005.

P. I. Watnick and R. Kolter, Steps in the development of a Vibrio cholerae El Tor biofilm, Mol Microbiol, vol.34, p.586, 1999.

J. S. Webb, L. S. Thompson, S. James, T. Charlton, T. Tolker-nielsen et al., Cell Death in Pseudomonas aeruginosa Biofilm Development, J Bacteriol, vol.185, pp.4585-4592, 2003.

M. Weiss-nielsen, C. Sternberg, S. Molin, and B. Regenberg, Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells, J Vis Exp JoVE, 2011.

C. B. Whitchurch, T. Tolker-nielsen, P. C. Ragas, and J. S. Mattick, Extracellular DNA required for bacterial biofilm formation, Science, vol.295, p.1487, 2002.

J. J. Wilksch, J. Yang, A. Clements, J. L. Gabbe, K. R. Short et al., MrkH, a Novel cdi-GMP-Dependent Transcriptional Activator, Controls Klebsiella pneumoniae Biofilm Formation by Regulating Type 3 Fimbriae Expression, PLoS Pathog, vol.7, p.1002204, 2011.

J. Wingender, T. R. Neu, and H. Flemming, What are Bacterial Extracellular Polymeric Substances? Microbial Extracellular Polymeric Substances, pp.1-19, 1999.

K. I. Wolska, A. M. Grudniak, Z. Rudnicka, and K. Markowska, Genetic control of bacterial biofilms, J Appl Genet, vol.57, pp.225-238, 2016.

H. Xiong, J. W. Keith, D. W. Samilo, R. A. Carter, I. M. Leiner et al., Innate Lymphocyte/Ly6Chi Monocyte Crosstalk Promotes Klebsiella pneumoniae Clearance, Cell, vol.165, pp.679-689, 2016.

Y. Yan, S. Su, X. Meng, J. X. Qu, Y. Liu et al., Determination of sRNA Expressions by RNA-seq in Yersinia pestis Grown In Vitro and during Infection, PLoS ONE, vol.8, p.74495, 2013.

J. Yang, J. J. Wilksch, J. Tan, D. M. Hocking, C. T. Webb et al., Transcriptional Activation of the mrkA Promoter of the Klebsiella pneumoniae Type 3, 2013.

, Fimbrial Operon by the c-di-GMP-Dependent MrkH Protein, PLoS ONE, vol.8, p.79038

P. Ye, P. B. Garvey, P. Zhang, S. Nelson, G. Bagby et al., Interleukin-17 and Lung Host Defense against Klebsiella pneumoniae Infection, Am J Respir Cell Mol Biol, vol.25, pp.335-340, 2001.

D. Yu, L. Zhao, T. Xue, and B. Sun, Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner, BMC Microbiol, vol.12, p.288, 2012.

S. Yu, T. Su, H. Wu, S. Liu, D. Wang et al., PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix, Cell Res, vol.25, pp.1352-1367, 2015.

C. E. Zobell and A. E. , The Significance of Marine Bacteria in the Fouling of Submerged Surfaces, J Bacteriol, vol.29, pp.239-251, 1935.

X. Zogaj, M. Nimtz, M. Rohde, W. Bokranz, and U. Römling, The multicellular morphotypes, 2001.