G. Adam and H. Duncan, Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils, Soil Biol. Biochem, vol.33, pp.943-951, 2001.

H. Alexandre, I. Rousseaux, and C. Charpentier, Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata, FEMS Microbiol. Lett, vol.124, pp.17-22, 1994.

K. B. Amor, P. Breeuwer, P. Verbaarschot, F. M. Rombouts, A. D. Akkermans et al., Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress, Appl. Environ. Microbiol, vol.68, pp.5209-5216, 2002.

I. Andorra, M. Monteiro, B. Esteve-zarzoso, H. Albergaria, and A. Mas, Analysis and direct enumeration of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentation by fluorescence in situ hybridization, flow cytometry and quantitative PCR, Food Microbiol, vol.28, pp.1483-1491, 2011.

V. Bagalkot, L. Zhang, E. Levy-nissenbaum, S. Jon, P. W. Kantoff et al., Quantum dot?aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bifluorescence resonance energy transfer, Nano Lett, vol.7, pp.3065-3070, 2007.

L. Blasco, S. Ferrer, and I. Pardo, Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria, FEMS Microbiol. Lett, vol.225, pp.115-123, 2003.

J. C. Bouchez, M. Cornu, M. Danzart, J. Y. Leveau, F. Duchiron et al., Physiological significance of the cytometric distribution of fluorescent yeasts after viability staining, Biotechnol. Bioeng, vol.86, pp.520-530, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02680768

M. Bouix and S. Ghorbal, Rapid assessment of Oenococcus oeni activity by measuring intracellular pH and membrane potential by flow cytometry, and its application to the more effective control of malolactic fermentation, Int. J. Food Microbiol, vol.193, pp.139-146, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01195510

J. M. Guillamón and A. Mas, Molecular Wine Microbiology, pp.227-255, 2011.

T. H. Haines, Do sterols reduce proton and sodium leaks through lipid bilayers?, Prog. Lipid Res, vol.40, pp.299-324, 2001.

H. S. Han, E. Niemeyer, Y. Huang, W. S. Kamoun, J. D. Martin et al., Quantum dot/antibody conjugates for in vivo cytometric imaging in mice, Proc. Natl. Acad. Sci, vol.112, pp.1350-1355, 2015.

L. M. Henderson and J. B. Chappell, Dihydrorhodamine 123: a fluorescent probe for superoxide generation?, Eur. J. Biochem, vol.217, pp.973-980, 1993.

M. J. Henry-stanley, R. M. Garni, and C. L. Wells, Adaptation of FUN-1 and Calcofluor white stains to assess the ability of viable and nonviable yeast to adhere to and be internalized by cultured mammalian cells, J. Microbiol. Methods, vol.59, pp.289-292, 2004.

P. A. Henschke and V. Jiranek, Yeast: metabolism of nitrogen compounds, Wine microbiology and biotechnology, pp.77-165, 1993.

M. Herrero, C. Quirós, L. A. García, and M. Díaz, Use of flow cytometry to follow the physiological states of microorganisms in cider fermentation processes, Appl. Environ. Microbiol, vol.72, pp.6725-6733, 2006.

J. Inácio, S. Behrens, B. M. Fuchs, Á. Fonseca, I. Spencer-martins et al., In situ accessibility of Saccharomyces cerevisiae 26S rRNA to Cy3-labeled oligonucleotide probes comprising the D1 and D2 domains, Appl. Environ. Microbiol, vol.69, pp.2899-2905, 2003.

L. N. Jayakody, M. Kadowaki, K. Tsuge, K. Horie, A. Suzuki et al., SUMO expression shortens the lag phase of Saccharomyces cerevisiae yeast growth caused by complex interactive effects of major mixed fermentation inhibitors found in hot-compressed water-treated lignocellulosic hydrolysate, Appl. Microbiol. Biotechnol, vol.99, pp.501-515, 2014.

S. D. Jayasena, Aptamers: an emerging class of molecules that rival antibodies in diagnostics, Clin. Chem, vol.45, pp.1628-1650, 1999.

M. H. Julius, T. Masuda, and L. A. Herzenberg, Demonstration that antigen-binding cells are precursors of antibodyproducing cells after purification with a fluorescence-activated cell sorter, Proc. Natl. Acad. Sci. U. S. A, vol.69, pp.1934-1938, 1972.

J. A. Kahana, B. J. Schnapp, and P. A. Silver, Kinetics of spindle pole body separation in budding yeast, Proc. Natl. Acad. Sci, vol.92, pp.9707-9711, 1995.

H. Kitagaki and H. Shimoi, Mitochondrial dynamics of yeast during sake brewing, J. Biosci. Bioeng, vol.104, pp.227-230, 2007.

M. Kobayashi, H. Shimizu, and S. Shioya, Physiological analysis of yeast cells by flow cytometry during serial-repitching of low-malt beer fermentation, J. Biosci. Bioeng, vol.103, pp.451-456, 2007.

S. Landolfo, H. Politi, D. Angelozzi, and I. Mannazzu, ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium, Biochim. Biophys. Acta BBA -Gen. Subj, vol.1780, pp.892-898, 2008.

D. Lloyd and A. J. Hayes, Vigour, vitality and viability of microorganisms, FEMS Microbiol. Lett, vol.133, pp.1-7, 1995.

A. Longobardi-givan, Flow cytometry: first principles, 2001.

P. Loubiere, P. Salou, M. J. Leroy, N. D. Lindley, and A. Pareilleux, Electrogenic malate uptake and improved growth energetics of the malolactic bacterium Leuconostoc oenos grown on glucose-malate mixtures, J. Bacteriol, vol.174, pp.5302-5308, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02712995

P. Malacrinò, G. Zapparoli, S. Torriani, and F. Dellaglio, Rapid detection of viable yeasts and bacteria in wine by flow cytometry, J. Microbiol. Methods, vol.45, pp.127-134, 2001.

I. Mannazzu, D. Angelozzi, S. Belviso, M. Budroni, G. A. Farris et al., Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: Cell lipid composition, membrane integrity, viability and fermentative activity, Int. J. Food Microbiol, vol.121, pp.84-91, 2008.

S. Marsit, A. Mena, F. Bigey, F. Sauvage, A. Couloux et al., Evolutionary advantage conferred by an Eukaryote-to-Eukaryote gene transfer event in wine yeasts, Mol. Biol. Evol, vol.32, pp.1695-1707, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837744

D. J. Mason, S. Shanmuganathan, F. C. Mortimer, and V. A. Gant, A fluorescent gram stain for flow cytometry and epifluorescence microscopy, Appl. Environ. Microbiol, vol.64, pp.2681-2685, 1998.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar et al., Self-assembly of CdSe?ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc, vol.122, pp.12142-12150, 2000.

A. Mendes-ferreira, B. Sampaio-marques, C. Barbosa, F. Rodrigues, V. Costa et al., Accumulation of non-superoxide anion reactive oxygen species mediates nitrogen-limited alcoholic fermentation by Saccharomyces cerevisiae, Appl. Environ. Microbiol, vol.76, pp.7918-7924, 2010.

M. Meyer, T. Scheper, and J. Walter, Aptamers: versatile probes for flow cytometry, Appl. Microbiol. Biotechnol, vol.97, pp.7097-7109, 2013.

V. Millet and A. Lonvaud-funel, The viable but non-culturable state of wine micro-organisms during storage, Lett. Appl. Microbiol, vol.30, pp.136-141, 2000.

J. Monthéard, S. Garcier, E. Lombard, X. Cameleyre, S. Guillouet et al., Assessment of Candida shehatae viability by flow cytometry and fluorescent probes, J. Microbiol. Methods, vol.91, pp.8-13, 2012.

J. Moon, G. Kim, S. B. Park, J. Lim, and C. Mo, The importance of FACS analysis in the development of aptamers specific to pathogens, J. Biosyst. Eng, vol.39, pp.111-114, 2014.

A. Morata, M. C. Gómez-cordovés, J. Suberviola, B. Bartolomé, B. Colomo et al., Adsorption of anthocyanins by yeast cell walls during the fermentation of red wines, J. Agric. Food Chem, vol.51, pp.4084-4088, 2003.

S. Müller, S. Ullrich, A. Lösche, N. Loffhagen, and W. Babel, Flow cytometric techniques to characterise physiological states of Acinetobacter calcoaceticus, J. Microbiol. Methods, vol.40, pp.67-77, 2000.

H. Müllner and G. Daum, Dynamics of neutral lipid storage in yeast, Acta Biochim. Pol, vol.51, pp.323-347, 2004.

R. Muñoz, M. V. Moreno-arribas, B. Rivas, A. V. Carrascosa, and R. Muñoz, Molecular Wine Microbiology, pp.191-226, 2011.

R. K. Niedenthal, L. Riles, M. Johnston, and J. H. Hegemann, Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast, Yeast, vol.12, pp.773-786, 1996.

J. D. Oliver, The viable but nonculturable state in bacteria, J Microbiol, vol.43, pp.93-100, 2005.

K. O'neill, N. Aghaeepour, J. ?pidlen, and R. Brinkman, Flow cytometry bioinformatics, PLoS Comput Biol, vol.9, 2013.

R. Orij, J. Postmus, A. Ter-beek, S. Brul, and G. J. Smits, In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth, Microbiology, vol.155, pp.268-278, 2009.

E. Prosperi, A. C. Croce, G. Bottiroli, and R. Supino, Flow cytometric analysis of membrane permeability properties influencing intracellular accumulation and efflux of fluorescein, Cytometry, vol.7, pp.70-75, 1986.

C. Quirós, M. Herrero, L. A. García, and M. Díaz, Quantitative approach to determining the contribution of viable-butnonculturable subpopulations to malolactic fermentation processes, Appl. Environ. Microbiol, vol.75, pp.2977-2981, 2009.

S. Razmkhab, A. Lopez-toledano, J. M. Ortega, M. Mayen, J. Merida et al., Adsorption of phenolic compounds and browning products in white wines by yeasts and their cell walls, J. Agric. Food Chem, vol.50, pp.7432-7437, 2002.

C. Röder, H. König, and J. Fröhlich, Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labeled DNA probes targeting the 26S rRNA, FEMS Yeast Res, vol.7, pp.1013-1026, 2007.

S. B. Rodriguez and R. J. Thornton, Use of flow cytometry with fluorescent antibodies in real-time monitoring of simultaneously inoculated alcoholic-malolactic fermentation of Chardonnay, Lett. Appl. Microbiol, vol.46, pp.38-42, 2008.

A. Romano, M. C. Perello, G. De-revel, and A. Lonvaud-funel, Growth and volatile compound production by Brettanomyces/Dekkera bruxellensis in red wine, J. Appl. Microbiol, vol.104, pp.1577-1585, 2008.

L. Rossen, P. Nørskov, K. Holmstrøm, and O. F. Rasmussen, Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions, Int. J. Food Microbiol, vol.17, pp.37-45, 1992.

B. L. Roth, M. Poot, S. T. Yue, and P. J. Millard, Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain, Appl. Environ. Microbiol, vol.63, pp.2421-2431, 1997.

M. Salema, I. Capucho, B. Poolman, M. V. Romão, and M. C. Dias, In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni), J. Bacteriol, vol.178, pp.5537-5539, 1996.

M. Salema, B. Poolman, J. S. Lolkema, M. C. Dias, and W. N. Konings, Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc Oenos, Eur. J. Biochem, vol.225, pp.289-295, 1994.

M. Salma, S. Rousseaux, A. Sequeira-le-grand, and H. Alexandre, Cytofluorometric detection of wine lactic acid bacteria: application of malolactic fermentation to the monitoring, J. Ind. Microbiol. Biotechnol, vol.40, pp.63-73, 2012.

M. Salma, S. Rousseaux, A. Sequeira-le-grand, B. Divol, and H. Alexandre, Characterization of the viable but nonculturable (VBNC) state in Saccharomyces cerevisiae, PLoS ONE, vol.8, p.77600, 2013.

W. Albertin, A. Zimmer, C. Miot-sertier, M. Bernard, J. Coulon et al., Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity, Appl. Microbiol. Biotechnol, vol.101, pp.7603-7620, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01900508

H. Alexandre and C. Charpentier, Biochemical aspects of stuck and sluggish fermentation in grape must, J. Ind. Microbiol. Biotechnol, vol.20, pp.20-27, 1998.

I. Andorra, M. Monteiro, B. Esteve-zarzoso, H. Albergaria, and A. Mas, Analysis and direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentation by fluorescence in situ hybridization, flow cytometry and quantitative PCR, Food Microbiol, vol.28, pp.1483-1491, 2011.

E. K. Balikci, H. Tanguler, N. P. Jolly, and H. Erten, Influence of Lachancea thermotolerans on cv. Emir wine fermentation, Yeast, vol.33, pp.313-321, 2016.

S. Bell and P. A. Henschke, Implications of nitrogen nutrition for grapes, fermentation and wine, Aust. J. Grape Wine Res, vol.11, pp.242-295, 2005.

M. Bely, P. Stoeckle, I. Masneuf-pomarède, and D. Dubourdieu, Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation, Int. J. Food Microbiol, vol.122, pp.312-320, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02667547

Á. Benito, F. Calderón, F. Palomero, and S. Benito, Quality and Composition of Airén Wines Fermented by Sequential Inoculation of Lachancea thermotolerans and Saccharomyces cerevisiae, Food Technol. Biotechnol, vol.54, pp.135-144, 2016.

P. Breeuwer, J. L. Drocourt, N. Bunschoten, M. H. Zwietering, F. M. Rombouts et al., Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product, Appl. Environ. Microbiol, vol.61, pp.1614-1619, 1995.

C. Capusoni, S. Arioli, P. Zambelli, M. Moktaduzzaman, D. Mora et al., Effects of oxygen availability on acetic acid tolerance and intracellular pH in Dekkera bruxellensis, Appl. Environ. Microbiol. AEM, pp.515-531, 2016.

D. Carmona-gutierrez, T. Eisenberg, S. Büttner, C. Meisinger, G. Kroemer et al., Apoptosis in yeast: triggers, pathways, subroutines, Cell Death Differ, vol.17, pp.763-773, 2010.

C. Charoenchai, G. H. Fleet, P. Henschke, and B. E. Todd, Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes, Aust. J. Grape Wine Res, vol.3, 1997.

M. Ciani, Role, enological properties and potential biotechnological use of non-Saccharomyces wine yeasts, 1997.

M. Ciani, L. Beco, and F. Comitini, Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations, Int. J. Food Microbiol, vol.108, pp.239-245, 2006.

F. Comitini, M. Gobbi, P. Domizio, C. Romani, L. Lencioni et al., Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae, Food Microbiol, vol.28, pp.873-882, 2011.

T. Czabany, K. Athenstaedt, and G. Daum, Synthesis, storage and degradation of neutral lipids in yeast, Biochim. Biophys. Acta BBA -Mol. Cell Biol. Lipids, Regulation of Lipid Metabolism in Yeast, vol.1771, pp.299-309, 2007.

C. Dive, H. Cox, J. V. Watson, and P. Workman, Polar fluorescein derivatives as improved substrate probes for flow cytoenzymological assay of cellular esterases, Mol. Cell. Probes, vol.2, issue.88, pp.90035-90042, 1988.

V. Englezos, K. Rantsiou, S. Giacosa, S. Río-segade, L. Rolle et al., Cell-to-cell contact mechanism modulates Starmerella bacillaris death in mixed culture fermentations with Saccharomyces cerevisiae, Int. J. Food Microbiol, vol.289, pp.106-114, 2019.

V. Englezos, K. Rantsiou, F. Torchio, L. Rolle, V. Gerbi et al., Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations, Int. J. Food Microbiol, vol.199, pp.33-40, 2015.

B. Esteve-zarzoso, P. Manzanares, D. Ramon, and A. Querol, The role of non-Saccharomyces yeasts in industrial winemaking, Int. Microbiol, vol.1, pp.143-148, 1998.

G. H. Fleet, Wine Microbiology and Biotechnology, 1993.

D. Ganini, F. Leinisch, A. Kumar, J. Jiang, E. J. Tokar et al., Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells, Redox Biol, vol.12, pp.462-468, 2017.

M. García, B. Esteve-zarzoso, J. Crespo, J. M. Cabellos, and T. Arroyo, Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O, Using Real Time Quantitative PCR. Front. Microbiol, vol.8, 2017.

M. Gobbi, F. Comitini, P. Domizio, C. Romani, L. Lencioni et al., Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine, Food Microbiol, vol.33, pp.271-281, 2013.

A. Gobert, R. Tourdot-maréchal, C. Morge, C. Sparrow, Y. Liu et al., Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile, Front. Microbiol, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666795

B. González, J. Vázquez, M. Á. Morcillo-parra, A. Mas, M. J. Torija et al., The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability, Food Microbiol, vol.74, pp.64-74, 2018.

P. Greenspan, E. P. Mayer, and S. D. Fowler, Nile red: a selective fluorescent stain for intracellular lipid droplets, J. Cell Biol, vol.100, pp.965-973, 1985.

R. Heim and R. Y. Tsien, Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer, Curr. Biol, vol.6, pp.178-182, 1996.

N. Hierro, B. Esteve-zarzoso, Á. González, A. Mas, and J. Guillamón, Real-Time Quantitative PCR (QPCR) and Reverse Transcription-QPCR for Detection and Enumeration of Total Yeasts in Wine, Appl. Environ. Microbiol, vol.72, pp.7148-7155, 2006.

E. Holm-hansen, P. Nissen, P. Sommer, J. C. Nielsen, and N. Arneborg, The effect of oxygen on the survival of non-Saccharomyces yeasts during mixed culture fermentations of grape juice with Saccharomyces cerevisiae, J. Appl. Microbiol, vol.91, pp.541-547, 2001.

J. Jolly and O. P. Augustyn, Pretorius, I.S., others, 2006. The role and use of non-Saccharomyces yeasts in wine production, South Afr. J. Enol. Vitic, vol.27, p.15

N. P. Jolly, C. Varela, and I. S. Pretorius, Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered, FEMS Yeast Res, vol.14, pp.215-237, 2014.

B. Kalyanaraman and J. Zielonka, Green fluorescent proteins induce oxidative stress in cells: A worrisome new wrinkle in the application of the GFP reporter system to biological systems?, Redox Biol, vol.12, pp.755-757, 2017.

K. Kapsopoulou, A. Mourtzini, M. Anthoulas, and E. Nerantzis, Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae, World J. Microbiol. Biotechnol, vol.23, pp.735-739, 2006.

V. Kemsawasd, P. Branco, M. G. Almeida, J. Caldeira, H. Albergaria et al., Cell-to-cell contact and antimicrobial peptides play a combined role in the death of Lachanchea thermotolerans during mixed-culture alcoholic fermentation with Saccharomyces cerevisiae, FEMS Microbiol. Lett, vol.362, p.103, 2015.

H. Kitagaki and H. Shimoi, Mitochondrial dynamics of yeast during sake brewing, J. Biosci. Bioeng, vol.104, pp.227-230, 2007.

H. Kitagaki and H. Takagi, Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies, J. Biosci. Bioeng, vol.117, pp.383-393, 2014.

S. Landolfo, H. Politi, D. Angelozzi, and I. Mannazzu, ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium, Biochim. Biophys. Acta BBA -Gen. Subj, vol.1780, pp.892-898, 2008.

P. Liu, L. Lu, C. Duan, and G. Yan, The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation, LWT -Food Sci. Technol, vol.71, pp.356-363, 2016.

J. Lleixà, M. Manzano, A. Mas, M. Portillo, and C. , Saccharomyces and non-Saccharomyces Competition during Microvinification under Different Sugar and Nitrogen Conditions, Front. Microbiol, 2016.

C. Longin, C. Petitgonnet, M. Guilloux-benatier, S. Rousseaux, and H. Alexandre, Application of flow cytometry to wine microorganisms, Food Microbiol, vol.62, pp.221-231, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01522932

V. Loureiro and M. Malfeito-ferreira, Spoilage yeasts in the wine industry, 23rd International Specialized Symposium on Yeasts, vol.86, pp.23-50, 2003.

I. Mannazzu, D. Angelozzi, S. Belviso, M. Budroni, G. A. Farris et al., Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: Cell lipid composition, membrane integrity, viability and fermentative activity, Int. J. Food Microbiol, vol.121, pp.84-91, 2008.

S. Marsit, A. Mena, F. Bigey, F. Sauvage, A. Couloux et al., Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts, Mol. Biol. Evol, vol.32, pp.1695-1707, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837744

J. R. Mcfaline-figueroa, J. Vevea, T. C. Swayne, C. Zhou, C. Liu et al., Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast, Aging Cell, vol.10, pp.885-895, 2011.

A. Mendes-ferreira, B. Sampaio-marques, C. Barbosa, F. Rodrigues, V. Costa et al., Accumulation of Non-Superoxide Anion Reactive Oxygen Species Mediates Nitrogen-Limited Alcoholic Fermentation by Saccharomyces cerevisiae, Appl. Environ. Microbiol, vol.76, pp.7918-7924, 2010.

,

J. Mora, J. I. Barbas, and A. Mulet, Growth of yeast species during the fermentation of musts inoculated with Kluyveromyces thermotolerans and Saccharomyces cerevisiae, Am. J. Enol. Vitic, vol.41, pp.156-159, 1990.

P. Moradas-ferreira and V. Costa, Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death, Redox Rep, 2013.

H. Müllner and G. Daum, Dynamics of neutral lipid storage in yeast, Acta Biochim. Pol, vol.51, pp.323-347, 2004.

P. Nissen, D. Nielsen, and N. Arneborg, Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-mediated mechanism, Yeast, vol.20, pp.331-341, 2003.

B. Padilla, J. V. Gil, and P. Manzanares, Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity, Food Microbiol, vol.411, 2016.

F. Pérez-nevado, H. Albergaria, T. Hogg, and F. Girio, Cellular death of two non-Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae, Int. J. Food Microbiol, vol.108, pp.336-345, 2006.

P. E. Renault, W. Albertin, and M. Bely, An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions, Appl. Microbiol. Biotechnol, vol.97, pp.4105-4119, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652704

V. Rojas, J. V. Gil, F. Piñaga, and P. Manzanares, Studies on acetate ester production by non-Saccharomyces wine yeasts, Int. J. Food Microbiol, vol.70, pp.552-561, 2001.

J. Sablayrolles, C. Dubois, C. Manginot, J. Roustan, and P. Barre, Effectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck wine fermentations, J. Ferment. Bioeng, vol.82, pp.377-381, 1996.

M. Sadoudi, R. Tourdot-maréchal, S. Rousseaux, D. Steyer, J. Gallardo-chacón et al., Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts, Food Microbiol, vol.32, pp.243-253, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00782673

K. Shekhawat, F. F. Bauer, and M. E. Setati, Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol, vol.101, pp.2479-2491, 2017.

S. Simonin, H. Alexandre, M. Nikolantonaki, C. Coelho, and R. Tourdot-maréchal, Inoculation of Torulaspora delbrueckii as a bio-protection agent in winemaking, Food Res. Int, vol.107, pp.451-461, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01895361

P. Taillandier, Q. P. Lai, A. Julien-ortiz, and C. Brandam, Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation: influence of inoculation and nitrogen content, World J. Microbiol. Biotechnol, vol.30, pp.1959-1967, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01890432

P. Taillandier, F. Ramon-portugal, A. Fuster, and P. Strehaiano, Effect of ammonium concentration on alcoholic fermentation kinetics by wine yeasts for high sugar content, Food Microbiol, vol.24, pp.95-100, 2007.

F. Viana, J. V. Gil, S. Genovés, S. Vallés, and P. Manzanares, Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits, Food Microbiol, vol.25, pp.778-785, 2008.

C. Wang, A. Mas, and B. Esteve-zarzoso, Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during alcoholic fermentation, Int. J. Food Microbiol, vol.206, pp.67-74, 2015.

X. D. Wang, J. C. Bohlscheid, and C. G. Edwards, Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid, J. Appl. Microbiol, vol.94, pp.349-359, 2003.

A. Xufre, H. Albergaria, J. Inácio, I. Spencer-martins, and F. Gírio, Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations, Int. J. Food Microbiol, vol.108, pp.376-384, 2006.

H. References-albergaria, D. Francisco, K. Gori, N. Arneborg, and F. Gírio, Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains, Appl. Microbiol. Biotechnol, vol.86, pp.965-972, 2009.

H. Alexandre and C. Charpentier, Biochemical aspects of stuck and sluggish fermentation in grape must, J. Ind. Microbiol. Biotechnol, vol.20, pp.20-27, 1998.

E. K. Balikci, H. Tanguler, N. P. Jolly, and H. Erten, Influence of Lachancea thermotolerans on cv. Emir wine fermentation, Yeast, vol.33, pp.313-321, 2016.

C. Barbosa, A. Mendes-faia, P. Lage, N. P. Mira, and A. Mendes-ferreira, Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii, Microb. Cell Factories, vol.14, 2015.

N. Barrajón, M. Arévalo-villena, J. Úbeda, and A. Briones, Enological properties in wild and commercial Saccharomyces cerevisiae yeasts: relationship with competition during alcoholic fermentation, World J. Microbiol. Biotechnol, vol.27, pp.2703-2710, 2011.

M. E. Beckner-whitener, S. Carlin, D. Jacobson, D. Weighill, B. Divol et al., Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: A targeted approach, LWT -Food Sci. Technol, vol.64, pp.412-422, 2015.

S. Bell and P. A. Henschke, Implications of nitrogen nutrition for grapes, fermentation and wine, Aust. J. Grape Wine Res, vol.11, pp.242-295, 2005.

M. Bely, J. Sablayrolles, and P. Barre, Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions, J. Ferment. Bioeng, vol.70, pp.90057-90061, 1990.
URL : https://hal.archives-ouvertes.fr/hal-02711395

Á. Benito, F. Calderón, F. Palomero, and S. Benito, Quality and Composition of Airén Wines Fermented by Sequential Inoculation of Lachancea thermotolerans and Saccharomyces cerevisiae, Food Technol. Biotechnol, vol.54, pp.135-144, 2016.

S. Benito, The impact of Torulaspora delbrueckii yeast in winemaking, Appl. Microbiol. Biotechnol, pp.1-14, 2018.

S. Benito, T. Hofmann, M. Laier, B. Lochbühler, A. Schüttler et al., Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae, Eur. Food Res. Technol, vol.241, pp.707-717, 2015.

L. Blateyron and J. M. Sablayrolles, Stuck and Slow Fermentations in Enology: Statistical Study of Causes and Effectiveness of Combined Additions of Oxygen and Diammonium Phosphate 6, 2001.

P. Branco, D. Francisco, C. Chambon, M. Hébraud, N. Arneborg et al., Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions, Appl. Microbiol. Biotechnol, vol.98, pp.843-853, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02641636

T. Burphan, S. Tatip, T. Limcharoensuk, K. Kangboonruang, C. Boonchird et al., Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae, Sci. Rep, vol.8, 2018.

D. Carmona-gutierrez, T. Eisenberg, S. Büttner, C. Meisinger, G. Kroemer et al., Apoptosis in yeast: triggers, pathways, subroutines, Cell Death Differ, vol.17, pp.763-773, 2010.

F. M. Carrau, K. Medina, L. Farina, E. Boido, P. A. Henschke et al., Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains, FEMS Yeast Res, vol.8, pp.1196-1207, 2008.

M. Ciani, Role, enological properties and potential biotechnological use of non-Saccharomyces wine yeasts, Recent Res. Devel. in Microbiology, vol.1, pp.317-331, 1997.

M. Ciani, A. Capece, F. Comitini, L. Canonico, G. Siesto et al., Yeast Interactions in Inoculated Wine Fermentation, Front. Microbiol, 2016.

J. Comas-riu and N. Rius, Flow cytometry applications in the food industry, J. Ind. Microbiol. Biotechnol, vol.36, pp.999-1011, 2009.

L. Crépin, N. M. Truong, A. Bloem, I. Sanchez, S. Dequin et al., Management of multiple nitrogen sources during wine fermentation by, S. cerevisiae. Appl Env. Microbiol AEM, pp.2617-2633, 2017.

,

P. Delobel, M. Pradal, B. Blondin, and C. Tesniere, A 'fragile cell' sub-population revealed during cytometric assessment of Saccharomyces cerevisiae viability in lipid-limited alcoholic fermentation, Lett. Appl. Microbiol, vol.55, pp.338-344, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01506262

C. Deytieux, L. Mussard, M. Biron, and J. Salmon, Fine measurement of ergosterol requirements for growth of Saccharomyces cerevisiae during alcoholic fermentation, Appl. Microbiol. Biotechnol, vol.68, pp.266-271, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02681346

M. Díaz, M. Herrero, L. A. García, and C. Quirós, Application of flow cytometry to industrial microbial bioprocesses, Biochem. Eng. J., Invited Review Issue, vol.48, pp.385-407, 2010.

V. Englezos, F. Cravero, F. Torchio, K. Rantsiou, A. Ortiz-julien et al., Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae, Food Microbiol, vol.69, pp.179-188, 2018.

V. Englezos, K. Rantsiou, S. Giacosa, S. Río-segade, L. Rolle et al., Cell-to-cell contact mechanism modulates Starmerella bacillaris death in mixed culture fermentations with Saccharomyces cerevisiae, Int. J. Food Microbiol, vol.289, pp.106-114, 2019.

B. Esteve-zarzoso, P. Manzanares, D. Ramon, and A. Querol, The role of non-Saccharomyces yeasts in industrial winemaking, Int. Microbiol, vol.1, pp.143-148, 1998.

G. H. Fleet, C. Fornairon-bonnefond, and J. Salmon, Impact of Oxygen Consumption by Yeast Lees on the Autolysis Phenomenon during Simulation of Wine Aging on Lees, J. Agric. Food Chem, vol.8, pp.2584-2590, 2003.

M. García, B. Esteve-zarzoso, and T. Arroyo, Non-Saccharomyces Yeasts: Biotechnological Role for Wine Production, Grape and Wine Biotechnology, 2016.

M. García, B. Esteve-zarzoso, J. Crespo, J. M. Cabellos, and T. Arroyo, Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O, Using Real Time Quantitative PCR. Front. Microbiol, vol.8, 2017.

M. Gobbi, F. Comitini, P. Domizio, C. Romani, L. Lencioni et al., Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine, Food Microbiol, vol.33, pp.271-281, 2013.

A. Gobert, R. Tourdot-maréchal, C. Morge, C. Sparrow, Y. Liu et al., Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile, Front. Microbiol, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666795

P. Godard, A. Urrestarazu, S. Vissers, K. Kontos, G. Bontempi et al., Effect of 21 Different Nitrogen Sources on Global Gene Expression in the Yeast Saccharomyces cerevisiae, Mol. Cell. Biol, vol.27, pp.3065-3086, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01624315

B. González, J. Vázquez, M. Á. Morcillo-parra, A. Mas, M. J. Torija et al., The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability, Food Microbiol, vol.74, pp.64-74, 2018.

E. H. Hansen, P. Nissen, P. Sommer, J. C. Nielsen, and N. Arneborg, The effect of oxygen on the survival of non-Saccharomyces yeasts during mixed culture fermentations of grape juice with Saccharomyces cerevisiae, J. Appl. Microbiol, vol.91, pp.541-547, 2001.

L. A. Hazelwood, J. Daran, A. J. Maris, . Van, J. T. Pronk et al., The Ehrlich Pathway for Fusel Alcohol Production: a Century of Research on, Saccharomyces cerevisiae Metabolism. Appl Env. Microbiol, vol.74, pp.2259-2266, 2008.

M. B. Hirst and C. L. Richter, Review of Aroma Formation through Metabolic Pathways of Saccharomyces cerevisiae in Beverage Fermentations, Am. J. Enol. Vitic, vol.67, pp.361-370, 2016.

J. Jolly and O. P. Augustyn, Pretorius, I.S., others, 2006. The role and use of non-Saccharomyces yeasts in wine production, South Afr. J. Enol. Vitic, vol.27, p.15

N. P. Jolly, C. Varela, and I. S. Pretorius, Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered, FEMS Yeast Res, vol.14, pp.215-237, 2014.

M. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res, vol.28, pp.27-30, 2000.

M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res, vol.40, pp.109-114, 2012.

K. Kapsopoulou, A. Kapaklis, and H. Spyropoulos, Growth and Fermentation Characteristics of a Strain of the Wine Yeast Kluyveromyces thermotolerans Isolated in Greece, World J. Microbiol. Biotechnol, vol.21, pp.1599-1602, 2005.

K. Kapsopoulou, A. Mourtzini, M. Anthoulas, and E. Nerantzis, Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae, World J. Microbiol. Biotechnol, vol.23, pp.735-739, 2006.

V. Kemsawasd, T. Viana, Y. Ardö, and N. Arneborg, Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation, Appl. Microbiol. Biotechnol, vol.99, pp.10191-10207, 2015.

S. Landolfo, H. Politi, D. Angelozzi, and I. Mannazzu, ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium, Biochim. Biophys. Acta BBA -Gen. Subj, vol.1780, pp.892-898, 2008.

Y. Liu, S. Forcisi, M. Harir, M. Deleris-bou, S. Krieger-weber et al., New molecular evidence of wine yeast-bacteria interaction unraveled by non-targeted exometabolomic profiling, Metabolomics, vol.12, pp.1-16, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01418401

Y. Liu, S. Rousseaux, R. Tourdot-maréchal, M. Sadoudi, R. Gougeon et al., Wine microbiome, a dynamic world of microbial interactions, Crit. Rev. Food Sci. Nutr, vol.0, pp.0-00, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01431375

C. Longin, C. Petitgonnet, M. Guilloux-benatier, S. Rousseaux, and H. Alexandre, Application of flow cytometry to wine microorganisms, Food Microbiol, vol.62, pp.221-231, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01522932

C. L. Lopez, S. Beaufort, C. Brandam, and P. Taillandier, Interactions between Kluyveromyces marxianus and Saccharomyces cerevisiae in tequila must type medium fermentation, World J. Microbiol. Biotechnol, vol.30, pp.2223-2229, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01891336

V. Luparia, V. Soubeyrand, T. Berges, A. Julien, and J. Salmon, Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations, Appl. Microbiol. Biotechnol, vol.65, pp.25-32, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00084068

S. Marsit, A. Mena, F. Bigey, F. Sauvage, A. Couloux et al., Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts, Mol. Biol. Evol, vol.32, pp.1695-1707, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837744

A. Mendes-ferreira, B. Sampaio-marques, C. Barbosa, F. Rodrigues, V. Costa et al., Accumulation of Non-Superoxide Anion Reactive Oxygen Species Mediates Nitrogen-Limited Alcoholic Fermentation by Saccharomyces cerevisiae, Appl. Environ. Microbiol, vol.76, pp.7918-7924, 2010.

,

J. Mora, J. I. Barbas, and A. Mulet, Growth of yeast species during the fermentation of musts inoculated with Kluyveromyces thermotolerans and Saccharomyces cerevisiae, Am. J. Enol. Vitic, vol.41, pp.156-159, 1990.

P. Moradas-ferreira and V. Costa, Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death, Redox Rep, 2013.

P. Nissen and N. Arneborg, Characterization of early deaths of non-Saccharomyces yeasts in mixed cultures with Saccharomyces cerevisiae, Arch. Microbiol, vol.180, pp.257-263, 2003.

P. Nissen, D. Nielsen, and N. Arneborg, Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-mediated mechanism, Yeast, vol.20, pp.331-341, 2003.

G. G. Perrone, S. Tan, and I. W. Dawes, Reactive oxygen species and yeast apoptosis, Biochim. Biophys. Acta BBA -Mol. Cell Res, vol.1783, pp.1354-1368, 2008.

P. E. Renault, W. Albertin, and M. Bely, An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions, Appl. Microbiol. Biotechnol, vol.97, pp.4105-4119, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652704

V. Rojas, J. V. Gil, F. Piñaga, and P. Manzanares, Studies on acetate ester production by non-Saccharomyces wine yeasts, Int. J. Food Microbiol, vol.70, pp.552-561, 2001.

S. Rollero, J. Mouret, A. Bloem, I. Sanchez, A. Ortiz-julien et al., Quantitative 13C-isotope labelling-based analysis to elucidate the influence of environmental parameters on the production of fermentative aromas during wine fermentation, Microb. Biotechnol, vol.10, pp.1649-1662, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606296

S. Rollero, J. Mouret, I. Sanchez, C. Camarasa, A. Ortiz-julien et al., Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain. Microb, Cell Factories, vol.15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01284656

P. Romano, G. Suzzi, G. Comi, and R. Zironi, Higher alcohol and acetic acid production by apiculate wine yeasts, J. Appl. Bacteriol, vol.73, pp.126-130, 1992.

D. Rossouw, S. P. Meiring, and F. F. Bauer, Modifying Saccharomyces cerevisiae Adhesion Properties Regulates Yeast Ecosystem Dynamics, vol.3, pp.383-401, 2018.

. Roullier-gall, . Chloé, L. Boutegrabet, R. D. Gougeon, and P. Schmitt-kopplin, A grape and wine chemodiversity comparison of different appellations in Burgundy: Vintage vs terroir effects, Food Chem, vol.152, pp.100-107, 2014.

. Roullier-gall, . Chloã©, M. Witting, R. D. Gougeon, and P. Schmitt-kopplin, High precision mass measurements for wine metabolomics, Front. Chem, vol.2, 2014.

C. Roullier-gall, M. Witting, D. Tziotis, A. Ruf, R. D. Gougeon et al., Integrating analytical resolutions in non-targeted wine metabolomics, Tetrahedron, vol.71, pp.2983-2990, 2015.

,

J. Sablayrolles, C. Dubois, C. Manginot, J. Roustan, and P. Barre, Effectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck wine fermentations, J. Ferment. Bioeng, vol.82, pp.377-381, 1996.

M. Sadoudi, Intérêts biotechnologiques des levures indigènes non Saccharomyces, 2014.

M. Sadoudi, R. Tourdot-maréchal, S. Rousseaux, D. Steyer, J. Gallardo-chacón et al., Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts, Food Microbiol, vol.32, pp.243-253, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00782673

J. Salmon, Interactions between yeast, oxygen and polyphenols during alcoholic fermentations: Practical implications, European Symposium on Apple Processing, vol.39, pp.959-965, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02663847

J. Salmon, C. Fornairon, and P. Barre, Determination of oxygen utilization pathways in an industrial strain of Saccharomyces cerevisiae during enological fermentation, J. Ferment. Bioeng, vol.86, pp.154-163, 1998.

K. Shekhawat, F. F. Bauer, and M. E. Setati, Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol, vol.101, pp.2479-2491, 2017.

M. Strauss, N. P. Jolly, M. G. Lambrechts, and P. Van-rensburg, Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts, J. Appl. Microbiol, vol.91, pp.182-190, 2001.

P. Taillandier, F. Ramon-portugal, A. Fuster, and P. Strehaiano, Effect of ammonium concentration on alcoholic fermentation kinetics by wine yeasts for high sugar content, Food Microbiol, vol.24, pp.95-100, 2007.

O. Tehlivets, K. Scheuringer, and S. D. Kohlwein, Fatty acid synthesis and elongation in yeast, Biochim. Biophys. Acta BBA -Mol. Cell Biol. Lipids, Regulation of Lipid Metabolism in Yeast, vol.1771, pp.255-270, 2007.

M. J. Torija, N. Rozès, M. Poblet, J. M. Guillamón, and A. Mas, Yeast population dynamics in spontaneous fermentations: Comparison between two different wine-producing areas over a period of three years, Antonie Van Leeuwenhoek, vol.79, pp.345-352, 2001.

M. J. Valera, M. Á. Morcillo-parra, I. Zagórska, A. Mas, G. Beltran et al., Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions, Int. J. Food Microbiol, vol.289, pp.174-181, 2019.

,

C. Varela, D. Torrea, S. A. Schmidt, C. Ancin-azpilicueta, and P. A. Henschke, Effect of oxygen and lipid supplementation on the volatile composition of chemically defined medium and Chardonnay wine fermented with Saccharomyces cerevisiae, Food Chem, vol.135, pp.2863-2871, 2012.

C. Wang, A. Mas, and B. Esteve-zarzoso, The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation is Species and Strain Specific, Food Microbiol, vol.7, 2016.

X. D. Wang, J. C. Bohlscheid, and C. G. Edwards, Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid, J. Appl. Microbiol, vol.94, pp.349-359, 2003.

B. Zhang, Y. Luan, C. Duan, and G. Yan, Use of Torulaspora delbrueckii co-fermentation with two Saccharomyces cerevisiae strains with different aromatic characteristic to improve the diversity of red wine aroma profile, Front. Microbiol, vol.9, 2018.

J. Zupan, M. Avbelj, B. Butinar, J. Kosel, M. ?ergan et al., Monitoring of Quorum-Sensing Molecules during Minifermentation Studies in Wine Yeast, J. Agric. Food Chem, vol.61, pp.2496-2505, 2013.

F. Aguilera, R. A. Peinado, C. Millán, J. M. Ortega, and J. C. Mauricio, Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains, International Journal of Food Microbiology, vol.110, pp.34-42, 2006.

H. Albergaria, D. Francisco, K. Gori, N. Arneborg, and F. Gírio, Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains, Appl Microbiol Biotechnol, vol.86, pp.965-972, 2009.

W. Albertin, A. Zimmer, C. Miot-sertier, M. Bernard, J. Coulon et al., Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity, Applied Microbiology and Biotechnology, vol.101, pp.7603-7620, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01900508

P. Albuquerque and A. Casadevall, Quorum sensing in fungi -a review, Medical Mycology, vol.50, pp.337-345, 2012.

M. A. Alem, M. D. Oteef, T. H. Flowers, and L. J. Douglas, Production of Tyrosol by Candida albicans Biofilms and Its Role in Quorum Sensing and Biofilm Development, Eukaryotic Cell, vol.5, pp.1770-1779, 2006.

H. Alexandre and C. Charpentier, Biochemical aspects of stuck and sluggish fermentation in grape must, Journal of Industrial microbiology & biotechnology, vol.20, pp.20-27, 1998.

H. Alexandre, I. Rousseaux, and C. Charpentier, Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata, FEMS Microbiology Letters, vol.124, pp.17-22, 1994.

I. Andorra, M. Monteiro, B. Esteve-zarzoso, H. Albergaria, and A. Mas, Analysis and direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentation by fluorescence in situ hybridization, flow cytometry and quantitative PCR, Food Microbiology, vol.28, pp.1483-1491, 2011.

N. Anfang, M. Brajkovich, and M. R. Goddard, Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc, Australian Journal of Grape and Wine Research, vol.15, pp.1-8, 2009.

E. K. Balikci, H. Tanguler, N. P. Jolly, and H. Erten, Influence of Lachancea thermotolerans on cv. Emir wine fermentation, Yeast, vol.33, pp.313-321, 2016.

C. Barbosa, A. Mendes-faia, P. Lage, N. P. Mira, and A. Mendes-ferreira, Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii, Microbial Cell Factories, vol.14, 2015.

N. Barrajón, M. Arévalo-villena, J. Úbeda, and A. Briones, Enological properties in wild and commercial Saccharomyces cerevisiae yeasts: relationship with competition during alcoholic fermentation, World Journal of Microbiology and Biotechnology, vol.27, pp.2703-2710, 2011.

F. F. Bauer and I. S. Pretorius, Yeast stress response and fermentation efficiency: how to survive the making of wine-a review, South African Journal for Enology and Viticulture, vol.21, pp.27-51, 2000.

M. E. Beckner-whitener, S. Carlin, D. Jacobson, D. Weighill, B. Divol et al., Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: A targeted approach, LWT -Food Science and Technology, vol.64, pp.412-422, 2015.

I. Belda, J. Ruiz, B. Beisert, E. Navascués, D. Marquina et al., Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations, International Journal of Food Microbiology, vol.257, pp.183-191, 2017.

S. Bell and P. A. Henschke, Implications of nitrogen nutrition for grapes, fermentation and wine, Australian Journal of Grape and Wine Research, vol.11, pp.242-295, 2005.

G. Beltran, M. Novo, J. M. Guillamón, A. Mas, and N. Rozès, Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds, International Journal of Food Microbiology, vol.121, pp.169-177, 2008.

M. Bely, J. Sablayrolles, and P. Barre, Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions, Journal of Fermentation and Bioengineering, vol.70, pp.246-252, 1990.
URL : https://hal.archives-ouvertes.fr/hal-02711395

M. Bely, P. Stoeckle, I. Masneuf-pomarède, and D. Dubourdieu, Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation, International Journal of Food Microbiology, vol.122, pp.312-320, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02667547

Á. Benito, F. Calderón, F. Palomero, and S. Benito, Quality and Composition of Airén Wines Fermented by Sequential Inoculation of Lachancea thermotolerans and Saccharomyces cerevisiae, Food Technol Biotechnol, vol.54, pp.135-144, 2016.

S. Benito, The impact of Torulaspora delbrueckii yeast in winemaking, Appl Microbiol Biotechnol, pp.1-14, 2018.

S. Benito, T. Hofmann, M. Laier, B. Lochbühler, A. Schüttler et al., Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae, Eur Food Res Technol, vol.241, pp.707-717, 2015.

A. Beopoulos, J. Nicaud, and C. Gaillardin, An overview of lipid metabolism in yeasts and its impact on biotechnological processes, Applied Microbiology and Biotechnology, vol.90, pp.1193-1206, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01003275

,

E. A. Bevan, M. ;. Makower, and J. M. Sablayrolles, Stuck and Slow Fermentations in Enology: Statistical Study of Causes and Effectiveness of Combined Additions of Oxygen and Diammonium Phosphate 6, Proc. Int. Congr. Genet. Blateyron, 1963.

N. A. Bokulich, M. Ohta, P. M. Richardson, and D. A. Mills, Monitoring Seasonal Changes in Winery-Resident Microbiota, PLOS ONE, vol.8, 2013.

M. Bouix and S. Ghorbal, Rapid assessment of Oenococcus oeni activity by measuring intracellular pH and membrane potential by flow cytometry, and its application to the more effective control of malolactic fermentation, International Journal of Food Microbiology, vol.193, pp.139-146, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01195510

P. Branco, D. Francisco, C. Chambon, M. Hébraud, N. Arneborg et al., Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions, Applied Microbiology and Biotechnology, vol.98, pp.843-853, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02641636

,

P. Breeuwer, J. L. Drocourt, N. Bunschoten, M. H. Zwietering, F. M. Rombouts et al., Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product, Appl. Environ. Microbiol, vol.61, pp.1614-1619, 1995.

G. B. Calleja, Microbial aggregation, 1984.

A. Capece, R. Romaniello, C. Poeta, G. Siesto, C. Massari et al., Control of inoculated fermentations in wine cellars by mitochondrial DNA analysis of starter yeast, Annals of Microbiology, vol.61, pp.49-56, 2011.

A. Capece, R. Romaniello, G. Siesto, R. Pietrafesa, C. Massari et al., Selection of indigenous Saccharomyces cerevisiae strains for Nero d'Avola wine and evaluation of selected starter implantation in pilot fermentation, International Journal of Food Microbiology, vol.144, pp.187-192, 2010.

,

A. Capece, G. Siesto, R. Romaniello, V. M. Lagreca, R. Pietrafesa et al., Assessment of competition in wine fermentation among wild Saccharomyces cerevisiae strains isolated from Sangiovese grapes in Tuscany region, LWT -Food Science and Technology, vol.54, pp.485-492, 2013.

C. Capusoni, S. Arioli, P. Zambelli, M. Moktaduzzaman, D. Mora et al., Effects of oxygen availability on acetic acid tolerance and intracellular pH in Dekkera bruxellensis, Applied and Environmental Microbiology AEM, pp.515-531, 2016.

D. Carmona-gutierrez, T. Eisenberg, S. Büttner, C. Meisinger, G. Kroemer et al., Apoptosis in yeast: triggers, pathways, subroutines, Cell Death Differ, vol.17, pp.763-773, 2010.

F. M. Carrau, K. Medina, L. Farina, E. Boido, P. A. Henschke et al., Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains, FEMS Yeast Research, vol.8, pp.1196-1207, 2008.

P. M. Castela, . Universite-d'extremadure, J. L. Mesias, and J. I. Maynar, Evolution of amounts of total, neutral and polar lipids in Macabeo grapes (Vitis vinifera) throughout their vegetative cycle, Science des Aliments, 1985.

L. Caveda, I. Martin-padura, P. Navarro, F. Breviario, M. Corada et al., Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin), J Clin Invest, vol.98, pp.886-893, 1996.

C. Charoenchai, G. H. Fleet, P. Henschke, and B. E. Todd, Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes, Australian Journal of Grape and Wine Research, vol.3, 1997.

L. Chasseriaud, J. Coulon, P. Marullo, W. Albertin, and M. Bely, New oenological practice to promote non-Saccharomyces species of interest: saturating grape juice with carbon dioxide, Appl Microbiol Biotechnol, pp.1-13, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02624513

H. Chen and G. R. Fink, Feedback control of morphogenesis in fungi by aromatic alcohols, Genes Dev, vol.20, pp.1150-1161, 2006.

M. Ciani, Role, enological properties and potential biotechnological use of non-Saccharomyces wine yeasts, Recent Res. Devel. in Microbiology, vol.1, pp.317-331, 1997.

M. Ciani, L. Beco, and F. Comitini, Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations, International Journal of Food Microbiology, vol.108, pp.239-245, 2006.

,

M. Ciani, A. Capece, F. Comitini, L. Canonico, G. Siesto et al., Yeast Interactions in Inoculated Wine Fermentation, Front. Microbiol, 2016.

M. Ciani, F. Comitini, I. Mannazzu, and P. Domizio, Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking, FEMS Yeast Research, vol.10, pp.123-133, 2010.

R. Civitelli, Cell-cell communication in the osteoblast/osteocyte lineage, Highlight Issue: Bone Remodeling: Facts and Perspectives, vol.473, pp.188-192, 2008.

F. Comitini, M. Gobbi, P. Domizio, C. Romani, L. Lencioni et al., Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae, Food Microbiology, vol.28, pp.873-882, 2011.

V. Costa and P. Moradas-ferreira, Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases, Molecular Aspects of Medicine, vol.22, issue.01, pp.12-19, 2001.

L. Crépin, N. M. Truong, A. Bloem, I. Sanchez, S. Dequin et al., Management of multiple nitrogen sources during wine fermentation by S. cerevisiae, Appl. Environ. Microbiol. AEM, pp.2617-2633, 2017.

,

R. S. Criddle and G. Schatz, Promitochondria of anaerobically grown yeast. I. Isolation and biochemical properties, Biochemistry, vol.8, pp.322-334, 1969.

T. Czabany, K. Athenstaedt, and G. Daum, Synthesis, storage and degradation of neutral lipids in yeast, Biochimica et Biophysica Acta (BBA) -Molecular and Cell Biology of Lipids, vol.1771, pp.299-309, 2007.

H. M. Davey and P. Hexley, Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide, Environmental Microbiology, vol.13, pp.163-171, 2011.

P. Delobel, M. Pradal, B. Blondin, and C. Tesniere, A 'fragile cell' sub-population revealed during cytometric assessment of Saccharomyces cerevisiae viability in lipid-limited alcoholic fermentation, Letters in Applied Microbiology, vol.55, pp.338-344, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01506262

C. Deytieux, L. Mussard, M. Biron, and J. Salmon, Fine measurement of ergosterol requirements for growth of Saccharomyces cerevisiae during alcoholic fermentation, Appl Microbiol Biotechnol, vol.68, pp.266-271, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02681346

J. Ding, X. Huang, L. Zhang, N. Zhao, D. Yang et al., Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae, Appl Microbiol Biotechnol, vol.85, pp.253-263, 2009.

C. Dive, H. Cox, J. V. Watson, and P. Workman, Polar fluorescein derivatives as improved substrate probes for flow cytoenzymological assay of cellular esterases, Molecular and Cellular Probes, vol.2, pp.90035-90042, 1988.

E. K. Engle and J. C. Fay, Divergence of the Yeast Transcription Factor FZF1 Affects Sulfite Resistance, PLOS Genetics, vol.8, 2012.

V. Englezos, L. Cocolin, K. Rantsiou, A. Ortiz-julien, A. Bloem et al., Specific phenotypic traits of Starmerella bacillaris regarding nitrogen source consumption and central carbon metabolites production during wine fermentation, Appl. Environ. Microbiol. AEM, pp.797-815, 2018.

V. Englezos, F. Cravero, F. Torchio, K. Rantsiou, A. Ortiz-julien et al., Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae, Food Microbiology, vol.69, pp.179-188, 2018.

V. Englezos, K. Rantsiou, S. Giacosa, S. Río-segade, L. Rolle et al., Cell-to-cell contact mechanism modulates Starmerella bacillaris death in mixed culture fermentations with Saccharomyces cerevisiae, International Journal of Food Microbiology, vol.289, pp.106-114, 2019.

V. Englezos, K. Rantsiou, F. Torchio, L. Rolle, V. Gerbi et al., Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations, International Journal of Food Microbiology, vol.199, pp.33-40, 2015.

,

V. Englezos, F. Torchio, F. Cravero, F. Marengo, S. Giacosa et al., Aroma profile and composition of Barbera wines obtained by mixed fermentations of Starmerella bacillaris (synonym Candida zemplinina ) and Saccharomyces cerevisiae, LWT, vol.73, pp.567-575, 2016.

B. Esteve-zarzoso, P. Manzanares, D. Ramon, and A. Querol, The role of non-Saccharomyces yeasts in industrial winemaking, International Microbiology, vol.1, pp.143-148, 1998.

G. H. Fleet, Wine yeasts for the future, FEMS Yeast Research, vol.8, pp.979-995, 2008.

G. H. Fleet, Yeast interactions and wine flavour, 23rd International Specialized Symposium on Yeasts, vol.86, pp.245-254, 2003.

G. H. Fleet, Wine Microbiology and Biotechnology, 1993.

G. H. Fleet and G. M. Heard, Yeasts-growth during fermentation Wine Microbiology and Biotechnology, pp.27-54, 1993.

G. H. Fleet, C. J. Prakitchaiwattana, . Beh, and G. M. Heard, The yeast ecology of wine grapes Biodiversity and Biotechnology of Wine Yeasts, pp.1-17, 2002.

C. Fornairon-bonnefond and J. Salmon, Impact of Oxygen Consumption by Yeast Lees on the Autolysis Phenomenon during Simulation of Wine Aging on Lees, J. Agric. Food Chem, vol.51, pp.2584-2590, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02675962

P. Frey-klett, P. Burlinson, A. Deveau, M. Barret, M. Tarkka et al., Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists. Microbiol. Mol. Biol. Rev, vol.75, pp.583-609, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02651157

S. Fukuhara, S. Tomita, S. Yamashiro, T. Morisaki, C. Yutani et al., Direct cell-cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro, The Journal of Thoracic and Cardiovascular Surgery, vol.125, pp.73610-73616, 2003.

D. Ganini, F. Leinisch, A. Kumar, J. Jiang, E. J. Tokar et al., Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells, Redox Biology, vol.12, pp.462-468, 2017.

A. Garcia, C. Carcel, L. Dulau, A. Samson, E. Aguera et al., Influence of a Mixed Culture with Debaryomyces vanriji and Saccharomyces cerevisiae on the Volatiles of a Muscat Wine, Journal of Food Science, vol.67, pp.1138-1143, 2002.

M. García, B. Esteve-zarzoso, and T. Arroyo, Non-Saccharomyces Yeasts: Biotechnological Role for Wine Production, Grape and Wine Biotechnology, 2016.

M. García, B. Esteve-zarzoso, J. Crespo, J. M. Cabellos, and T. Arroyo, Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O, Using Real Time Quantitative PCR. Front. Microbiol, vol.8, 2017.

M. Gobbi, F. Comitini, P. Domizio, C. Romani, L. Lencioni et al., Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine, Food Microbiology, vol.33, pp.271-281, 2013.

A. Gobert, R. Tourdot-maréchal, C. Morge, C. Sparrow, Y. Liu et al., Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile, Front. Microbiol, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666795

P. Godard, A. Urrestarazu, S. Vissers, K. Kontos, G. Bontempi et al., Effect of 21 Different Nitrogen Sources on Global Gene Expression in the Yeast Saccharomyces cerevisiae, Molecular and Cellular Biology, vol.27, pp.3065-3086, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01624315

B. González, J. Vázquez, M. Á. Morcillo-parra, A. Mas, M. J. Torija et al., The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability, Food Microbiology, vol.74, pp.64-74, 2018.

R. Gonzalez, M. Quirós, and P. Morales, Yeast respiration of sugars by non-Saccharomyces yeast species: A promising and barely explored approach to lowering alcohol content of wines, Trends in Food Science & Technology, vol.29, pp.55-61, 2013.

C. Grangeteau, Biodiversité fongique du raisin au vin : impact de l'activité anthropique, vol.280, 2016.

P. Greenspan, E. P. Mayer, and S. D. Fowler, Nile red: a selective fluorescent stain for intracellular lipid droplets, J Cell Biol, vol.100, pp.965-973, 1985.

E. H. Hansen, P. Nissen, P. Sommer, J. C. Nielsen, and N. Arneborg, The effect of oxygen on the survival of non-Saccharomyces yeasts during mixed culture fermentations of grape juice with Saccharomyces cerevisiae, Journal of Applied Microbiology, vol.91, pp.541-547, 2001.

L. A. Hazelwood, J. Daran, A. J. Maris, . Van, J. T. Pronk et al., The Ehrlich Pathway for Fusel Alcohol Production: a Century of Research on Saccharomyces cerevisiae Metabolism, Appl. Environ. Microbiol, vol.74, pp.2259-2266, 2008.

G. M. Heard and G. H. Fleet, The effects of temperature and pH on the growth of yeast species during the fermentation of grape juice, Journal of Applied Bacteriology, vol.65, pp.23-28, 1988.

R. Heim and R. Y. Tsien, Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer, Current Biology, vol.6, pp.450-455, 1996.

E. Herrero, J. Ros, G. Bellí, and E. Cabiscol, Redox control and oxidative stress in yeast cells, Biochimica et Biophysica Acta (BBA) -General Subjects, vol.1780, pp.1217-1235, 2008.

,

N. Hierro, B. Esteve-zarzoso, Á. González, A. Mas, and J. Guillamón, Real-Time Quantitative PCR (QPCR) and Reverse Transcription-QPCR for Detection and Enumeration of Total Yeasts in Wine, Appl. Environ. Microbiol, vol.72, pp.7148-7155, 2006.

M. B. Hirst and C. L. Richter, Review of Aroma Formation through Metabolic Pathways of Saccharomyces cerevisiae in Beverage Fermentations, American Journal of Enology and Viticulture, vol.67, pp.361-370, 2016.

,

E. Holm-hansen, P. Nissen, P. Sommer, J. C. Nielsen, and N. Arneborg, The effect of oxygen on the survival of non-Saccharomyces yeasts during mixed culture fermentations of grape juice with Saccharomyces cerevisiae, Journal of Applied Microbiology, vol.91, pp.541-547, 2001.

A. Hranilovic, M. Bely, I. Masneuf-pomarede, V. Jiranek, and W. Albertin, The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems, PLoS One, vol.12, 2017.

B. A. Imhof, H. P. Vollmers, S. L. Goodman, and W. Birchmeier, Cell-cell interaction and polarity of epithelial cells: Specific perturbation using a monoclonal antibody, Cell, vol.35, pp.90099-90104, 1983.

B. F. Johnson, T. Walker, G. B. Calleja, and V. L. Seligy, Sexual co-flocculation and asexual self-flocculation in budding and fission yeasts: experimental establishment of a fundamental difference, Can. J. Microbiol, vol.34, pp.1105-1107, 1988.

J. Jolly and O. P. Augustyn, Pretorius, I.S., others, 2006. The role and use of non-Saccharomyces yeasts in wine production, South African Journal for Enology and Viticulture, vol.27, p.15

N. P. Jolly, O. P. Augustyn, and I. S. Pretorius, The Effect of Non-Saccharomyces Yeasts on Fermentation and Wine Quality, South African Journal of Enology and Viticulture, vol.24, pp.55-62, 2003.

N. P. Jolly, C. Varela, and I. S. Pretorius, Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered, FEMS Yeast Research, vol.14, pp.215-237, 2014.

B. Kalyanaraman and J. Zielonka, Green fluorescent proteins induce oxidative stress in cells: A worrisome new wrinkle in the application of the GFP reporter system to biological systems, Redox Biol, vol.12, pp.755-757, 2017.

M. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res, vol.28, pp.27-30, 2000.

M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res, vol.40, pp.109-114, 2012.

K. Kapsopoulou, A. Kapaklis, and H. Spyropoulos, Growth and Fermentation Characteristics of a Strain of the Wine Yeast Kluyveromyces thermotolerans Isolated in Greece, World J Microbiol Biotechnol, vol.21, pp.1599-1602, 2005.

K. Kapsopoulou, A. Mourtzini, M. Anthoulas, and E. Nerantzis, Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae, World J Microbiol Biotechnol, vol.23, pp.735-739, 2006.

V. Kemsawasd, P. Branco, M. G. Almeida, J. Caldeira, H. Albergaria et al., Cell-to-cell contact and antimicrobial peptides play a combined role in the death of Lachanchea thermotolerans during mixed-culture alcoholic fermentation with Saccharomyces cerevisiae, FEMS Microbiology Letters, vol.362, 2015.

V. Kemsawasd, T. Viana, Y. Ardö, and N. Arneborg, Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation, Appl Microbiol Biotechnol, vol.99, pp.10191-10207, 2015.

E. S. King, J. H. Swiegers, B. Travis, I. L. Francis, S. E. Bastian et al., Coinoculated Fermentations Using Saccharomyces Yeasts Affect the Volatile Composition and Sensory Properties of Vitis vinifera L. cv. Sauvignon Blanc Wines, J. Agric. Food Chem, vol.56, pp.10829-10837, 2008.

H. Kitagaki and H. Shimoi, Mitochondrial dynamics of yeast during sake brewing, Journal of Bioscience and Bioengineering, vol.104, pp.227-230, 2007.

H. Kitagaki and H. Takagi, Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies, Journal of Bioscience and Bioengineering, vol.117, pp.383-393, 2014.

B. Koch, C. Schmidt, and G. Daum, Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris , and Yarrowia lipolytica, FEMS Microbiology Reviews, vol.38, pp.892-915, 2014.

C. Kurtzman, Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora, FEMS Yeast Research, vol.4, pp.233-245, 2003.

C. Kurtzman, J. W. Fell, and T. Boekhout, The Yeasts: A Taxonomic Study, 2011.

L. Lai, A. L. Kosorukoff, P. V. Burke, and K. E. Kwast, Dynamical Remodeling of the Transcriptome during Short-Term Anaerobiosis in Saccharomyces cerevisiae: Differential Response and Role of Msn2 and/or Msn4 and Other Factors in Galactose and Glucose Media, Molecular and Cellular Biology, vol.25, pp.4075-4091, 2005.

,

Q. P. Lai, Utilisation de levures non Saccharomyces en oenologie : études des interactions entre Torulaspora delbrueckii et Saccharomyces cerevisiae en cultures mixtes. Thèse de doctorat en génie des procédés et de l'environnement, vol.180, 2010.

S. Landolfo, H. Politi, D. Angelozzi, and I. Mannazzu, ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium, Biochimica et Biophysica Acta (BBA) -General Subjects, vol.1780, pp.892-898, 2008.

L. Fur, Y. Olsson, A. Bard, M. Hory, and C. , Evolution of phytosterols in Chardonnay grape berry skins during last stages of ripening 5, 1994.

P. Liu, L. Lu, C. Duan, and G. Yan, The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation, LWT -Food Science and Technology, vol.71, pp.356-363, 2016.

Y. Liu, S. Forcisi, M. Harir, M. Deleris-bou, S. Krieger-weber et al., New molecular evidence of wine yeast-bacteria interaction unraveled by non-targeted exometabolomic profiling, Metabolomics, vol.12, pp.1-16, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01418401

Y. Liu, S. Rousseaux, R. Tourdot-maréchal, M. Sadoudi, R. Gougeon et al., Wine microbiome, a dynamic world of microbial interactions, Critical Reviews in Food Science and Nutrition, vol.0, pp.0-00, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01431375

J. Lleixà, M. Manzano, A. Mas, M. Portillo, and C. , Saccharomyces and non-Saccharomyces Competition during Microvinification under Different Sugar and Nitrogen Conditions, Front. Microbiol, 2016.

C. Longin, C. Petitgonnet, M. Guilloux-benatier, S. Rousseaux, and H. Alexandre, Application of flow cytometry to wine microorganisms, Food Microbiology, vol.62, pp.221-231, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01522932

C. L. Lopez, S. Beaufort, C. Brandam, and P. Taillandier, Interactions between Kluyveromyces marxianus and Saccharomyces cerevisiae in tequila must type medium fermentation, World J Microbiol Biotechnol, vol.30, pp.2223-2229, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01891336

V. Loureiro and M. Malfeito-ferreira, Spoilage yeasts in the wine industry, 23rd International Specialized Symposium on Yeasts, vol.86, pp.246-246, 2003.

V. Luparia, V. Soubeyrand, T. Berges, A. Julien, and J. Salmon, Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations, Appl Microbiol Biotechnol, vol.65, pp.25-32, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00084068

I. Magyar and T. Tóth, Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae, Food Microbiology, vol.28, pp.94-100, 2011.

I. Mannazzu, D. Angelozzi, S. Belviso, M. Budroni, G. A. Farris et al., Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: Cell lipid composition, membrane integrity, viability and fermentative activity, International Journal of Food Microbiology, vol.121, pp.84-91, 2008.

S. Marsit, A. Mena, F. Bigey, F. Sauvage, A. Couloux et al., Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts, Mol Biol Evol, vol.32, pp.1695-1707, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837744

I. Masneuf-pomarede, E. Juquin, C. Miot-sertier, P. Renault, Y. Laizet et al., The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments, FEMS Yeast Res, vol.15, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02638126

J. R. Mcfaline-figueroa, J. Vevea, T. C. Swayne, C. Zhou, C. Liu et al., Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast, Aging Cell, vol.10, pp.885-895, 2011.

K. Medina, E. Boido, E. Dellacassa, and F. Carrau, Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation, International Journal of Food Microbiology, vol.157, pp.245-250, 2012.

A. Mendes-ferreira, B. Sampaio-marques, C. Barbosa, F. Rodrigues, V. Costa et al., Accumulation of Non-Superoxide Anion Reactive Oxygen Species Mediates Nitrogen-Limited Alcoholic Fermentation by Saccharomyces cerevisiae, Appl. Environ. Microbiol, vol.76, pp.7918-7924, 2010.

,

D. A. Mills, E. A. Johannsen, and L. Cocolin, Yeast Diversity and Persistence in Botrytis-Affected Wine Fermentations, Appl. Environ. Microbiol, vol.68, pp.4884-4893, 2002.

J. Mora, J. I. Barbas, and A. Mulet, Growth of yeast species during the fermentation of musts inoculated with Kluyveromyces thermotolerans and Saccharomyces cerevisiae, American Journal of Enology and Viticulture, vol.41, pp.156-159, 1990.

P. Moradas-ferreira and V. Costa, Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death, 2013.

P. Morales, V. Rojas, M. Quirós, and R. Gonzalez, The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture, Applied Microbiology and Biotechnology, vol.99, pp.3993-4003, 2015.

N. Moreira, F. Mendes, T. Hogg, and I. Vasconcelos, Alcohols, esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts, International Journal of Food Microbiology, vol.103, pp.285-294, 2005.

R. Mortimer and M. Polsinelli, On the origins of wine yeast, Research in Microbiology, vol.150, pp.80036-80045, 1999.

H. Müllner and G. Daum, Dynamics of neutral lipid storage in yeast, Acta biochimica Polonica, vol.51, pp.323-347, 2004.

P. Nissen and N. Arneborg, Characterization of early deaths of non-Saccharomyces yeasts in mixed cultures with Saccharomyces cerevisiae, Archives of Microbiology, vol.180, pp.257-263, 2003.

P. Nissen, D. Nielsen, and N. Arneborg, Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-mediated mechanism, Yeast, vol.20, pp.331-341, 2003.

E. Odum, Fundamentals of ecology, 1959.

L. Oro, M. Ciani, and F. Comitini, Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts, J Appl Microbiol, vol.116, pp.1209-1217, 2014.

B. Padilla, J. V. Gil, and P. Manzanares, Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity, 2016.

I. Pardo, M. J. García, M. Zúñiga, and F. Uruburu, Dynamics of Microbial Populations during Fermentation of Wines from the Utiel-Requena Region of Spain, Appl. Environ. Microbiol, vol.55, pp.539-541, 1989.

F. Pérez-nevado, H. Albergaria, T. Hogg, and F. Girio, Cellular death of two non-Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae, International Journal of Food Microbiology, vol.108, pp.336-345, 2006.

G. G. Perrone, S. Tan, and I. W. Dawes, Reactive oxygen species and yeast apoptosis, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, vol.1783, pp.1354-1368, 2008.

,

T. G. Phister and D. A. Mills, Real-Time PCR Assay for Detection and Enumeration of Dekkera bruxellensis in Wine, Appl. Environ. Microbiol, vol.69, pp.7430-7434, 2003.

C. Pina, C. Santos, J. A. Couto, and T. Hogg, Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae-influence of different culture conditions, Food Microbiology, vol.21, pp.439-447, 2004.

C. J. Prakitchaiwattana, G. H. Fleet, and G. M. Heard, Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes, FEMS Yeast Research, vol.4, pp.865-877, 2004.

G. Ramage, S. P. Saville, B. L. Wickes, and J. L. López-ribot, Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule, Appl. Environ. Microbiol, vol.68, pp.5459-5463, 2002.

,

K. Rantsiou, P. Dolci, S. Giacosa, F. Torchio, R. Tofalo et al., Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations, Appl. Environ. Microbiol. AEM, pp.6768-6779, 2012.

P. Renault, J. Coulon, G. De-revel, J. Barbe, and M. Bely, Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement, International Journal of Food Microbiology, vol.207, pp.40-48, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02637565

P. E. Renault, W. Albertin, and M. Bely, An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions, Appl Microbiol Biotechnol, vol.97, pp.4105-4119, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652704

V. Renouf, O. Claisse, and A. Lonvaud-funel, Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria, Australian Journal of Grape and Wine Research, vol.11, pp.316-327, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683471

J. Ritt, F. Remize, C. Grandvalet, J. Guzzo, D. Atlan et al., Peptidases specific for proline-containing peptides and their unusual peptide-dependent regulation in Oenococcus oeni, Journal of Applied Microbiology, vol.106, pp.801-813, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01201608

V. Rojas, J. V. Gil, F. Piñaga, and P. Manzanares, Studies on acetate ester production by non-Saccharomyces wine yeasts, International Journal of Food Microbiology, vol.70, pp.552-561, 2001.

V. Rojas, J. V. Gil, F. Piñaga, and P. Manzanares, Studies on acetate ester production by non-Saccharomyces wine yeasts, International Journal of Food Microbiology, vol.70, pp.552-561, 2001.

S. Rollero, J. Mouret, A. Bloem, I. Sanchez, A. Ortiz-julien et al., Quantitative 13C-isotope labelling-based analysis to elucidate the influence of environmental parameters on the production of fermentative aromas during wine fermentation, Microbial Biotechnology, vol.10, pp.1649-1662, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606296

S. Rollero, J. Mouret, I. Sanchez, C. Camarasa, A. Ortiz-julien et al., Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain, Microbial Cell Factories, vol.15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01284656

P. Romano, G. Suzzi, G. Comi, and R. Zironi, Higher alcohol and acetic acid production by apiculate wine yeasts, Journal of Applied Bacteriology, vol.73, pp.126-130, 1992.

E. Rosenfeld and B. Beauvoit, Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae, Yeast, vol.20, pp.1115-1144, 2003.

D. Rossouw, B. Bagheri, M. E. Setati, and F. F. Bauer, Co-Flocculation of Yeast Species, a New Mechanism to Govern Population Dynamics in Microbial Ecosystems, PLOS ONE, vol.10, 2015.

D. Rossouw, S. P. Meiring, and F. F. Bauer, Modifying Saccharomyces cerevisiae Adhesion Properties Regulates Yeast Ecosystem Dynamics, vol.3, pp.383-401, 2018.

. Roullier-gall, . Chloé, L. Boutegrabet, R. D. Gougeon, and P. Schmitt-kopplin, A grape and wine chemodiversity comparison of different appellations in Burgundy: Vintage vs terroir effects, Food Chemistry, vol.152, pp.100-107, 2014.

. Roullier-gall, . Chloã©, M. Witting, R. D. Gougeon, and P. Schmitt-kopplin, High precision mass measurements for wine metabolomics, Frontiers in Chemistry, vol.2, 2014.

C. Roullier-gall, M. Witting, D. Tziotis, A. Ruf, R. D. Gougeon et al., Integrating analytical resolutions in non-targeted wine metabolomics, Tetrahedron, vol.71, pp.2983-2990, 2015.

,

J. Sablayrolles, C. Dubois, C. Manginot, J. Roustan, and P. Barre, Effectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck wine fermentations, Journal of Fermentation and Bioengineering, vol.82, pp.377-381, 1996.

M. Sadoudi, Intérêts biotechnologiques des levures indigènes non Saccharomyces, 2014.

M. Sadoudi, R. Tourdot-maréchal, S. Rousseaux, D. Steyer, J. Gallardo-chacón et al., Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts, Food Microbiology, vol.32, pp.243-253, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00782673

J. Salmon, Interactions between yeast, oxygen and polyphenols during alcoholic fermentations: Practical implications. LWT -Food Science and Technology, European Symposium on Apple Processing, vol.39, pp.959-965, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02663847

J. Salmon, C. Fornairon, and P. Barre, Determination of oxygen utilization pathways in an industrial strain of Saccharomyces cerevisiae during enological fermentation, Journal of Fermentation and Bioengineering, vol.86, pp.154-163, 1998.

M. P. Sangorrín, I. E. Zajonskovsky, C. A. Lopes, M. E. Rodríguez, M. R. Broock et al., Killer behaviour in wild wine yeasts associated with Merlot and Malbec type musts spontaneously fermented from Northwestern Patagonia (Argentina), Journal of Basic Microbiology, vol.41, pp.105-113, 2001.

P. D. Shaw, G. Ping, S. L. Daly, C. Cha, J. E. Cronan et al., Detecting and characterizing Nacyl-homoserine lactone signal molecules by thin-layer chromatography, PNAS, vol.94, pp.6036-6041, 1997.

K. Shekhawat, F. F. Bauer, and M. E. Setati, Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae, Applied Microbiology and Biotechnology, vol.101, pp.2479-2491, 2017.

S. Sieuwerts, F. A. Bok, . De, J. Hugenholtz, J. E. Vlieg et al., Unraveling Microbial Interactions in Food Fermentations: from Classical to Genomics Approaches, Appl. Environ. Microbiol, vol.74, pp.4997-5007, 2008.

S. Simonin, H. Alexandre, M. Nikolantonaki, C. Coelho, and R. Tourdot-maréchal, Inoculation of Torulaspora delbrueckii as a bio-protection agent in winemaking, Food Research International, vol.107, pp.451-461, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01895361

M. Sipiczki, Metschnikowia Strains Isolated from Botrytized Grapes Antagonize Fungal and Bacterial Growth by Iron Depletion, Appl. Environ. Microbiol, vol.72, pp.6716-6724, 2006.

M. Sipiczki, Candida zemplinina sp. nov., an osmotolerant and psychrotolerant yeast that ferments sweet botrytized wines, International Journal of Systematic and Evolutionary Microbiology, vol.53, pp.2079-2083, 2003.

I. R. Sitepu, L. Ignatia, A. K. Franz, D. M. Wong, S. A. Faulina et al., An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species, Journal of Microbiological Methods, vol.91, pp.321-328, 2012.

E. C. Slater, THE RESPIRATORY CHAIN AND OXIDATIVE PHOSPHORYLATION, in: The Molecular Basis of Electron Transport, pp.95-117, 1972.

E. V. Soares, Flocculation in Saccharomyces cerevisiae: a review, Journal of Applied Microbiology, vol.110, pp.1-18, 2011.

M. Stratford and P. A. Anslow, Comparison of the inhibitory action on Saccharomyces cerevisiae of weak-acid preservatives, uncouplers, and medium-chain fatty acids, FEMS Microbiology Letters, vol.142, pp.53-58, 1996.

M. Strauss, N. P. Jolly, M. G. Lambrechts, and P. Van-rensburg, Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts, Journal of Applied Microbiology, vol.91, pp.182-190, 2001.

P. Taillandier, Q. P. Lai, A. Julien-ortiz, and C. Brandam, Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation: influence of inoculation and nitrogen content, World J Microbiol Biotechnol, vol.30, pp.1959-1967, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01890432

P. Taillandier, F. Ramon-portugal, A. Fuster, and P. Strehaiano, Effect of ammonium concentration on alcoholic fermentation kinetics by wine yeasts for high sugar content, Food Microbiology, vol.24, pp.95-100, 2007.

O. Tehlivets, K. Scheuringer, and S. D. Kohlwein, Fatty acid synthesis and elongation in yeast, Biochimica et Biophysica Acta (BBA) -Molecular and Cell Biology of Lipids, vol.1771, pp.255-270, 2007.

S. Tempère, A. Marchal, J. Barbe, M. Bely, I. Masneuf-pomarede et al., The complexity of wine: clarifying the role of microorganisms, Applied Microbiology and Biotechnology, vol.102, pp.3995-4007, 2018.

C. Tesnière, P. Delobel, M. Pradal, and B. Blondin, Impact of Nutrient Imbalance on Wine Alcoholic Fermentations: Nitrogen Excess Enhances Yeast Cell Death in Lipid-Limited Must, PLoS ONE, vol.8, 2013.

V. Tilloy, Développement de nouvelles souches de levures oenologiques à faible rendement en éthanol par évolution adaptative Thèse de doctorat en microbiologie, vol.286, 2013.

R. Tofalo, M. Schirone, S. Torriani, K. Rantsiou, L. Cocolin et al., Diversity of Candida zemplinina strains from grapes and Italian wines, Food Microbiology, vol.29, pp.18-26, 2012.

,

M. J. Torija, G. Beltran, M. Novo, M. Poblet, J. M. Guillamón et al., Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine, International Journal of Food Microbiology, vol.85, pp.127-136, 2003.

M. J. Torija, N. Rozès, M. Poblet, J. M. Guillamón, and A. Mas, Yeast population dynamics in spontaneous fermentations: Comparison between two different wine-producing areas over a period of three years, Antonie Van Leeuwenhoek, vol.79, pp.345-352, 2001.

M. J. Valera, M. Á. Morcillo-parra, I. Zagórska, A. Mas, G. Beltran et al., Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions, International Journal of Food Microbiology, vol.289, pp.174-181, 2019.

C. Varela, D. Torrea, S. A. Schmidt, C. Ancin-azpilicueta, and P. A. Henschke, Effect of oxygen and lipid supplementation on the volatile composition of chemically defined medium and Chardonnay wine fermented with Saccharomyces cerevisiae, Food Chemistry, vol.135, pp.2863-2871, 2012.

F. Viana, J. V. Gil, S. Genovés, S. Vallés, and P. Manzanares, Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits, Food Microbiology, vol.25, pp.778-785, 2008.

C. A. Viegas, M. F. Rosa, I. Sá-correia, and J. M. Novais, Inhibition of Yeast Growth by Octanoic and Decanoic Acids Produced during Ethanolic Fermentation, Appl. Environ. Microbiol, vol.55, pp.21-28, 1989.

C. Wang, A. Mas, and B. Esteve-zarzoso, The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation is Species and Strain Specific, Front. Microbiol, vol.7, 2016.

C. Wang, A. Mas, and B. Esteve-zarzoso, Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during alcoholic fermentation, International Journal of Food Microbiology, vol.206, pp.67-74, 2015.

,

X. D. Wang, J. C. Bohlscheid, and C. G. Edwards, Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid, Journal of Applied Microbiology, vol.94, pp.349-359, 2003.

K. M. Williams, P. Liu, and J. C. Fay, Evolution of ecological dominance of yeast species in high-sugar environments, Evolution, vol.69, pp.2079-2093, 2015.

A. Xufre, H. Albergaria, J. Inácio, I. Spencer-martins, and F. Gírio, Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations, International Journal of Food Microbiology, vol.108, pp.376-384, 2006.

S. M. Zandycke, O. Simal, S. Gualdoni, and K. A. Smart, Determination of Yeast Viability Using Fluorophores, Journal of the American Society of Brewing Chemists, vol.61, pp.15-22, 2003.

B. Zhang, Y. Luan, C. Duan, and G. Yan, Use of Torulaspora delbrueckii co-fermentation with two Saccharomyces cerevisiae strains with different aromatic characteristic to improve the diversity of red wine aroma profile, Front. Microbiol, vol.9, 2018.

K. Zott, C. Miot-sertier, O. Claisse, A. Lonvaud-funel, and I. Masneuf-pomarede, Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking, International Journal of Food Microbiology, vol.125, pp.197-203, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02663559

K. Zott, C. Thibon, M. Bely, A. Lonvaud-funel, D. Dubourdieu et al., The grape must non-Saccharomyces microbial community: Impact on volatile thiol release, International Journal of Food Microbiology, vol.151, pp.210-215, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02651022

J. Zupan, M. Avbelj, B. Butinar, J. Kosel, M. ?ergan et al., Monitoring of Quorum-Sensing Molecules during Minifermentation Studies in Wine Yeast, J. Agric. Food Chem, vol.61, pp.2496-2505, 2013.