?. ?? and . ??, 43 0,194 ?? ?? ?? ?? 6 373, vol.76, 0205.

J. Picard, Développement de la LIBS pour l'analyse en ligne de produits uranifères ou plutonifères solides, 2015.

D. L'hermite and J. Sirven, LIBS : spectrométrie d'émission optique de plasma induit par laser, p.12, 2015.

R. Saad, Études physico-chimiques des plasmas induits par laser pour l'analyse quantitative des matériaux dans les systèmes nucléaires, 2014.

L. Mercadier, Spectrocopie de plasma induit par laser pour l'analyse des composants face au plasma de tokamaks: étude paramétrique et mesures autocalibrées, Aix Marseille, vol.2, 2011.

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy, 2007.

D. W. Hahn and N. Omenetto, Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community, vol.64, pp.335-366, 2010.

D. W. Hahn and N. Omenetto, Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields, Appl. Spectrosc, vol.66, issue.4, pp.347-419, 2012.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy, 2006.

H. R. Griem, Principles of Plasma Spectroscopy, 1997.

J. Mermet, Systèmes dispersifs en spectrométrie atomique, p.18, 2002.

E. Iordanova, J. M. Palomares, A. Gamero, A. Sola, and J. J. Van-der-mullen, A novel method to determine the electron temperature and density from the absolute intensity of line and continuum emission: application to atmospheric microwave induced Ar plasmas, J. Phys. Appl. Phys, vol.42, issue.15, p.155208, 2009.

K. Campbell, A promising tool for Nuclear Safeguards : Laser-Induced Breakdown Spectroscopy, Actin. Res. Q, pp.16-19, 2018.

S. W. Hudson, J. Craparo, R. D. Saro, and D. Apelian, Applications of Laser-Induced Breakdown Spectroscopy (LIBS) in Molten Metal Processing, Metall. Mater. Trans. B, vol.48, issue.5, pp.2731-2742, 2017.

R. C. Wiens, The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests, Space Sci. Rev, vol.170, issue.1, pp.167-227, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717246

R. C. Wiens, The SuperCam Remote Sensing Instrument Suite for Mars 2020, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01285184

, NIST: Atomic Spectra Database Lines Form, p.16, 2017.

H. R. Griem, Validity of Local Thermal Equilibrium in Plasma Spectroscopy, Phys. Rev, vol.131, issue.3, pp.1170-1176, 1963.

C. Aragón and J. A. Aguilera, Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods, Spectrochim. Acta Part B At. Spectrosc, vol.63, issue.9, pp.893-916, 2008.

C. Aragón, J. Bengoechea, and J. A. Aguilera, Influence of the optical depth on spectral line emission from laser-induced plasmas, Spectrochim. Acta Part B At. Spectrosc, vol.56, issue.6, pp.619-628, 2001.

J. Bengoechea, J. A. Aguilera, and C. Aragón, Application of laser-induced plasma spectroscopy to the measurement of Stark broadening parameters, Spectrochim. Acta Part B At. Spectrosc, vol.61, issue.1, pp.69-80, 2006.

J. Sirven, A. Pailloux, Y. Baye, N. Coulon, T. Alpettaz et al., Towards the determination of the geographical origin of yellow cake samples by laser-induced breakdown spectroscopy and chemometrics, J. Anal. At. Spectrom, vol.24, issue.4, pp.451-459, 2009.

I. B. Gornushkin, J. M. Anzano, L. A. King, B. W. Smith, N. Omenetto et al., Curve of growth methodology applied to laser-induced plasma emission spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.54, issue.3-4, pp.491-503, 1999.

. Iupac-gold and . Book, , p.20, 2017.

J. A. Aguilera, C. Aragón, V. Madurga, and J. Manrique, Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy

, Acta Part B At. Spectrosc, vol.64, issue.10, pp.993-998, 2009.

M. E. Rakwe, Approches multivariées innovantes pour le traitement des spectres d'émission de plasmas produits par laser. Application à l'analyse chimique en ligne par LIBS en milieu nucléaire, 2016.

R. Bruder, Etude et Développement de la spectroscopie d'émission optique sur plasma induit par laser pour l'analyse de terrain : un exemple d'application aux oeuvres d'art, 2008.

C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour et al., Correction of Matrix Effects in Quantitative Elemental Analysis With Laser Ablation Optical Emission Spectrometry, J. Anal. At. Spectrom, vol.12, issue.2, pp.183-188, 1997.

K. H. Lepore, Matrix Effects in Quantitative Analysis of Laser-Induced Breakdown Spectroscopy (LIBS) of Rock Powders Doped with Cr, Appl. Spectrosc, vol.71, issue.4, pp.600-626, 2017.

R. R. Montgomery and J. E. Benkstein, SRM NIST standard reference materials 2018 catalog, pp.260-176, 2018.

E. F. Cromwell and P. Arrowsmith, Fractionation Effects in Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Appl. Spectrosc, vol.49, issue.11, pp.1652-1660, 1995.

W. T. Chan and R. E. Russo, Study of laser-material interactions using inductively coupled plasma-atomic emission spectrometry, Spectrochim. Acta Part B At. Spectrosc, vol.46, issue.11, p.80199, 1991.

E. M. Cahoon and J. R. , Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy, Appl. Opt, vol.49, issue.13, pp.49-57, 2010.

C. Barnett, E. Cahoon, and J. R. , Wavelength dependence on the elemental analysis of glass by Laser Induced Breakdown Spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.63, issue.10, pp.1016-1023, 2008.

M. A. Kasem, J. J. Gonzalez, R. E. Russo, and M. A. Harith, LIBS analysis of artificial calcified tissues matrices, Talanta, vol.108, pp.53-58, 2013.

A. Lissovski, LIBS for tungsten diagnostics in vacuum: Selection of analytes, J. Nucl. Mater, vol.463, pp.923-926, 2015.

C. Geertsen, Comparison between infrared and ultraviolet laser ablation at atmospheric pressureimplications for solid sampling inductively coupled plasma spectrometry, J. Anal. At. Spectrom, vol.9, issue.1, pp.17-22, 1994.

M. Singh, A. Sarkar, X. Mao, and R. E. Russo, Direct compositional quantification of (U-Th)O2 -MOX nuclear fuel using ns-UV-LIBS and chemometric regression models, J. Nucl. Mater, vol.484, pp.135-140, 2017.

R. E. Russo, X. L. Mao, J. H. Yoo, and J. J. Gonzalez, Chapter 3 -Laser Ablation, Laser-Induced Breakdown Spectroscopy, pp.49-82, 2007.

L. M. Cabalín and J. J. Laserna, Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation, Spectrochim. Acta Part B At. Spectrosc, vol.53, issue.5, pp.723-730, 1998.

B. Sallé, Laser-Induced Breakdown Spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements, Spectrochim. Acta Part B At. Spectrosc, vol.59, issue.9, pp.1413-1422, 2004.

M. Gomes, D. Santos, L. C. Nunes, G. G. De-carvalho, F. De-oliveira-leme et al., Evaluation of grinding methods for pellets preparation aiming at the analysis of plant materials by laser induced breakdown spectrometry, Talanta, vol.85, issue.4, pp.1744-1750, 2011.

J. M. Anzano, M. A. Villoria, A. Ruíz-medina, and R. J. Lasheras, Laser-induced breakdown spectroscopy for quantitative spectrochemical analysis of geological materials: Effects of the matrix and simultaneous determination, Anal. Chim. Acta, vol.575, issue.2, pp.230-235, 2006.

S. C. Jantzi and J. R. , Elemental Analysis of Soils Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and Laser-Induced Breakdown Spectroscopy (LIBS) with Multivariate Discrimination: Tape Mounting as an Alternative to Pellets for Small Forensic Transfer Specimens, Appl. Spectrosc, vol.68, issue.9, pp.963-974, 2014.

B. C. Windom and D. W. Hahn, Laser ablation -laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response, J. Anal. At. Spectrom, vol.24, issue.12, pp.1665-1675, 2009.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.63, issue.2, pp.312-323, 2008.

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti et al., New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy, vol.53, pp.960-964, 1999.

V. Palleschi, E. Tognoni, A. Ciucci, and S. Rastelli, Method for quantitative analysis of atomic components of materials by LIBS spectroscopy measurements, vol.6657721, 2003.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, Calibration-Free Laser-Induced Breakdown Spectroscopy: State of the art, Spectrochim. Acta Part B At. Spectrosc, vol.65, issue.1, pp.1-14, 2010.

D. Bulajic, A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.57, issue.2, pp.398-404, 2002.

J. A. Aguilera, C. Aragón, G. Cristoforetti, and E. Tognoni, Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from a copper-based alloy laser-induced plasma, Spectrochim. Acta Part B At. Spectrosc, vol.64, issue.7, pp.685-689, 2009.

M. Corsi, Three-dimensional analysis of laser induced plasmas in single and double pulse configuration, Spectrochim. Acta Part B At. Spectrosc, vol.59, issue.5, pp.723-735, 2004.

B. Sallé, J. Lacour, P. Mauchien, P. Fichet, S. Maurice et al., Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere, Spectrochim. Acta Part B At. Spectrosc, vol.61, issue.3, pp.301-313, 2006.

M. Corsi, Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis, Appl. Opt, vol.42, issue.30, pp.6133-6137, 2003.

M. D. Assefa, A. K. Chaubey, A. Taddess, and A. Y. Hibstie, Relative Determination of Micronutrients of Different Species of Teff (Eragrestis) Seeds of Ethiopia Origin by Calibration Free Laser Induced Breakdown Spectroscopy Techniques, Adv. J. Food Sci. Technol, vol.5, issue.3, pp.332-338, 2013.

M. Corsi, V. Palleschi, A. Salvetti, and E. Tognoni, Calibration Free Laser Induced Plasma Spectroscopy: A New Method for Combustion Products Analysis, Clean Air, vol.3, issue.1, pp.69-79, 2002.

R. Gaudiuso, M. Dell'aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results, Sensors, vol.10, issue.8, pp.7434-7468, 2010.

V. Lazic, L. Caneve, F. Colao, R. Fantoni, L. Fornarini et al., Quantitative elemental analyses of archaeological materials by laser induced breakdown spectroscopy (LIBS) -An overview, presented at the Proceedings of SPIE -The International Society for Optical Engineering, vol.5857, pp.1-12, 2005.

J. Hermann, System and method for quantitative analysis of the elemental composition of a material by laser-induced breakdown spectroscopy (LIBS), vol.27, 2015.

E. Grifoni, S. Legnaioli, G. Lorenzetti, S. Pagnotta, F. Poggialini et al., From Calibration-Free to Fundamental Parameters Analysis: A comparison of three recently proposed approaches, Spectrochim. Acta Part B At. Spectrosc, vol.124, pp.40-46, 2016.

C. Aragón and J. A. Aguilera, CSigma graphs: A new approach for plasma characterization in laser-induced breakdown spectroscopy, J. Quant. Spectrosc. Radiat. Transf, vol.149, pp.90-102, 2014.

C. Aragón and J. A. Aguilera, Quantitative analysis by laser-induced breakdown spectroscopy based on generalized curves of growth, Spectrochim. Acta Part B At. Spectrosc, vol.110, pp.124-133, 2015.

G. H. Cavalcanti, D. V. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini et al., One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis, Spectrochim. Acta Part B At. Spectrosc, vol.87, pp.51-56, 2013.

J. Blaise and L. J. Radziemski, Energy levels of neutral atomic uranium (UI), JOSA, vol.66, issue.7, pp.644-659, 1976.

J. Blaise, M. Fred, and R. G. Gutmacher, Atomic spectrum of plutonium, Argonne National Lab, 1984.

R. N. Feudale, N. A. Woody, H. Tan, A. J. Myles, S. D. Brown et al., Transfer of multivariate calibration models: a review, Chemom. Intell. Lab. Syst, vol.64, issue.2, pp.85-85, 2002.

R. K. Galvão, S. F. Soares, M. N. Martins, M. F. Pimentel, and M. C. Araújo, Calibration transfer employing univariate correction and robust regression, Anal. Chim. Acta, vol.864, pp.1-8, 2015.

T. Fearn, REVIEW: Standardisation and calibration transfer for near infrared instruments: a review, J. Infrared Spectrosc, vol.9, issue.4, pp.229-244, 2001.

H. Mark and J. Workman, Calibration Transfer, p.13, 2013.

C. López-moreno, S. Palanco, and J. J. Laserna, Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot

, Acta Part B At. Spectrosc, vol.60, issue.7-8, pp.1034-1039, 2005.

C. López-moreno, S. Palanco, and J. J. Laserna, Calibration transfer method for the quantitative analysis of high-temperature materials with stand-off laser-induced breakdown spectroscopy, J. Anal. At. Spectrom, vol.20, issue.11, pp.1275-1279, 2005.

J. Yang, X. Li, H. Lu, J. Xu, and H. Li, An LIBS quantitative analysis method for alloy steel at high temperature based on transfer learning, J. Anal. At. Spectrom, vol.33, issue.7, pp.1184-1195, 2018.

T. Boucher, Calibration Transfer of LIBS Spectra to Correct for Mars-Earth Lab Differences, presented at the Lunar and Planetary Science Conference, vol.46, p.2773, 2015.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction

, Acta Part B At. Spectrosc, vol.65, issue.8, pp.642-657, 2010.

J. C. Rosado, Étude et développement de la spectroscopie d'émission optique sur plasma induit par laser pour la réalisation d'analyses de terrain : application à l'analyse en ligne de métaux dans les liquides, 2013.

T. A. Labutin, Determination of chlorine, sulfur and carbon in reinforced concrete structures by doublepulse laser-induced breakdown spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.99, pp.94-100, 2014.

L. Xu, V. Bulatov, V. V. Gridin, and I. Schechter, Absolute analysis of particulate materials by laser-induced breakdown spectroscopy, Anal. Chem, vol.69, issue.11, pp.2103-2108, 1997.

F. J. Fortes, M. Cortés, M. D. Simón, L. M. Cabalín, and J. J. Laserna, Chronocultural sorting of archaeological bronze objects using laser-induced breakdown spectrometry, Anal. Chim. Acta, vol.554, issue.1-2, pp.136-143, 2005.

J. A. Bolger, Semi-Quantitative Laser-Induced Breakdown Spectroscopy for Analysis of Mineral Drill Core, Appl. Spectrosc, vol.54, issue.2, pp.181-189, 2000.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, Multivariate analysis of remote laserinduced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques, Spectrochim. Acta Part B At. Spectrosc, vol.64, issue.1, pp.79-88, 2009.

S. I. Gornushkin, I. B. Gornushkin, J. M. Anzano, B. W. Smith, and J. D. Winefordner, Effective Normalization Technique for Correction of Matrix Effects in Laser-Induced Breakdown Spectroscopy Detection of Magnesium in Powdered Samples, Appl. Spectrosc, vol.56, issue.4, pp.433-436, 2002.

J. Huang, C. Ke, and K. Lin, Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets, Spectrochim. Acta Part B At. Spectrosc, vol.59, issue.3, pp.321-326, 2004.

U. Panne, C. Haisch, M. Clara, and R. Niessner, Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser-induced plasma spectroscopy. Part I: Normalization and plasma diagnostics, Spectrochim. Acta Part B At. Spectrosc, vol.53, issue.14, pp.1957-1968, 1998.

U. Panne, M. Clara, C. Haisch, and R. Niessner, Analysis of glass and glass melts during the vitrification of fly and bottom ashes by laser-induced plasma spectroscopy. Part II. Process analysis, Spectrochim. Acta Part B At. Spectrosc, vol.53, issue.14, 1969.

V. Piscitelli, S. , M. A. Martínez, L. , A. J. Fernández et al., Double pulse laser induced breakdown spectroscopy: Experimental study of lead emission intensity dependence on the wavelengths and sample matrix, Spectrochim. Acta Part B At. Spectrosc, vol.64, issue.2, pp.147-154, 2009.

J. A. Van-der-mullen, On the atomic state distribution function in inductively coupled plasmas-I. Thermodynamic equilibrium considered on the elementary level, Spectrochim. Acta Part B At. Spectrosc, vol.44, issue.11, pp.80107-80114, 1989.

J. A. Van-der-mullen, Excitation equilibria in plasmas; a classification, Phys. Rep, vol.191, issue.2, p.90152, 1990.

G. Cristoforetti, Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion, Spectrochim. Acta Part B At. Spectrosc, vol.65, issue.1, pp.86-95, 2010.

J. A. Aguilera and C. Aragón, Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions.: Comparison of local and spatially integrated measurements

, Acta Part B At. Spectrosc, vol.59, issue.12, pp.1861-1876, 2004.

J. A. Aguilera, C. Aragón, and J. Bengoechea, Spatial characterization of laser-induced plasmas by deconvolution of spatially resolved spectra, Appl. Opt, vol.42, issue.30, pp.5938-5946, 2003.

C. Aragón and J. A. Aguilera, Determination of the local electron number density in laser-induced plasmas by Stark-broadened profiles of spectral lines. Comparative results from H ?, Fe I and Si II lines, Spectrochim. Acta, vol.65, pp.395-400, 2010.

J. A. Aguilera and C. Aragón, Characterization of laser-induced plasmas by emission spectroscopy with curveof-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption, Spectrochim. Acta Part B At. Spectrosc, vol.63, issue.7, pp.784-792, 2008.

T. Fujimoto and R. W. Mcwhirter, Validity criteria for local thermodynamic equilibrium in plasma spectroscopy, Phys. Rev. A, vol.42, issue.11, pp.6588-6601, 1990.

W. L. Wiese, Spectroscopic diagnostics of low temperature plasmas: techniques and required data, Spectrochim. Acta Part B At. Spectrosc, vol.46, issue.6, p.80084, 1991.

J. A. Aguilera and C. Aragón, Multi-element Saha-Boltzmann and Boltzmann plots in laser-induced plasmas, Spectrochim. Acta Part B At. Spectrosc, vol.62, issue.4, pp.378-385, 2007.

J. A. Aguilera and C. Aragón, A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure, Appl. Phys. A, vol.69, issue.1, pp.475-478, 1999.

J. A. Aguilera and C. Aragón, Characterization of laser-induced plasma during its expansion in air by optical emission spectroscopy: Observation of strong explosion self-similar behavior, Spectrochim. Acta Part B At. Spectrosc, vol.97, pp.86-93, 2014.

J. A. Aguilera and C. Aragón, Apparent excitation temperature in laser-induced plasmas, J. Phys. Conf. Ser, vol.59, issue.1, p.210, 2007.

. Ma-qianli, Thèse : Structure et dynamique du plasma induit par laser en propagation dans un gaz ambiant d'argon, 2012.

M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri, Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy, Appl. Opt, vol.51, issue.20, pp.4612-4621, 2012.

N. Konjevi?, M. Ivkovi?, and S. Jovi?evi?, Spectroscopic diagnostics of laser-induced plasmas, Spectrochim. Acta Part B At. Spectrosc, vol.65, issue.8, pp.593-602, 2010.

N. Konjevi?, A. Lesage, J. R. Fuhr, and W. L. Wiese, Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period, J. Phys. Chem. Ref. Data, vol.31, issue.3, pp.819-927, 1989.

J. V. Sullivan and A. Walsh, High intensity hollow-cathode lamps, Spectrochim. Acta, vol.21, issue.4, pp.80027-80030, 1965.

A. Sarkar and M. Singh, Laser-induced plasma electron number density: Stark broadening method versus the Saha-Boltzmann equation, Plasma Sci. Technol, vol.19, issue.2, p.25403, 2017.

J. A. Aguilera, J. Bengoechea, and C. Aragón, Curves of growth of spectral lines emitted by a laser-induced plasma: influence of the temporal evolution and spatial inhomogeneity of the plasma, Spectrochim. Acta Part B At. Spectrosc, vol.58, issue.2, pp.221-237, 2003.

B. Sallé, Laser ablation efficiency of metal samples with UV laser nanosecond pulses, Appl. Surf. Sci, pp.302-305, 1999.

A. B. Gojani and J. J. Yoh, New ablation experiment aimed at metal expulsion at the hydrodynamic regime, Appl. Surf. Sci, vol.255, issue.22, pp.9268-9272, 2009.

L. M. Cabalín, A. González, V. Lazic, and J. J. Laserna, Laser-induced breakdown spectroscopy of metals covered by water droplets, Spectrochim. Acta Part B At. Spectrosc, pp.95-102, 2012.

M. López-claros, J. M. Vadillo, and J. J. Laserna, Determination of plasma ignition threshold fluence during femtosecond single-shot laser ablation on metallic samples detected by optical emission spectroscopy, J. Anal. At. Spectrom, vol.30, issue.8, pp.1730-1735, 2015.

S. Zhang, B. Zhang, W. Hang, and B. Huang, Chemometrics and theoretical approaches for evaluation of matrix effect in laser ablation and ionization of metal samples, Spectrochim. Acta Part B At. Spectrosc, vol.107, pp.17-24, 2015.

S. A. Irimiciuc, S. Gurlui, G. Bulai, P. Nica, M. Agop et al., Langmuir probe investigation of transient plasmas generated by femtosecond laser ablation of several metals: Influence of the target physical properties on the plume dynamics, Appl. Surf. Sci, vol.417, pp.108-118, 2017.

T. A. Labutin, A. M. Popov, V. N. Lednev, and N. B. Zorov, Correlation between properties of a solid sample and laser-induced plasma parameters, Spectrochim. Acta Part B At. Spectrosc, vol.64, issue.10, pp.938-949, 2009.

M. Z. Butt, Laser ablation characteristics of metallic materials: Role of Debye-Waller thermal parameter, IOP Conf. Ser. Mater. Sci. Eng, vol.60, p.12068, 2014.

S. Messaoud-aberkane, Correlation between Fe-V-C alloys surface hardness and plasma temperature via LIBS technique, Appl. Surf. Sci, vol.301, pp.225-229, 2014.

S. Messaoud-aberkane, A. Bendib, K. Yahiaoui, S. Abdelli-messaci, S. E. Amara et al., Effect of laser wavelength on the correlation between plasma temperature and surface hardness of Fe-V-C metallic alloys, Spectrochim. Acta Part B At. Spectrosc, vol.113, pp.147-151, 2015.

Z. Ramezanian, S. M. Darbani, and A. E. Majd, Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS, Appl. Opt, vol.56, issue.24, p.6917, 2017.

W. Haynes, T. Bruno, and D. Lide, Handbook of Chemistry and Physics, 2012.

E. J. Judge, Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore, Spectrochim. Acta Part B At. Spectrosc, pp.28-36, 2013.

Y. Kim, Determination of uranium concentration in an ore sample using laser-induced breakdown spectroscopy, Spectrochim. Acta Part B At. Spectrosc, pp.190-193, 2012.

E. C. Jung, D. H. Lee, J. Yun, J. G. Kim, J. W. Yeon et al., Quantitative determination of uranium and europium in glass matrix by laser-induced breakdown spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.66, issue.9, pp.761-764, 2011.

P. Fichet, P. Mauchien, and C. Moulin, Determination of Impurities in Uranium and Plutonium Dioxides by Laser-Induced Breakdown Spectroscopy, Appl. Spectrosc, vol.53, issue.9, pp.1111-1117, 1999.

A. Sarkar, D. Alamelu, and S. K. Aggarwal, Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials, Talanta, vol.78, issue.3, pp.800-804, 2009.

K. R. Campbell, Laser-induced breakdown spectroscopy of light water reactor simulated used nuclear fuel: Main oxide phase, Spectrochim. Acta Part B At. Spectrosc, vol.133, pp.26-33, 2017.

M. Singh, A. Sarkar, J. Banerjee, and R. K. Bhagat, Analysis of simulated high burnup nuclear fuel by laser induced breakdown spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.132, pp.1-7, 2017.

K. R. Campbell, Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.134, pp.91-97, 2017.

J. E. Barefield, Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.120, pp.1-8, 2016.

B. T. Manard, E. M. Wylie, and S. P. Willson, Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS), Appl. Spectrosc, vol.72, issue.11, pp.1653-1660, 2018.

C. A. Akpovo, A. Ford, and L. Johnson, Optimized LWIR enhancement of nanosecond and femtosecond LIBS uranium emission, Appl. Phys. B, vol.122, issue.5, p.154, 2016.

A. Williams and S. Phongikaroon, Laser-Induced Breakdown Spectroscopy (LIBS) Measurement of Uranium in Molten Salt, Appl. Spectrosc, vol.72, issue.7, pp.1029-1039, 2018.

V. Lavoine, Utilisation de la Spectroscopie de Décharge Luminescente comme technique d'analyse novatrice pour doser les éléments carbone, hydrogène, oxygène, et azote dans les matériaux nucléaires, 2003.

V. Lavoine, H. Chollet, J. Hubinois, S. Bourgeois, and B. Domenichini, Optical interfaces in GD-OES system for vacuum far ultraviolet detection, J. Anal. At. Spectrom, vol.18, issue.6, pp.572-575, 2003.

B. A. Palmer, R. A. Keller, and R. J. Engleman, Atlas of uranium emission intensities in a hollow cathode discharge, Los Alamos Scientific Lab, 1980.

A. Williams, K. Bryce, and S. Phongikaroon, Measurement of Cerium and Gadolinium in Solid Lithium Chloride-Potassium Chloride Salt Using Laser-Induced Breakdown Spectroscopy (LIBS), Appl. Spectrosc, vol.71, issue.10, pp.2302-2312, 2017.

D. Menut, P. Fichet, J. Lacour, A. Rivoallan, and P. Mauchien, Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface mapping on conductive and nonconductive samples, Appl. Opt, vol.42, issue.30, pp.6063-6071, 2003.

V. Detalle, Analyse de l'homogénéité du combustible nucléaire MOX par Spectrométrie d'Emission optique sur Plasma, 1999.

K. Urso, High-Temperature Corrosion Testing of Uranium Silicide Surrogates, Nucl. Technol, vol.196, issue.1, pp.100-110, 2016.

H. Zheng, F. Y. Yueh, T. Miller, J. P. Singh, K. E. Zeigler et al., Analysis of plutonium oxide surrogate residue using laser-induced breakdown spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.63, issue.9, pp.968-974, 2008.

M. M. Tripathi, K. E. Eseller, F. Yueh, and J. P. Singh, Multivariate calibration of spectra obtained by Laser Induced Breakdown Spectroscopy of plutonium oxide surrogate residues, Spectrochim. Acta Part B At. Spectrosc, vol.64, issue.11-12, pp.1212-1218, 2009.

J. Picard, Characterization of laser ablation of copper in the irradiance regime of laser-induced breakdown spectroscopy analysis, Spectrochim. Acta Part B At. Spectrosc, vol.101, pp.164-170, 2014.

L. Radziemski, D. A. Cremers, K. Benelli, C. Khoo, and R. D. Harris, Use of the vacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-based Martian geology and exploration, Spectrochim. Acta Part B At. Spectrosc, vol.60, issue.2, pp.237-248, 2005.

J. Hubinois, Adaptation d'un spectromètre d'émission optique à décharge luminescente radiofréquence (RF -GD-OES) pour l 'analyse des éléments légers, 2001.

V. Sturm, L. Peter, and R. Noll, Steel Analysis with Laser-Induced Breakdown Spectrometry in the Vacuum Ultraviolet, Appl. Spectrosc, vol.54, issue.9, pp.1275-1278, 2000.

M. A. Khater, Laser-induced breakdown spectroscopy for light elements detection in steel: State of the art, Spectrochim. Acta Part B At. Spectrosc, vol.81, pp.1-10, 2013.

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-ross et al., Microanalysis by Laser-Induced Plasma Spectroscopy in the Vacuum Ultraviolet, Anal. Chem, vol.76, issue.6, pp.1648-1656, 2004.

L. Peter, V. Sturm, and R. Noll, Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet, Appl. Opt, vol.42, issue.30, pp.6199-6204, 2003.

J. Jasik, J. Heitz, J. D. Pedarnig, and P. Veis, Vacuum ultraviolet laser-induced breakdown spectroscopy analysis of polymers, Spectrochim. Acta Part B At. Spectrosc, vol.64, issue.10, pp.1128-1134, 2009.

I. Radivojevic, R. Niessner, C. Haisch, S. Florek, H. Becker-ross et al., Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.59, issue.3, pp.335-343, 2004.

, Optical Materials, p.23, 2019.

S. S. Zehra, J. T. Costello, P. Nicolosi, and P. Hayden, Time-integrated and time-resolved VUV LIBS: a comparative study, Quantum, vol.10674, p.106741, 2018.

M. Pribula, Use of the near vacuum UV spectral range for the analysis of W-based materials for fusion applications using LIBS, Phys. Scr, vol.167, p.14045, 2016.

P. Veis, A. Marín-roldán, and J. Kri?tof, Simultaneous vacuum UV and broadband UV-NIR plasma spectroscopy to improve the LIBS analysis of light elements, Plasma Sources Sci. Technol, vol.27, issue.9, p.95001, 2018.

A. Marín-roldán, S. Manzoor, J. Kri?tof, and P. Veis, Enlarged spectral range in Calibration Free -Laser Induced Breakdown Spectroscopy for the qualitative and quantitative analysis of a complex bone matrix, Spectrochim. Acta Part B At. Spectrosc, vol.156, pp.13-19, 2019.

F. Trichard, Evaluation of a compact VUV spectrometer for elemental imaging by laser-induced breakdown spectroscopy: application to mine core characterization, J. Anal. At. Spectrom, vol.32, issue.8, pp.1527-1534, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02295200

, Princeton Instruments -PIXIS-XO Direct Detection X-Ray Camera, p.30, 2019.

, Kurucz Database, p.16, 2017.

M. L. Shah, B. M. Suri, and G. P. Gupta, Spectroscopic measurements of plasma temperatures and electron number density in a uranium hollow cathode discharge lamp, Eur. Phys. J. D, vol.69, issue.1, 2015.

. Konjevic, Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms, 1984.

J. Hermann, D. Grojo, E. Axente, C. Gerhard, M. Burger et al., Ideal radiation source for plasma spectroscopy generated by laser ablation, Phys. Rev. E, vol.96, issue.5, p.53210, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01655258

H. Fu, F. Dong, H. Wang, J. Jia, and Z. Ni, Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) with Standard Reference Line for the Analysis of Stainless Steel, Appl. Spectrosc, vol.71, issue.8, 1982.

V. Detalle, R. Héon, M. Sabsabi, and L. St-onge, An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy

, Spectrochim. Acta Part B At. Spectrosc, vol.56, issue.6, pp.174-178, 2001.

L. St-onge, V. Detalle, and M. Sabsabi, Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses, Spectrochim. Acta Part B At. Spectrosc, vol.57, issue.1, pp.121-135, 2002.

C. Aragón, F. Peñalba, and J. A. Aguilera, Curves of growth of neutral atom and ion lines emitted by a laser induced plasma, Spectrochim. Acta Part B At. Spectrosc, vol.60, issue.7-8, pp.879-887, 2005.

M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, and M. A. Harith, LIBS limit of detection and plasma parameters of some elements in two different metallic matrices, J. Anal. At. Spectrom, vol.19, issue.4, pp.489-494, 2004.

J. Lam, V. Motto-ros, D. Misiak, C. Dujardin, G. Ledoux et al., Investigation of local thermodynamic equilibrium in laser-induced plasmas: Measurements of rotational and excitation temperatures at long time scales, Spectrochim. Acta Part B At. Spectrosc, vol.101, pp.86-92, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02116700

D. Tankosi?, L. ?. Popovi?, and M. S. Dimitrijevi?, ELECTRON-IMPACT STARK BROADENING PARAMETERS FOR Ti II AND Ti III SPECTRAL LINES, At. Data Nucl. Data Tables, vol.77, issue.2, pp.277-310, 2001.

J. B. Simeonsson and A. W. Miziolek, Spectroscopic studies of laser-produced plasmas formed in CO and CO2 using 193, 266, 355, 532 and 1064 nm laser radiation, Appl. Phys. B, vol.59, issue.1, pp.1-9, 1994.

O. Barthélemy, Investigation of the State of Local Thermodynamic Equilibrium of a Laser-Produced Aluminum Plasma, Appl. Spectrosc, vol.59, issue.4, pp.529-536, 2005.

J. Hermann, D. Grojo, E. Axente, and V. Craciun, Local thermodynamic equilibrium in a laser-induced plasma evidenced by blackbody radiation, Spectrochim. Acta Part B At. Spectrosc, vol.144, pp.82-86, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02114124

A. M. Sherbini, H. Hegazy, and T. M. Sherbini, Measurement of electron density utilizing the H?-line from laser produced plasma in air, Spectrochim. Acta Part B At. Spectrosc, vol.61, issue.5, pp.532-539, 2006.

A. M. Sherbini, A. M. Aboulfotouh, and C. G. Parigger, Electron number density measurements using laserinduced breakdown spectroscopy of ionized nitrogen spectral lines, Spectrochim. Acta Part B At. Spectrosc, vol.125, pp.152-158, 2016.

L. Pardini, On the determination of plasma electron number density from Stark broadened hydrogen Balmer series lines in Laser-Induced Breakdown Spectroscopy experiments, Spectrochim. Acta Part B At. Spectrosc, vol.88, pp.98-103, 2013.

N. Idris, T. N. Usmawanda, K. Lahna, and M. Ramli, Temperature estimation using Boltzmann plot method of many calcium emission lines in laser plasma produced on river clamshell sample, J. Phys. Conf. Ser, vol.1120, p.12098, 2018.

Á. Villaseñor, C. Greatti, M. Boccongelli, and J. L. Todolí, A dried droplet calibration approach for the analysis of solid samples through laser ablation -inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom, vol.32, issue.3, pp.587-596, 2017.

Á. Villaseñor, M. Boccongelli, and J. L. Todolí, Quantitative elemental analysis of polymers through laser ablation -inductively coupled plasma by using a dried droplet calibration approach, DDCA, J. Anal. At. Spectrom, vol.33, issue.7, pp.1173-1183, 2018.

D. Mampallil and H. B. , A review on suppression and utilization of the coffee-ring effect, Adv. Colloid Interface Sci, vol.252, pp.38-54, 2018.

Ü. Aydin, P. Roth, C. D. Gehlen, and R. Noll, Spectral line selection for time-resolved investigations of laserinduced plasmas by an iterative Boltzmann plot method, Spectrochim. Acta Part B At. Spectrosc, vol.63, issue.10, pp.1060-1065, 2008.

C. Aragón, F. Peñalba, and J. A. Aguilera, Spatial characterization of laser-induced plasmas: distributions of neutral atom and ion densities, Appl. Phys. A, vol.79, issue.4-6, pp.1145-1148, 2004.

M. Ivkovi? and N. Konjevi?, Stark width and shift for electron number density diagnostics of low temperature plasma: Application to silicon Laser Induced Breakdown Spectroscopy, Spectrochim. Acta Part B At. Spectrosc, vol.131, pp.79-92, 2017.

S. Pereck, Les éléments chimiques, p.2, 2019.

H. Hagemann, W. Gudat, C. Kunz-;-mg, A. Cu, A. Au et al., Optical constants from the far infrared to the x-ray region, JOSA, vol.65, issue.6, pp.742-744, 1975.

P. B. Johnson, R. W. Christy-;-ti, V. Cr, . Mn, . Fe et al., Optical constants of transition metals, Phys. Rev. B, vol.9, issue.12, pp.5056-5070, 1974.

N. M. Butt, J. Bashir, B. T. Willis, and G. Heger, Compilation of temperature factors of cubic elements, Acta Crystallogr. A, vol.44, issue.3, pp.396-399, 1988.

A. G. Fox and R. M. Fisher, A summary of low-angle X-ray atomic scattering factors measured by the critical voltage effect in high energy electron diffraction, Aust. J. Phys, vol.41, issue.3, pp.461-468, 1988.

, NIST: Atomic Spectra Database -Energy Levels Form, p.30, 2019.

J. Mermet, Limit of quantitation in atomic spectrometry: An unambiguous concept?, Spectrochim. Acta Part B At. Spectrosc, vol.63, issue.2, pp.166-182, 2008.