J. Holmgren, . Berndt, M. E. Lönn, &. Hudemann, and C. H. Lillig, Thiol redox control via thioredoxin and glutaredoxin systems, Biochem Soc T, vol.33, pp.1375-1377, 2005.

F. Hong, Photoelectric and magneto-orientation effects in pigmented biological membranes, J Colloid Interf Sci, vol.58, pp.471-497, 1977.

F. Hong, Magnetic field effects on biomolecules, cells, and living organisms, Biosystems, vol.36, pp.187-229, 1995.

P. J. Hore and H. Mouritsen, The Radical-Pair Mechanism of Magnetoreception, Annu Rev Biophys, vol.45, pp.1-46, 2016.

D. Hsu, X. Zhao, S. Zhao, A. Kazantsev, R. Wang et al., Putative Human Blue-Light Photoreceptors hCRY1 and hCRY2 Are Flavoproteins ?, Biochemistry-us, vol.35, pp.13871-13877, 1996.

X. Hu, D. Bidney, N. Yalpani, J. Duvick, O. Crasta et al., Overexpression of a Gene Encoding Hydrogen Peroxide-Generating Oxalate Oxidase Evokes Defense Responses in Sunflower, Plant Physiol, vol.133, pp.170-181, 2003.

D. Hwangbo, B. Gershman, B. Gersham, M. Tu, M. Palmer et al., Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body, Nature, vol.429, p.2549, 2004.

M. Ilbert, J. Horst, S. Ahrens, J. Winter, P. Graf et al., The redox-switch domain of Hsp33 functions as dual stress sensor, Nat Struct Mol Biology, vol.14, pp.556-563, 2007.

T. Imaizumi, A. Kadota, M. Hasebe, and M. Wada, Cryptochrome Light Signals Control Development to Suppress Auxin Sensitivity in the Moss Physcomitrella patens, Plant Cell, vol.14, pp.373-386, 2002.

K. Imaizumi and . Wada, Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris, The Plant cell, pp.81-96, 2000.

Y. Ishibashi, H. Yamaguchi, T. Yuasa, M. Iwaya-inoue, S. Arima et al., Hydrogen peroxide spraying alleviates drought stress in soybean plants, J Plant Physiol, vol.168, pp.1562-1567, 2011.

C. Ito and K. Tomioka, Heterogeneity of the Peripheral Circadian Systems in Drosophila melanogaster: A Review, Frontiers Physiology, vol.7, issue.8, 2016.

I. Jajic, T. Sarna, and K. Strzalka, Senescence, Stress, and Reactive Oxygen Species. Plants, vol.4, pp.393-411, 2015.

Y. Jiao, O. Lau, and X. Deng, Light-regulated transcriptional networks in higher plants, Nat Rev Genet, vol.8, p.2049, 2007.

Y. Jiao, L. Ma, E. Strickland, and X. Deng, Conservation and Divergence of Light-Regulated Genome Expression Patterns during Seedling Development in Rice and Arabidopsis, Plant Cell Online, vol.17, pp.3239-3256, 2005.

Y. Jiao, H. Yang, L. Ma, N. Sun, H. Yu et al., A Genome-Wide Analysis of Blue-Light Regulation of Arabidopsis Transcription Factor Gene Expression during Seedling Development, Plant Physiol, vol.133, pp.1480-1493, 2003.

B. Liu, H. Liu, D. Zhong, and C. Lin, Searching for a photocycle of the cryptochrome photoreceptors, Curr Opin Plant Biol, vol.13, pp.578-586, 2010.

B. Liu, Z. Yang, A. Gomez, B. Liu, C. Lin et al., Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana, J Plant, vol.129, pp.137-148, 2015.

B. Liu, Z. Zuo, H. Liu, X. Liu, and C. Lin, Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light, Genes Dev, vol.25, pp.1029-1034, 2011.

H. Liu, X. Yu, K. Li, J. Klejnot, H. Yang et al., Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation inArabidopsis, Science, vol.322, pp.1535-1539, 2008.

L. Liu, Y. Zhang, Q. Li, Y. Sang, J. Mao et al., COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in Arabidopsis, Plant Cell, vol.20, pp.292-306, 2008.

N. Liu and E. Zhang, Phosphorylation Regulating the Ratio of Intracellular CRY1 Protein Determines the Circadian Period, Frontiers Neurology, vol.7, p.159, 2016.

Q. Liu, Q. Wang, W. Deng, X. Wang, M. Piao et al., Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2, Nat Commun, vol.8, p.15234, 2017.

L. Lopez, F. Carbone, L. Bianco, G. Giuliano, P. Facella et al., Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues, Plant Cell Environ, vol.35, pp.994-1012, 2012.

L. Ma, . Qu, C. Hager, &. Zhao, and . Deng, Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways, Plant Cell, vol.13, pp.2589-607, 2001.

K. Maeda, K. Henbest, F. Cintolesi, I. Kuprov, C. Rodgers et al., Chemical compass model of avian magnetoreception, Nature, vol.453, p.6834, 2008.

K. Maeda, A. Robinson, K. Henbest, H. Hogben, T. Biskup et al., Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor, Proc National Acad Sci, vol.109, pp.4774-4779, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01545373

K. Malhotra, S. T. Kim, A. Batschauer, L. Dawut, and A. Sancar, Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity, Biochemistry, vol.34, pp.6892-99, 1995.

C. Mallappa, A. Singh, H. Ram, and S. Chattopadhyay, GBF1, a Transcription Factor of Blue Light Signaling in Arabidopsis, Is Degraded in the Dark by a Proteasome-mediated Pathway Independent of COP1 and SPA1, J Biol Chem, vol.283, pp.35772-35782, 2008.

J. Mao, Y. C. Zhang, Y. Sang, Q. H. Li, and H. Q. Yang, A role for Arabidopsiscryptochromes and COP1 in the regulation of stomatal opening, Proc. Natl Acad. Sci. USA, vol.102, pp.12270-12275, 2005.

M. Markov, XXIst century magnetotherapy, Electromagn Biol Med, vol.34, pp.190-196, 2015.

N. Matsumoto, T. Hirano, T. Iwasaki, and N. Yamamoto, Functional analysis and intracellular localization of rice cryptochromes, Plant Physiol, vol.133, pp.1494-1503, 2003.

J. Maurya, V. Sethi, S. Gangappa, N. Gupta, and S. Chattopadhyay, Interaction of MYC2 and GBF1 results in functional antagonism in blue light-mediated Arabidopsis seedling development, Plant J, vol.83, pp.439-450, 2015.

N. Mehterov, S. Balazadeh, J. Hille, V. Toneva, B. Mueller-roeber et al., Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes, Plant Physiol Bioch, vol.59, pp.20-29, 2012.

A. Mhamdi, G. Noctor, and A. Baker, Plant catalases: Peroxisomal redox guardians, Arch Biochem Biophys, vol.525, pp.181-194, 2012.

A. Michael, J. Fribourgh, R. Gelder, and C. Partch, Animal Cryptochromes: Divergent Roles in Light Perception, Circadian Timekeeping and Beyond, Photochem Photobiol, vol.93, pp.128-140, 2017.

S. Millar, . Chory, &. Chua, and . Kay, The regulation of circadian period by phototransduction pathways in Arabidopsis, Science, vol.267, pp.1163-1166, 1995.

G. Miller, V. Shulaev, and R. Mittler, Reactive oxygen signaling and abiotic stress, Physiol Plantarum, vol.133, pp.481-489, 2008.

T. Miyaji, T. Kuromori, Y. Takeuchi, N. Yamaji, K. Yokosho et al., Nat Commun, vol.6, p.5928, 2015.

Y. Miyamoto and A. Sancar, Circadian regulation of cryptochrome genes in the mouse, Mol Brain Res, vol.71, pp.238-243, 1998.

M. Miyata, M. Wada, and M. Furuya, Effects of phytochrome and blue-near ultraviolet lightabsorbing pigment on duration of component phases of the cell cycle in Adiantum gametophytes, Dev. Growth Differ, vol.21, pp.577-584, 1979.

J. Moldt, R. Pokorny, C. Orth, U. Linne, Y. Geisselbrecht et al., Photoreduction of the Folate Cofactor in Members of the Photolyase Family, J Biol Chem, vol.284, pp.21670-21683, 2009.

. Montagne-larmurier, . Etard, . Razafimandimby, &. Morello, and . Dollfus, Two-day treatment of auditory hallucinations by high frequency rTMS guided by cerebral imaging: A 6 month followup pilot study, Schizophr Res, vol.113, pp.77-83, 2009.

A. Mteyrek, E. Filipski, C. Guettier, M. Oklejewicz, G. Van-der-horst et al., Critical cholangiocarcinogenesis control by cryptochrome clock genes, Int J Cancer, vol.140, pp.2473-2483, 2017.

P. Müller and M. Ahmad, Light-activated Cryptochrome Reacts with Molecular Oxygen to Form a Flavin-Superoxide Radical Pair Consistent with Magnetoreception, J Biol Chem, vol.286, pp.21033-21040, 2011.

P. Müller, J. Yamamoto, R. Martin, S. Iwai, and K. Brettel, Discovery and functional analysis of a 4th electron-transferring tryptophan conserved exclusively in animal cryptochromes and (6-4) photolyases, Chem Commun, vol.51, pp.15502-15505, 2015.

S. Nangle, W. Xing, and N. Zheng, Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase, Cell Res, vol.23, 2013.

C. Nießner, S. Denzau, J. Gross, L. Peichl, H. Bischof et al., Avian Ultraviolet/Violet Cones Identified as Probable Magnetoreceptors, Plos One, vol.6, 2011.

C. Nießner, S. Denzau, E. Malkemper, J. Gross, H. Burda et al., Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals, Sci Reports, vol.6, 2016.

C. Nießner, S. Denzau, L. Peichl, W. Wiltschko, and R. Wiltschko, Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle, J Exp Biology, vol.217, pp.4221-4224, 2014.

G. Noctor and C. Foyer, Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling, Plant Physiol, vol.171, pp.1581-1592, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02637590

M. Ohgishi, K. Saji, K. Okada, and T. Sakai, Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis, P Natl Acad Sci, vol.101, pp.2223-2228, 2004.

A. Okafuji, T. Biskup, K. Hitomi, E. Getzoff, G. Kaiser et al., Light-induced activation of class II cyclobutane pyrimidine dimer photolyases, DNA Repair, pp.495-505, 2010.

M. Osterlund, C. Hardtke, N. Wei, and X. Deng, Targeted destabilization of HY5 during lightregulated development of Arabidopsis, Nature, vol.405, p.35013076, 2000.

S. Ozgür and A. Sancar, Analysis of autophosphorylating kinase activities of Arabidopsis and human cryptochromes, Biochemistry-us, vol.45, pp.13369-74, 2006.

N. Ozturk, J. Lee, S. Gaddameedhi, and A. Sancar, Loss of cryptochrome reduces cancer risk in p53 mutant mice, Proc National Acad Sci, vol.106, pp.2841-2846, 2009.

N. Ozturk, C. Selby, Y. Annayev, D. Zhong, and A. Sancar, Reaction mechanism of Drosophila cryptochrome, Proceedings of the National Academy of Sciences, pp.516-521, 2011.

N. Ozturk, C. Selby, D. Zhong, and A. Sancar, Mechanism of Photosignaling by Drosophila Cryptochrome ROLE OF THE REDOX STATUS OF THE FLAVIN CHROMOPHORE, J Biol Chem, vol.289, pp.4634-4642, 2014.

N. Öztürk, S. Song, C. Selby, and A. Sancar, Animal Type 1 Cryptochromes ANALYSIS OF THE REDOX STATE OF THE FLAVIN COFACTOR BY SITE-DIRECTED MUTAGENESIS, J Biol Chem, vol.283, pp.3256-3263, 2008.

N. Ozturk, S. Vanvickle-chavez, L. Akileswaran, R. Gelder, and A. Sancar, Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex, Proc National Acad Sci, vol.110, pp.4980-4985, 2013.

S. Ozturk, . Özgür, . Selby, . Morrison, . Partch et al., Structure and Function of Animal Cryptochromes, Cold Sh Q, vol.72, pp.119-131, 2007.

M. Paget and M. Buttner, Thiol-based regulatory switches, Annu Rev Genet, vol.37, pp.91-121, 2003.

K. Pang, H. You, Y. Chen, P. Chu, M. Hu et al., MagR Alone Is Insufficient to Confer Cellular Calcium Responses to Magnetic Stimulation, Front Neural Circuit, vol.11, p.11, 2017.

T. Papagiannakopoulos, M. Bauer, S. Davidson, M. Heimann, L. Subbaraj et al., Circadian Rhythm Disruption Promotes Lung Tumorigenesis, Cell Metab, vol.24, pp.324-331, 2016.

K. Park, &. Sancar, and . Deisenhofer, Crystal structure of DNA photolyase from Escherichia coli, Science, vol.268, pp.1866-1872, 1995.

H. Parsons and S. Fry, Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions, Phytochemistry, vol.75, pp.41-49, 2012.

C. Partch, M. Clarkson, S. Ozgür, A. Lee, and A. Sancar, Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor, Biochemistry-us, vol.44, pp.3795-805, 2005.

B. Paulus, C. Bajzath, F. Melin, L. Heidinger, V. Kromm et al., Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome -protonated and nonprotonated flavin radical-states, Febs J, vol.282, pp.3175-3189, 2015.

U. Pedmale, S. Huang, M. Zander, B. Cole, J. Hetzel et al., Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light, Cell, vol.164, pp.233-245, 2016.

G. Y. Perrotta, E. Nebuloso, L. Renzi, and G. Giuliano, Tomato and barley contain duplicated copies of cryptochrome 1, Plant Cell Environ, vol.24, pp.991-997, 2001.

N. Peschel, K. Chen, G. Szabo, and R. Stanewsky, Light-Dependent Interactions between the Drosophila Circadian Clock Factors Cryptochrome, Jetlag, and Timeless, Curr Biol, vol.19, pp.241-247, 2009.

B. Phee, S. Park, J. Cho, J. Bhoo, S. Hahn et al., Comparative proteomic analysis of blue light signaling components in the Arabidopsis cryptochrome 1 mutant, Mol Cells, vol.23, pp.154-60, 2007.

J. D. Platten, E. Foo, R. C. Elliott, V. Hecht, J. B. Reidand et al., Cryptochrome 1 contributes to blue-light sensing in pea, Plant Physiol, vol.139, pp.1472-1482, 2005.

J. Plautz, M. Kaneko, J. Hall, and S. Kay, Independent Photoreceptive Circadian Clocks Throughout Drosophila, Science, vol.278, pp.1632-1635, 1997.

B. Poniedzia?ek, P. Rzymski, J. Karczewski, F. Jaroszyk, and K. Wiktorowicz, Reactive oxygen species (ROS) production in human peripheral blood neutrophils exposed in vitro to static magnetic field, Electromagn Biol Med, vol.32, pp.560-568, 2013.

D. Pritchett and A. Reddy, No FAD, No CRY: Redox and Circadian Rhythms, Trends Biochem Sci, vol.42, pp.497-499, 2017.

M. Procopio, J. Link, D. Engle, J. Witczak, T. Ritz et al., Kinetic Modeling of the Arabidopsis Cryptochrome Photocycle: FADHo Accumulation Correlates with, Biological Activity. Front Plant Sci, vol.7, p.888, 2016.

S. Qin, H. Yin, C. Yang, Y. Dou, Z. Liu et al., A magnetic protein biocompass, Nat Mater, vol.15, pp.217-226, 2015.

L. Quan, B. Zhang, W. Shi, and H. Li, Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species Network, J Integr Plant Biol, vol.50, pp.2-18, 2008.

K. Rakshit and J. Giebultowicz, Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila, Aging Cell, vol.12, pp.752-762, 2013.

K. Rakshit, N. Krishnan, E. Guzik, E. Pyza, and J. Giebultowicz, Effects of Aging on the Molecular Circadian Oscillations in Drosophila, Chronobiol Int, vol.29, pp.5-14, 2012.

F. Ramel, S. Birtic, C. Ginies, L. Soubigou-taconnat, C. Triantaphylidès et al., Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants, Proc National Acad, vol.109, pp.5535-5540, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01335774

S. Reppert, The Ancestral Circadian Clock of Monarch Butterflies: Role in Time-compensated Sun Compass Orientation, Cold Sh Q B, vol.72, pp.113-118, 2007.

S. Reppert, R. Gegear, and C. Merlin, Navigational mechanisms of migrating monarch butterflies, Trends Neurosci, vol.33, pp.399-406, 2010.

T. Ritz, S. Adem, and K. Schulten, A Model for Photoreceptor-Based Magnetoreception in Birds, Biophys J, vol.78, pp.707-718, 2000.

T. Ritz, R. Wiltschko, P. J. Hore, C. Rodgers, K. Stapput et al., Magnetic Compass of Birds Is Based on a Molecule with Optimal Directional Sensitivity, Biophys J, vol.96, pp.3451-3457, 2009.

M. Roberts and N. Paul, Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens, New Phytol, vol.170, pp.677-699, 2006.

J. Rodger, C. Mo, T. Wilks, S. Dunlop, and R. Sherrard, Transcranial pulsed magnetic field stimulation facilitates reorganization of abnormal neural circuits and corrects behavioral deficits without disrupting normal connectivity, Faseb J, vol.26, pp.1593-1606, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01545807

C. Rodgers and . Hore, Chemical magnetoreception in birds: The radical pair mechanism, Proc National Acad Sci, vol.106, pp.353-360, 2009.

M. Rodriguez-serrano, M. Romero-puertas, A. Zalda, F. Corpas, M. Gomez et al., Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo, Plant Cell Environ, vol.29, pp.1532-1544, 2006.

M. Rohan, R. Yamamoto, C. Ravichandran, K. Cayetano, O. Morales et al., Rapid Mood-Elevating Effects of Low Field Magnetic Stimulation in Depression, Biol, vol.76, pp.186-193, 2014.

E. Rosato, V. Codd, G. Mazzotta, A. Piccin, M. Zordan et al., Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY, Curr Biol, vol.11, pp.909-917, 2001.

N. Rose, J. Larocque, A. Riggall, O. Gosseries, M. Starrett et al., Reactivation of latent working memories with transcranial magnetic stimulation, Science, vol.354, pp.1136-1139, 2016.

C. Rosensweig, K. Reynolds, P. Gao, I. Laothamatas, Y. Shan et al., An evolutionary hotspot defines functional differences between CRYPTOCHROMES, Nature communications, p.1138, 2018.

A. Salmeen, J. Andersen, M. Myers, T. Meng, J. Hinks et al., Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate, Nature, vol.423, pp.769-773, 2003.

K. Sanada, Y. Harada, M. Sakai, T. Todo, and Y. Fukada, Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated protein kinase, Genes Cells, vol.9, pp.697-708, 2004.

Y. Sang, Q. Li, V. Rubio, Y. Zhang, J. Mao et al., N-Terminal Domain-Mediated Homodimerization Is Required for Photoreceptor Activity of Arabidopsis CRYPTOCHROME 1, Plant Cell Online, vol.17, pp.1569-1584, 2005.

T. Scarpeci, M. Zanor, N. Carrillo, B. Mueller-roeber, and E. Valle, Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes, Plant Mol Biol, vol.66, pp.361-378, 2008.

J. I. Schroeder, G. J. Allen, V. Hugouvieux, J. M. Kwakand, and D. Waner, Guard cell signal transduction, Annu Rev Plant Physiol Plant Mol Biol, vol.52, pp.627-658, 2001.

K. Schulten, H. Staerk, A. Weller, H. Werner, and B. Nickel, Magnetic field dependence of the geminate recombination of radical ion pairs in polar solvents, Z. Phys. Chem, vol.101, pp.371-390, 1976.

M. Semo, S. Peirson, D. Lupi, R. Lucas, G. Jeffery et al., Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice, Eur J Neurosci, vol.17, pp.1793-1801, 2003.

J. Shaikhali, L. Norén, J. De-barajas-lópez, V. Srivastava, J. König et al., Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis, J Biol Chem, vol.287, pp.27510-27525, 2012.

D. Shalitin, H. Yang, T. Mockler, M. Maymon, H. Guo et al., Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation, Nature, vol.417, p.815, 2002.

D. Shalitin, X. Yu, M. Maymon, T. Mockler, and C. Lin, Blue Light-Dependent in Vivo and in Vitro Phosphorylation of Arabidopsis Cryptochrome 1, Plant Cell, vol.15, pp.2421-2429, 2003.

D. Sheerin, C. Menon, S. Zur-oven-krockhaus, B. Enderle, L. Zhu et al., Light-Activated Phytochrome A and B Interact with Members of the SPA Family to Promote Photomorphogenesis in Arabidopsis by Reorganizing the COP1/SPA Complex, Plant Cell, vol.27, pp.189-201, 2015.

D. Shenton and C. Grant, Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae, Biochem J, vol.374, pp.513-519, 2003.

S. Shi, T. Ansari, O. Mcguinness, D. Wasserman, and C. Johnson, Circadian Disruption Leads to Insulin Resistance and Obesity, Curr, vol.23, pp.372-381, 2013.

T. &. Siegelman and . Hendricks, The Chromophore of Phytochrome, Plant Physiol, vol.41, pp.1289-1292, 1966.

H. Sies, Oxidative stress: a concept in redox biology and medicine, Redox Biology, vol.4, pp.180-183, 2015.

A. Singh, H. Ram, N. Abbas, and S. Chattopadhyay, Molecular Interactions of GBF1 with HY5 and HYH Proteins during Light-mediated Seedling Development in Arabidopsis thaliana, J Biol, vol.287, pp.25995-26009, 2012.

R. Sitia and S. Molteni, Protein (Mis)folding, and Signaling: The Redox Connection, Sci Stke, pp.27-27, 2004.

N. Soares, J. Wojtkowska, and P. Jackson, A proteomic analysis of the wound response in Medicago leaves reveals the early activation of a ROS-sensitive signal pathway, J Proteomics, vol.74, pp.1411-1420, 2011.

H. Solov'yov-i,-mouritsen and K. Schulten, Acuity of a Cryptochrome and Vision-Based Magnetoreception System in Birds, Biophys J, vol.99, pp.40-49, 2010.

P. J. Spek, . Kobayashi, . Bootsma, . Takao, A. Eker et al., Cloning, Tissue Expression, and Mapping of a Human Photolyase Homolog with Similarity to Plant Blue-Light Receptors, Genomics, vol.37, pp.177-182, 1996.

R. Stanewsky, Genetic analysis of the circadian system in Drosophila melanogasterand mammals, J. Neurobiol, vol.54, pp.111-147, 2003.

R. Stanewsky, M. Kaneko, P. Emery, B. Beretta, K. Wager-smith et al., The cryb Mutation Identifies Cryptochrome as a Circadian Photoreceptor in Drosophila, Cell, vol.95, pp.681-692, 1998.

. Stanner, . Hughes, C. Kelly, and . Buttriss, A review of the epidemiological evidence for the "antioxidant hypothesis, Public Health Nutr, vol.7, pp.407-422, 2004.

M. Stratmann, F. Stadler, F. Tamanini, G. Van-der-horst, and J. Ripperger, Flexible phase adjustment of circadian albumin D site-binding protein (Dbp) gene expression by CRYPTOCHROME1, Genes Dev, vol.24, pp.1317-1328, 2010.

M. Sugai and M. Furuya, Action spectrum in ultraviolet and blue light region for the inhibition of red-light-induced spore germination in Adiantum capillus-veneris L, Plant Cell Physiol, vol.26, pp.953-956, 1985.

F. Tamanini, K. Yagita, H. Okamura, and G. Van-der-horst, Nucleocytoplasmic shuttling of clock proteins, Method Enzymol, vol.393, pp.418-453, 2005.

C. Tamanini, &. Bajek, and H. Van-der, Structure Function Analysis of Mammalian Cryptochromes, Cold Sh Q B, vol.72, pp.133-139, 2007.

H. Uenaka, M. Wada, and A. Kadota, Four distinct photoreceptors contribute to light-induced side branch formation in the moss Physcomitrella patens, Planta, vol.222, pp.623-631, 2005.

T. Usami, N. Mochizuki, M. Kondo, M. Nishimura, and A. Nagatani, Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light, Plant Cell Physiol, vol.45, pp.1798-1808, 2004.

M. Vadalà, J. Morales-medina, A. Vallelunga, B. Palmieri, C. Laurino et al., Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology, Cancer Medicine, vol.5, pp.3128-3139, 2016.

M. Vadalà, A. Vallelunga, L. Palmieri, B. Palmieri, J. Morales-medina et al., Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease, Behav Brain Funct, vol.11, pp.1-12, 2015.

A. Vaidya, D. Top, C. Manahan, J. Tokuda, S. Zhang et al., Flavin reduction activates Drosophila cryptochrome, Proceedings of the National Academy of Sciences, pp.20455-20460, 2013.

S. M. Van-belkum, F. J. Bosker, . Kortekaas, D. Beersma, and R. A. Schoevers, Treatment of depression with low-strength transcranial pulsed electromagnetic fields: A mechanistic point of view, Prog Neuro-psychopharmacology Biological Psychiatry, vol.71, pp.137-143, 2016.

G. Van-der-horst, M. Muijtjens, K. Kobayashi, R. Takano, S. Kanno et al., Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms, Hoeijmakers J & Yasui A, vol.398, 1999.

S. Vanvickle-chavez and R. Gelder, Action Spectrum of Drosophila Cryptochrome, J Biol Chem, vol.282, pp.10561-10566, 2007.

J. Vieira, A. Jones, A. Danon, M. Sakuma, N. Hoang et al., Human Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability, Plos One, vol.7, p.31867, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683663

M. Von, A (1859) Die Isepiptesen Russlands, Mem. Acad. Sci. St. Petersbourg VI, Ser. Tome, vol.8, pp.1-143

H. Wang and X. Zhang, Magnetic Fields and Reactive Oxygen Species, Int J Mol Sci, vol.18, p.2175, 2017.

H. Wang, L. Ma, J. Li, H. Zhao, and X. Deng, Direct Interaction of Arabidopsis Cryptochromes with COP1 in Light Control Development, Science, vol.294, pp.154-158, 2001.

Q. Wang, W. Barshop, M. Bian, A. Vashisht, R. He et al., The Blue Light-Dependent Phosphorylation of the CCE Domain Determines the Photosensitivity of Arabidopsis CRY2, Mol Plant, vol.8, pp.631-643, 2015.

X. Wang and M. Iino, Blue-light-induced shrinking of protoplasts from maize coleoptiles and its relationship to coleoptile growth, Plant Physiol, vol.114, pp.1009-1020, 1997.

C. Waszczak, S. Akter, D. Eeckhout, G. Persiau, K. Wahni et al., Sulfenome mining in Arabidopsis thaliana, Messens J & Breusegem F, vol.111, pp.11545-11550, 2014.

R. Watari, C. Yamaguchi, W. Zemba, Y. Kubo, K. Okano et al., Light-dependent Structural Change of Chicken Retinal Cryptochrome4, J Biol Chem, vol.287, pp.42634-42641, 2012.

S. Weber, T. Biskup, A. Okafuji, A. Marino, T. Berthold et al., Origin of Light-Induced Spin-Correlated Radical Pairs in Cryptochrome ?, J Phys Chem B, vol.114, pp.14745-14754, 2010.

J. L. Weller, G. Perrotta, M. E. Schreuder, A. Van-tuinen, M. Koornneef et al., Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2, Plant J, vol.25, pp.427-440, 2001.

H. Werner, K. Schulten, and A. Weller, Electron transfer and spin exchange contributing to the magnetic field dependence of the primary photochemical reaction of bacterial photosynthesis, Biochimica Et Biophysica Acta Bba -Bioenergetics, vol.502, pp.255-268, 1978.

&. Wiltschko and . Wiltschko, Magnetic orientation in birds, J Exp Biology, vol.199, pp.29-38, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01545371

R. Wiltschko and W. Wiltschko, Sensing Magnetic Directions in Birds: Radical Pair Processes Involving Cryptochrome, Biosensors, vol.4, pp.221-242, 2014.

W. Wiltschko, M. Gesson, and R. Wiltschko, Magnetic compass orientation of European robins under 565 nm green light, Naturwissenschaften, vol.88, pp.387-390, 2001.

W. Wiltschko and F. Merkel, Orientierung zugunruhiger Rotkehlchen im statischen Magnetfeld. Verh. dt. zool. Ges, vol.59, pp.362-367, 1966.

C. Winterbourn, The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells, Biochimica Et Biophysica Acta Bba -Gen Subj, vol.1840, pp.730-738, 2014.

H. Woo, H. Chae, S. Hwang, K. Yang, S. Kang et al., Reversing the Inactivation of Peroxiredoxins Caused by Cysteine Sulfinic Acid Formation, Science, vol.300, pp.653-656, 2003.

A. Wu, A. Allu, P. Garapati, H. Siddiqui, H. Dortay et al., JUNGBRUNNEN1, a Reactive Oxygen Species-Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis, Plant Cell Online, vol.24, pp.482-506, 2012.

G. Wu and E. Spalding, Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings, Proceedings of the National Academy of Sciences, pp.18813-18818, 2007.

L. Wu and H. Yang, CRYPTOCHROME 1 Is Implicated in Promoting R Protein-Mediated Plant Resistance to Pseudomonas syringae in Arabidopsis, Mol Plant, vol.3, pp.539-548, 2010.

X. Xia, Y. Zhou, K. Shi, J. Zhou, C. Foyer et al., Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance, J Exp Bot, vol.66, pp.2839-2856, 2015.

C. Xu, Y. Li, Y. Yu, Y. Zhang, and S. Wei, Suppression of Arabidopsis flowering by near-null magnetic field is affected by light, Bioelectromagnetics, vol.36, pp.476-479, 2015.

P. Xu, H. Zhu, H. Xu, Z. Zhang, C. Zhang et al., Composition and phylogenetic analysis of wheat cryptochrome gene family, Mol Biol Rep, vol.37, pp.825-832, 2010.

H. Yang and A. Tang-r-h-&-cashmore, The Signaling Mechanism of Arabidopsis CRY1 Involves Direct Interaction with COP1, Plant Cell Online, vol.13, pp.2573-2587, 2001.

H. Yang, Y. Wu, R. Tang, D. Liu, Y. Liu et al., The C Termini of Arabidopsis Cryptochromes Mediate a Constitutive Light Response, Cell, vol.103, pp.815-827, 2000.

Y. Yang, Z. Zuo, X. Zhao, X. Li, J. Klejnot et al., Blue-Light-Independent Activity of Arabidopsis Cryptochromes in the Regulation of Steady-State Levels of Protein and mRNA Expression, Mol Plant, vol.1, pp.167-177, 2008.

Z. Yang, B. Liu, J. Su, J. Liao, C. Lin et al., Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants, Photochem Photobiol, vol.93, pp.112-127, 2017.

M. Yanovsky, M. A. Mazzella, and J. Casal, A quadruple photoreceptor mutant still keeps track of time, Curr Biol, vol.10, pp.1013-1015, 2000.

S. Yoo, J. Mohawk, S. Siepka, Y. Shan, S. Huh et al., Competing E3 Ubiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm, Cell, vol.152, pp.1091-1105, 2013.

T. Yoshii, M. Ahmad, and C. Helfrich-förster, Cryptochrome Mediates Light-Dependent Magnetosensitivity of Drosophila's Circadian Clock, Plos Biol, vol.7, 2009.

T. Yoshii, C. Hermann-luibl, and C. Helfrich-förster, Circadian light-input pathways inDrosophila, Commun Integr Biology, vol.9, p.1102805, 2015.