M. S. Allen, Physical constraints on voluntary intake of forages by ruminants, J. Anim. Sci, vol.74, pp.3063-3075, 1996.

T. N. Barry, The effectiveness of formaldehyde treatment in protecting dietary protein from rumen microbial degradation, Proc. Nutr. Soc, vol.35, pp.221-229, 1976.

C. Bayourthe and D. Ali-haimoud-lekhal, Les extraits de plantes chez le ruminant: effets sur les fermentations dans le rumen et la qualité lipidique des produits animaux, INRA Prod. Anim, vol.27, pp.317-328, 2014.

S. A. Bhatti and J. L. Firkins, Kinetics of hydration and functional specific gravity of fibrous feed by-products, J. Anim. Sci, vol.73, pp.1449-1458, 1995.

K. A. Bjorndal, A. B. Bolten, and J. E. Moore, Digestive fermentation in herbivores: Effect of food particle size, Physiol. Zool, vol.63, pp.710-721, 1990.

G. A. Broderick, R. J. Wallace, and E. R. Orskov, Control of Rate and Extent of Protein Degradation, 1991.

R. C. Campling and M. Freer, The effect of specific gravity and size on the mean time of retention of inert particles in the alimentary tract of the cow, Br. J. Nutr, vol.16, pp.507-518, 1962.

M. Clauss, I. Lechner, P. Barboza, W. Collins, T. A. Tervoort et al., The effect of size and density on the mean retention time of particles in the reticulorumen of cattle (Bos primigenius f. taurus), muskoxen (Ovibos moschatus) and moose (Alces alces), Br. J. Nutr, vol.105, pp.634-644, 2011.

P. E. Colucci, L. E. Chase, and P. J. Soest, Feed intake, apparent diet digestibility, and rate of particulate passage in dairy cattle, J. Dairy Sci, vol.65, issue.82, pp.82367-82376, 1982.

C. K. Desbordes and J. G. Welch, Influence of specific gravity on rumination and passage of indigestible particles, J. Anim. Sci, vol.59, pp.470-475, 1984.

F. R. Ehle and M. D. Stern, Influence of particle size and density on particulate passage through alimentary tract of Holstein heifers, J. Dairy Sci, vol.69, issue.86, pp.80439-80447, 1986.

W. C. Ellis, Determinants of grazed forage intake and digestibility, J. Dairy Sci, vol.61, pp.1828-1840, 1978.

W. L. Grovum and V. J. Williams, Rate of passage of digesta in sheep: 3. Differential rates of passage of water and dry matter from the reticulo-rumen, abomasum and caecum and proximal colon, Br. J. Nutr, vol.30, pp.231-240, 1973.

A. P. Hooper and J. G. Welch, Effects of particle size and forage composition on functional specific gravity, J. Dairy Sci, vol.68, pp.1181-1188, 1985.

. Inra, Alimentation Des Bovins, Ovins et Caprins. Besoins Des Animaux-Valeurs Des Aliments. Editions Quae, 2007.

M. Kaske and W. V. Engelhardt, The effect of size and density on mean retention time of particles in the gastrointestinal tract of sheep, Br. J. Nutr, vol.63, pp.457-465, 1990.

M. Kaske, S. Hatiboglu, and W. V. Engelhardt, The influence of density and size of particles on rumination and passage from the reticulo-rumen of sheep, Br. J. Nutr, vol.67, p.235, 1992.

K. W. King and W. E. Moore, Density and size as factors affecting passage rate of ingesta in the bovine and human digestive tracts, J. Dairy Sci, vol.40, issue.57, pp.94516-94518, 1957.

M. Krämer, P. Lund, and M. R. Weisbjerg, Rumen passage kinetics of forage-and concentrate-derived fiber in dairy cows, J. Dairy Sci, vol.96, pp.3163-3176, 2013.

S. J. Krizsan, H. Gidlund, F. Fatehi, and P. Huhtanen, Effect of dietary supplementation with heat-treated canola meal on ruminal nutrient metabolism in lactating dairy cows, J. Dairy Sci, vol.100, pp.8004-8017, 2017.

M. Lauper, I. Lechner, P. S. Barboza, W. B. Collins, J. Hummel et al., , 2013.

, Aliments des animaux -Dosage de l'azote -Méthode par combustion (DUMAS) -NF V18-120, 1997.

, Association Française de Normalisation

M. N. Haque, H. Rulquin, A. Andrade, P. Faverdin, J. L. Peyraud et al., Milk protein synthesis in response to the provision of an "ideal" amino acid profile at 2 levels of metabolizable protein supply in dairy cows, Journal of Dairy Science, vol.95, pp.5876-5887, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01210323

P. Hong, T. E. Wheat, and D. M. Diehl, Analysis of physiological amino acids with the, 2009.

, MasstrakTM amino acid analysis solution, Waters application notes, pp.1-6

S. Hyden, A turbidimetric method for the determination of higher polyethylene glycol in biologicals materials, Ann. roy Agric. Cool. Sweden, vol.21, pp.139-145, 1955.

, Alimentation des bovins, ovins et caprins. Besoins des animaux -Valeurs des aliments, Editions Quae, 2007.

S. J. Malawer and D. W. Powel, An improved turbidimetric analysis of polyethylene glycol utilizing an emulsifier, Gastroenterology, vol.53, pp.250-256, 1967.

P. J. Van-soest, J. B. Robertson, and L. Ba, Methods for dietary fiber, neutral detergent, 1991.

G. A. Broderick, Effects of varying dietary protein and energy levels on the production of lactating dairy cows, Journal of Dairy Science, vol.86, pp.1370-1381, 2003.

G. A. Broderick and N. R. Merchen, Markers for quantifying microbial protein synthesis in the rumen, Journal of Dairy Science, vol.75, pp.2618-2632, 1992.

L. Brun-lafleur, L. Delaby, F. Husson, and P. Faverdin, Predicting energy × protein interaction on milk yield and milk composition in dairy cows, Journal of Dairy Science, vol.93, pp.4128-4143, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00729597

R. A. Christensen, M. R. Cameron, T. H. Klusmeyer, J. P. Elliott, J. H. Clark et al., Influence of amount and degradability of dietary protein on nitrogen utilization by dairy cows, Journal of Dairy Science, vol.76, pp.3497-3513, 1993.

J. H. Clark, T. H. Klusmeyer, and M. R. Cameron, Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows, Journal of Dairy Science, vol.75, pp.2304-2323, 1992.

R. T. Cowan, G. W. Reid, J. F. Greenhalgh, and C. A. Tait, Effects of feeding level in late pregnancy and dietary protein concentration during early lactation on food intake, milk yield, liveweight change and nitrogen balance of cows, The Journal of Dairy Research, vol.48, pp.201-212, 1981.

K. D. Cunningham, M. J. Cecava, J. Tr, and P. A. Ludden, Influence of source and amount of dietary protein on milk yield by cows in early lactation, Journal of Dairy Science, vol.79, pp.620-630, 1996.

J. B. Daniel, N. C. Friggens, P. Chapoutot, H. Van-laar, and D. Sauvant, Milk yield and milk composition responses to change in predicted net energy and metabolizable protein: a metaanalysis, Animal, vol.10, pp.1975-1985, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01482830

R. J. Dewhurst, D. R. Davies, and R. J. Merry, Microbial protein supply from the rumen, Animal Feed Science and Technology, vol.85, pp.1-21, 2000.

A. Fanchone, P. Nozière, J. Portelli, B. Duriot, V. Largeau et al., Effects of nitrogen underfeeding and energy source on nitrogen ruminal metabolism, digestion, and nitrogen partitionong in dair cows, Journal of Animal Science, vol.91, pp.895-906, 2013.

P. Faverdin and R. Vérité, Effects of metabolizable protein on intake and milk production of dairy cows independent of effects on ruminal digestion, Animal Science, vol.76, pp.137-146, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02671247

J. L. Firkins, A. N. Hristov, M. B. Hall, G. A. Varga, and N. R. St-pierre, Integration of ruminal metabolism in dairy cattle, Journal of Dairy Science, vol.89, pp.31-51, 2006.

, Alimentation des bovins, ovins et caprins. Besoins des animaux -Valeurs des aliments, Editions Quae, 2007.

, INRA feeding system for ruminants, 2018.

I. R. Ipharraguerre and J. H. Clark, A meta-analysis of ruminal outflow of nitrogen fractions in dairy cows, Journal of advances in dairy research, vol.2, p.122, 2014.

I. R. Ipharraguerre, J. H. Clark, and F. De, Varying protein and starch in the diet of dairy cows. I. Effects on ruminal fermentation and intestinal supply of nutrients, Journal of Dairy Science, vol.88, pp.2537-2555, 2005.

T. H. Klusmeyer, R. D. Mccarthy, J. H. Clark, and D. R. Nelson, Effects of source and amount of protein on ruminal fermentation and passage of nutrients to the small intestine of lactating cows, Journal of Dairy Science, vol.73, pp.3526-3537, 1990.

C. C. Krohn and P. E. Andersen, Different energy and protein levels for dairy cows in the early weeks of lactation, Livestock Production Science, vol.7, pp.555-568, 1980.

G. K. Macleod, D. G. Grieve, I. Mcmillan, and G. C. Smith, Effect of varying protein and energy densities in complete rations fed to cows in first lactation, Journal of Dairy Science, vol.67, pp.1421-1429, 1984.

J. L. Peyraud, L. Liboux, S. Vérité, and R. , Effet du niveau et de la nature de l'azote dégradable sur la digestion ruminale d'un régime à base d'ensilage de maïs chez la vache laitière, Reproduction Nutrition Development, vol.37, pp.313-328, 1997.

G. Raggio, D. Pacheco, R. Berthiaume, G. E. Lobley, D. Pellerin et al., Effect of level of metabolizable protein on splanchnic flux of amino acids in lactating dairy cows, Journal of Dairy Science, vol.87, pp.3461-3472, 2004.

M. Rico-gomez and P. Faverdin, La nutrition protéique modifie l'ingestion des vaches laitières : analyse bibliographique, pp.285-288, 2001.

H. Rulquin, J. Guinard, and R. Vérité, Variation of amino acid content in the small intestine digesta of cattle: Development of a prediction model, Livestock Production Science, vol.53, pp.1-13, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02698494

H. Rulquin and R. Vérité, Amino acid nutrition of dairy cows: productive effects and animal requirements, Recent advances in animal nutrition, 1993.
URL : https://hal.archives-ouvertes.fr/hal-02852105

C. , , pp.55-77

M. Sok, D. R. Ouellet, J. L. Firkins, D. Pellerin, and H. Lapierre, Amino acid composition of rumen bacteria and protozoa in cattle, Journal of Dairy Science, vol.100, pp.5241-5249, 2017.

R. Vérité, B. Michalet-doreau, P. Chapoutot, J. L. Peyraud, and C. Poncet, Révision du système des Protéines Digestibles dans l'Intestin (P.D.I.). Bulletin techniques INRA, vol.70, pp.19-34, 1987.

W. P. Weiss and D. J. Wyatt, Effect of Corn Silage Hybrid and Metabolizable Protein Supply on Nitrogen Metabolism of Lactating Dairy Cows, Journal of Dairy Science, vol.89, pp.1644-1653, 2006.

J. P. Blouin, J. F. Bernier, C. K. Reynolds, G. E. Lobley, P. Dubreuil et al., Effect of supply of metabolizable protein on splanchnic fluxes of nutrients and hormones in lactating dairy cows, Journal of Dairy Science, vol.85, pp.2618-2630, 2002.

G. A. Broderick, Effects of varying dietary protein and energy levels on the production of lactating dairy cows, Journal of Dairy Science, vol.86, pp.1370-1381, 2003.

G. A. Broderick, T. Kowalczyk, and L. D. Satter, Milk production response to supplementation with encapsulated methionine per os or casein per abomasum, Journal of Dairy Science, vol.53, pp.1714-1721, 1970.

G. A. Broderick, R. J. Wallace, and E. R. Orskov, Control of rate and extent of protein degradation, Physiological Aspects of Digestion and Metabolism in Ruminants, 1991.

Y. Tsuda, R. Sasaki, and . Kawasima, , pp.541-592

A. Cabrita, R. J. Dewhurst, D. Melo, J. M. Moorby, and A. Fonseca, Effects of dietary protein concentration and balance of absorbable amino acids on productive responses of dairy cows fed corn silage-based diets, Journal of Dairy Science, vol.94, pp.4647-4656, 2011.

J. H. Clark, H. R. Spires, R. G. Derrig, and M. R. Bennink, Milk production, nitrogen utilization and glucose synthesis in lactating cows infused postruminally with sodium caseinate and glucose, The Journal of Nutrition, vol.107, pp.631-644, 1977.

R. T. Cowan, G. W. Reid, J. F. Greenhalgh, and C. A. Tait, Effects of feeding level in late pregnancy and dietary protein concentration during early lactation on food intake, milk yield, liveweight change and nitrogen balance of cows, The Journal of Dairy Research, vol.48, pp.201-212, 1981.

L. Doepel and H. Lapierre, Changes in production and mammary metabolism of dairy cows in response to essential and nonessential amino acid infusions, Journal of Dairy Science, vol.93, pp.3264-3274, 2010.

P. Faverdin and R. Vérité, Effects of metabolizable protein on intake and milk production of dairy cows independent of effects on ruminal digestion, Animal Science, vol.76, pp.137-146, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02671247

H. Gidlund, M. Hetta, S. J. Krizsan, S. Lemosquet, and P. Huhtanen, Effects of soybean meal or canola meal on milk production and methane emissions in lactating dairy cows fed grass silage-based diets, Journal of Dairy Science, vol.98, pp.8093-8106, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01211061

M. N. Haque, H. Rulquin, A. Andrade, P. Faverdin, J. L. Peyraud et al., Milk protein synthesis in response to the provision of an "ideal" amino acid profile at 2 levels of metabolizable protein supply in dairy cows, Journal of Dairy Science, vol.95, pp.5876-5887, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01210323

J. Hogan, W. R. Lindsay, and J. , Alimentation des bovins, ovins et caprins. Besoins des animaux -Valeurs des aliments, Australian Journal of Biological Sciences, vol.21, 1968.

M. Korhonen, A. Vanhatalo, and P. Huhtanen, Effect of protein source on amino acid supply, milk production, and metabolism of plasma nutrients in dairy cows fed grass silage, Journal of Dairy Science, vol.85, pp.3336-3351, 2002.

H. Lapierre, G. E. Lobley, L. Doepel, G. Raggio, H. Rulquin et al., TRIENNIAL LACTATION SYMPOSIUM: Mammary metabolism of amino acids in dairy cows, Journal of Animal Science, vol.90, pp.1708-1721, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651881

R. Martineau, D. R. Ouellet, E. Kebreab, R. R. White, and H. Lapierre, Relationships between postruminal casein infusion and milk production, and concentrations of plasma amino acids and blood urea in dairy cows: A multilevel mixed-effects meta-analysis, Journal of Dairy Science, vol.100, pp.8053-8071, 2017.

R. Martineau, D. R. Ouellet, R. A. Patton, R. R. White, and H. Lapierre, Plasma essential amino acid concentrations in response to casein infusion or ration change in dairy cows: A multilevel, mixed-effects meta-analysis, Journal of Dairy Science, vol.102, pp.1312-1329, 2019.

T. B. Mepham, Amino Acid Utilization by Lactating Mammary Gland, Journal of Dairy Science, vol.65, pp.287-298, 1982.

D. R. Ouellet, D. Valkeners, and H. Lapierre, Effects of metabolizable protein supply on N efficiency: plasma amino acid concentrations in dairy cows. In Energy and protein metabolism and nutrition in sustainable animal production, pp.453-454, 2013.

R. A. Patton, A. N. Hristov, and H. Lapierre, Protein Feeding and Balancing for Amino Acids in Lactating Dairy Cattle. Veterinary Clinics of North America: Food Animal Practice, vol.30, pp.599-621, 2014.

L. Puhakka, S. Jaakkola, I. Simpura, T. Kokkonen, and A. Vanhatalo, Effects of replacing rapeseed meal with fava bean at 2 concentrate crude protein levels on feed intake, nutrient digestion, and milk production in cows fed grass silage-based diets, Journal of Dairy Science, vol.99, pp.7993-8006, 2016.

G. Raggio, D. Pacheco, R. Berthiaume, G. E. Lobley, D. Pellerin et al., Effect of level of metabolizable protein on splanchnic flux of amino acids in lactating dairy cows, Journal of Dairy Science, vol.87, p.139, 2004.

M. Rico-gomez and P. Faverdin, La nutrition protéique modifie l'ingestion des vaches laitières : analyse bibliographique, pp.285-288, 2001.

M. Rinne, S. Jaakkola, T. Varvikko, and P. Huhtanen, Effects of type and amount of rapeseed feed on milk production, Acta Agriculturae Scandinavica, Section A -Animal Science, vol.49, pp.137-148, 1999.

M. Rinne, K. Kuoppala, A. S. Vanhatalo, and A. , Dairy cow responses to graded levels of rapeseed and soya bean expeller supplementation on a red clover/grass silage-based diet, vol.9, pp.1958-1969, 2015.

A. G. Rius, J. Appuhamy, J. Cyriac, D. Kirovski, O. Becvar et al., Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids, Journal of Dairy Science, vol.93, pp.3114-3127, 2010.

A. G. Rius, M. L. Mcgilliard, C. A. Umberger, and M. D. Hanigan, Interactions of energy and predicted metabolizable protein in determining nitrogen efficiency in the lactating dairy cow, Journal of Dairy Science, vol.93, pp.2034-2043, 2010.

K. J. Shingfield, A. Vanhatalo, and P. Huhtanen, Comparison of heat-treated rapeseed expeller and solvent-extracted soya-bean meal as protein supplements for dairy cows given grass silage-based diets, Animal Science, vol.77, pp.305-317, 2003.

W. Wang, Z. Wu, Z. Dai, Y. Yang, W. J. Wu et al., Glycine metabolism in animals and humans: implications for nutrition and health, Amino Acids, vol.45, pp.463-477, 2013.

F. G. Whitelaw, J. S. Milne, E. R. Ørskov, and J. S. Smith, The nitrogen and energy metabolism of lactating cows given abomasal infusions of casein, British Journal of Nutrition, vol.55, p.537, 1986.

G. Wu, Amino acids: metabolism, functions, and nutrition, Amino Acids, vol.37, pp.1-17, 2009.

H. Bahrami-yekdangi, M. Khorvash, G. R. Ghorbani, M. Alikhani, J. R. Kamalian et al., Effects of decreasing metabolizable protein and rumen-undegradable protein on milk production and composition and blood metabolites of Holstein dairy cows in early lactation, Journal of Dairy Science, vol.97, pp.3707-3714, 2014.

G. A. Broderick, Effects of varying dietary protein and energy levels on the production of lactating dairy cows, Journal of Dairy Science, vol.86, pp.1370-1381, 2003.

G. A. Broderick, Nutritional strategie to reduce crude protein in dairy diets, pp.1-14, 2006.

A. Z. Temps,

G. A. Broderick and M. K. Clayton, A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen, Journal of Dairy Science, vol.80, pp.2964-2971, 1997.

G. A. Broderick, R. J. Wallace, and E. R. Orskov, Control of rate and extent of protein degradation, Physiological Aspects of Digestion and Metabolism in Ruminants, 1991.

Y. Tsuda, R. Sasaki, and . Kawasima, , pp.541-592

L. Brun-lafleur, L. Delaby, F. Husson, and P. Faverdin, Predicting energy × protein interaction on milk yield and milk composition in dairy cows, Journal of Dairy Science, vol.93, pp.4128-4143, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00729597

J. Colmenero and G. A. Broderick, Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows, Journal of Dairy Science, vol.89, pp.1704-1712, 2006.

R. T. Cowan, G. W. Reid, J. F. Greenhalgh, and C. A. Tait, Effects of feeding level in late pregnancy and dietary protein concentration during early lactation on food intake, milk yield, liveweight change and nitrogen balance of cows, The Journal of Dairy Research, vol.48, pp.201-212, 1981.

J. B. Daniel, N. C. Friggens, P. Chapoutot, H. Van-laar, and D. Sauvant, Milk yield and milk composition responses to change in predicted net energy and metabolizable protein: a metaanalysis, pp.1-11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01482830

J. B. Daniel, N. C. Friggens, H. Van-laar, C. P. Ferris, and D. Sauvant, A method to estimate cow potential and subsequent responses to energy and protein supply according to stage of lactation, Journal of Dairy Science, vol.100, pp.3641-3657, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607162

P. Faverdin and R. Vérité, Effects of metabolizable protein on intake and milk production of dairy cows independent of effects on ruminal digestion, Animal Science, vol.76, pp.137-146, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02671247

, Part 2: Estimating feed protein value from biological responses 156

M. Imran, T. N. Pasha, M. Q. Shahid, I. Babar, N. Ul-haque et al., Effect of increasing dietary metabolizable protein on nitrogen efficiency in Holstein dairy cows, Asian-Australasian Journal of Animal Sciences, vol.30, pp.660-665, 2017.

, Alimentation des bovins, ovins et caprins. Besoins des animaux -Valeurs des aliments, Editions Quae, 2007.

, INRA feeding system for ruminants, 2018.

C. C. Krohn and P. E. Andersen, Different energy and protein levels for dairy cows in the early weeks of lactation, Livestock Production Science, vol.7, pp.555-568, 1980.

S. Lemosquet, J. Guinard-flament, G. Raggio, H. Lapierre, and H. Rulquin, Comment les apports de protéines augmentent-ils le volume de lait et les matières utiles, pp.271-274, 2008.

G. K. Macleod, D. G. Grieve, I. Mcmillan, and G. C. Smith, Effect of varying protein and energy densities in complete rations fed to cows in first lactation, Journal of Dairy Science, vol.67, pp.1421-1429, 1984.

J. A. Metcalf, R. J. Mansbridge, J. S. Blake, J. D. Oldham, and J. R. Newbold, The efficiency of conversion of metabolisable protein into milk true protein over a range of metabolisable protein intakes, vol.2, pp.1193-1202, 2008.

L. E. Moraes, E. Kebreab, J. L. Firkins, R. R. White, R. Martineau et al., Predicting milk protein responses and the requirement of metabolizable protein by lactating dairy cows, Journal of Dairy Science, vol.101, pp.310-327, 2018.

J. Nousiainen, K. J. Shingfield, and P. Huhtanen, Evaluation of milk urea nitrogen as a diagnostic of protein feeding, Journal of Dairy Science, vol.87, pp.386-398, 2004.

G. Raggio, D. Pacheco, R. Berthiaume, G. E. Lobley, D. Pellerin et al., Effect of level of metabolizable protein on splanchnic flux of amino acids in lactating dairy cows, Journal of Dairy Science, vol.87, pp.3461-3472, 2004.

M. Rico-gomez and P. Faverdin, La nutrition protéique modifie l'ingestion des vaches laitières : analyse bibliographique, pp.285-288, 2001.

D. Sauvant, G. Cantalapiedra-hijar, L. Delaby, J. Daniel, P. Faverdin et al., , 2015.

, Actualisation des besoins protéiques des ruminants et détermination des réponses des femelles laitières aux apports de protéines digestibles dans l'intestin. INRA Production Animale, vol.28, pp.347-368

R. Vérité and L. Delaby, Relation between nutrition, performances and nitrogen excretion in dairy cows, Annales de zootechnie, vol.49, pp.217-230, 2000.

C. Benchaar, S. Calsamiglia, A. V. Chaves, G. R. Fraser, D. Colombatto et al.,

K. A. Beauchemin, A review of plant-derived essential oils in ruminant nutrition and production, Animal Feed Science and Technology, vol.145, pp.209-228, 2008.

S. A. Bhatti and J. L. Firkins, Kinetics of hydration and functional specific gravity of fibrous feed by-products, Journal of animal science, vol.73, pp.1449-1458, 1995.

G. A. Broderick and N. R. Merchen, Markers for quantifying microbial protein synthesis in the rumen, Journal of Dairy Science, vol.75, pp.2618-2632, 1992.

L. Brun-lafleur, L. Delaby, F. Husson, and P. Faverdin, Predicting energy × protein interaction on milk yield and milk composition in dairy cows, Journal of Dairy Science, vol.93, pp.4128-4143, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00729597

J. B. Daniel, N. C. Friggens, P. Chapoutot, H. Van-laar, and D. Sauvant, Milk yield and milk composition responses to change in predicted net energy and metabolizable protein: a metaanalysis, vol.10, pp.1975-1985, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01482830

R. J. Dewhurst, D. R. Davies, and R. J. Merry, Microbial protein supply from the rumen, Animal Feed Science and Technology, vol.85, pp.1-21, 2000.

G. J. Faichney, Marker methods for mesuring digesta flow, British Journal of Nutrition, vol.70, pp.663-664, 1993.

P. Faverdin and R. Vérité, Effects of metabolizable protein on intake and milk production of dairy cows independent of effects on ruminal digestion, Animal Science, vol.76, pp.137-146, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02671247

J. L. Firkins, A. N. Hristov, M. B. Hall, G. A. Varga, and N. R. St-pierre, Integration of ruminal metabolism in dairy cattle, Journal of Dairy Science, vol.89, pp.31-51, 2006.

M. N. Haque, H. Rulquin, A. Andrade, P. Faverdin, J. L. Peyraud et al., Milk protein synthesis in response to the provision of an "ideal" amino acid profile at 2 levels of metabolizable protein supply in dairy cows, Journal of Dairy Science, vol.95, pp.5876-5887, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01210323

K. J. Hart, D. R. Yáñez-ruiz, S. M. Duval, N. R. Mcewan, and C. J. Newbold, Plant extracts to manipulate rumen fermentation, Animal Feed Science and Technology, vol.147, pp.8-35, 2008.

, Alimentation des bovins, ovins et caprins. Besoins des animaux -Valeurs des aliments, Editions Quae, 2007.

, INRA feeding system for ruminants, 2018.

J. Jouany and J. Et-reperant, Proposition pour une démarche d'évaluation de substances ou de produits 'nouveaux' destinés à l'alimentation animale -Cas particuler des susbtances et produits à base de plantes. Agence française de sécurité sanitaire des aliments, 2007.

R. Martineau, D. R. Ouellet, E. Kebreab, R. R. White, and H. Lapierre, Relationships between postruminal casein infusion and milk production, and concentrations of plasma amino acids and blood urea in dairy cows: A multilevel mixed-effects meta-analysis, Journal of Dairy Science, vol.100, pp.8053-8071, 2017.

R. Martineau, D. R. Ouellet, R. A. Patton, R. R. White, and H. Lapierre, Plasma essential amino acid concentrations in response to casein infusion or ration change in dairy cows: A multilevel, mixed-effects meta-analysis, Journal of Dairy Science, vol.102, pp.1312-1329, 2019.

B. Michalet-doreau and P. Cerneau, Influence of foodstuff particle size on in situ degradation of nitrogen in the rumen, Animal Feed Science and Technology, vol.35, pp.69-81, 1991.
URL : https://hal.archives-ouvertes.fr/hal-02701043

B. Michalet-doreau, R. Vérité, and P. Chapoutot, Méthodologie de la mesure in sacco de l'azote des aliments dans le rumen, Bulletin techniques INRA, pp.5-7, 1987.

A. K. Patra, Effects of essential oils on rumen fermentation, microbial ecology and ruminant production, Asian Journal of Animal and Veterinary Advances, vol.6, pp.416-428, 2011.

R. A. Patton, A. N. Hristov, C. Parys, and H. Lapierre, Relationships between circulating plasma concentrations and duodenal flows of essential amino acids in lactating dairy cows, Journal of Dairy Science, vol.98, pp.4707-4734, 2015.

H. Rulquin and J. Kowalczyk, Development of a method for measuring lysine and methionine bioavailability in rumen-protected products for cattle, Journal of Animal and Feed Sciences, vol.12, pp.465-474, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02677879

D. Warner, Passage of feed in dairy cows -Use of stable isotopes to estimate passage kinetics through the digestive tract of dairy cows, p.165, 2013.

F. Dufreneix, J. Peyraud, and P. Et-faverdin, Estimation d'une nouvelle méthodologie pour estimer la valeur protéique des aliments à partir de la réponse en matière protéique du lait chez la vache laitière. 25 ème Rencontres Recherches Ruminants, vol.12, pp.5-06, 2018.

F. Dufreneix, P. Faverdin, and J. Et-peyraud, Size and density influence of concentrates to increase by-pass protein fraction in dairy cows' diet. 69 th EAAP annual meeting, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01904399

F. Dufreneix, J. Peyraud, and P. Et-faverdin, A new methodology to estimate protein feed value using the milk protein biological response. 69 th EAAP annual meeting, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01904402

F. Dufreneix, J. Peyraud, F. Et-faverdin-p-;-poster-dufreneix, P. Faverdin, and J. Et-peyraud, Estimation d'une nouvelle méthodologie pour estimer la valeur protéique des aliments à partir de la réponse en matière protéique du lait chez la vache laitière. 25 ème Rencontres Recherches Ruminants, Les quantités consommées sont celles attendues pour les traitements riches en protéines (MH et CH), mais les refus ont été légèrement plus importants pour les traitements à faible teneur en protéines (+0,7 et +0,4 kg MS/j respectivement pour CB et MB comparés à CH et MH, vol.12, pp.5-06, 2018.

, En conséquence, les apports en énergie ont augmenté légèrement entre les contrôles CB et CH, vol.0, p.5

. Cowan, Nous avons limité ce phénomène grâce à la distribution en quantités limitées des rations sans pouvoir l'éliminer complément. La teneur en matières grasses du lait n'a pas été affectée par le niveau d'apport protéique, UFL/j). L'accroissement de l'ingestion et des apports énergétiques avec l'accroissement des apports protéiques est un phénomène déjà décrit, 1981.

R. Proteiques, La figure 1 représente la réponse de l'efficience d'utilisation des PDI et de la production des MP aux apports protéiques

. Metcalf, Cette réponse curvilinéaire est liée à la baisse de l'efficience d'utilisation des PDI (0,50 et 0,42 respectivement pour CB et CH) quand les apports augmentent. L'ordre de grandeur de l'efficience est cohérent avec les valeurs observées dans la littérature, Les MP ont répondu curvilinéairement aux apports protéiques, vol.0, 2000.