L. Ventrelli, L. Marsilio-strambini, and G. Barillaro, Microneedles for Transdermal Biosensing: Current Picture and Future Direction, Adv. Healthc. Mater, vol.4, pp.2606-2640, 2015.

R. R. Wickett and M. O. Visscher, Structure and function of the epidermal barrier, Am. J. Infect. Control, vol.34, pp.98-110, 2006.

J. E. Lai-cheong and J. A. Mcgrath, Structure and function of skin, hair and nails, vol.41, pp.317-320, 2013.

D. Breitkreutz, N. Mirancea, and R. Nischt, Basement membranes in skin: Unique matrix structures with diverse functions? Histochem, Cell Biol, vol.132, pp.1-10, 2009.

C. Blanpain and E. Fuchs, Epidermal homeostasis: a balancing act of stem cells in the skin, Nat. Rev. Mol. Cell Biol, vol.10, pp.207-217, 2009.

J. C. Wei, Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: from mice, rats, rabbits, pigs to humans, Sci. Rep, vol.7, p.15885, 2017.

R. L. Eckert and E. A. Rorke, Molecular biology of keratinocyte differentiation, Environmental Health Perspectives, vol.80, pp.109-116, 1989.

L. Eckhart, S. Lippens, E. Tschachler, and W. Declercq, Cell death by cornification, Biochim. Biophys. Acta -Mol. Cell Res, vol.1833, pp.3471-3480, 2013.

M. Skobe and M. Detmar, Structure, function, and molecular control of the skin lymphatic system, J. Investig. Dermatol. Symp. Proc, vol.5, pp.14-23, 2000.

E. Schmidt, D. Zillikens, . Pemphigoid, and . Diseases, Lancet, vol.381, pp.320-332, 2013.

L. Borradori and A. Sonnenberg, Structure and function of hemidesmosomes: more than cimple adhesion complexes, J. Invest. Dermatol, vol.112, pp.411-418, 1999.

L. Bruckner-tuderman, Hereditary skin diseases of anchoring fibrils, Journal of Dermatological Science, vol.20, pp.122-133, 1999.

M. Aumailley, C. Has, L. Tunggal, and L. Bruckner-tuderman, Molecular basis of inherited skin-blistering disorders, and therapeutic implications, Expert Rev. Mol. Med, vol.8, pp.1-21, 2006.

G. Limbert, Mathematical and computational modelling of skin biophysics: a review, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.473, p.20170257, 2017.

K. Lawlor and P. Kaur, Dermal contributions to human interfollicular epidermal architecture and self-renewal, Int. J. Mol. Sci, vol.16, pp.28098-28107, 2015.

J. M. Sorrell, Fibroblast heterogeneity: More than skin deep, J. Cell Sci, vol.117, pp.667-675, 2004.

C. Baldock, Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity, Proc. Natl. Acad. Sci, vol.108, pp.4322-4327, 2011.

G. M. Cooper and R. E. Hausman, The cell: A molecular approach, 2000.

M. Yanagishita, Function of proteoglycans in the extracellular matrix, Acta Pathol. Jpn, vol.43, pp.283-293, 1993.

R. V. Iozzo and L. Schaefer, Proteoglycan form and function: A comprehensive nomenclature of proteoglycans, Matrix Biol, vol.42, pp.11-55, 2015.

M. M. Smith and J. Melrose, Proteoglycans in normal and healing skin, Adv. Wound Care, vol.4, pp.152-173, 2015.

Y. Nomura, Structural change in decorin with skin aging, Connect. Tissue Res, vol.47, pp.249-255, 2006.

M. V. Nastase, M. F. Young, L. Schaefer, and . Biglycan, J. Histochem. Cytochem, vol.60, pp.963-975, 2012.

F. Klingberg, B. Hinz, and E. S. White, The myofibroblast matrix: Implications for tissue repair and fibrosis, J. Pathol, vol.229, pp.298-309, 2013.

M. Pasparakis, I. Haase, and F. O. Nestle, Mechanisms regulating skin immunity and inflammation, Nat. Rev. Immunol, vol.14, pp.289-301, 2014.

M. Crowther, N. J. Brown, E. T. Bishop, and C. E. Lewis, Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors, J. Leukoc. Biol, vol.70, pp.478-90, 2001.

L. C. Davies, S. J. Jenkins, J. E. Allen, and P. R. Taylor, Tissue-resident macrophages, Nat. Immunol, vol.14, pp.986-995, 2013.

T. R?szer, Understanding the mysterious M2 macrophage through activation markers and effector mechanisms, Mediators Inflamm, vol.2015, pp.1-16, 2015.

F. O. Nestle, P. Di-meglio, J. Qin, and B. J. Nickoloff, Skin immune sentinels in health and disease, Nat. Rev. Immunol, vol.9, pp.679-91, 2009.

A. S. Janssens, Mast cell distribution in normal adult skin, J. Clin. Pathol, vol.58, pp.285-294, 2005.

I. T. Harvima and G. Nilsson, Mast cells as regulators of skin inflammation and immunity, Acta Derm. Venereol, vol.91, pp.644-650, 2011.

S. S. Choe, J. Y. Huh, I. J. Hwang, J. I. Kim, and J. B. Kim, Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders, Front. Endocrinol. (Lausanne), vol.7, pp.1-16, 2016.

N. Boulais and L. Misery, The epidermis: A sensory tissue, Eur. J. Dermatol, vol.18, pp.119-146, 2008.

M. R. Schneider, R. Schmidt-ullrich, and R. Paus, The hair follicle as a dynamic miniorgan, Current Biology, vol.19, 2009.

M. E. Balañá, H. E. Charreau, and G. J. Leirós, Epidermal stem cells and skin tissue engineering in hair follicle regeneration, World J. Stem Cells, vol.7, pp.711-738, 2015.

P. A. Khavari, Modelling cancer in human skin tissue, Nat. Rev. Cancer, vol.6, pp.270-80, 2006.

P. A. Gerber, The top skin-associated genes: A comparative analysis of human and mouse skin transcriptomes, Biol. Chem, vol.395, pp.577-591, 2014.

N. Naldaiz-gastesi, Identification and characterization of the dermal panniculus carnosus muscle stem cells, Stem Cell Reports, vol.7, pp.411-424, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01601657

K. Wojciechowicz, K. Gledhill, C. A. Ambler, C. B. Manning, and C. A. Jahoda, Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4, PLoS One, vol.8, pp.1-15, 2013.

J. Mestas and C. C. Hughes, Of mice and not men: differences between mouse and human immunology, J. Immunol, vol.172, pp.2731-2738, 2004.

W. L. Havran and J. M. Jameson, Epidermal T cells and wound healing, J. Immunol, vol.184, pp.5423-5428, 2010.

A. S. Macleod, Dendritic epidermal T cells regulate skin antimicrobial barrier function, J. Clin. Invest, vol.123, pp.4364-4374, 2013.

H. D. Zomer and A. G. Trentin, Skin wound healing in humans and mice: Challenges in translational research, J. Dermatol. Sci, 2017.

F. H. Epstein, A. J. Singer, and R. A. Clark, Cutaneous Wound Healing, N. Engl. J. Med, vol.341, pp.738-746, 1999.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, Wound repair and regeneration, Nature, vol.453, pp.314-321, 2008.

S. Guo and L. A. Dipietro, Factors affecting wound healing, J. Dent. Res, vol.89, pp.219-229, 2010.

G. Leoni, P. Neumann, R. Sumagin, T. L. Denning, and A. Nusrat, Wound repair: role of immune-epithelial interactions, Mucosal Immunol, vol.8, pp.959-968, 2015.

T. J. Koh and L. A. Dipietro, Inflammation and wound healing: The role of the macrophage, Expert Rev. Mol. Med, vol.13, p.23, 2011.

N. X. Landén, D. Li, and M. Ståhle, Transition from inflammation to proliferation: A critical step during wound healing, Cell. Mol. Life Sci, vol.73, pp.3861-3885, 2016.

N. Strbo, N. Yin, and O. Stojadinovic, Innate and adaptive immune responses in wound epithelialization, Adv. wound care, vol.3, pp.492-501, 2014.

I. Pastar, Epithelialization in wound healing: A comprehensive review, Adv. Wound Care, vol.3, pp.445-464, 2014.

B. Hinz, . Myofibroblasts, and . Exp, Eye Res, vol.142, pp.56-70, 2016.

J. Brenmoehl, Transforming growth factor-beta 1 induces intestinal myofibroblast differentiation and modulates their migration, World J. Gastroenterol, vol.15, p.1431, 2009.

A. C. Midgley, Transforming Growth Factor-Beta 1 (TGF-Beta 1)-stimulated Fibroblast to Myofibroblast Differentiation Is Mediated by Hyaluronan (HA)-facilitated Epidermal Growth Factor Receptor (EGFR) and CD44 Co-localization in Lipid Rafts, J. Biol. Chem, vol.288, pp.14824-14838, 2013.

A. A. Ucuzian, A. A. Gassman, A. T. East, and H. P. Greisler, Molecular mediators of angiogenesis, J. Burn Care Res, vol.31, pp.158-175, 2010.

J. F. Guest, Health economic burden that wounds impose on the National Health Service in the UK, BMJ Open, vol.5, p.9283, 2015.

N. Graves and H. Zheng, Modelling the direct health care costs of chronic wounds in Australia, Wound Pract. Res, vol.22, pp.20-33, 2014.

T. N. Demidova-rice, M. R. Hamblin, and I. M. Herman, Acute and impaired wound healing, Adv. Skin Wound Care, vol.25, pp.304-314, 2012.

R. Nunan, K. G. Harding, and P. Martin, Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity, Dis. Model. Mech, vol.7, pp.1205-1218, 2014.

R. Ogawa, Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis, Int. J. Mol. Sci, vol.18, p.606, 2017.

D. Wolfram, A. Tzankov, P. Pülzl, and H. Piza-katzer, Hypertrophic scars and keloids -A review of their pathophysiology, risk factors, and therapeutic management, Dermatologic Surg, vol.35, pp.171-181, 2009.

F. Rabello, C. Souza, and J. Farina, Update on hypertrophic scar treatment, Clinics, vol.69, pp.565-573, 2014.

S. Akaishi, R. Ogawa, and H. Hyakusoku, Keloid and hypertrophic scar: Neurogenic inflammation hypotheses, Med. Hypotheses, vol.71, pp.32-38, 2008.

C. Huang, G. F. Murphy, S. Akaishi, and R. Ogawa, Keloids and hypertrophic scars, Plast. Reconstr. Surg. Glob. Open, vol.1, p.25, 2013.

X. Dong, C. Zhang, S. Ma, and H. Wen, Mast cell chymase in keloid induces profibrotic response via transforming growth factor-?1/Smad activation in keloid fibroblasts, Int. J. Clin. Exp. Pathol, vol.7, pp.3596-3607, 2014.

J. Exposito, U. Valcourt, C. Cluzel, and C. Lethias, The fibrillar collagen family, Int. J. Mol. Sci, vol.11, pp.407-426, 2010.

J. K. Mouw, G. Ou, and V. M. Weaver, Extracellular matrix assembly: a multiscale deconstruction, Nat. Rev. Mol. Cell Biol, vol.15, pp.771-785, 2014.

H. J. Chung and J. Uitto, Type VII collagen: The anchoring fibril protein at fault in dystrophic epidermolysis bullosa, Dermatol. Clin, vol.28, pp.93-105, 2010.

S. Ricard-blum, The collagen family, Cold Spring Harb. Perspect. Biol, vol.3, pp.4978-004978, 2011.

S. Grässel, C. Unsöld, H. Schäcke, L. Bruckner-tuderman, and P. Bruckner, Collagen XVI is expressed by human dermal fibroblasts and keratinocytes and is associated with the microfibrillar apparatus in the upper papillary dermis, Matrix Biol, vol.18, pp.309-317, 1999.

P. Agarwal, Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure, J. Biol. Chem, vol.287, pp.22549-22559, 2012.

J. Myllyharju, Collagens, modifying enzymes and their mutations in humans, flies and worms, Trends Genet, vol.20, pp.33-43, 2004.

R. Kant, A. Bali, N. Singh, and A. S. Jaggi, Prolyl 4 hydroxylase: A critical target in the pathophysiology of diseases, Korean Journal of Physiology and Pharmacology, vol.17, pp.111-120, 2013.

N. A. Hosper, R. A. Bank, . Van-den, and P. P. Berg, Human amniotic fluid-derived mesenchymal cells from fetuses with a neural tube defect do not deposit collagen type I protein after TGF-?1 stimulation in vitro, Stem Cells Dev, vol.23, pp.555-562, 2014.

V. Goff, S. Hulmes, D. J. Moali, and C. , BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling, Matrix Biol, pp.14-23, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02342455

C. Broder, Metalloproteases meprin ? and meprin ? are C-and N-procollagen proteinases important for collagen assembly and tensile strength, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.14219-14243, 2013.

N. Suzuki, Failure of ventral body wall closure in mouse embryos lacking a procollagen C-proteinase encoded by Bmp1, a mammalian gene related to Drosophila tolloid, Development, vol.122, pp.3587-3595, 1996.

W. N. Pappano, B. M. Steiglitz, I. C. Scott, D. R. Keene, and D. S. Greenspan, Use of Bmp1/Tll1 doubly homozygous null mice and proteomics to identify and validate in vivo substrates of bone morphogenetic protein 1/tolloid-like metalloproteinases, Mol. Cell. Biol, vol.23, pp.4428-4466, 2003.

M. Bekhouche and A. Colige, The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology, Matrix Biol. 44, vol.46, pp.46-53, 2015.

C. L. Papke, Loss of fibulin-4 disrupts collagen synthesis and maturation: Implications for pathology resulting from EFEMP2 mutations, Hum. Mol. Genet, vol.24, pp.5867-5879, 2015.

S. Chen and D. E. Birk, The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly, FEBS J, vol.280, pp.2120-2137, 2013.

S. Kalamajski, Increased C-telopeptide cross-linking of tendon type I collagen in fibromodulin-deficient mice, J. Biol. Chem, vol.289, pp.18873-18879, 2014.

D. Birk, Type V collagen: Heterotypic type I/V collagen interactions in the regulation of fibril assembly, Micron, vol.32, pp.223-237, 2001.

X. Liu, H. Wu, M. Byrne, S. Krane, and R. Jaenisch, Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development, Proc. Natl. Acad. Sci, vol.94, pp.1852-1856, 1997.

D. Eyre, M. Weis, and J. Wu, Articular cartilage collagen: An irreplaceable framework?, Eur. Cells Mater, vol.12, pp.57-63, 2006.

J. Wu, M. A. Weis, L. S. Kim, B. G. Carter, and D. R. Eyre, Differences in chain usage and cross-linking specificities of cartilage type V/XI collagen isoforms with age and tissue, J. Biol. Chem, vol.284, pp.5539-5545, 2009.

J. M. Wozney, Novel Regulators of Bone Formation : Molecular Clones and Activities Linked references are available on JSTOR for this article : Novel Regulators of Bone Formation : Molecular Clones and Activities, Science, vol.242, pp.1528-1534, 1988.

M. J. Shimell, E. L. Ferguson, S. F. Childs, and B. O. Michael, The Drosophila Dorsal-Ventral Patterning Gene tolloid Is Related to Human Bone Morphogenetic Protein 1, Cell, vol.67, pp.469-481, 1991.

K. Takahara, G. E. Lyons, and D. S. Greenspan, Bone morphogenetic protein-1 and a mammalian tolloid homologue (mTld) are encoded by alternatively spliced transcripts which are differentially expressed in some tissues, J. Biol. Chem, vol.269, pp.32572-32578, 1994.

I. C. Scott, Mammalian BMP-1/tolloid-related metalloproteinases, including novel family member mammalian tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis, Dev. Biol, vol.213, pp.283-300, 1999.

G. Ge and D. S. Greenspan, Developmental roles of the BMP1/TLD metalloproteinases, Birth Defects Res. Part C Embryo Today Rev, vol.78, pp.47-68, 2006.

T. G. Clark, The mammalian tolloid-like 1 gene, Tll1, is necessary for normal septation and positioning of the heart, Development, vol.126, pp.2631-2673, 1999.

E. Kessler, K. Takahara, L. Biniaminov, M. Brusel, and D. S. Greenspan, Bone morphogenetic protein-1: The type I procollagen C-proteinase, Science, vol.271, pp.360-362, 1996.

D. R. Hopkins, S. Keles, and D. S. Greenspan, The bone morphogenetic protein 1/Tolloidlike metalloproteinases, Matrix Biol, vol.26, pp.508-523, 2007.

Y. Yamada, M. Mudryj, and B. De-crombrugghe, A uniquely conserved regulatory signal is found around the translation initiation site in three different collagen genes, J. Biol. Chem, vol.258, pp.14914-14923, 1983.

E. Kessler, A. Fichard, H. Chanut-delalande, M. Brusel, and F. Ruggiero, Bone morphogenetic protein-1 (BMP-1) mediates C-terminal processing of procollagen V homotrimer, J. Biol. Chem, vol.276, pp.27051-27057, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00314150

B. Gopalakrishnan, W. Wang, and D. S. Greenspan, Biosynthetic processing of the pro-?1(V)pro-?2(V)pro-?3(V) procollagen heterotrimer, J. Biol. Chem, vol.279, pp.30904-30912, 2004.

C. Bonod-bidaud, Enzymatic cleavage specificity of the pro?1(V) chain processing analysed by site-directed mutagenesis, Biochem. J, vol.405, pp.299-306, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478734

W. N. Pappano, B. M. Steiglitz, I. C. Scott, D. R. Keene, and D. S. Greenspan, Use of Bmp1/Tll1 doubly homozygous null mice and proteomics to identify and validate in vivo substrates of bone morphogenetic protein 1/tolloid-like metalloproteinases, Mol. Cell. Biol, vol.23, pp.4428-4438, 2003.

C. Unsöld, W. N. Pappano, Y. Imamura, B. M. Steiglitz, and D. S. Greenspan, Biosynthetic processing of the pro-?1(V)2 pro-?2(V) collagen heterotrimer by Bone Morphogenetic Protein-1 and furin-like proprotein convertases, J. Biol. Chem, vol.277, pp.5596-5602, 2002.

I. C. Scott, Bone morphogenetic protein-1 processes probiglycan, J. Biol. Chem, vol.275, pp.30504-30511, 2000.

G. Ge, Bone morphogenetic protein-1/tolloid-related metalloproteinases process osteoglycin and enhance its ability to regulate collagen fibrillogenesis, J. Biol. Chem, vol.279, pp.41626-41633, 2004.

Z. Von-marschall and L. W. Fisher, Decorin is processed by three isoforms of bone morphogenetic protein-1 (BMP1), Biochem. Biophys. Res. Commun, vol.391, pp.1374-1378, 2010.

M. V. Panchenko, W. G. Stetler-stevenson, O. V. Trubetskoy, S. N. Gacheru, and H. M. Kagan, Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase, J. Biol. Chem, vol.271, pp.7113-7119, 1996.

A. Borel, Lysyl oxidase-like protein from bovine aorta: Isolation and maturation to an active form by bone morphogenetic protein-1, J. Biol. Chem, vol.276, pp.48944-48949, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00313824

S. Amano, Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 2 Chain, J. Biol. Chem, vol.275, pp.22728-22735, 2000.

L. Bruckner-tuderman, Can type VII collagen injections cure dystrophic epidermolysis bullosa?, Mol. Ther, vol.17, pp.6-7, 2009.

M. Chen, D. R. Keene, F. K. Costa, S. H. Tahk, and D. T. Woodley, The Carboxyl Terminus of Type VII Collagen Mediates Antiparallel Dimer Formation and Constitutes a New Antigenic Epitope for Epidermolysis Bullosa Acquisita Autoantibodies, J. Biol. Chem, vol.276, pp.21649-21655, 2001.

A. Rattenholl, Proteinases of the bone morphogenetic protein-1 family convert procollagen VII to mature anchoring fibril collagen, J. Biol. Chem, vol.277, pp.26372-26378, 2002.

D. P. Veitch, Mammalian tolloid metalloproteinase, and not matrix metalloprotease 2 or membrane type 1 metalloprotease, processes laminin-5 in keratinocytes and skin, J. Biol. Chem, vol.278, pp.15661-15668, 2003.

V. Iorio, L. D. Troughton, and K. J. Hamill, Laminins: Roles and utility in wound repair, Adv. Wound Care, vol.4, pp.250-263, 2015.

D. T. Behrens, The epidermal basement membrane is a composite of separate laminin-or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens, J. Biol. Chem, vol.287, pp.18700-18709, 2012.

R. V. Iozzo, J. J. Zoeller, and A. Nyström, Basement membrane proteoglycans: Modulators par excellence of cancer growth and angiogenesis, Molecules and Cells, vol.27, pp.503-513, 2009.

E. M. Gonzalez, BMP-1/tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan, J. Biol. Chem, vol.280, pp.7080-7087, 2005.

C. Moali and D. J. Hulmes, Roles and regulation of BMP1/tolloid-like proteinases: Collagen/matrix, assembly, growth factor activation, and beyond, pp.539-561, 2012.

G. Ge and D. S. Greenspan, BMP1 controls TGF?1 activation via cleavage of latent TGF?-binding protein, J. Cell Biol, vol.175, pp.111-120, 2006.

F. Delolme, Proteolytic control of TGF-? co-receptor activity by BMP-1/tolloidlike proteases revealed by quantitative iTRAQ proteomics, Cell. Mol. Life Sci, vol.72, pp.1009-1027, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02342459

P. Wipff and B. Hinz, Integrins and the activation of latent transforming growth factor ?1 -An intimate relationship, Eur. J. Cell Biol, vol.87, pp.601-615, 2008.

Y. Zhang, G. Ge, and D. S. Greenspan, Inhibition of bone morphogenetic protein 1 by native and altered forms of ?2-macroglobulin, J. Biol. Chem, vol.281, pp.39096-39104, 2006.

H. X. Lee, F. A. Mendes, J. L. Plouhinec, and E. M. De-robertis, Enzymatic regulation of pattern: BMP4 binds CUB domains of tolloids and inhibits proteinase activity, Genes Dev, vol.23, pp.2551-2562, 2009.

H. X. Lee, A. L. Ambrosio, B. Reversade, and E. M. De-robertis, Embryonic dorsalventral signaling: Secreted Frizzled-related proteins as inhibitors of tolloid proteinases, Cell, vol.124, pp.147-159, 2006.

K. Kobayashi, Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction, Nat. Cell Biol, vol.11, pp.46-55, 2009.

C. Bijakowski, Sizzled is unique among secreted Frizzled-related proteins for its ability to specifically inhibit Bone Morphogenetic Protein-1 (BMP-1)/tolloid-like proteinases, J. Biol. Chem, vol.287, pp.33581-33593, 2012.

T. Maruhashi, I. Kii, M. Saito, and A. Kudo, Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase, J. Biol. Chem, vol.285, pp.13294-13303, 2010.

I. C. Scott, Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling, Nature, vol.410, pp.475-478, 2001.

H. Inomata, T. Haraguchi, and Y. Sasai, Robust stability of the embryonic axial pattern requires a secreted scaffold for chordin degradation, Cell, vol.134, pp.854-865, 2008.

G. Huang, Fibronectin binds and enhances the activity of Bone Morphogenetic Protein-1, J. Biol. Chem, vol.284, pp.25879-25888, 2009.

V. Martínez-glez, Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta, Hum. Mutat, vol.33, pp.343-350, 2012.

P. V. Asharani, Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish, Am. J. Hum. Genet, vol.90, pp.661-674, 2012.

S. Fahiminiya, A polyadenylation site variant causes transcript specific BMP1 deficiency and frequent fractures in children, Hum. Mol. Genet, vol.24, pp.516-524, 2015.

S. Y. Cho, Osteogenesis imperfecta type I caused by a novel mutation in the start codon of the COL1A1 gene in a Korean family, Ann. Clin. Lab. Sci, vol.45, pp.100-105, 2015.

D. Syx, Defective proteolytic processing of fibrillar procollagens and prodecorin due to biallelic BMP1 mutations results in a severe, progressive form of osteogenesis imperfecta, J. Bone Miner. Res, vol.30, pp.1445-1456, 2015.

T. G. Clark, The mammalian tolloid-like 1 gene, Tll1, is necessary for normal septation and positioning of the heart, Development, vol.126, pp.2631-2673, 1999.

A. M. Muir, Induced ablation of Bmp1 and Tll1 produces osteogenesis imperfecta in mice, Hum. Mol. Genet, vol.23, pp.3085-3101, 2014.

A. M. Muir, BMP1-like proteinases are essential to the structure and wound healing of skin, Matrix Biol, vol.56, pp.114-131, 2016.

F. Malecaze, Upregulation of bone morphogenetic protein-1/mammalian tolloid and procollagen C-proteinase enhancer-1 in corneal scarring, Invest. Ophthalmol. Vis. Sci, vol.55, pp.6712-6721, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02342462

J. Wang, BMP1 and TLL1 are required for maintaining periodontal homeostasis, J. Dent. Res, vol.96, pp.578-585, 2017.

J. Wang, Essential roles of bone morphogenetic protein-1 and mammalian tolloidlike 1 in postnatal root dentin formation, J. Endod, vol.43, pp.109-115, 2017.

H. Zhang, P. Jani, T. Liang, Y. Lu, and C. Qin, Inactivation of bone morphogenetic protein 1 (Bmp1) and tolloid-like 1 (Tll1) in cells expressing type I collagen leads to dental and periodontal defects in mice, J. Mol. Histol, vol.48, pp.83-98, 2017.

L. Grgurevic, Circulating bone morphogenetic protein 1-3 isoform increases renal fibrosis, J. Am. Soc. Nephrol, vol.22, pp.681-692, 2011.

B. López, Identification of a potential cardiac antifibrotic mechanism of torasemide in patients with chronic heart failure, J. Am. Coll. Cardiol, vol.50, pp.859-867, 2007.

J. Beaumont, microRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-?1 up-regulation, Clin. Sci. (Lond), vol.126, pp.497-506, 2014.

R. Adar, E. Kessler, and B. Goldberg, Evidence for a protein that enhances the activity of type I procollagen C-proteinase, Coll. Relat. Res, vol.6, pp.267-277, 1986.

E. Kessler and R. Adar, Type I procollagen C-proteinase from mouse fibroblasts. Purification and demonstration of a 55-kDa enhancer glycoprotein, Eur. J. Biochem, vol.186, pp.115-121, 1989.

K. Takahara, Type I procollagen COOH-terminal proteinase enhancer protein: Identification, primary structure, and chromosomal localization of the cognate human gene (PCOLCE), J. Biol. Chem, vol.269, pp.26280-26285, 1994.

H. Xu, T. S. Acott, and M. Wirtz, Identification and expression of a novel type I procollagen C-proteinase enhancer protein gene from the glaucoma candidate region on 3q21-q24, Genomics, vol.66, pp.264-273, 2000.

L. Moschcovich, Folding and activity of recombinant human procollagen Cproteinase enhancer, Eur. J. Biochem, vol.268, pp.2991-2996, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00313826

B. M. Steiglitz, D. R. Keene, and D. S. Greenspan, PCOLCE2 encodes a functional procollagen C-proteinase enhancer (PCPE2) that is a collagen-binding protein differing in distribution of expression and post-translational modification from the previously described PCPE1, J. Biol. Chem, vol.277, pp.49820-49830, 2002.

V. Goff and S. , Procollagen C-Proteinase Enhancer stimulates procollagen processing by binding to the C-propeptide region only, J. Biol. Chem, vol.286, pp.38932-38938, 2011.

S. Symoens, Identification of binding partners interacting with the ?1-N-propeptide of type V collagen, Biochem. J, vol.433, pp.371-81, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00549896

C. Moali, Substrate-specific modulation of a multisubstrate proteinase: C-terminal processing of fibrillar procollagens is the only BMP-1-dependent activity to be enhanced by PCPE-1, J. Biol. Chem, vol.280, pp.24188-24194, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00014264

B. M. Steiglitz, Procollagen C-proteinase enhancer 1 genes are important determinants of the mechanical properties and geometry of bone and the ultrastructure of connective tissues, Mol. Cell. Biol, vol.26, pp.238-287, 2006.

V. Petropoulou, L. Garrigue-antar, and K. E. Kadleri, Identification of the minimal domain structure of bone morphogenetic protein-1 (BMP-1) for chordinase activity: Chordinase activity is not enhanced by procollagen C-proteinase enhancer-1

, J. Biol. Chem, vol.280, pp.22616-22623, 2005.

J. Zhu, Regulation of apoAI processing by procollagen C-proteinase enhancer-2 and bone morphogenetic protein-1, J. Lipid Res, vol.50, pp.1330-1339, 2009.

C. Gaboriaud, Structure and properties of the Ca2+-binding CUB domain, a widespread ligand-recognition unit involved in major biological functions, Biochem. J, vol.439, pp.185-193, 2011.

D. J. Hulmes, A. P. Mould, and E. Kessler, The CUB domains of procollagen Cproteinase enhancer control collagen assembly solely by their effect on procollagen Cproteinase/bone morphogenetic protein-1, Matrix Biol, vol.16, pp.41-45, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00313835

D. Kronenberg, Strong cooperativity and loose geometry between CUB domains are the basis for procollagen C-proteinase enhancer activity, J. Biol. Chem, vol.284, pp.33437-33446, 2009.

L. Bányai and L. Patthy, The NTR module: Domains of netrins, secreted frizzled related proteins, and type I procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of metalloproteases, Protein Sci, vol.8, pp.1636-1642, 1999.

E. Liepinsh, NMR structure of the netrin-like domain (NTR) of human type I procollagen C-proteinase enhancer defines structural consensus of NTR domains and assesses potential proteinase inhibitory activity and ligand binding, J. Biol. Chem, vol.278, pp.25982-25989, 2003.

J. D. Mott, Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor, J. Biol. Chem, vol.275, pp.1384-1390, 2000.

M. Bekhouche, Role of the netrin-like domain of procollagen C-proteinase enhancer-1 in the control of metalloproteinase activity, J. Biol. Chem, vol.285, pp.15950-15959, 2010.

T. Weiss, Binding of procollagen C-proteinase enhancer-1 (PCPE-1) to heparin/heparan sulfate: Properties and role in PCPE-1 interaction with cells, J. Biol. Chem, vol.285, pp.33867-33874, 2010.

T. Weiss, M. Brusel, P. Rousselle, and E. Kessler, The NTR domain of Procollagen C-Proteinase Enhancer-1 (PCPE-1) mediates PCPE-1 binding to syndecans-1, -2 and -4 as well as fibronectin, Int. J. Biochem. Cell Biol, vol.57, pp.45-53, 2014.

R. Salza, Extended interaction network of Procollagen C-Proteinase Enhancer-1 in the extracellular matrix, Biochem. J, vol.457, pp.137-186, 2014.

H. Morimoto, Procollagen C-proteinase enhancer-1 (PCPE-1) interacts with beta2-microglobulin (beta2-m) and may help initiate beta2-m amyloid fibril formation in connective tissues, Matrix Biol, vol.27, pp.211-219, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315165

S. Mesilaty-gross, Different patterns of human serum procollagen C-proteinase enhancer 1 (PCPE1), Clin. Chim. Acta, vol.403, pp.76-80, 2009.

G. Blanc, Insights into how CUB domains can exert specific functions while sharing a common fold: Conserved and specific features of the CUB1 domain contribute to the molecular basis of Procollagen C-Proteinase Enhancer-1 activity, J. Biol. Chem, vol.282, pp.16924-16933, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00315112

J. Bourhis, Procollagen C-proteinase enhancer grasps the stalk of the Cpropeptide trimer to boost collagen precursor maturation, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.6394-6403, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01322415

E. Kessler, A. P. Mould, and D. J. Hulmes, Procollagen type I C-Proteinase Enhancer is a naturally occurring connective tissue glycoprotein, Biochem. Biophys. Res. Commun, vol.173, pp.81-86, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00313850

I. C. Scott, T. G. Clark, K. Takahara, G. G. Hoffman, and D. S. Greenspan, Structural organization and expression patterns of the human and mouse genes for the type I procollagen COOH-terminal proteinase enhancer protein, Genomics, vol.55, pp.229-234, 1999.

S. Kumar, Identification and initial characterization of 5000 expressed sequenced tags (ESTs) each from adult human normal and osteoarthritic cartilage cDNA libraries, Osteoarthr. Cartil, vol.9, pp.641-653, 2001.

K. Heinzel and C. C. Bleul, The Foxn1-dependent transcripts PCOLCE2 and mPPP1R16B are not required for normal thymopoiesis, Eur. J. Immunol, vol.37, pp.2562-2571, 2007.

R. D. Pollard, Procollagen C-endopeptidase enhancer protein 2 (PCPE2) reduces atherosclerosis in mice by enhancing scavenger receptor class B1 (SR-BI)-mediated high-density lipoprotein (HDL)-cholesteryl ester uptake, J. Biol. Chem, vol.290, pp.15496-15511, 2015.

L. Grgurevic, B. Macek, D. Durdevic, and S. Vukicevic, Detection of bone and cartilagerelated proteins in plasma of patients with a bone fracture using liquid chromatographymass spectrometry, Int. Orthop, vol.31, pp.743-751, 2007.

D. A. Hinds, Application of pooled genotyping to scan candidate regions for association with HDL cholesterol levels, Hum. Genomics, vol.1, pp.421-455, 2004.

O. L. Francone, Disruption of the murine procollagen C-proteinase enhancer 2 gene causes accumulation of pro-apoA-I and increased HDL levels, J. Lipid Res, vol.52, pp.1974-83, 2011.

G. Kessler-icekson, H. Schlesinger, S. Freimann, and E. Kessler, Expression of procollagen C-proteinase enhancer-1 in the remodeling rat heart is stimulated by aldosterone, Int. J. Biochem. Cell Biol, vol.38, pp.358-365, 2006.

K. Reichert, Atorvastatin improves ventricular remodeling after myocardial infarction by interfering with collagen metabolism, PLoS One, vol.11, pp.1-17, 2016.

L. Yu, Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis, Circ. Hear. Fail, vol.6, pp.107-117, 2013.

C. F. Baicu, Effects of the absence of procollagen C-endopeptidase enhancer-2 on myocardial collagen accumulation in chronic pressure overload, Am. J. Physiol. Heart Circ. Physiol, vol.303, pp.234-274, 2012.

V. Raz, Nuclear entrapment and extracellular depletion of PCOLCE is associated with muscle degeneration in oculopharyngeal muscular dystrophy, BMC Neurol, vol.13, p.70, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00846336

Y. Achari, Molecular events surrounding collagen fibril assembly in the early healing rabbit medial collateral ligament--failure to recapitulate normal ligament development, Connect. Tissue Res, vol.52, pp.301-313, 2011.

M. Genin, F. Clement, A. Fattaccioli, M. Raes, and C. Michiels, M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide, BMC Cancer, vol.15, p.577, 2015.

A. Fritsch, A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy, J. Clin. Invest, vol.118, pp.1669-1679, 2008.

A. Nyström, Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms, EMBO Mol Med, vol.7, pp.1211-1228, 2015.

V. R. Mittapalli, Injury-driven stiffening of the dermis expedites skin carcinoma progression, Cancer Res, vol.76, pp.940-951, 2016.

A. Nyström, Collagen VII plays a dual role in wound healing, J. Clin. Invest, vol.123, pp.3498-3509, 2013.

L. Grgurevic, Systemic inhibition of BMP1-3 decreases progression of CCl4-induced liver fibrosis in rats, Growth Factors, vol.0, pp.1-15, 2018.

I. Ogata, Up-regulation of type I procollagen C-proteinase enhancer protein messenger RNA in rats with CCl4-induced liver fibrosis, Hepatology, vol.26, pp.611-617, 1997.

E. Hassoun, M. Safrin, H. Ziv, S. Pri-chen, and E. Kessler, Procollagen C-proteinase enhancer 1 (PCPE-1) as a plasma marker of muscle and liver fibrosis in mice, PLoS One, vol.11, pp.1-17, 2016.

D. L. Ippolito, Gene expression patterns associated with histopathology in toxic liver fibrosis, Toxicol. Sci, vol.149, pp.67-88, 2016.

S. Lee, D. E. Solow-cordero, E. Kessler, K. Takahara, and D. S. Greenspan, Transforming growth factor-beta regulation of bone morphogenetic protein

, /procollagen C-proteinase and related proteins in fibrogenic cells and keratinocytes, J. Biol. Chem, vol.272, pp.19059-19066, 1997.

D. Massoudi, C. J. Germer, J. M. Glisch, and D. S. Greenspan, Procollagen C-proteinase enhancer-1 (PCPE-1) functions as an anti-angiogenic factor and enhances epithelial recovery in injured cornea, Cell Tissue Res, vol.370, pp.461-476, 2017.

V. W. Wong, F. You, M. Januszyk, G. C. Gurtner, and A. A. Kuang, Transcriptional profiling of rapamycin-treated fibroblasts from hypertrophic and keloid scars, Ann. Plast. Surg, vol.72, pp.711-719, 2014.

L. Ma, Comparative proteomic analysis of extracellular matrix proteins secreted by hypertrophic scar with normal skin fibroblasts, Burn. Trauma, vol.2, p.76, 2014.

A. C. Newman, M. N. Nakatsu, W. Chou, P. D. Gershon, and C. C. Hughes, The requirement for fibroblasts in angiogenesis: Fibroblast-derived matrix proteins are essential for endothelial cell lumen formation, Mol. Biol. Cell, vol.22, pp.3791-3800, 2011.

J. A. Knipper, Interleukin-4 receptor ? signaling in myeloid cells controls collagen fibril assembly in skin repair, Immunity, vol.43, pp.803-816, 2015.

S. D. Prabhu and N. G. Frangogiannis, The biological basis for cardiac repair after myocardial infarction, Circ. Res, vol.119, pp.91-112, 2016.

K. M. Vannella and T. A. Wynn, Mechanisms of organ injury and repair by macrophages, Annu. Rev. Physiol, vol.79, pp.593-617, 2017.

H. Gu, Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis, FASEB J, vol.30, pp.2336-2350, 2016.

M. Lacroix, Interaction of complement defence collagens C1q and Mannose-Binding Lectin with BMP-1/Tolloid-like proteinases, Sci. Rep, vol.7, p.16958, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01657764

S. S. Bohlson, S. D. O'conner, H. J. Hulsebus, M. Ho, and D. A. Fraser, Complement, C1q, and C1q-related molecules regulate macrophage polarization, Front. Immunol, vol.5, p.402, 2014.

F. Finkernagel, The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization, Oncotarget, 2016.

K. Jiang, X. Sun, Y. Chen, Y. Shen, and J. N. Jarvis, RNA sequencing from human neutrophils reveals distinct transcriptional differences associated with chronic inflammatory states, BMC Med. Genomics, vol.8, p.55, 2015.

M. Schnoor, Production of type VI collagen by human macrophages: A new dimension in macrophage functional heterogeneity, J. Immunol, vol.180, pp.5707-5719, 2008.

A. C. Saphire, M. D. Bobardt, Z. Zhang, G. David, and P. Gallay, Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages, J. Virol, vol.75, pp.9187-9200, 2001.

J. F. Manakil, P. B. Sugerman, H. Li, G. J. Seymour, and P. M. Bartold, Cell-surface proteoglycan expression by lymphocytes from peripheral blood and gingiva in health and periodontal disease, J. Dent. Res, vol.80, pp.1704-1710, 2001.

K. Hirano, Expression of human scavenger receptor class B type I in cultured human monocyte-derived macrophages and atherosclerotic lesions, Circ. Res, vol.85, pp.108-124, 1999.

A. Ji, Scavenger receptor SR-BI in macrophage lipid metabolism, Atherosclerosis, vol.217, pp.106-112, 2011.

H. Tsuruoka, Scavenger Receptor class B type I is expressed in cultured keratinocytes and epidermis, J. Biol. Chem, vol.277, pp.2916-2922, 2002.

T. Kanaki, The regulatory expression of procollagen COOH-terminal proteinase enhancer in the proliferation of vascular smooth muscle cells, Biochem Biophys Res Commun, vol.270, pp.1049-1054, 2000.

M. Parsons, Mechanical load enhances procollagen processing in dermal fibroblasts by regulating levels of procollagen C-proteinase, Exp. Cell Res, vol.252, pp.319-331, 1999.

N. Shalitin, H. Schlesinger, M. J. Levy, E. Kessler, and G. Kessler-icekson, Expression of procollagen C-proteinase enhancer in cultured rat heart fibroblasts: Evidence for coregulation with type I collagen, J. Cell. Biochem, vol.90, pp.397-407, 2003.

M. Masuda, H. Igarashi, M. Kano, and H. Yoshikura, Effects of Procollagen C-Proteinase Enhancer protein on the growth of cultured rat fibroblasts revealed by an excisable retroviral vector, Cell Growth Differ, vol.9, pp.381-91, 1998.

A. Matsui, Stabilization of RNA strands in protein synthesis by type I Procollagen C-Proteinase Enhancer protein, a potential RNA-binding protein, in hepatic stellate cells, Biochem. Biophys. Res. Commun, vol.902, pp.898-902, 2002.

N. Rauniyar and J. R. Yates, Isobaric labeling-based relative quantification in shotgun proteomics, J. Proteome Res, vol.13, pp.5293-5309, 2014.

M. Vogeser and K. Parhofer, Liquid chromatography tandem-mass spectrometry (LC-MS/MS) -Technique and applications in endocrinology, Exp. Clin. Endocrinol. Diabetes, vol.115, pp.559-570, 2007.

R. O. Hynes and A. Naba, Overview of the matrisome -An inventory of extracellular matrix constituents and functions, Cold Spring Harb. Perspect. Biol, vol.4, pp.4903-004903, 2012.

K. Künzli, B. Favre, M. Chofflon, and L. Borradori, One gene but different proteins and diseases: The complexity of dystonin and bullous pemphigoid antigen 1, Exp. Dermatol, vol.25, pp.10-16, 2016.

W. Le?niak, ?. P. S?omnicki, and A. Filipek, S100A6 -New facts and features, Biochem. Biophys. Res. Commun, vol.390, pp.1087-1092, 2009.

C. Yao, Toll-like receptor family members in skin fibroblasts are functional and have a higher expression compared to skin keratinocytes, Int. J. Mol. Med, vol.35, pp.1443-1450, 2015.

P. G. Frank and Y. L. Marcel, Apolipoprotein A-I: Structure-function relationships, J. Lipid Res, vol.41, pp.853-72, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02460786

M. Landriscina, S100A13 participates in the release of fibroblast growth factor 1 in response to heat shock in vitro, J. Biol. Chem, vol.276, pp.22544-22552, 2001.

M. Landriscina, S100A13, a new marker of angiogenesis in human astrocytic gliomas, J. Neurooncol, vol.80, pp.251-259, 2006.

D. Massi, S100A13 is a new angiogenic marker in human melanoma, Mod. Pathol, vol.23, pp.804-813, 2010.

T. Xiang, Epigenetic silencing of the WNT antagonist Dickkopf 3 disrupts normal

, Wnt/?-catenin signalling and apoptosis regulation in breast cancer cells, J. Cell. Mol. Med, vol.17, pp.1236-1246, 2013.

R. Doliana, Isolation and characterization of EMILIN-2, a new component of the growing EMILINs family and a member of the EMI domain-containing superfamily, J. Biol. Chem, vol.276, pp.12003-12011, 2001.

M. Hayashi, Differential localization of mRNAs of collagen types I and II in chick fibroblasts, chondrocytes, and corneal cells by in situ hybridization using cDNA probes, J. Cell Biol, vol.102, pp.2302-2309, 1986.

J. Massague, The transforming growth factor-beta family, Annu. Rev. Cell Biol, vol.6, pp.597-641, 1990.

E. J. Feres-filho, Y. J. Choi, X. Han, T. E. Takala, and P. C. Trackman, Pre-and posttranslational regulation of lysyl oxidase by transforming growth factor-?1 in osteoblastic MC3T3-E1 cells, J. Biol. Chem, vol.270, pp.30797-30803, 1995.

W. Wang, Transforming growth factor-? induces secretion of activated ADAMTS-2, J. Biol. Chem, vol.278, pp.19549-19557, 2003.

P. Chau, P. E. Fielding, and C. J. Fielding, Bone morphogenetic protein-1 (BMP-1) cleaves human proapolipoprotein A1 and regulates its activation for lipid binding, Biochemistry, vol.46, pp.8445-8450, 2007.

D. Eyre, Collagen of articular cartilage, Arthritis Res, vol.4, pp.30-35, 2002.

C. J. Clarke, The initiator methionine tRNA drives secretion of type II Collagen from stromal fibroblasts to promote tumor growth and angiogenesis, Curr. Biol, vol.26, pp.755-765, 2016.

S. Marastoni, EMILIN2 down-modulates the Wnt signalling pathway and suppresses breast cancer cell growth and migration, J. Pathol, vol.232, pp.391-404, 2014.

A. Schiavinato, Targeting of EMILIN-1 and EMILIN-2 to fibrillin microfibrils facilitates their incorporation into the extracellular matrix, J. Invest. Dermatol, vol.136, pp.1150-1160, 2016.

H. Hemmi, A Toll-like receptor recognizes bacterial DNA, Nature, vol.408, pp.740-745, 2000.

A. Ashkar and K. Rosenthal, Toll-like receptor 9, CpG DNA and innate immunity, Curr. Mol. Med, vol.2, pp.545-556, 2002.

S. B. Hopkinson and J. C. Jones, The N terminus of the transmembrane protein BP180 interacts with the N-terminal domain of BP230, thereby mediating keratin cytoskeleton anchorage to the cell surface at the site of the hemidesmosome, Mol. Biol. Cell, vol.11, pp.277-286, 2000.

Y. Zhang, Dickkopf-3 attenuates pressure overload-induced cardiac remodelling, Cardiovasc. Res, vol.102, pp.35-45, 2014.

Y. Li, DKK3 regulates cell proliferation, apoptosis and collagen synthesis in keloid fibroblasts via TGF-?1/Smad signaling pathway, Biomed. Pharmacother, vol.91, pp.174-180, 2017.

G. Ge, Y. Zhang, B. M. Steiglitz, and D. S. Greenspan, Mammalian tolloid-like 1 binds procollagen C-proteinase enhancer protein 1 and differs from bone morphogenetic protein 1 in the functional roles of homologous protein domains, J. Biol. Chem, vol.281, pp.10786-10798, 2006.

T. R. Kyriakides and S. Maclauchlan, The role of thrombospondins in wound healing, ischemia, and the foreign body reaction, J. Cell Commun. Signal, vol.3, pp.215-225, 2009.

S. Piccolo, Cleavage of chordin by xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity, Cell, vol.91, pp.407-423, 1997.

J. J. Lee, Human versus mouse eosinophils: 'That which we call an eosinophil, by any other name would stain as red, J. Allergy Clin. Immunol, vol.130, pp.572-584, 2012.

U. Fiedler, MP0250, a VEGF and HGF neutralizing DARPin molecule shows high anti-tumor efficacy in mouse xenograft and patient-derived tumor models, Oncotarget, vol.8, pp.98371-98383, 2017.

E. H. Souied, Treatment of exudative age-related macular degeneration with a designed ankyrin repeat protein that binds vascular endothelial growth factor: A phase I/II study, Am. J. Ophthalmol, vol.158, 2014.

, P08123 Collagen alpha-2(I) chain P02458 Collagen alpha-1(II) chain P02461 Collagen alpha-1(III) chain P02462 Collagen alpha-1(IV) chain P20908 Collagen alpha-1(V) chain P05997 Collagen alpha-2(V) chain P25940 Collagen alpha-3(V) chain P12109 Collagen alpha-1(VI) chain P12110 Collagen alpha-2(VI) chain P12111 Collagen alpha-3(VI) chain Q99715 Collagen alpha-1(XII) chain Q05707 Collagen alpha-1(XIV) chain P39059 Collagen alpha-1(XV) chain Q07092 Collagen alpha-1(XVI) chain P39060 Collagen alpha-1

M. *. Lacroix, A. *. Tessier, C. Dumestre-pérard, S. Vadon-le-goff, E. Gout et al., Interaction of Complement Defense Collagens C1q and Mannose-Binding Lectin with BMP-1/Tolloid-like Proteinases, *: equal contribution Article, vol.7, p.16958, 2017.

L. Fortin, F. Delolme, J. Armengaud, C. Auxenfans, P. Fournié et al., Bone Morphogenetic Protein-1 promotes cell motility and TGF-? activation through the cleavage of the matricellular protein TSP-1. *: equal contribution

:. Abstract, A. Tessier, S. Vadon-le-goff, L. Bruckner-tuderman, A. Nyström et al.,

, PCPE-1 et -2, dans la cicatrisation cutanée. Annales de Dermatologie et de Vénérologie, vol.143, pp.430-431

. Book, A. Tessier, and C. Et-moali, , 2017.

B. Cutanée, Editions Matrix, pp.102-116, 2017.

T. Lacroix, Contributions to the work: Protein purification and immunofluorescence. Posters Are Procollagen C-Proteinase Enhancers -1 and -2 playing identical roles in skin wound healing? Agnès Tessier, Sandrine Vadon-Le Goff, Leena Bruckner-Tuderman, vol.1, 2017.

, Joint Meeting of the German (DGMB) and the French (SFBMec) Matrix Biology Societies, 2016.

, Regulation of tumor-promoting ECM assembly in dystrophic epidermolysis bullosa

A. Tessier, D. Kruppa, K. Zeyer, F. Peters, L. Bruckner-tuderman et al.,

, rd International Symposium -Control of cell motility in development and cancer, 2017.

, Are Procollagen C-Proteinase Enhancers -1 and -2 playing similar roles in skin wound healing?

, Gordon Research Seminar and Conference -The multifaceted nature of collagens in development, disease and tissue repair, 2017.

, Interaction of complement defence collagens C1q and MBL with BMP-1/tolloid-like proteinases

, th European Meeting of Complement in Human Disease, 2017.

, Joint Meeting of the German (DGMB) and the French (SFBMec) Matrix Biology Societies, 2016.

, Course in company management: regulatory affairs, business, marketing, risk management, vol.40, 2015.

, Courses in statistics (by Arkesys compagny, vol.2, 2017.

, Course in animal experimentation, vol.2, 2017.