. Beelen, such as asthma and chronic obstructive pulmonary disease (COPD), and lung cancer, 60 on the other hand, 2013.

. Lelieveld, , p.61, 2019.

. Raaschou-nielsen, To date, fine (i.e., PM 2.5 ) 62 and mainly ultrafine (i.e., PM 0.1 ) particles, generally corresponding to a very complex and 63 heterogeneous chemical mixtures, from natural and anthropogenic sources are reported as having 64 the greatest effects on human health, 2014.

. Abbas, Leclercq et al, vol.69, 2006.

, To date, a great deal of effort has been done to identify some typical features of in vitro ambient PM. However, the fact that ambient PM is a complex and heterogeneous, 73 regrettably often poorly described

. Boublil, To this 79 end, polycyclic aromatic hydrocarbons (PAH) within fine and quasi-ultrafine particles have been 80 already identified as the major redox-active components, and subsequently, inducers of critical of 81 underlying mechanisms of toxicity. Ambient PM contains a wide variety of organic chemicals, 82 which could, directly or indirectly, through their metabolic activation, possibly participate to the 83 induction of oxidative stress and inflammation oxidative and/or pro-inflammatory events in human 84 bronchial epithelial cell models, 2010.

D. Brito, , 2011.

, residual PM 2.involved. Hence, in this work, using a relevant normal human epithelial bronchial BEAS-102 2B cell model, we sought to better investigate: (i) the toxicological effects of both OEM 2.5-0.3 and 103 NEM 2.5-0.3 in terms of oxidative stress, autophagy and apoptosis, Further toxicological researches are therefore urgently requested to gain more knowledge , and the toxicity of non-extractable matter (NEM 2.5-0.3 , i.e

, BEAS-2B cells and all the chemical reagents were purchased from Sigma-Aldrich

Q. Fallavier and ). France, All the cell culture and molecular biology reagents, dihydroethidium 112 (DHE), 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA), High 113 Capacity cDNA Reverse Transcription Kit, Taqman fast advanced Master Mix, Taqman gene 114 expression assays, Pierce? BCA Protein Assay Kit, and Single-Channel Dead Cell Apoptosis Kit 115 with Annexin V Alexa Fluor? 488 and SYTOX? Green Dyes were provided by ThermoFisher 116 scientific

. France, CellTiter-Glo® Luminescent Cell Viability, Caspase Glo® 3/7 Assay, Caspase Glo®, vol.8

C. Assay and . Glo®, Highly 119 Sensitive 8-OHdG Check kit was from Gentaur France SARL

, Nuclear 121 extract kit and TransAM® NRF2 kit were from Active Motif, MILLIPLEX® 122 MAP Human Cytokine/Chemokine Magnetic Bead Panel-Immunology Multiplex Assays were 123 from Merck-Millipore

. France, TACS® TdT in situ -Fluorescein System and mouse monoclonal anti-human 125 actin antibody (MAB8929), Cell Signaling Technology

, France) provided rabbit monoclonal anti-mouse IgG, HRP-linked antibody (S7076)

, 128 rabbit polyclonal anti-human LC3-B antibody (NB100-2220), rabbit polyclonal anti-human beclin 8, pp.110-53818

, mouse monoclonal anti-human p62/SQSTM1 antibody (H00008878, pp.500-249

, M01), and goat polyclonal anti-rabbit IgG, HRP-linked antibody (NB7160)

. Badran, 133 and PM fraction preparation 134 Sampling site description, sampling methods for PM 2.5-0.3 and PM 0.3 , methods for the 135 determination of the physical and chemical characteristics of PM samples, and methods for the 136 preparation of PM fractions, PM sampling methods, PM physicochemical characterization, 2019.

A. Crl-9609?, . Ecacc, and . Wiltshire, BEAS-2B cell line

, Cell culture methods have been published elsewhere, 2017.

, PM/cm 2 , 156 with DMSO ? 0.5% v/v). The ?g Eq. PM/mL unit is in relation with the mass of PM extracted and 157 the final volume of DMSO. Defined volumes of these OEM stock solutions were diluted in the 158 LHC-9 culture medium to expose BEAS-2B cells to the desired concentrations of OEM (also 159 expressed in ?g Eq. PM/cm 2 ). After 6, 24 and/or 48 h, aliquots of cell-free culture supernatants, 160 also dedicated to cytotoxicity and inflammatory endpoints, were collected and quickly frozen at -161 80°C. Adherent cells, also dedicated to for immunofluorescence labelling and flow cytometry 162 analysis, were washed twice with 1mL-aliquots of cold sterile PBS, and immediately fixed. Other 163 adherent cells, also dedicated to oxidative stress, inflammation, autophagy

, NEM 2.5-0.3 OEM 2.5-0.3 , or OEM 0.3 ) was evaluated 168 after cell exposure to increasing concentrations, Cytotoxicity of the PM fractions

, Luminescent Cell Viability, Promega)

, Oxidative stress was evaluated in BEAS-2B cells, 6 and 24 h after their incubation as controls 174 or their exposure either to PM 2, vol.10

, In addition, DNA binding activity of nuclear 176 factor erythroid 2-related factor 2 (NRF2) and the associated gene expression of NRF2, intracellular ROS (HE and carboxy-H2DCFDA)

, NAD(P)H quinone 178 dehydrogenase 1 (NQO1), and superoxide dismutase (SOD), one the one hand, and the occurrence 179 of oxidative damage to macromolecules, ECH-associated protein 1 (KEAP-1), heme oxygenase 1 (HMOX), p.8

, BEAS-2B 181 cells treated with Menadione (2.5 mM) served as positive controls. Briefly, either HE (1 ?M) or 182 carboxy-H2DCFDA (1 ?M) was added to control or exposed BEAS-2B cells and incubated at, Isop), and 8-hydroxy-2'-deoxyguanosine (8-OHdG), on the other hand, were studied

. Leclercq, Gene expressions of HMOX, NQO1 186 and SOD were evaluated using quantitative RT-PCR. Briefly, after the total RNA isolation using 187 the RNeasy Kit (Qiagen), the reverse transcription of 1 ?g of total RNA in single-stranded cDNA 188 was performed using the High Capacity cDNA Reverse Transcription Kit. Thereafter, the relative 189 quantitation of the target gene expression was determined using specific Taqman? gene 190 expression assays, TransAM® NRF2 from Active Motif, 2018.

, The relative 193 change in gene expression was calculated by the ??CT method, normalized against endogenous 194 ribosomal 18S, Real-Time PCR System, and the Expression Suite Software (ThermoFisher scientific)

. Leclercq, Oxidative DNA adduct 8-OHdG concentrations were studied using a commercially 11 197 available enzyme immunoassay (Highly Sensitive 8-OHdG Check, 2016.

, IL-6), were determined in cell-free culture 201 supernatants of BEAS-2B cells, Tumor necrosis factor (TNF-?) and interleukin-6, vol.6

, Cytokine/Chemokine Magnetic Bead Panel-Immunology Multiplex Assay (Merck-Millipore) 204 according to the manufacturer's instruction, 2017.

, currently described as 209 critical hallmarks of autophagosome formation, were considered to study authophagy in BEAS-210 2B cells, 24 and 48 h after their incubation as controls or their exposure either to PM 2.5-0.3 , NEM 2.5-211 0.3 OEM 2.5-0.3 , or OEM 0.3 through. BEAS-2B cells treated with Rapamycine (10 ?M) served as 212 positive controls. Protein extracts (20 ?g) were prepared from BEAS-2B cells using protease and 213 phosphatase inhibitor cocktail (Sigma-Aldrich)-supplemented RIPA lysis and extraction buffer 214 (ThermoFisher scientific), Autophagy 207 Relevant molecules including ATG5, BECN1/Beclin 1, SQSTM1/p62 protein, and 208 microtubule-associated protein 1 light chain 3 b (MAP1LC3B/LC3B)

, Novus Biologicals); mouse 219 monoclonal anti-human actin antibody (R&D Systems) overnight at 4°C, secondly for 1 h with 12 220 secondary antibodies (rabbit monoclonal anti-mouse IgG, HRP-linked antibody (Cell Signaling 221 Technology); goat polyclonal anti-rabbit IgG, HRP-linked antibody, ATG5, rabbit polyclonal anti-human LC3-B antibody, rabbit polyclonal anti-human Beclin 218 antibody, mouse monoclonal anti-human p62/SQSTM1 antibody

, Chemiluminescence was recorded by Fusion FX Spectra (Vilbert-Lourmat

, Apoptosis

A. Tunel) and . Assays, BEAS-2B cells treated with Staurosporine 231 (1 µM) served as positive controls, BEAS-2B cells were studied 232 using commercially available luminescent assays (i.e., CellTiter-Glo® Luminescent Cell Viability, vol.9

, Caspase Glo® 8 Assay, and Caspase Glo® 9 Assay, Promega) according 234 to the manufacturer's recommendations (Leclercq et al, TACS® TdT in situ -Fluorescein, 2018.

, System (R&D systems), a classic TUNEL assay, was used according to the manufacturer's 236 recommendations before cell observation using an EVOS® FL Cell Imaging System 237 (ThermoFisher scientific), Single-Channel Dead Cell Apoptosis Kit with Annexin V Alexa

, ThermoFisher scientific), based on 5-ethynyl-2'-deoxyuridine (EdU) as a nucleoside analog to 244 thymidine and to be incorporated into DNA during active DNA synthesis, was used to measure 245 the cell ability to proliferate as a fundamental method for assessing cell health. Detection is based 246 on a click reaction, a copper catalyzed covalent reaction between a picolyl azide and an alkyne, Fluor? 488 and SYTOX? Green Dyes (ThermoFisher scientific) SYTOX?, before cell analysis using an Attune? NxT Acoustic Focusing Cytometer, vol.242, p.243

. Cytometer,

, For each incubation time, 253 results from BEAS-2B cells exposed either to PM 2.5-0.3 , NEM 2.5-0.3 OEM 2.5-0.3 , or OEM 0.3 at their 254 different concentrations or to positive controls were compared to those obtained from negative 255 controls (i.e., non-exposed). Thereafter, significant difference between results from BEAS-2B 256 cells exposed either to NEM 2, Results were expressed as mean values and standard deviations

. Longhin, Indeed, there is still a lack of knowledge about the specific chemical fraction 267 within ambient PM, which could be mainly responsible of its adverse effects on human health, p.266, 2016.

, significant decreases of intracellular ATP concentration in to NEM 2.5-0.3 . In contrast, both OEM 2.5-0.3 and particularly OEM 0.3 significantly altered 276 intracellular ATP concentration in BEAS-2B cells only for the highest doses, As shown in Figure S2

. Eq and . Pm/cm², The dose-and/or time-dependent cytotoxicity of PM 2

. Abbas, PM/cm²) among the lowest reported to give harmful effects whilst limiting a massive regulated 280 cell death, and the kinetic (from 6 to 48 h) to apply for the further study of toxicological endpoints 281, Leclercq et al, vol.282, 2010.

, Figure 1 showed the intracellular overproduction of ROS in BEAS-287 2B cells 6 and 24 h after their exposure to either PM 2.5-0.3 , NEM 2.5-0.3 , OEM 2.5-0.3 , and OEM 0.3 . HE 288 fluorescence intensity significantly increased in a dose-dependent manner in BEAS-2B cells after 289 their exposure to NEM 2.5-0.3 and OEM 2.5-0.3 , and more markedly PM 2.5-0.3 and OEM 0.3 . Because of 290 its desirable quality of passive diffusion into cells, as well as its high reactivity, Oxidative stress is often considered to be the primary critical underlying mechanism induced 286 by ambient PM. Accordingly, 2013.

. Wojtala, Almost similar results were observed for the intensity of fluorescence emitted 293 by carboxy-H2DCFDA, with the highest intensity detected in BEAS-2B cells 24 hours after of ROS detected by this probe is much broader, 2014.

F. Cu, . Mn, . Ni, . E. Pb, O. Pah et al., Zn are generally associated with redox reactions. In addition, the 299 overproduction of ROS could be related to the organic species, vol.300, 2019.

, AhR signaling pathway, thereby triggering transcription levels of CYP1A1 and 1B1 genes, which 303 are poorly or not at all expressed in BEAS-2B cells. Although metabolic activation is generally 304 beneficial in helping lung cells to reduce the potential toxicity of inhaled pollutants, it sometimes 305 converts harmless substances into highly biologically reactive electrophilic metabolites, thereby 306 contributing to the overproduction of ROS, p.16

. Gualtieri, the cell (Wardyn et al. 2015). In response to the exposure to oxidants or electrophiles, 323 NRF2 accumulates in the nucleus, where it binds to the ARE in upstream regulatory regions of 324 genes encoding NRF2 targets. Among them, antioxidant enzymes, proteins involved in the 325 metabolism and clearance of xenobiotics, protection against metal toxicity, inhibition of 326 inflammation, PM 10 and PM 2 5 , representative of urban background air pollution, diesel exhaust PM 308 and wood smoke, because of their relatively high levels of PAH, were all able to significantly 309 activate the AHR signaling pathway and/or generate oxidative stress conditions in BEAS-2B cells 310, 2011.

. Ohdg, 8. Co-protein, and . Abbas, Oxidative damage to DNA, proteins and/or lipids can 339 significantly disrupt the cell homeostasis through the inorganic-and organic chemical-catalyzed 340 overproduction of ROS and cellular internalization, contributing to the modulation of gene 341 expression or DNA mutation, protein alteration with loss of function, and oxidative degradation 342 of the lipid membrane with loss of integrity and fluidity, Remarkably, the highest concentrations of oxidative 333 damage in BEAS-2B cells were generally reported after their exposure to, vol.343, 2006.

. Fischer, Accordingly, as shown in Figure S3, only TNF-? and IL-6 were significantly secreted 351 by BEAS-2B cells 6 and 24 h after their exposure to PM 2.5-0.3 , and mainly 6 h after their exposure 352 to NEM 2.5-0.3 , OEM 2.5-0.3 , and OEM 0.3 . However, it is noteworthy that there was only limited 18 353 secretion of TNF-? and IL-6 by exposed BEAS-2B cells, as compared with other results, While NRF2, as an anti-inflammatory, can modulate NF-?B binding activity, NF-?B can, as 348 a self-starter, modulate NRF2 transcription and activity having thereby positive or negative effects 349 on the expression of its target gene expression, vol.357, 2006.

. Deng, , p.360, 2006.

. Leclercq, A remarkable relationship has 362 been reported between the contents of redox-active compounds (e.g., metals, PAH) within ambient 363 PM and the proinflammatory response occurring within lung cells, which might closely rely on 364 the regulation of NF-?B, addition, the activation of the NF-?B the NRF2 and NF-?B signaling pathways, p.361, 2011.

. Racanelli, NEM 2.5-0.3 , OEM 2.5-0.3 , and OEM 0.3 -induced autophagy 374 To go further in this original work and to contribute to fill the knowledge about the harmful 375 effects of the exposure to PM 2.5-0.3 , NEM 2.5-0.3 , OEM 2.5-0.3 , and OEM 0.3 on BEAS-2B cell 19 376 homeostasis and functionality, autophagy was thereafter studied. Indeed, mounting evidences 377 further suggest that long-lasting oxidative stress may help to cell adaptation to the stress by limiting 378 the oxidative damage, and although the molecular mechanisms underlying these changes remain 379 unknown, autophagy is part of the adaptive response (Deng et al 2017lung diseases, including asthma and COPD, and several, if not all forms of regulated 384 cell death (RCD), either by hyperactivation or by inhibition of the autophagy flow, Other authors contributing to decipher the underlying mechanisms of toxicity of PM 10 and PM 2.5 370 in BEAS-2B cells reported that PM 2.5 -induced IL-6 secretion appeared to be activated before IL-371 8 secretion, and did not increase beyond 24 h in contrast to PM 10 -induced IL-6 secretion. 372 373, vol.385, p.3, 2016.

D. Accordingly, ) further the inhibition of NF-?B signaling pathway. Taken together, our 414 results also supported the intriguing occurrence of a specific autophagy-impairment as a critical or 415 even beneficial mechanism triggered during OEM-mediated toxicity, Overall, the study of autophagy closely supported differential responses of whole PM or NEM 398 towards organic enriched fractions (i.e., OEM 2.5-0.3 and rather OEM 0.3 ), 2013.

. Peixoto, To go 424 further, apoptosis was also investigated. Figure 5 shows the specific activities of some of the 425 critical caspases closely involved in both the cell death receptor (extrinsic) and the mitochondrial 426 (intrinsic) pathways of apoptosis. The activities of the initiator caspases, vol.8, 2017.

. Boublil, on the one hand, and cell 431 cycle phases of these cells, on the other hand, indicated rather no clear morphological 432 characteristics of a regulated cell death by apoptosis, even after 48 h of exposure. However, An et 433 al. (2019), studying the critical interplays between oxidative stress, autophagy and apoptosis cell models, including BEAS-2B cells, according to the specific 437 exposure conditions, thereby 429 supporting the progressive occurrence of apoptotic events. However, as shown by Figures 6 and 430 7, both TUNEL and Annexin-V immunostaining of BEAS-2B cells, vol.438, 2011.

M. Loxham, R. J. Morgan-walsh, M. J. Cooper, C. Blume, R. J. Swindle et al., , p.605

F. R. Cassee, D. Teagle, M. R. Palmer, and D. E. Davies, The effects on bronchial epithelial 606 mucociliary cultures of coarse fine and ultrafine particulate matter from an underground railway 607 station, Toxicol, Sci, vol.145, issue.1, pp.98-107, 2015.

F. Napoletano, O. Baron, P. Vandenabeele, B. Mollereau, and M. Fanto, Intersections between 609 Regulated Cell Death and Autophagy, Trends Cell Biol, vol.29, issue.4, pp.323-338, 2019.

S. M. Oh, H. R. Kim, Y. J. Park, S. Y. Lee, and K. H. Chung, Organic extracts of urban air pollution particulate 611 matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial 612 cells (BEAS-2B cells), Mutat Res, vol.723, issue.2, pp.142-151

M. Park, H. S. Joo, K. Lee, M. Jang, S. D. Kim et al., Differential toxicities of fine particulate 615 matters from various sources, Sci Rep, vol.8, issue.1, p.17007, 2018.

M. S. Peixoto, M. F. De-oliveira-galvão, B. De-medeiros, and S. R. , Cell death pathways of 617 particulate matter toxicity, Chemosphere, vol.188, pp.32-48, 2017.

M. G. Perrone, M. Gualtieri, V. Consonni, L. Ferrero, G. Sangiorgi et al., Particle size, chemical composition, seasons of the year and urban, rural or 620 remote site origins as determinants of biological effects of particulate matter on pulmonary 621 cells, Environ Pollut, vol.176, pp.215-227

A. Peters, H. E. Wichmann, T. Tuch, J. Heinrich, and J. Heyder, Respiratory effects are associated 623 with the number of ultrafine particles, Am J Respir Crit Care Med, vol.155, issue.4, pp.1376-1383, 1997.

O. Raaschou-nielsen, R. Beelen, and M. Wang, Particulate matter air pollution components 625 and risk for lung cancer, Environ Int, vol.87, p.31, 2016.

A. C. Racanelli, S. A. Kikkers, A. Choi, and S. M. Cloonan, Autophagy and inflammation in 627 chronic respiratory disease, Autophagy, vol.14, issue.2, pp.221-232, 2018.

. Riese-dj-2nd and R. L. Cullum, Epiregulin: roles in normal physiology and cancer, Semin Cell, vol.629, 2014.

, Dev Biol, vol.28, pp.49-56

M. Roesslein, C. Hirsch, J. P. Kaiser, H. F. Krug, and P. Wick, Comparability of in vitro tests for bioactive 631 nanoparticles: a common assay to detect reactive oxygen species as an example, Int J Mol Sci, vol.632, issue.12, pp.24320-24337

F. Saint-georges, I. Abbas, S. Schuliga, A. Verdin, P. Gosset et al., , p.634, 2008.

, Gene expression induction of volatile organic compound and/or polycyclic aromatic 635 hydrocarbon-metabolizing enzymes in isolated human alveolar macrophages in response to 636 airborne particulate matter PM 2,5, Toxicology, vol.244, pp.220-230

F. Saint-georges, G. Garçon, F. Escande, I. Abbas, A. Verdin et al., , p.638, 2009.

, Role of air pollution particulate matter (PM 2,5 ) in the occurrence of loss of heterozygosity in 639 multiple critical regions of 3p chromosome in human epithelial lung cells L132, Toxicol Lett, vol.640, pp.172-179

J. Sotty, G. Garçon, F. O. Denayer, L. Y. Alleman, Y. Saleh et al., , p.642

C. L. Jm, Toxicological effects of ambient fine (PM 2.5-0.18 ) and ultrafine (PM 0.18 ) particles 643 in healthy and diseased 3D organo-typic mucocilary-phenotype models, Environ Res, vol.176, p.108538

M. Schuliga, NF-kappa B signaling in chronic inflammatory airway disease, Biomolecules, vol.646, pp.1266-1283, 2015.

M. Suzuki, A. Otsuki, N. Keleku-lukwete, and M. Yamamoto, Overview of redox regulation by 648, 2016.

, Keap1-Nrf2 system in toxicology and cancer, Curr Opinion Toxicol, vol.1, p.32

T. Wang, J. Garcia, and W. Zhang, Epigenetic regulation in particulate matter-mediated 650 cardiopulmonary toxicities: a systems biology perspective, Curr Pharmacogenomics Person 651 Med, vol.10, issue.4, pp.314-321, 2012.

J. D. Wardyn, A. H. Ponsford, and C. M. Sanderson, Dissecting molecular cross-talk between Nrf2 653 and NF-?B response pathways, Biochem, Soc, Trans, vol.43, pp.621-626, 2015.

A. Wojtala, M. Bonora, D. Malinska, P. Pinton, J. Duszynski et al., Methods to 655 monitor ROS production by fluorescence microscopy and fluorometry, Methods Enzymol, vol.542, pp.243-262, 2014.

X. C. Xu, Y. F. Wu, J. S. Zhou, H. P. Chen, Y. Wang et al., , p.658, 2017.

, Autophagy inhibitors suppress environmental particulate matter-induced airway inflammation

, Toxicol Lett, vol.280, pp.206-212

W. Zhou, D. Tian, J. He, Y. Wang, L. Zhang et al., Repeated PM 2,5 661 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-662 mediated promoter hypermethylation, Oncotarget, vol.7, pp.20691-20703, 2016.

W. Zhou, D. Tian, J. He, L. Zhang, X. Tang et al., , p.664, 2017.

, Exposure scenario: Another important factor determining the toxic effects of PM 2,5 and possible 665 mechanisms involved, Env Poll, vol.226, pp.412-425

, The research described in this article benefited from grants from the National Council for

, Ref: 04-06-2014). The "Unité de

C. Environnementale, . Interactions-sur-le, and . Vivant, UCEIV-EA4492) and the "IMPacts de 672 l'Environnement Chimique sur la Santé" (IMPECS-EA4483) both participate in the CLIMIBIO 673 project, which is financially supported by the Hauts-de-France Region Council, the French 674 Ministry of Higher Education and Research, and the European Regional Development Funds

, Figure 1: Fluorescence intensity of dihydroethidium (HE) and 6-carboxy-2',7'-681 dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA), and gene expression and/or protein 682 binding activity of nuclear factor erythroid 2-related factor 2 (NRF-2) in BEAS-2B cells, vol.6, p.24

, Menadione (100 µM, 4 h) has been used as positive control for ROS generation

. Results, normalized to control, are described by their means and their standard deviations (3 687 replicates for controls, and 3 replicates for exposed cells

. Mann-whitney-u-test,

, Gene expression of Kelch-like ECH-associated protein 1 (KEAP-1), heme oxygenase 1 693 (HMOX), NAD(P)H quinone dehydrogenase 1 (NQO1), and superoxide dismutase, vol.2

, Results, normalized to control, are described 697 by their means and their standard deviations (3 replicates for controls, and 3 replicates for exposed 698 cells, BEAS-2B cells, 6 and 24 h after their exposure to the fine particles and their extractable and non-695 extractable fractions

, CO-protein), and 8-703 isoprostane (8-Isop) in BEAS-2B cells, 6 and 24 h after their exposure to the fine particles and 704 their extractable and non-extractable fractions

. Mann-whitney, U-test

, Protein expression of autophagy-related 5, BECN1/Beclin 1, SQSTM1/p62 protein, and, Figure, vol.4

, NEM 2.5-0.3 , and OEM 2.5-0.3 , respectively) and to the extractable fraction (OEM 0.3 ) of the 715 ultrafine particles (PM 0.3 ) at 12 ?g Eq. PM/cm 2 . Results, normalized to control, are described by 716 their means and their standard deviations (3 replicates for controls, and 3 replicates for exposed 717 cells

, or 48h) has been used as positive control for 725 apoptosis. Results, normalized to control, are described by their means and their standard 726 deviations (3 replicates for controls, Activities of caspases 3/7, 8, and 9 in BEAS-2B cells 24 and 48 h after their exposure to 722 the fine particles and their extractable and non-extractable fractions, vol.5

, Immunofluorescence labelling of apoptotic cells using the TdT-mediated dUTP Nick, vol.6

, End Labeling (TUNEL) method in BEAS-2B cells 24 and 48 h after their exposure to the fine 733 particles and their extractable and non-extractable fractions

, PM/cm 2 . Endonuclease and staurosporine (2.5 ?M) served as positive controls

, Figure 7: Detection of apoptotic cells using the Single-Channel Dead Cell Apoptosis Kit with

A. Annexin, Fluor? 488 and SYTOX? Green Dyes (ThermoFisher scientific) and cell cycle 741 analysis using Click-iT? Plus EdU Alexa Fluor? 647 Flow Cytometry Assay Kit of BEAS-2B

. Mann-whitney, U-test

, Références bibliographiques

K. Abounit, T. M. Scarabelli, and R. B. Mccauley, Autophagy in mammalian cells, World J. Biol. Chem, vol.3, pp.1-6, 2012.

. Afif, SO2 in Beirut: air quality implication and effects of local emissions and long-range transport | Request PDF, 2008.

S. Aggarwal, P. Mannam, and J. Zhang, Differential regulation of autophagy and mitophagy in pulmonary diseases, Am. J. Physiol. -Lung Cell. Mol. Physiol, vol.311, pp.433-452, 2016.

S. M. Ahmed, L. Luo, A. Namani, X. J. Wang, and X. Tang, Nrf2 signaling pathway: Pivotal roles in inflammation, Biochim. Biophys. Acta Mol. Basis Dis, vol.1863, pp.585-597, 2017.

A. Albinet, Hydrocarbures aromatiques polycycliques et leurs dérivés nitrés et oxygénés dans l'air ambiant: caractérisation physico-chimique et origine 409, 2006.

A. Albinet, E. Leoz-garziandia, H. Budzinski, and E. Viilenave, Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area, Concentrations and sources, vol.384, pp.280-292, 2007.
URL : https://hal.archives-ouvertes.fr/ineris-00961912

A. Albinet, E. Leoz-garziandia, H. Budzinski, E. Villenave, and J. Jaffrezo, Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys Part 2: Particle size distribution, Atmos. Environ, vol.42, pp.55-64, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00375853

J. O. Allen, N. M. Dookeran, K. Taghizadeh, A. L. Lafleur, K. A. Smith et al., Measurement of Oxygenated Polycyclic Aromatic Hydrocarbons Associated with a Size-Segregated Urban Aerosol, Environ. Sci. Technol, vol.31, pp.2064-2070, 1997.

V. Anastasiya, A. V. Snezhkina, O. L. Kudryavtseva, and . Kardymon, ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells, Oxidative Medicine and Cellular Longevity, vol.2019, 2019.

R. Angulo, P. Martínez, and M. L. Jodral, PCB congeners transferred by human milk, with an estimate of their daily intake, Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc, vol.37, pp.1081-1088, 1999.

, Pollution de l'air : nouvelles connaissances sur les particules de l'air ambiant et l'impact du trafic routier | Anses -Agence nationale de sécurité sanitaire de l'alimentation, ANSES, 2019.

K. Apel and H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol, vol.55, pp.373-399, 2004.

,

A. Profile, , 1997.

E. L. Axe, S. A. Walker, M. Manifava, P. Chandra, H. L. Roderick et al., Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum, J. Cell Biol, vol.182, pp.685-701, 2008.

R. Baalbaki, R. El-hage, J. Nassar, A. Shihadeh, N. Saliba et al., Exposure to Atmospheric PMS,PAHS,PCDD/FS and Metals Nearan Open Air Waste Burningsite in Beirut, Leban. Sci. J, vol.17, pp.91-103, 2016.

H. A. Bamford and J. E. Baker, Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region, Atmos. Environ, vol.37, pp.2077-2091, 2003.

S. Becker, L. Dailey, J. M. Soukup, R. Silbajoris, and R. B. Devlin, TLR-2 is involved in airway epithelial cell response to air pollution particles, Toxicol. Appl. Pharmacol, vol.203, pp.45-52, 2005.

J. A. Bernstein, N. Alexis, C. Barnes, I. L. Bernstein, A. Nel et al., Health effects of air pollution, J. Allergy Clin. Immunol, vol.114, pp.1116-1123, 2004.

S. Billet, F. Ledoux, Z. Dagher, D. Courcot, G. Garçon et al., Stability of organic compounds in atmospheric particulate matter and its relation with textural properties, 2007.

E. Birben, U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci, Oxidative Stress and Antioxidant Defense: World Allergy Organ, J, vol.5, pp.9-19, 2012.

,

M. Borgie, Z. Dagher, F. Ledoux, A. Verdin, F. Cazier et al., Comparison between ultrafine and fine particulate matter collected in Lebanon: Chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells, Environ. Pollut. Barking Essex, pp.250-260, 2015.

,

M. Borgie, F. Ledoux, Z. Dagher, A. Verdin, F. Cazier et al., Chemical characteristics of PM2.5-0.3 and PM0.3 and consequence of a dust storm episode at an urban site in Lebanon, Atmospheric Res, vol.180, pp.274-286, 2016.

S. Bortoli, E. Boutet-robinet, D. Lagadic-gossmann, and L. Huc, Nrf2 and AhR in metabolic reprogramming after contaminant exposure, Curr. Opin. Toxicol, vol.8, pp.34-41, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01699380

M. Brauer, M. Amann, R. T. Burnett, A. Cohen, F. Dentener et al., Exposure Assessment for Estimation of the Global Burden of Disease Attributable to Outdoor Air Pollution, Environ. Sci. Technol, vol.46, pp.652-660, 2012.

B. F. Cachon, S. Firmin, A. Verdin, L. Ayi-fanou, S. Billet et al., Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin. Environ. Pollut, vol.185, pp.340-351, 2014.

D. C. Carslaw and K. Ropkins, Openair -An R Package for Air Quality Data Analysis. Env. Model Softw 27-28, 52-61, 2012.

A. Cecinato, E. Guerriero, C. Balducci, and V. Muto, Use of the PAH fingerprints for identifying pollution sources, Urban Clim, vol.10, pp.630-643, 2014.

,

D. C. Chalupa, P. E. Morrow, G. Oberdörster, M. J. Utell, and M. W. Frampton, Ultrafine particle deposition in subjects with asthma, Environ. Health Perspect, vol.112, pp.879-882, 2004.

M. Chandra, M. Panchatcharam, and S. Miriyala, Biomarkers in ROS and Role of Isoprostanes in Oxidative Stress, 2016.

L. C. Chen and M. Lippmann, Effects of Metals within Ambient Air Particulate Matter (PM) on Human Health, Inhal. Toxicol, vol.21, pp.1-31, 2009.

,

Y. Chen, E. Mcmillan-ward, J. Kong, S. J. Israels, and S. B. Gibson, Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells, Cell Death Differ, vol.15, pp.171-182, 2008.

Z. Chen, Y. Wu, P. Wang, Y. Wu, Z. Li et al., Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium, Autophagy, vol.12, pp.297-311, 2016.

A. Chevallier, Etude du rôle du récepteur aux hydrocarbures aromatiques ou AhR dans le développement et l'homéostasie du système nerveux de la souris C57BL/6J 286, 2013.

T. Chiba, J. Chihara, and M. Furue, Role of the Arylhydrocarbon Receptor (AhR) in the Pathology of Asthma and COPD, J. Allergy, 2012.

V. Cianfanelli, M. D'orazio, and F. Cecconi, AMBRA1 and BECLIN 1 interplay in the crosstalk between autophagy and cell proliferation, Cell Cycle, vol.14, pp.959-963, 2015.

K. Cooper, Till Death Do Us Part: The Marriage of Autophagy and Apoptosis, 2018.

L. A. Courter, C. Pereira, and W. M. Baird, Diesel exhaust influences carcinogenic PAHinduced genotoxicity and gene expression in human breast epithelial cells in culture, Mutat. Res. Mol. Mech. Mutagen, vol.625, pp.72-82, 2007.

,

T. Daouk, Effets de contaminations d'embryons et d'adultes de poissons zèbres (Danio rerio) par des PCB et des HAP, 2012.

T. M. De-kok, H. A. Driece, J. G. Hogervorst, and J. J. Briedé, Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies, Mutat. Res. Mutat. Res, vol.613, pp.103-122, 2006.

,

M. Del-rosario-sienra, Oxygenated polycyclic aromatic hydrocarbons in urban air particulate matter, 2006.

X. Deng, F. Zhang, W. Rui, F. Long, L. Wang et al., PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells, Toxicol. In Vitro, vol.27, pp.1762-1770, 2013.

X. Deng, F. Zhang, W. Rui, F. Long, L. Wang et al., PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells, Toxicol. In Vitro, vol.27, pp.1762-1770, 2013.

M. Dergham, C. Lepers, A. Verdin, S. Billet, F. Cazier et al., Prooxidant and Proinflammatory Potency of Air Pollution Particulate Matter (PM 2.5-0.3 ) Produced in Rural, Urban, or Industrial Surroundings in Human Bronchial Epithelial Cells (BEAS-2B), Chem. Res. Toxicol, vol.25, pp.904-919, 2012.

,

D. Bartolomeo, S. Corazzari, M. Nazio, F. Oliverio, S. Lisi et al., The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy, J. Cell Biol, vol.191, pp.155-168, 2010.

C. Dietrich, Antioxidant Functions of the Aryl Hydrocarbon Receptor, Stem Cells Int, 2016.

M. Dimashki, Measurements of nitro-PAH in the atmospheres of two cities, Atmos. Environ, vol.34, pp.417-420, 2000.

K. Donaldson, L. Tran, L. A. Jimenez, R. Duffin, D. E. Newby et al., Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure, Part. Fibre Toxicol, vol.2, p.10, 2005.

N. Eller, B. Netterstrøm, and P. Laursen, Risk of chronic effects on the central nervous system at low toluene exposure, Occup. Med. Oxf. Engl, vol.49, pp.389-395, 1999.

E. Eskelinen, Maturation of autophagic vacuoles in Mammalian cells, Autophagy, vol.1, pp.1-10, 2005.

C. Fang, L. Gu, D. Smerin, S. Mao, and X. Xiong, The Interrelation between Reactive Oxygen Species and Autophagy in Neurological Disorders, Oxid. Med. Cell. Longev, 2017.

C. M. Filley, W. Halliday, and B. K. Kleinschmidt-demasters, The effects of toluene on the central nervous system, J. Neuropathol. Exp. Neurol, vol.63, pp.1-12, 2004.

G. M. Fimia, A. Stoykova, A. Romagnoli, L. Giunta, S. Di-bartolomeo et al., Ambra1 regulates autophagy and development of the nervous system, Nature, vol.447, pp.1121-1125, 2007.

A. T. Fisk, K. A. Hobson, and R. J. Norstrom, Influence of Chemical and Biological Factors on Trophic Transfer of Persistent Organic Pollutants in the Northwater Polynya Marine Food Web, Environ. Sci. Technol, vol.35, pp.732-738, 2001.

,

T. I. Fortoul, V. Rodriguez-lara, A. Gonzalez-villalva, M. Rojas-lemus, L. Colin-barenque et al., Health Effects of Metals in Particulate Matter, Curr. Air Qual. Issues, 2015.

M. Fragkos, J. Jurvansuu, and P. Beard, H2AX Is Required for Cell Cycle Arrest via the p53/p21 Pathway, Mol. Cell. Biol, vol.29, pp.2828-2840, 2009.

,

Y. Fujii-kuriyama and K. Kawajiri, Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci, vol.86, pp.40-53, 2010.

I. G. Ganley, D. H. Lam, J. Wang, X. Ding, S. Chen et al., ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy, J. Biol. Chem, vol.284, pp.12297-12305, 2009.

B. Garait, . Le, . Oxydant-induit-par, A. Voie-metabolique-(regimes, and . Glisodin®,

C. Genies, Génotoxicité des hydrocarbures aromatiques polycycliques en melanges, une classe majeure de polluants atmosphériques 267, 2017.

A. J. Ghio, J. Stonehuerner, L. A. Dailey, and J. D. Carter, Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress, Inhal. Toxicol, vol.11, pp.37-49, 1999.

A. Ghorani-azam, B. Riahi-zanjani, and M. Balali-mood, Effects of air pollution on human health and practical measures for prevention in Iran, J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci, vol.21, 2016.

R. Guaita, M. Pichiule, T. Maté, C. Linares, and J. Díaz, Short-term impact of particulate matter (PM2.5) on respiratory mortality in Madrid, Int. J. Environ. Health Res, vol.21, pp.260-274, 2011.

M. Gualtieri, J. Øvrevik, J. A. Holme, M. G. Perrone, E. Bolzacchini et al., Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells, Toxicol. In Vitro, vol.24, pp.29-39, 2010.

P. Gupta, W. P. Harger, and J. Arey, The contribution of nitro-and methylnitronaphthalenes to the vapor-phase mutagenicity of ambient air samples, 1996.

, Atmos. Environ, vol.30, pp.24-30

J. Halonen, T. Lanki, T. Yli-tuomi, P. Tiittanen, M. Kulmala et al., Particulate Air Pollution and Acute Cardiorespiratory Hospital Admissions and Mortality Among the Elderly, Epidemiology, vol.20, pp.143-153, 2009.

,

G. B. Hamra, F. Laden, A. J. Cohen, O. Raaschou-nielsen, M. Brauer et al., Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis, Environ. Health Perspect, vol.123, pp.1107-1112, 2015.

,

N. Hosokawa, T. Hara, T. Kaizuka, C. Kishi, A. Takamura et al., Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy, Mol. Biol. Cell, vol.20, 1981.

B. Huang, M. Liu, X. Bi, C. Chaemfa, Z. Ren et al., Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China. Atmospheric Pollut. Res, vol.5, pp.210-218, 2014.

, Diesel and Gasoline Engine Exhausts and Some Nitroarenes. International Agency for Research on Cancer, 2013.

M. H. Jung, H. R. Kim, Y. J. Park, D. S. Park, K. H. Chung et al., Genotoxic effects and oxidative stress induced by organic extracts of particulate matter (PM10) collected from a subway tunnel in Seoul, Korea. Mutat. Res. Toxicol. Environ. Mutagen, vol.749, pp.39-47, 2012.

R. Kandyala, S. P. Raghavendra, and S. T. Rajasekharan, Xylene: An overview of its health hazards and preventive measures, J. Oral Maxillofac. Pathol. JOMFP, vol.14, pp.1-5, 2010.

H. L. Karlsson, J. Nygren, and L. Möller, Genotoxicity of airborne particulate matter: the role of cell-particle interaction and of substances with adduct-forming and oxidizing capacity, Mutat. Res. Toxicol. Environ. Mutagen, vol.565, pp.1-10, 2004.

,

F. J. Kelly and J. C. Fussell, Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter, Atmos. Environ, vol.60, pp.504-526, 2012.

N. I. Kerkvliet, AHR-mediated immunomodulation: the role of altered gene transcription, Biochem. Pharmacol, vol.77, pp.746-760, 2009.

,

I. J. Keyte, R. M. Harrison, and G. Lammel, Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons -a review, Chem. Soc. Rev, vol.42, pp.9333-9391, 2013.

J. Kim, Y. Cha, and Y. Surh, A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders, Mutat. Res, vol.690, pp.12-23, 2010.

K. Kim, S. A. Jahan, E. Kabir, and R. J. Brown, A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects, Environ. Int, vol.60, pp.71-80, 2013.

K. Kim, E. Kabir, and S. Kabir, A review on the human health impact of airborne particulate matter, Environ. Int, vol.74, pp.136-143, 2015.

,

M. J. Kim, V. Pelloux, E. Guyot, J. Tordjman, L. Bui et al., Inflammatory pathway genes belong to major targets of persistent organic pollutants in adipose cells, Environ. Health Perspect, vol.120, pp.508-514, 2012.

D. J. Klionsky, Autophagy in mammalian systems, Pt. B: ..., Methods in enzymology, 2009.

A. M. Knaapen, T. Shi, P. J. Borm, and R. P. Schins, Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induced by particulate matter, Mol. Cell. Biochem. 234, vol.235, pp.317-326, 2002.

,

H. M. Korashy and A. O. El-kadi, Regulatory Mechanisms Modulating the Expression of Cytochrome P450 1A1 Gene by Heavy Metals, Toxicol. Sci, vol.88, pp.39-51, 2005.

G. Kroemer, L. Galluzzi, P. Vandenabeele, J. Abrams, E. S. Alnemri et al., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ, vol.16, pp.3-11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407686

M. Lamkanfi and V. M. Dixit, Manipulation of Host Cell Death Pathways during Microbial Infections, Cell Host Microbe, vol.8, pp.44-54, 2010.

,

T. Landes, Dynamique mitochondriale et apoptose : rôle de l'interaction entre Opa1 et Bnip3 (thesis), 2009.

A. Lau, X. Wang, F. Zhao, N. F. Villeneuve, T. Wu et al., A Noncanonical Mechanism of Nrf2 Activation by Autophagy Deficiency: Direct Interaction between Keap1 and p62, Mol. Cell. Biol, vol.30, pp.3275-3285, 2010.

B. R. Lauwerys and F. A. Houssiau, Involvement of cytokines in the pathogenesis of systemic lupus erythematosus, Adv. Exp. Med. Biol, vol.520, pp.237-251, 2003.

A. O. Lawal, Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: The role of Nrf2 and AhR-mediated pathways, Toxicol. Lett, vol.270, pp.88-95, 2017.

B. P. Lawrence, N. I. Kerkvliet, and N. I. Kerkvliet, Immune Modulation by TCDD and Related Polyhalogenated Aromatic Hydrocarbons, 2006.

. Immunotoxicol,

B. Leclercq, M. Happillon, S. Antherieu, E. M. Hardy, L. Y. Alleman et al., Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM4, Environ. Pollut, vol.218, pp.1074-1088, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02552782

F. Ledoux, L. Courcot, D. Courcot, A. Aboukaïs, and E. Puskaric, A summer and winter apportionment of particulate matter at urban and rural areas in northern France, 16th International Conference on Nucleation and Atmospheric Aerosols, vol.82, pp.633-642, 2006.

R. C. Lee and V. Ambros, An extensive class of small RNAs in Caenorhabditis elegans, Science, vol.294, pp.862-864, 2001.

J. Lelieveld, K. Klingmüller, A. Pozzer, U. Pöschl, M. Fnais et al., Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions, Eur. Heart J, 2019.

R. J. Letcher, J. O. Bustnes, R. Dietz, B. M. Jenssen, E. H. Jørgensen et al., Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish, Sci. Total Environ, vol.408, pp.2995-3043, 2010.

T. Liu, B. Wu, Y. Wang, H. He, Z. Lin et al., Particulate matter 2.5 induces autophagy via inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin kinase signaling pathway in human bronchial epithelial cells, Mol. Med. Rep, vol.12, pp.1914-1922, 2015.

Y. Liu, M. Sklorz, J. Schnelle-kreis, J. Orasche, T. Ferge et al., Oxidant denuder sampling for analysis of polycyclic aromatic hydrocarbons and their oxygenated derivates in ambient aerosol: evaluation of sampling artefact, Chemosphere, vol.62, pp.1889-1898, 2006.

Z. Liu, X. Wu, F. Zhang, L. Han, G. Bao et al., AhR expression is increased in hepatocellular carcinoma, J. Mol. Histol, vol.44, pp.455-461, 2013.

E. Longhin, M. Gualtieri, L. Capasso, R. Bengalli, S. Mollerup et al., Physico-chemical properties and biological effects of diesel and biomass particles, Environ. Pollut, vol.215, pp.366-375, 2016.

D. Loomis, Y. Grosse, B. Lauby-secretan, F. E. Ghissassi, V. Bouvard et al., The carcinogenicity of outdoor air pollution, Lancet Oncol, vol.14, issue.13, p.70487, 2013.

G. Ludewig, L. Lehmann, H. Esch, and L. W. Robertson, Metabolic Activation of PCBs to Carcinogens in Vivo -A Review, Environ. Toxicol. Pharmacol, vol.25, pp.241-246, 2008.

R. W. Luebke, C. B. Copeland, M. Daniels, A. L. Lambert, and M. I. Gilmour, Suppression of allergic immune responses to house dust mite (HDM) in rats exposed to 2,3,7,8-TCDD, Toxicol. Sci. Off. J. Soc. Toxicol, vol.62, pp.71-79, 2001.

,

P. K. Mandal, Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology, J. Comp. Physiol, vol.175, pp.221-230, 2005.

F. Marino, A. Cecinato, and P. A. Siskos, Nitro-PAH in ambient particulate matter in the atmosphere of Athens, Chemosphere, vol.40, issue.99, pp.308-310, 2000.

R. Martin, C. Desponds, R. O. Eren, M. Quadroni, M. Thome et al., Caspasemediated cleavage of raptor participates in the inactivation of mTORC1 during cell death, Cell Death Discov, vol.2, 2016.

I. D. Mascanfroni, M. C. Takenaka, A. Yeste, B. Patel, Y. Wu et al., Metabolic control of type 1 regulatory (Tr1) cell differentiation by AHR and HIF1-?, Nat. Med, vol.21, pp.638-646, 2015.

,

K. Matsunaga, E. Morita, T. Saitoh, S. Akira, N. T. Ktistakis et al., Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L, J. Cell Biol, vol.190, pp.511-521, 2010.

,

S. Matthias-maser and R. Jaenicke, The size distribution of primary biological aerosol particles in the multiphase atmosphere, Aerobiologia, vol.16, pp.207-210, 2000.

G. M. Mazzuca, X. Ren, C. P. Loughner, M. D. Estes, J. H. Crawford et al., Interactive comment on " Ozone Production and Its Sensitivity to NO x and VOCs : Results from the DISCOVER-AQ Field Experiment, 2013.

S. Michael, M. Montag, and W. Dott, Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter, Environ. Pollut, vol.183, pp.19-29, 2013.

G. L. Milne, H. Yin, K. D. Hardy, S. S. Davies, and L. J. Roberts, Isoprostane Generation and Function, Chem. Rev, vol.111, pp.5973-5996, 2011.

P. Minutolo, L. Sgro, M. A. Costagliola, M. V. Prati, M. Sirignano et al., Ultrafine particle emission from combustion devices burning natural gas 6, 2010.

C. Monn and S. Becker, Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air, Toxicol. Appl. Pharmacol, vol.155, pp.245-252, 1999.

,

M. Murakami, J. Yamada, H. Kumata, and H. Takada, Sorptive Behavior of Nitro-PAHs in Street Runoff and Their Potential as Indicators of Diesel Vehicle Exhaust Particles, Environ. Sci. Technol, vol.42, pp.1144-1150, 2008.

A. Nakashima, K. Higashisaka, and T. Kusabiraki, Autophagy is a new protective mechanism against the cytotoxicity of platinum nanoparticles in human trophoblasts, Sci Rep, vol.9, 2019.

M. M. Nakhlé, W. Farah, N. Ziadé, M. Abboud, D. Salameh et al., Short-term relationships between emergency hospital admissions for respiratory and cardiovascular diseases and fine particulate air pollution in Beirut, Lebanon. Environ. Monit. Assess, vol.187, 0196.

J. Navarro-yepes, M. Burns, A. Anandhan, O. Khalimonchuk, L. M. Del-razo et al., Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival, Antioxid. Redox Signal, vol.21, pp.66-85, 2014.

N. Ba, A. Cazier, F. Verdin, A. Garcon, G. Cabral et al., Physico-chemical characterization and in vitro inflammatory and oxidative potency of atmospheric particles collected in Dakar city's (Senegal), Environ. Pollut, vol.245, pp.568-581, 2019.

,

E. Nfon and I. T. Cousins, Interpreting time trends and biomagnification of PCBs in the Baltic region using the equilibrium lipid partitioning approach, Environ. Pollut, vol.144, pp.994-1000, 2006.

T. Nguyen, P. J. Sherratt, and C. B. Pickett, Regulatory mechanisms controlling gene expression mediated by the antioxidant response element, Annu. Rev. Pharmacol. Toxicol, vol.43, pp.233-260, 2003.

G. Oberdörster, E. Oberdörster, and J. Oberdörster, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles, Environ. Health Perspect, vol.113, pp.823-839, 2005.

, WHO | WHO Global Ambient Air Quality Database (update, OMS, 2018.

C. A. Opitz, U. M. Litzenburger, F. Sahm, M. Ott, I. Tritschler et al., An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor, Nature, vol.478, pp.197-203, 2011.

D. U. Pedersen, J. L. Durant, K. Taghizadeh, H. F. Hemond, A. L. Lafleur et al., Human Cell Mutagens in Respirable Airborne Particles from the Northeastern United States. 2. Quantification of Mutagens and Other Organic Compounds, Environ. Sci. Technol, vol.39, pp.9547-9560, 2005.

J. L. Peel, P. E. Tolbert, M. Klein, K. B. Metzger, W. D. Flanders et al., Ambient air pollution and respiratory emergency department visits, Epidemiol. Camb. Mass, vol.16, pp.164-174, 2005.

L. Perez, A. Tobías, X. Querol, J. Pey, A. Alastuey et al., Saharan dust, particulate matter and cause-specific mortality: A case-crossover study in Barcelona (Spain), Environ. Int, vol.48, pp.150-155, 2012.

,

A. Poland, D. Palen, and E. Glover, Tumour promotion by TCDD in skin of HRS/J hairless mice, Nature, vol.300, pp.271-273, 1982.

I. Pope, C. A. Burnett, R. T. Thun, M. J. Calle, E. E. Krewski et al., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, J. Am. Med. Assoc, vol.287, pp.1132-1141, 2002.

A. K. Prahalad, J. Inmon, L. A. Dailey, M. C. Madden, A. J. Ghio et al., Air pollution particles mediated oxidative DNA base damage in a cell free system and in human airway epithelial cells in relation to particulate metal content and bioreactivity, Chem. Res. Toxicol, vol.14, pp.879-887, 2001.

A. Puga, C. Ma, and J. L. Marlowe, The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways, Biochem. Pharmacol, vol.77, pp.713-722, 2009.

F. J. Quintana, A. S. Basso, A. H. Iglesias, T. Korn, M. F. Farez et al., Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor, Nature, vol.453, pp.65-71, 2008.

F. J. Quintana, G. Murugaiyan, M. F. Farez, M. Mitsdoerffer, A. Tukpah et al., An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.20768-20773, 2010.

C. Ramos-de-rainho, S. Machado-corrêa, J. Luiz-mazzei, A. Fortes-aiub, C. Felzenszwalb et al., Genotoxicity of Polycyclic Aromatic Hydrocarbons and Nitro-Derived in Respirable Airborne Particulate Matter Collected from Urban Areas of Rio de Janeiro (Brazil), BioMed Res. Int, 2013.

K. Ravindra, R. Sokhi, and R. Vangrieken, Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation, Atmos. Environ, vol.42, pp.2895-2921, 2008.

J. Ringuet, E. Leoz-garziandia, H. Budzinski, E. Villenave, and A. Albinet, Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity, 2012.
URL : https://hal.archives-ouvertes.fr/ineris-00961781

, Atmospheric Chem. Phys, vol.12, pp.8877-8887

R. Roberts and N. T. Ktistakis, Omegasomes: PI3P platforms that manufacture autophagosomes, Essays Biochem, vol.55, pp.17-27, 2013.

S. Rogers, A. R. De-souza, M. Zago, M. Iu, N. Guerrina et al., Aryl hydrocarbon receptor (AhR)-dependent regulation of pulmonary miRNA by chronic cigarette smoke exposure, Sci. Rep, 2017.

S. W. Ryter and A. M. Choi, Autophagy in lung disease pathogenesis and therapeutics, Redox Biol, vol.4, pp.215-225, 2015.

A. Sapkota, J. M. Symons, J. Kleissl, L. Wang, M. B. Parlange et al., Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore city, Environ. Sci. Technol, vol.39, pp.24-32, 2005.

F. Schaumann, P. J. Borm, A. Herbrich, J. Knoch, M. Pitz et al., Metal-rich Ambient Particles (Particulate Matter2.5) Cause Airway Inflammation in Healthy Subjects, Am. J. Respir. Crit. Care Med, vol.170, pp.898-903, 2004.

P. E. Schwarze, J. Ovrevik, M. Låg, M. Refsnes, P. Nafstad et al., Particulate matter properties and health effects: consistency of epidemiological and toxicological studies, Hum. Exp. Toxicol, vol.25, pp.559-579, 2006.

,

M. Shahid, B. Pourrut, C. Dumat, M. Nadeem, M. Aslam et al., Heavy-Metal-Induced Reactive Oxygen Species: Phytotoxicity and Physicochemical Changes in Plants, Reviews of Environmental Contamination and Toxicology, vol.232, pp.1-44, 2014.

J. Shao, A. J. Wheeler, L. Chen, B. Strandberg, A. Hinwood et al., The pro-inflammatory effects of particulate matter on epithelial cells are associated with elemental composition, Chemosphere, vol.202, pp.530-537, 2018.

H. G. Shertzer, C. D. Clay, M. B. Genter, S. N. Schneider, D. W. Nebert et al., Cyp1a2 protects against reactive oxygen production in mouse liver microsomes. Free Radic, Biol. Med, vol.36, pp.605-617, 2004.

A. &. Showkat, D. Bhat, . Hassan, and S. Majid, Heavy Metal Toxicity And Their Harmful Effects On Living Organisms-A Review, 2019.

B. Shivanna, W. Jiang, L. Wang, X. I. Couroucli, and B. Moorthy, Omeprazole Attenuates Hyperoxic Lung Injury in Mice via Aryl Hydrocarbon Receptor Activation and Is Associated with Increased Expression of Cytochrome P4501A Enzymes, J. Pharmacol. Exp. Ther, vol.339, pp.106-114, 2011.

A. Stolz, N. Ertych, and H. Bastians, Tumor Suppressor CHK2: Regulator of DNA Damage Response and Mediator of Chromosomal Stability, Clin. Cancer Res, vol.17, pp.401-405, 2011.

J. Su, P. Lin, and H. Chang, Prognostic value of nuclear translocation of aryl hydrocarbon receptor for non-small cell lung cancer, Anticancer Res, vol.33, pp.3953-3961, 2013.

E. Tackey, P. E. Lipsky, and G. G. Illei, Rationale for interleukin-6 blockade in systemic lupus erythematosus, Lupus, vol.13, pp.339-343, 2004.

,

M. Tarkowski, B. Kur, M. Nocu?, and K. Sitarek, Perinatal exposure of mice to TCDD decreases allergic sensitisation through inhibition of IL-4 production rather than T regulatory cell-mediated suppression, Int. J. Occup. Med. Environ. Health, vol.23, pp.75-83, 2010.

S. A. Teter, K. P. Eggerton, S. V. Scott, J. Kim, A. M. Fischer et al., Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase, J. Biol. Chem, vol.276, pp.2083-2087, 2001.

,

S. Tomaz, Etude des composés polyaromatiques dans l'atmosphère: caractérisation moléculaire et processus réactionnels en lien avec l'aérosol organique (Thèse de doctorat), 2014.

J. Tu, K. Inthavong, and G. Ahmadi, The Human Respiratory System, Computational Fluid and Particle Dynamics in the Human Respiratory System, pp.19-44, 2013.

. Us-epa, Air Quality and Climate Change Research, 2018.

. Us-epa,

. Us-epa, Visibility and Regional Haze, 2015.

. Us-epa,

O. Us-epa, Sulfur Dioxide Basics, 2016.

. Us-epa and . Url,

O. Us-epa, Health Effects of Ozone in the General Population, 2016.

. Us-epa and . Url,

O. Us-epa, Learn about Polychlorinated Biphenyls (PCBs) [WWW Document, 2015.

E. Velali, E. Papachristou, A. Pantazaki, A. Besis, C. Samara et al., In vitro cellular toxicity induced by extractable organic fractions of particles exhausted from urban combustion sources -Role of PAHs, Environ. Pollut, vol.243, pp.1166-1176, 2018.

M. Veldhoen, K. Hirota, A. M. Westendorf, J. Buer, L. Dumoutier et al., The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins, Nature, vol.453, pp.106-109, 2008.

,

J. M. Veranth, C. A. Reilly, M. M. Veranth, T. A. Moss, C. R. Langelier et al., Inflammatory Cytokines and Cell Death in BEAS-2B Lung Cells Treated with Soil Dust, Lipopolysaccharide, and Surface-Modified Particles, Toxicol. Sci. Off. J. Soc. Toxicol, vol.82, pp.88-96, 2004.

C. Walgraeve, K. Demeestere, J. Dewulf, R. Zimmermann, and H. Van-langenhove, Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: molecular characterization and occurrence, Atmos. Environ, vol.44, pp.1831-1846, 2010.

W. Wang, N. Jariyasopit, J. Schrlau, Y. Jia, S. Tao et al., Concentration and Photochemistry of PAHs, NPAHs, and OPAHs and Toxicity of PM2.5 during the Beijing Olympic Games, Environ. Sci. Technol, vol.45, pp.6887-6895, 2011.

N. K. Wilson, T. R. Mccurdy, and J. C. Chuang, Concentrations and phase distributions of nitrated and oxygenated polycyclic aromatic hydrocarbons in ambient air, Atmos. Environ, vol.29, pp.189-195, 1995.

A. H. Wolfe and J. A. Patz, Reactive Nitrogen and Human Health:Acute and Long-term Implications, AMBIO J. Hum. Environ, vol.31, pp.120-125, 2002.

P. S. Wong, C. F. Vogel, K. Kokosinski, and F. Matsumura, Arylhydrocarbon Receptor Activation in NCI-H441 Cells and C57BL/6 Mice, Am. J. Respir. Cell Mol. Biol, vol.42, pp.210-217, 2010.

J. Xu, J. T. Wise, L. Wang, K. Schumann, Z. Zhang et al., Dual Roles of Oxidative Stress in Metal Carcinogenesis, J. Environ. Pathol. Toxicol. Oncol, vol.36, pp.345-376, 2017.

N. Yassaa, B. Y. Meklati, A. Cecinato, and F. Marino, Organic Aerosols in Urban and Waste Landfill of Algiers Metropolitan Area: Occurrence and Sources, Environ. Sci. Technol, vol.35, pp.306-311, 2001.

M. You, N. Savaraj, M. T. Kuo, M. Wangpaichitr, J. Varona-santos et al., TRAIL induces autophagic protein cleavage through caspase activation in melanoma cell lines under arginine deprivation, Mol. Cell. Biochem, vol.374, pp.181-190, 2013.

L. Zhang, K. Wang, Y. Lei, Q. Li, E. C. Nice et al., Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic, Biol. Med, vol.89, pp.452-465, 2015.

Q. Zhang, J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe et al., Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett, vol.34, 2007.

C. Zhou, X. Zhu, Z. Wang, X. Ma, J. Chen et al., Gas-Particle Partitioning of PAHs In The Urban Air of Dalian, China: Measurements and Assessments, Polycycl. Aromat. Compd, vol.33, pp.31-51, 2013.

,

C. , Saccharomyces cerevisiae Y190) expressing the human estrogen receptor ? (ER?) (Kamiya et al. 2005). Senger et al. and McDougal et al. have demonstrated that antiestrogenic activities of PAHs can be mediated by the aryl hydrocarbon receptor (AhR) (Maria et al. 2000; McDougal et al. 2001). Indeed, OH-PAHs can be easily formed in the human and animal body in the presence of cytochrome P450 enzymes as well as after chemical reactions in the atmosphere, p.12, 2000.

. Li, Swart et al. (2009) evaluated mutagenicity, stable DNA adducts, and abasic sites, PASHs (thia-PAHs or thia-arenes) were tested for the first time in 1981 regarding to their mutagenicity using the Ames test, and some of them, 2012.

. Swart, Pelroy et al. 1983). Methyl-substituted tri-and tetracyclic PASHs as well as nitro-substituted tetracyclic PASHs were also demonstrated mutagenic, thiphenes was not mutagenic in TA104, and the two isomeric forms, vol.4, 1984.

I. Abbas, A. Verdin, F. Escande, F. Saint-georges, F. Cazier et al., In-vitro short-term exposure to air pollution PM2.5-0.3 induced cell cycle alterations and genetic instability in a human lung cell coculture model, Environmental Research, vol.147, pp.146-158, 2016.

L. Abramsson-zetterberg and B. M. Maurer, Fluoranthene and phenantrene, two predominant PAHs inheat-prepared food, do not influence the frequency of micro nucleated mouse erythrocytes induced by other PAHs, Toxicology report, vol.5, pp.1057-1063, 2015.

, Case Studies in Environmental Medicine. Toxicity of Polycyclic Aromatic Hydrocarbons (PAHs), Agency for Toxic Substances and Disease Registry (ATSDR), 2009.

M. S. Alam, I. J. Keyte, J. Yin, C. Stark, A. M. Jones et al., Diurnal variability of polycyclic aromatic compound (PAC) concentrations: relationship with meteorological conditions and inferred sources, Atmos. Environ, vol.122, pp.427-436, 2015.

A. Albinet, E. Leoz-garziandia, H. Budzinski, and E. Viilenave, Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area, Concentrations and sources, vol.384, pp.280-292, 2007.
URL : https://hal.archives-ouvertes.fr/ineris-00961912

A. Albinet, E. Leoz-garziandia, H. Budzinski, and E. Viilenave, Simultaneous analysis of oxygenated and nitrated polycyclic aromatic hydrocarbons on standard reference material 1649a (urban dust) and on natural ambient air samples by gas chromatography-mass spectrometry with negative ion chemical ionisation, Journal of Chromatography A, vol.1121, pp.106-113, 2007.
URL : https://hal.archives-ouvertes.fr/ineris-00961902

A. Albinet, E. Leoz-garziandia, H. Budzinski, E. Villenave, and J. Jaffrezo, Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys. Part 1: concentrations, sources and gas/particle partitioning, Atmospheric Environment, vol.42, pp.43-54, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00375849

A. Albinet, E. Leoz-garziandia, H. Budzinski, E. Villenave, and J. Jaffrezo, Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys. Part 1: concentrations, sources and gas/particle partitioning, Atmos. Environ, vol.42, pp.43-54, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00375849

A. Albinet, F. Nalin, S. Tomaz, J. Beaumont, and F. Lestremau, A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC-NICIMS, Anal Bioanal Chem, vol.406, pp.3131-3148, 2014.
URL : https://hal.archives-ouvertes.fr/ineris-01710223

K. Alexandrov, M. Rojas, and S. Satarug, The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation, Toxicol. Lett, vol.198, pp.63-68, 2010.

C. A. Alves, A. M. Vicente, D. Custo?dio, M. Cerqueira, T. Nunes et al., Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities, Science of the Total Environment, vol.595, pp.494-504, 2017.

C. Alves, A. Vicente, J. Gomes, T. Nunes, M. Duarte et al., Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel, Atmospheric Research, vol.180, pp.128-137, 2016.

O. Amador-muñoz, R. Villalobos-pietrini, J. Miranda, and L. E. Vera-avila, Organic compounds of PM2.5 in Mexico Valley: spatial and temporal patterns, behavior and sources, Sci. Total Environ, vol.409, pp.1453-65, 2011.

A. Anastasopoulos, A. Wheeler, D. Karman, and R. Kulka, Intraurban concentrations, spatial variability and correlation of ambient polycyclic aromatic hydrocarbons (PAH) and PM2.5, Atmos. Environ, vol.59, pp.272-283, 2012.

J. Arey, The handbook of environmental chemistry, PAHs and related compounds, 1998.

V. Arlt, K. Cole, and D. Phillips, Activation of 3-nitrobenzanthrone and its metabolites to DNAdamaging species inhuman B-lymphoblastoid MCL-5 cells, Mutagenesis, vol.19, pp.149-156, 2004.

V. Arlt, L. Zhan, H. Schmeiser, M. Honma, M. Hayashi et al., DNA adducts and mutagenic specificity of the ubiquitous environmental pollutant 3-nitrobenzanthrone in Muta Mouse, Environ. Mol. Mutagen, vol.43, pp.186-195, 2004.

B. Armstrong, E. Hutchinson, J. Unwin, and T. Fletcher, Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis, Environ Health Perspect, vol.112, issue.9, pp.970-978, 2004.

R. Atkinson and J. Arey, Mechanisms of the gas-phase reactions of aromatic hydrocarbons and PAHs with OH and NO3 Radicals, Polycycl. Aromat. Comp, vol.27, pp.15-40, 2007.

R. Atkinson and J. Arey, Lifetimes and fates of toxic air contaminants in California's atmosphere. Final report to the California air ressources board, 1997.

R. Avagyan, R. Nystrom, R. Lindgren, C. Boman, and R. Westerholm, Particulate hydroxy-PAH emissions from a residential wood log stove using different fuels and burning conditions, Atmos. Envrion, vol.140, pp.1-9, 2016.

P. Bach, M. Kelley, R. Tate, and D. Mccrory, Screening for lung cancer: a review of the current literature, Chest, vol.123, pp.72-82, 2003.

E. T. Bacolod, S. Uno, H. Tanaka, and J. Koyama, Micronuclei and other nuclear abnormalities induction in erythrocytes of marbled flounder, Pleuronectes yokohamae, exposed to dietary nitrated polycyclic aromatic hydrocarbons, Japanese Journal of Environmental Toxicology, vol.16, issue.2, pp.79-89, 2013.

E. T. Bacolod, S. Uno, S. S. Villamor, and J. Koyama, Oxidative stress and genotoxicity biomarker responses in tilapia (Oreochromis niloticus) exposed to environmental concentration of 1-nitropyrene, Marine Pollution Bulletin, 2017.

S. Bae, S. Yi, and Y. Kim, Temporal and spatial variations of the particle size distribution of PAHs and their dry deposition fluxes in Korea, Atmos Environ, vol.36, pp.5491-5500, 2002.

H. Bamford and J. Baker, Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region, Atmos. Environ, vol.37, pp.2077-2091, 2003.

B. A. Bandowe, H. Meusel, R. J. Huang, K. Ho, J. Cao et al., PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment, Science of the Total Environment, pp.77-87, 2014.

B. M. Bandowe and H. Meusel, Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment -A review, Science of the Total Environment, pp.237-257, 2017.

B. Bandowe, M. Lueso, and W. Wilcke, Oxygenated polycyclic aromatic hydrocarbons and azaarenes in urban soils: a comparison of a tropical city (Bangkok) with two temperate cities (Bratislava and Gothenburg), Chemosphere, vol.107, pp.407-414, 2014.

M. A. Bari, G. Baumbach, B. Kuch, and G. Scheffknecht, Particle -phase concentrations of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in southern Germany, Air Quality, Atmosphere & Health, vol.3, issue.22, pp.103-116, 2010.

A. Barrado, S. Garcia, E. Barrado, and R. Perez, PM2.5-bound PAHs and hydroxy-PAHs in atmospheric aerosol samples: correlations with season and with physical and chemical factors, Atmos. Environ, vol.49, pp.224-232, 2012.

A. Barrado, S. Garcia, Y. Castrillejo, and E. Barrado, Exploratory data analysis of PAH, nitro-PAH and hydroxy-PAH concentrations in atmospheric PM10-bound aerosol particles, Correl. Phys. Chem. Factors, Atmos. Environ, vol.67, pp.385-393, 2013.

A. Barrado, S. Garcia, Y. Castrillejo, and R. Perez, Hydroxy-PAH levels in atmospheric PM10 aerosol samples correlated with season, physical factors and chemical indicators of pollution, Atmos. Poll. Res, vol.3, pp.81-87, 2012.

G. Becker, U. Nilsson, A. Colmsjo, and C. Ostman, Determination of polycyclic aromatic sulfur heterocyclic compounds in airborne particulate by gas chromatography with atomic emission and mass spectrometric detection, Journal of Chromatography A, vol.826, pp.57-66, 1998.

F. A. Beland, R. H. Heflich, P. C. Howard, and P. P. Fu, The in-vitro metabolic activation of nitro polycyclic aromatic hydrocarbons. In Polycyclic Aromatic Hydro-carbons and Carcinogenesis, pp.371-396, 1985.

L. Benbrahim-tallaa, R. Baan, Y. Grosse, B. Lauby-secretan, F. El-ghissassi et al., Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes, Int Agcy Res Canc Monograph, vol.13, pp.663-664, 2012.

M. Benisek, L. Blaha, and K. Hilscherova, Interference of PAHs and their N-heterocyclic analogs with signaling of retinoids in vitro, Toxicology in Vitro, vol.22, pp.1909-1917, 2008.

M. Benisek, P. Kubincova, L. Blaha, and K. Hilscherova, The effects of PAHs and N-PAHs on retinoid signaling and Oct-4 expression in vitro, vol.200, pp.169-175, 2011.

V. Beoletto, M. M. Oliva, J. Marioli, M. Carezzano, and M. Demo, Chapter 14 -Antimicrobial Natural Products Against Bacterial Biofilms, pp.291-307, 2016.

D. Bezabeh, H. Bamford, M. M. Shantz, and S. A. Wise, Determination of nitrated polycyclic aromatic hydrocarbons in diesel particulate-related standard reference materials by using gas chromatography/ mass spectrometry with negative ion chemical ionization, Anal Bioanal Chem, vol.375, pp.381-388, 2003.

X. Bi, B. Simoneit, G. Sheng, and J. Fu, Characterization of molecular markers in smoke from residential coal combustion in China, Fuel, vol.87, pp.112-119, 2008.

Q. Bian, B. Alharbi, J. Collett, S. Kreidenweis, and M. J. Pasha, Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia, Atmospheric Environment, vol.137, pp.186-198, 2016.

S. Billet, G. Garçon, Z. Dagher, A. Verdin, F. Ledoux et al., Ambient particulate matter (PM2.5): physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549), Environ. Res, vol.105, issue.2, pp.212-223, 2007.

A. Birgul and Y. Tasdemir, Concentrations, gas-particle partitioning, and seasonal variations of polycyclic aromatic hydrocarbons at four sites in Turkey, Archives of Environmental Contamination and Toxicology, vol.68, issue.1, pp.46-63, 2015.

H. Bockhorn, Combustion Generated Fine Carbonaceous Particles: Proceedings of an International Workshop, vol.9783866444416, 2007.

D. Boers, M. Zeegers, G. Swaen, I. Kant, and P. Van-den-brandt, The influence of occupational exposure to pesticides, polycyclic aromatic hydrocarbons, diesel exhaust, metal dust, metal fumes, and mineral oil on prostate cancer: a prospective cohort study, Occup Environ Med, vol.62, issue.8, pp.531-537, 2005.

P. Boffetta, N. Jourenkova, and P. Gustavsson, Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons, Cancer Causes Control, vol.8, issue.3, pp.444-472, 1997.

M. Borgie, Z. Dagher, F. Ledoux, A. Verdin, F. Cazier et al., Comparison between ultrafine and fine particulate matter collected in Lebanon: Chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells, Environmental Pollution, vol.205, pp.250-260, 2015.

N. Bortey-sam, Y. Ikenaka, O. Akoto, S. M. Nakayama, K. A. Asante et al., Oxidative stress and respiratory symptoms due to human exposure to polycyclic aromatic hydrocarbons (PAHs, Environmental Pollution, vol.228, pp.311-320, 2017.

C. Bostrom, P. Gerde, A. Hanberg, B. Jernstrom, C. Johansson et al., Results from the Swedish National Screening Programme 2008: Screening of Unintentionally Produced Organic Contaminants, Environ. Health Perspect, vol.110, pp.451-488, 2002.

A. Brown and R. J. Brown, Correlations in polycyclic aromatic hydrocarbon (PAH) concentrations in UK ambient air and implications for source apportionment, J Environ Monit, vol.14, issue.8, pp.2072-82, 2012.

H. Burtscher and K. Schu?epp, The occurrence of ultrafine particles in the specific environment of children, Paediatr. Respir. Rev, vol.13, pp.89-94, 2012.

H. Burtscher and K. Schu?epp, The occurrence of ultrafine particles in the specific environment of children, Paediatr. Respir. Rev, vol.13, pp.89-94, 2012.

B. F. Cachon, S. Firmin, A. Verdin, L. Ayi-fanou, S. Billet et al., Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM4-2.5) collected from Cotonou, Environ. Pollut, vol.185, pp.340-351, 2014.

M. Carrara, J. C. Wolf, and R. Niessner, Nitro-PAH formation studied by interacting ar-tificially PAHcoated soot aerosol with NO2 in the temperature range of 295-523, K. Atmos. Environ, vol.44, pp.3837-3885, 2010.

P. Castells, F. Santos, and M. Galceran, Development of a sequential supercritical fluid extraction method for the analysis of nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in urban aerosols, Journal of Chromatography A, vol.1010, pp.141-151, 2003.

M. Cazaunau, L. Me?nach, K. Budzinski, H. Villenave, and E. , Atmospheric heterogeneous reactions of benzo[a]pyrene, Zeitschrift Fur Physikalische Chemie, vol.224, pp.1151-1170, 2010.

F. Cazier, P. Genevray, D. Dewaele, H. Nouali, A. Verdin et al., Characterisation and seasonal variations of particles in the atmosphere of rural, urban and industrial areas: Organic compounds, Journal of envirnmental Sciences, vol.44, pp.45-56, 2016.

A. Cecinato, E. Guerriero, C. Balducci, and V. Muto, Use of the PAH fingerprints for identifying pollution sources, Urban Climate, vol.10, pp.630-643, 2014.

C. Cerniglia, Fungal metabolism of polycyclic aromatic hydrocarbons: past, pres-ent and future applications in bioremediation, J. Ind. Microbiol. Biotechnol, vol.19, pp.324-333, 1997.

Y. Chae, T. Thomas, F. Guengerich, P. Fu, E. Bayoumy et al., Comparative metabolism of 1-, 2-, and 4-nitropyrene by human hepatic and pulmonary microsomes, Cancer Res, vol.59, pp.1473-1480, 1999.

M. Channell, M. Paffett, R. Devlin, M. Madden, and M. Campen, Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: evidence from a novel translational in vitro model, Toxicol. Sci, vol.127, pp.179-186, 2012.

G. D. Charles, M. J. Bartels, T. R. Zacharewski, B. B. Gollapudi, N. L. Freshour et al., Activity of benzo[a]pyrene and its hydroxy-lated metabolites in an estrogen receptor ? receptor gene assay, Toxicol. Sci, vol.55, pp.320-326, 2000.

A. Cha?tel, V. Faucet-marquis, A. Pfohl-leszkowicz, C. Gourlay-france?, and F. Vincent-hubert, DNA adduct formation and induction of detoxi cation mechanisms in Dreissena polymorpha exposed to nitro-PAHs, Mutagenesis, vol.29, issue.6, pp.457-465, 2014.

C. Chen, B. Zhao, W. Zhou, X. Jiang, and Z. A. Tan, methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application, Building and Environment, vol.47, pp.339-348, 2012.

Y. Chen, G. Zhi, Y. Feng, C. Tian, X. Bi et al., Increase in polycyclic aromatic hydrocarbon (PAH) emissions due to briquetting: a challenge to the coal briquetting policy, Environ. Pollut, vol.204, pp.58-63, 2015.

T. Chetwittayachan, D. Shimazaki, and K. Yamamoto, A comparison of temporal variation of particlebound polycyclic aromatic hydrocarbons (pPAHs) concentration in different urban environments, Atmos Environ, vol.36, pp.2027-2037, 2002.

J. K. Choi, J. B. Heo, S. J. Ban, S. M. Yi, and K. D. Zoh, Chemical characteristics of PM 2.5 aerosol in Incheon, Korea, Atmos. Environ, vol.60, pp.583-592, 2012.

T. Chuesaard, T. Chetiyanukornkul, T. Kameda, K. Hayakawa, and A. Toriba, Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Aerosol Air Qual. Res, vol.14, pp.1247-1257, 2014.

T. Chuesaard, T. Chetiyanukornkul, T. Kameda, K. Hayakawa, and A. Toriba, Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Aerosol Air Qual. Res, vol.14, pp.1247-1257, 2014.

M. Y. Chung, R. A. Lazaro, D. Lim, J. Jackson, J. Lyon et al., Aerosol-borne quinones and reactive oxygen species generation by particulate matter extracts, Environ. Sci. Technol, vol.40, pp.4880-4886, 2006.

R. Clapp, M. Jacobs, and E. Loechler, Environmental and occupational causes of cancer: new evidence, Rev Environ Health, vol.23, issue.1, pp.1-37, 2005.

R. Cochran, N. Dongari, H. Jeong, J. Beranek, S. Haddadi et al., Determination of polycyclic aromatic hydrocarbons and their oxy-, nitro-, and hydroxy-oxidation products, Anal. Chim. Acta, vol.740, pp.93-103, 2013.

J. Crane, K. Grosenheider, and C. Wilson, Contamination of stormwater pond sediments by polycyclic aromatic hydrocarbons (PAHs) in Minnesota: the role of coal tar-based sealcoat products as a source of PAHs: Minnesota Pollution Control Agency, 2010.

N. D. Dat and M. B. Chang, Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies, Science of the Total Environment, vol.609, pp.682-693, 2017.

M. Dergham, C. Lepers, A. Verdin, F. Cazier, S. Billet et al., Temporalspatial variations of the physicochemical characteristics of air pollution Particulate Matter (PM2.5-0.3) and toxicological effects in human bronchial epithelial cells (BEAS-2B), Environmental Research, vol.137, pp.256-267, 2015.

D. Dieme, M. Cabral-ndior, G. Garcon, A. Verdin, S. Billet et al., Relationship between physicochemical characterization and toxicity of fine particulate matter (PM2.5) collected in Dakar city (Senegal), Environ. Res, vol.113, pp.1-13, 2012.

C. Dietrich and B. Kaina, The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth, Carcinogenesis, vol.31, issue.8, pp.1319-1328, 2010.

D. Diggs, A. Huderson, K. L. Harris, J. N. Myers, L. D. Banks et al., Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective, J Environ Sci Health C Environ Carcinog. Ecotoxicol. Rev, vol.29, issue.4, pp.324-357, 2011.

R. Dihl, M. Bereta, D. Amaral, V. Lehmann, M. Reguly et al., Nitropolycyclic aromatic hydrocarbons are inducers of mitotic homologous recombination in the wing-spot test of Drosophila melanogaster, Food and Chemical Toxicology, vol.46, pp.2344-2348, 2008.

Z. Djuric and D. Mcgunagle, Differences in reduction of 1,6-dinitropyrene and l-nitro-6-nitrosopyrene by rat liver cytosolic enzymes and formation of oxygen-reactive metabolites by nitrosoreduction, cancer letters, vol.48, pp.13-18, 1989.

E. Drwala, A. Raka, A. Grochowalskib, T. Milewicz, and E. L. Gregoraszczuk, Cell-specific and dosedependent effects of PAHs on proliferation, cell cycle, and apoptosis protein expression and hormone secretion by placental cell lines, Toxicology Letters, vol.280, pp.10-19, 2017.

B. Dusek, J. Hajslova, and V. Kocourek, Determination of nitrat-ed polycyclic aromatic hydrocarbons and their precursors in biotic matrices, J Chromatogr A, vol.982, pp.127-143, 2002.

J. S. Dutcher, J. D. Sun, W. E. Bechtold, and C. Unkefer, Excretion and Metabolism of l-Nitropyrene in Rats after Oral or lntraperitoneal Administration, Fundamental and applied Toxicology, vol.5, pp.287-296, 1985.

S. Edwards, W. Jedrychowski, M. Butscher, D. Camann, A. Kieltyka et al., Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children's intelligence at 5 years of age in a prospective cohort study in Poland, Environ Health Perspect, vol.118, issue.9, pp.1326-1331, 2010.

, Selected Nitro-and Nitro-oxy-polycyclic Aromatic Hydrocarbons, 2003.

A. Eiguren-fernandez, A. Miguel, R. Lu, K. Purvis, B. Grant et al., Atmospheric formation of 9, 10-phenanthraquinone in the Los Angeles air basin, Atmos. Environ, vol.42, pp.2312-2319, 2008.

M. R. Elie, J. Choi, Y. M. Nkrumah-elie, G. D. Gonnerman, J. F. Stevens et al., Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish, Environmental Research, vol.140, pp.502-510, 2015.

T. Enya, H. Suzuki, T. Watanabe, T. Hirayama, and Y. Hisamatsu, 3-Nitrobenzanthrone, a powerful bacterial mutagen and suspected human carcinogen found in diesel exhaust and airborne particulates, Aeroparticles, Composition, and Lung Diseases, vol.31, pp.2772-2776, 1997.

G. Fang, Y. Wu, J. Chen, C. Chang, and T. Ho, Characteristic of polycyclic aromatic hydrocarbon concentrations and source identification for fine and coarse particulates at Taichung Harbor near Taiwan Strait during, Sci. Total Environ, vol.366, pp.729-738, 2004.

G. Fang, Y. Wu, M. Chen, T. Ho, S. Huang et al., Polycyclic aromatic hydrocarbons study in Taichung, Atmospheric Environment, vol.38, pp.3385-3391, 2002.

N. J. Farren, N. Ramirez, J. Lee, E. Finessi, A. C. Lewis et al., Estimated Exposure Risks from Carcinogenic Nitrosamines in Urban Airborne Particulate Matter, Environ. Sci. Technol, vol.49, pp.9648-9656, 2015.

P. P. Fu, M. W. Chou, and F. A. Beland, Effectsof nitro substitution on the in vitro metabolic activation of polycyclic aromatic hydrocarbons, Polycyclic Aromatic-Hydrocarbon Carcinogenesis: Structure Activity Relationships, vol.2, pp.38-65, 1988.

P. R. Fu, D. Herreno-saenz, L. S. Von-tungein, J. O. Lay, Y. S. Wu et al., DNA Adducts and Carcinogenicity of Nitro-polycyclic Aromatic Hydrocarbons, Environmental Health Perspectives, vol.102, issue.6, pp.177-183, 1994.

K. O. Garcia, E. C. Teixeira, D. M. Agudelo-castaneda, M. Braga, P. G. Alabarse et al., Assessment of nitro-polycyclic aromatic hydrocarbons in PM1 near an area of heavy-duty traffic, Science of the Total Environment, pp.57-65, 2014.

A. Garrido, P. Jime, and N. Ratola, Levels, trends and health concerns of atmospheric PAHs in Europe, Atmos. Environ, vol.99, pp.474-484, 2014.

E. Garshick, F. Laden, J. Hart, B. Rosner, T. Smith et al., Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species, Environ. Health Perspect, vol.112, pp.4533-4545, 2004.

N. Grova, G. Salquebre, H. Schroeder, and B. M. Appenzeller, Determination of PAHs and OH-PAHs in rat brain by gas chromatography tandem (triple quadrupole) mass spectrometry, Chem. Res. Toxicol, vol.24, pp.1653-1667, 2011.

A. Guillon, E?tude de la composition isotopique mole?culaire (d13C) comme traceur de source qualitatif et quantitatif des hydrocarbures aromatiques polycycliques (HAP) particulaires dans l'atmosphe?re, 2011.

H. Guo, S. Lee, K. Ho, X. Wang, and S. Zou, Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong, Atmospheric Environment, vol.37, pp.5307-5317, 2003.

W. D. Hafner and R. A. Hites, Effects of wind and air trajectory directions on atmospheric concentrations of persistent organic pollutants near the Great Lakes, Environ Sci Technol, vol.39, pp.7817-7825, 2005.

K. Hayakawa, Y. Onoda, C. Tachikawa, S. Hosoi, M. Yoshita et al., Estrogenic/Antiestrogenic Activities of Polycyclic Aromatic Hydrocarbons and Their Monohydroxylated Derivatives by Yeast Two-Hybrid Assay, Journal of Health Science, vol.53, issue.5, pp.562-570, 2007.

K. Hayakawa, N. Tang, T. Kameda, and A. Toriba, Atmospheric Behaviors of Polycyclic Aromatic Hydrocarbons in East Asia, Genes and Environment, vol.36, issue.3, pp.152-159, 2014.

B. Haynes, Fossil Fuel Combustion, pp.261-326, 1991.

S. Hecht, Tobacco smoke carcinogens and lung cancer, J Natl Cancer Inst, vol.91, issue.14, pp.1194-1210, 1999.

A. Hegazi, J. Andersson, M. El-gayar, T. T. Hiena, L. T. Thanh et al., Nitro-polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in particulate matter in an urban area of a tropical region, Atmospheric Environment, vol.85, pp.7715-7725, 2003.

W. Huang, B. Huang, X. Bi, Q. Lin, M. Liu et al., Emission of PAHs, NPAHs and OPAHs from the residential honeycomb coal briquettes combustion, Energy & Fuel, vol.28, pp.636-642, 2014.

K. Imaida, M. Lee, S. Land, C. Wang, and C. King, Carcinogenicity of ni-tropyrenes in the newborn female rat, Carcinogenesis, vol.16, pp.3027-3030, 1995.

J. Jacob, Sulfur Analogues of Polycyclic Aromatic Hydrocarbons (Thia-arenes), pp.1-281, 1990.

J. Franco, C. F. Fabri-de-resende, M. De-almeida-furtado, L. Brasil, T. F. Eberlin et al., Polycyclic aromatic hydrocarbons (PAHs) in street dust of Rio de Janeiro and Niteroi, Brazil: Particle size distribution, sources and cancer risk assessment, Science of the Total Environment, pp.305-313, 2017.

C. Jakober, S. Riddle, M. Robert, H. Destaillats, M. Charles et al., Quinone emissions from gasoline and diesel motor vehicles, Environ. Sci. Technol, vol.41, pp.4548-4554, 2007.

R. Jankowiak, E. Rogan, and E. Cavalieri, Role of fluorescence line-narrowing spectroscopy and related luminescence-based techniques in the elucidation of mechanisms of tumor initiation by polycyclic aro-matic hydrocarbons and estrogens, J. Phys. Chem. B, vol.108, pp.10266-10283, 2004.

N. Jariyaposit, K. Zimmermann, J. Schrlau, J. Arey, R. Atkinson et al., Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity, Environ. Sci. Technol, vol.48, pp.10155-10164, 2014.

X. Jinhuia and F. Lee, Quantification of nitrated polynuclear aromatic hydrocarbons in atmospheric particulate matter, vol.416, pp.111-115, 2000.

W. H. Jong, E. Kroese, J. Vos, and H. Loveren, Detection of immunotoxicity of benzo[a]pyrene in a subacute toxicity study after oral exposure in rats, Toxicol Sci, vol.50, issue.2, pp.214-220, 1999.

F. J. Jongeneelen, Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons, Ann. Occup. Hyg, vol.45, issue.1, pp.3-13, 2001.

K. H. Jung, B. Yan, S. N. Chillrud, F. P. Perera, R. Whyatt et al., Assessment of Benzo[a]pyrene-equivalent Carcinogenicity and Mutagenicity of Residential Indoor versus Outdoor Polycyclic Aromatic Hydrocarbons Exposing Young Children, Int. J. Environ. Res. Public Health, vol.7, pp.1889-1900, 2010.

S. Kaisarevic, V. Dakic, J. Hrubik, B. Glisic, U. Lubcke-von-varel et al., Differential expression of CYP1A1 and CYP1A2 genes in H4IIE rat hepatoma cells exposed to TCDD and PAHs, Environmental Toxicology and Pharmacology, vol.39, issue.1, pp.358-368, 2015.

T. Kameda, Atmospheric chemistry of polycyclic aromatic hydrocarbons and related com-pounds, J Health Sci, vol.57, issue.6, pp.504-511, 2011.

T. Kameda, E. Azumi, A. Fukushima, N. Tang, A. Matsuki et al., Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds, Sci. Rep, vol.6, p.24427, 2016.

M. Kamiya, A. Toriba, Y. Onoda, R. Kizu, and K. Hayakawa, Evaluation of estrogenic activities of hydroxylated polycyclic aromatic hydrocarbons in cigarette smoke condensate, Food and Chemical Toxicology, vol.43, pp.1017-1027, 2005.

G. Karavalakis, G. Deves, G. Fontaras, S. Stournas, Z. Samaras et al., The impact of soy-based biodiesel on PAH, nitro-PAH and oxy-PAH emissions from a passenger car operated over regulated and nonregulated driving cycles, Fuel, vol.89, pp.3876-3883, 2010.

I. Kavouras, P. Koutrakis, M. Tsapakis, E. Lagoudaki, E. Stephanou et al., Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using 9

, Environmental Science and Technology, vol.35, pp.2288-2294, 2001.

M. Kawanishi, Y. Fujikawa, H. Ishii, H. Nishida, Y. H. Igashigaki et al., Adduct formation and repair, and translesion DNA synthesis across the adducts in human cells exposed to 3-nitrobenzanthrone, Mutation Research, vol.753, pp.93-100, 2013.

I. Keyte, R. Harrison, and G. Lammel, Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons-a review, Chem. Soc. Rev, vol.42, pp.9333-9391, 2013.

I. J. Keyte, A. Albinet, and R. M. Harrison, On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy-and nitro-derivative compounds measured in road tunnel environments, Sci. Total Environ, vol.566, pp.1131-1142, 2016.
URL : https://hal.archives-ouvertes.fr/ineris-01854247

K. H. Kim, D. Woo, S. B. Lee, and G. N. Bae, On-Road Measurements of Ultrafine Particles and Associated Air Pollutants in a Densely Populated Area of Seoul, Korea, Aerosol and Air Quality Research, vol.15, pp.142-153, 2015.

Y. Kim, Y. Ko, T. Kawamoto, and H. Kim, The effects of 1-nitropyrene on oxidative DNA damage and expression of DNA repair enzymes, J. Occup. Health, vol.47, pp.261-266, 2005.

L. King, M. Kohan, L. Brooks, G. Nelson, J. Ross et al., An evaluation of the mutagenicity, metabolism, and DNA adduct formation of 5-nitrobenzo[b]naphtho[2,1-d]thiophene, Chem. Res. Toxicol, vol.14, pp.661-671, 2001.

N. Kishikawa, S. Morita, M. Wada, Y. Ohba, K. Nakashima et al., Determination of hydroxylated polycyclic aromatic hydrocarbons in airborne particulates by high-performance liquid chromatography with fluorescence detection, Anal. Sci, vol.20, pp.129-132, 2004.

A. L. Knecht, B. C. Goodale, L. Truong, M. T. Simonich, A. J. Swanson et al., Comparative developmental toxicity of environmentally relevant oxygenated PAHs, Toxicology and Applied Pharmacology, vol.271, pp.266-275, 2013.

J. Kochany and R. J. Maguire, Abiotic transformations of polynuclear aromatic hydrocarbons and polynuclear aromatic nitrogen heterocycles in aquatic environments, Sci Total Environ, vol.144, pp.17-31, 1994.

E. Koike, R. Yanagisawa, and H. Takano, Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells, Atmospheric Environment, vol.97, pp.529-536, 2014.

Y. Kojima, K. Inazu, Y. Hisamatsu, H. Okochi, T. Baba et al., Comparison of PAHs, nitro-PAHs and oxy-PAHs associated with airborne particulate matter at roadside and urban background sites in downtown, Polycycl. Aromat. Compd, vol.30, pp.321-333, 2010.

S. Kong, X. Ding, Z. Bai, B. Han, L. Chen et al., A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in five typical cities of Liaoning Province, China. J. Hazard. Mater, vol.183, pp.70-80, 2010.

I. M. Kooter, M. J. Alblas, A. D. Jedynska, M. Steenhof, M. M. Houtzager et al., Alveolar epithelial cells (A549) exposed at the air-liquid interface to diesel exhaust: First study in TNO's powertrain test center, Toxicology in Vitro, vol.27, pp.2342-2349, 2013.

E. Krugly, D. Martuzevicius, R. Sidaraviciute, D. Ciuzas, T. Prasauskas et al., Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools, Atmos. Environ, vol.82, pp.298-306, 2014.

C. Y. Kuo, P. S. Chien, W. C. Kuo, C. T. Wei, and J. Y. Rau, Comparison of polycyclic aromatic hydrocarbon emissions on gasoline-and diesel-dominated routes, Environ Monit Assess, vol.185, issue.7, pp.5749-5761, 2012.

K. Laali, J. Chun, T. Okazaki, S. Kumar, G. Borosky et al., S-alkylated onium salts, model electrophilic substitutions (nitration and bromination), and muta-genicity assay, Electrophilic chemistry of thia-PAHs: stable carbocations (NMR and DFT), vol.72, pp.8383-8393, 2007.

R. Ladji, N. Yassaa, C. Balducci, A. Cecinato, and B. Y. Meklati, Annual variation of particulate organic compounds in PM10 in the urban atmosphere of Algiers, Atmos. Res, vol.92, pp.258-269, 2009.

S. Lafontaine, J. Schrlau, J. Butler, Y. Jia, B. Harper et al., Relative influence of trans-pacific and regional at-mospheric transport of PAHs in the Pacific Northwest, US. Environ. Sci. Technol, vol.49, pp.13807-13816, 2015.

Y. C. Lai, C. H. Tsai, Y. L. Chen, and G. P. Chang-chien, Distribution and Sources of Atmospheric Polycyclic Aromatic Hydrocarbons at an Industrial Region in Kaohsiung, Taiwan, Aerosol and Air Quality Research, vol.17, pp.776-787, 2017.

E. Lamy, F. Kassie, R. Gminski, H. Schmeiser, and V. Mersch-sundermann, 3-Nitrobenzanthrone (3-NBA) induced micronucleus formation and DNA damage in human hepatoma (HepG2) cells, Toxicol. Lett, vol.146, pp.103-109, 2004.

Y. Landkocz, F. Ledoux, V. Andre, F. Cazier, P. Genevray et al., Fine and ultrafine atmospheric particulate matter at a multi-influenced urban site: Physicochemical characterization, mutagenicity and cytotoxicity, Environmental Pollution, vol.221, pp.130-140, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02025255

N. E. Landvik, M. Gorria, V. M. Arlt, N. Asare, A. Solhaug et al., Effects of nitrated-polycyclic aromatic hydrocarbons and diesel exhaust particle extracts on cell signalling related to apoptosis: Possible implications for their mutagenic and carcinogenic effects, Toxicology, vol.231, pp.159-174, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00690346

I. Latif, A. Karim, A. Zuki, M. Zamri-saad, J. N. Niu et al., Quantification of 1-aminopyrene in human urine after a controlled exposure to diesel exhaust, J Environ Monit, vol.89, issue.7, pp.153-159, 2009.

J. Layshock, G. Wilson, and K. Anderson, Ketone and quinone-substituted polycyclic aromatic hydrocarbons in mussel tissue, sediment, urban dust, and diesel particulate matrices, Environ. Toxicol. Chem, vol.29, pp.2450-2460, 2010.

B. Leclercq, L. Y. Allemana, E. Perdrix, V. Riffault, M. Happillon et al., Particulate metal bioaccessibility in physiological fluids and cell culture media: Toxicological perspectives, Environmental Research, vol.156, pp.148-157, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02552772

B. Leclercq, M. Happillon, S. Antherieu, E. Hardy, L. Alleman et al., Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM4, Environmental Pollution, vol.218, pp.1074-1088, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02552782

H. H. Lee, N. R. Choi, H. B. Lim, S. M. Yi, Y. P. Kim et al., Characteristics of oxygenated PAHs in PM10 at Seoul, pp.1-7, 2017.

S. Lee, K. F. Ho, L. Y. Chan, B. Zielinska, and J. Chow, Polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in urban atmosphere of Hong Kong, Atmos Environ, vol.35, pp.5949-5960, 2001.

J. Leskinen, J. Tissari, O. Uski, A. Vire?n, T. Torvela et al., Fine particle emissions in three different combustion conditions of a wood chip-fired appliance -particulate physico-chemical properties and induced cell death, Atmos. Environ, vol.86, pp.129-139, 2014.

S. Levesque, M. Surace, J. Mcdonald, and M. Block, Air pollution and the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease, J. Neuroinflamm, vol.8, p.105, 2011.

M. Li, T. Wang, B. R. Simoneit, S. Shi, L. Zhang et al., Qualitative and quantitative analysis of dibenzothiophene, its methylated homologues, and benzonaphthothiophenes in crude oils, coal, and sediment extracts, Journal of Chromatography A, vol.1233, pp.126-136, 2012.

W. Li, C. Wang, H. Shen, S. Su, G. Shen et al., Concentrations and origins of nitropolycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in northern China, Environ. Pollut, vol.197, pp.156-164, 2015.

R. Lia, L. Zhaoa, L. Zhanga, M. Chena, C. Donga et al., DNA damage and repair, oxidative stress and metabolism biomarker responses in lungs of rats exposed to ambient atmospheric 1-nitropyrene, Environmental Toxicology and Pharmacology, vol.54, pp.14-20, 2017.

F. Liang, M. Lu, M. E. Birch, T. C. Keener, and Z. , Determination of polycyclic aromatic sulfur heterocycles in diesel particulate matter and diesel fuel by gas chromatography with atomic emission detection, Journal of Chromatography A, vol.1114, pp.145-153, 2006.

A. L. Lima, J. W. Farrington, and C. M. Reddy, Combustion-derived polycyclic aromatic hydro-carbons in the environment, Rev Environ Forensic, vol.6, issue.2, pp.109-131, 2005.

Y. Lin, X. Qiu, Y. Ma, J. Ma, M. Zheng et al., Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs, Environmental Pollution, vol.196, pp.164-170, 2015.

L. B. Liu, Y. Liu, J. M. Lin, N. Tang, K. Hayakawa et al., Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates: A review, Journal of Environmental Sciences, vol.19, pp.1-11, 2007.

D. Loomis, Y. Grosse, B. Lauby-secretan, F. Ghissassi, V. Bouvard et al., The carcinogenicity of outdoor air pollution, Lancet Oncol, vol.14, pp.1262-1263, 2013.

S. Lundstedt, P. White, C. Lemieux, K. Lynes, L. Lambert et al., Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAHcontaminated sites, Ambio, vol.36, pp.475-485, 2007.

S. M. Lynch and T. R. Rebbeck, Bridging the gap between biologic, individual, and macro-environmental factors in cancer: a multilevel approach, Cancer Epidemiol Biomarkers Prev, vol.22, issue.4, pp.485-495, 2013.

B. Maliszewska-kordybach, Sources, Concentrations, Fate and Effects of Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment. Part A: PAHs in Air, Polish Journal of Environmental Studies, vol.8, issue.3, pp.131-136, 1999.

M. Mandalakis, M. Tsapakis, A. Tsoga, and E. Stephanou, Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece), Atmospheric Environment, vol.36, pp.4023-4035, 2002.

E. Manoli, D. Voutsa, and C. Samara, Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece, Atmos. Environ, vol.36, pp.949-961, 2002.

J. Maria and H. Segner, Antiestrogenicity of b-naphthoflavone and PAHs in cultured rainbow trout hepatocytes: evidence for a role of the arylhydrocarbon receptor, Aquat. Toxicol, vol.51, pp.79-92, 2000.

F. Marino, A. Cecinato, and P. A. Siskos, Nitro-PAH in ambient particulate matter in the atmosphere of Athens, Chemosphere, vol.40, pp.533-537, 2000.

A. M. Mastral, M. Callen, and R. Murillo, Assessment of PAH emissions as a function of coal combustion variables, Fuel, vol.75, issue.13, pp.1533-1536, 1996.

M. Mcclean, R. Rinehart, L. Ngo, and E. Eisen, Urinary 1-hydroxypyrene and polycyclic aromatic hydrocarbon exposure among asphalt paving workers, vol.48, pp.565-578, 2004.

A. Mcdougal, M. Wormke, J. Calvin, and S. Safe, Tamoxifen-induced antitumorigenic/antiestrogenic action synergized by a selective aryl hydrocarbon receptor modulator, Cancer Res, vol.61, pp.3902-3907, 2001.

T. Mcfall, G. Booth, M. Lee, Y. Tominaga, R. Pratap et al., Mutagenic activity of methyl-substituted tri-and tetracyclic aromatic sulfur heterocycles, Mutat. Res, vol.135, pp.97-103, 1984.

K. Miet, L. Menach, K. Flaud, P. M. Budzinski, H. Villenave et al., Heterogeneous reactions of ozone with pyrene1-hydroxypyrene and 1-nitropyrene adsorbed on particles, Atmos. Environ, vol.43, pp.3699-3707, 2009.

K. Miet, L. Menach, K. Flaud, P. Budzinski, H. Villenave et al., Heterogeneous reactions of ozone with pyrene, 1-hydroxypyrene and 1-nitropyrene adsorbed on particles, Atmospheric Environment, vol.43, pp.3699-3707, 2009.

J. P. Miller-schulze, M. Paulsen, T. Kameda, A. Toriba, K. Hayakawa et al., Nitro-PAH exposures of occupationally-exposed traffic workers and associated urinary 1-nitropyrene metabolite concentrations, Journal of Environmental Sciences, vol.49, pp.213-221, 2016.

J. Miller-schulze, T. Kameda, A. Toriba, N. Tang, K. Tamura et al., Evaluation of urinary metabolites of 1-nitropyrene as biomarkers for exposure to diesel exhaust in taxi drivers of Shenyang, China, J Expo Sci Environ Epidemiol, vol.23, issue.2, pp.170-175, 2013.

B. Moorthy, C. Chu, and D. J. Carlin, Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer, Toxicologcal Sciences, vol.145, issue.1, pp.5-15, 2015.

S. G. Mossner, M. J. Lopez-de-alda, L. C. Sander, M. L. Lee, and S. A. Wise, Gas chromatographic retention behavior of polycyclic aromatic sulfur heterocyclic compounds, (dibenzothiophene, naphtho[b]thiophenes, benzo[b]naphthothiophenes and alkyl-substituted derivatives) on stationary phases of different selectivity, Journal of Chromatography A, vol.841, pp.207-228, 1999.

E. Nagy, C. Johansson, M. Zeisig, and L. Andmoller, Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods, J. Chromatogr. B, vol.827, pp.94-103, 2005.

E. Nagy, M. Zeisig, K. Kawamura, Y. Hisamatsu, A. Sugeta et al., DNA-adduct and tumor formations in rats after intratracheal administration of the urban air pollutant 3-nitrobenzanthrone, Carcinogenesis, vol.26, pp.1821-1828, 2005.

F. Nalin, B. Golly, J. L. Besombes, C. Pelletier, R. Aujay et al., Fast oxidation processes from emission to ambient air introduction of aerosol emitted by residential log wood stoves, Atmos. Environ, vol.143, pp.15-26, 2016.
URL : https://hal.archives-ouvertes.fr/ineris-01855103

D. Nebert and T. Dalton, The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis, Nat. Rev. Cancer, vol.6, pp.947-960, 2006.

D. Nebert, T. Dalton, A. Okey, and F. Gonzalez, Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer, J. Biol. Chem, vol.279, pp.23847-23850, 2004.

A. Nemmar, S. Al-salam, S. Zia, F. Marzouqi, A. Al-dhaheri et al., Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone, Br. J. Pharmacol, vol.164, pp.1871-1882, 2011.

A. M. Neophytou, J. E. Hart, Y. Chang, J. Zhang, T. J. Smith et al., Short-term traffic related exposures and biomarkers of nitro-PAH exposure and oxidative DNA damage, Toxics, vol.2, issue.3, pp.377-390, 2014.

A. Neophytou, J. Hart, J. Cavallari, T. Smith, D. Dockery et al., Trafficrelated exposures and biomarkers of systemic inflammation, endothelial activation and oxidative stress: a panel study in the US trucking industry, Environ. Health, vol.12, pp.105-115, 2013.

X. Niu, H. Ho, S. S. Ho, K. F. Huang, Y. Sun et al., Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing-Tianjin-Hebei region, Environmental Pollution, vol.231, pp.1075-1084, 2017.

S. G. O'connell, T. Haigh, G. Wilson, and K. A. Anderson, An analytical investigation of 24 oxygenated-PAHs (OPAHs) using liquid and gas chromatography-mass spectrometry, Anal Bioanal Chem, vol.405, pp.8885-8896, 2013.

J. Oda, S. Nomura, A. Yasuhara, and T. Shibamoto, Mobile sources of atmospheric polycyclic aromatic hydrocarbons in a roadway tunnel, Atmospheric Environment, vol.35, pp.4819-4827, 2001.

C. Oliveira, N. Martins, J. Tavares, C. Pio, M. Cerqueira et al., Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel, Chemospheres, vol.83, pp.1588-1596, 2011.

A. Olsson, J. F. Fevotte, A. Cassidy, A. Mannetje, D. Zaridze et al., Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: a multicenter study in Europe, Occup Environ Med, vol.67, pp.98-103, 2010.

T. Onduka, D. Ojima, K. Ito, K. Mochida, J. Koyoma et al., Reproductive toxicity of 1-nitronaphthalene and 1-nitropyrene exposure in the mummichog, Fundus heteroclitus, Ecotoxicology, vol.24, pp.648-656, 2015.

J. Ovrevik, V. M. Arlt, E. Oya, E. Nagy, S. Mollerup et al., Differential effects of nitro-PAHs and amino-PAHs on cytokine and chemokine responses in human bronchial epithelial BEAS-2B cells, Toxicology and Applied Pharmacology, vol.242, pp.270-280, 2010.

E. Oya, J. Ovrevik, V. M. Arlt, E. Nagy, D. H. Phillips et al., DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis, Mutagenesis, vol.26, issue.6, pp.697-708, 2011.

E. Park and K. Park, Induction of pro-inflammatory signals by 1-nitropyrene in cultured BEAS-2B cells, Toxicol. Lett, vol.184, pp.126-133, 2009.

S. Park, Y. Kim, and C. Kang, Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea, Atmospheric Environment, vol.36, pp.2917-2924, 2002.

S. S. Park, M. Bae, J. J. Schauer, Y. J. Kim, S. Y. Cho et al., Molecular composition of PM 2.5 organic aerosol measured at an urban site of Korea during the ACE-Asia campaign, Atmos. Environ, vol.40, pp.4182-4198, 2006.

L. Paturel, A. Saber, E. Combet, and R. Joumard, Analysis of PAH emissions from passenger cars by high resolution Shpol'skii spectrofluorimetry, Polycyclic Aromatic Compounds, vol.9, pp.331-339, 1996.

T. Pederson and J. Siak, The role of nitroaromatic compounds in the direct-acting mutagenicity of diesel particle extracts, J. Appl. Toxicol, vol.1, pp.54-60, 1981.

R. Pelroy, D. Stewart, Y. Tominaga, M. Iwao, R. Castle et al., Microbial mutagenicity of 3-and 4-ring polycyclic aromatic sulfur heterocycles, Mutat. Res, pp.31-40, 1983.

F. Perera, D. Tang, R. Whyatt, S. Lederman, and W. Jedrychowski, DNA damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA adducts in mothers and newborns from, Cancer Epidemiol Biomarkers Prev, vol.14, issue.3, pp.709-714, 2005.

F. P. Perera, S. Wang, J. Vishnevetsky, B. Zhang, K. J. Cole et al., Polycyclic aromatic hydrocarbons-aromatic DNA adducts in cord blood and behavior scores in New York city children, Environ Health Perspect, vol.119, issue.8, pp.1176-1181, 2011.

P. Phousongphouang, A. Grosovsky, D. Eastmond, M. Covarrubias, and J. Arey, The genotoxicity of 3-nitrobenzanthrone and the nitropyrene lactones in human lymphoblasts, Mutat. Res, vol.472, pp.93-103, 2000.

O. Pluquet and P. Hainaut, Genotoxic and non-genotoxic pathways of p53 induction, Cancer Lett, vol.174, pp.1-15, 2001.

I. C. Pope, R. Burnett, M. Thun, E. Calle, D. Krewski et al., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA, vol.287, pp.1132-1141, 2002.

V. Purohit and A. Basu, Mutagenicity of nitroaromatic compounds, Chem. Res. Toxicol, vol.13, pp.673-692, 2000.

N. Ramirez, A. Cuadras, E. Rovira, R. M. Marce, and F. Borrull, Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites, Environ. Health Perspect, vol.119, pp.1110-1116, 2011.

K. Ravindra, L. Bencs, E. Wauters, J. De-hoog, F. Deutsch et al., Seasonal and site specific variation in vapor and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities, Atmospheric Environment, vol.40, pp.771-785, 2006.

K. Ravindra, R. Sokhia, and R. V. Grieken, Review : Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation, Atmospheric Environment, vol.42, pp.2895-2921, 2008.

K. Ravindra, E. Wauters, S. Taygi, S. Mor, and R. Van-grieken, Assessment of air quality after the implementation of CNG as fuel in public transport in Delhi, India, Environmental Monitoring and Assessment, vol.115, pp.405-417, 2006.

F. Reisen and J. Arey, Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles basin, Environ. Sci. Technol, vol.39, pp.64-73, 2005.

A. Ren, X. Qiu, L. Jin, J. Ma, Z. Li et al., Association of selected persistent organic pollutants in the placenta with the risk of neural tube defects, Proc. Nat. Acad. Sci. USA, vol.108, pp.12770-12775, 2011.

H. Ren, T. Kawagoe, H. Jia, H. Endo, A. Kitazawa et al., Continuous surface seawater surveillance on poly aromatic hydrocarbons (PAHs) and mutagenicity of East and South China Seas, Estuarine Coastal Shelf Sci, vol.86, pp.395-400, 2010.

Y. Ren, B. Zhou, J. Tao, J. Cao, Z. Zhang et al., Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities, Atmospheric Research, vol.183, pp.322-330, 2017.

J. Ringuet, A. Albinet, E. Leoz-garziandia, H. Budzinski, and E. Villenave, Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of, Science of the Total Environment, vol.437, pp.297-305, 2012.
URL : https://hal.archives-ouvertes.fr/ineris-00963389

E. Sanderson and J. Farant, Atmospheric size distribution of PAHs: evidence of a high-volume sampling artifact, Environ. Sci. Technol, vol.39, pp.7631-7637, 2005.

E. Sarti, L. Pasti, I. Scaroni, P. Casali, A. Cavazzini et al., Determination of n-alkanes, PAHs and nitro-PAHs in PM2.5 and PM1 sampled in the surroundings of a municipal waste incinerator, Atmos. Environ, vol.149, pp.12-23, 2017.

C. Scipioni, F. Villanueva, K. Pozo, and R. Mabilia, Preliminary characterization of polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and furans in atmospheric PM10 of an urban and a remote area of Chile, Environ. Technol, vol.33, pp.809-820, 2012.

G. Shen, W. Wang, Y. Yang, J. Ding, M. Xue et al., Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions, and gas-particle partitioning, Environ.," Sci. Technol, vol.45, pp.1206-1212, 2011.

G. Shen, W. Wang, Y. Yang, C. Zhu, Y. Min et al., Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural northern China, Atmos. Environ, vol.44, pp.5237-5243, 2010.

C. W. Sheu, S. N. Dobras, I. Rodriguez, J. K. Lee, and . P. Fu-p, Transforming activity of selected polycyclic aromatic hydrocarbons and their nitro-derivatives in BALB/3T3 A31-1-1 cells, Fd Chem. Toxic, vol.32, issue.7, pp.611-615, 1994.

S. Shi and B. Zhao, Comparison of the predicted concentration of outdoor originated indoor polycyclic aromatic hydrocarbons between a kinetic partition model and a linear instantaneous model for gasparticle partition, Atmospheric Environment, vol.59, pp.93-101, 2012.

T. Shimada and Y. Fujii-kuriyama, Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1, Cancer Sci, vol.95, issue.1, pp.1-6, 2004.

L. Shuzhen, S. Tao, W. Liu, Y. Liu, H. Dou et al., Atmospheric polycyclic aromatic hydrocarbons in North China: a wintertime study, Environ Sci Technol, vol.41, pp.8256-8261, 2007.

B. Siegmund, R. Weiss, and W. Pfannhauser, Sensitive method for the determination of nitrated polycyclic aromatic hy-drocarbons in the human diet, Anal Bioanal Chem, vol.375, pp.175-181, 2003.

M. R. Sienra, Oxygenated polycyclic aromatic hydrocarbons in urban air particulate matter, Atmospheric Environment, vol.40, pp.2374-2384, 2006.

B. Simoneit, X. Bi, D. Oros, P. Medeiros, G. Sheng et al., Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: Source tests and ambient aerosol assessments, Environ. Sci. Technol, vol.41, pp.7294-7302, 2007.

M. Sklorz, J. Briede, J. Schnelle-kreis, Y. Liu, J. Cyrys et al., Concentration of oxygenated polycyclic aromatic hydrocarbons and oxygen free radical formation from urban particulate matter, J. Toxic. Environ. Health A, vol.70, pp.1866-1869, 2007.

J. Sobus, M. Mcclean, R. F. Herrick, S. Waidyanatha, L. A. Nylander-french et al., Comparing urinary biomarkers of airborne and dermal exposure to polycyclic aromatic compounds in asphalt-exposed workers, Ann Occup Hyg, vol.53, issue.6, pp.561-571, 2009.

K. F. Souza, L. R. Carvalho, A. G. Allen, and A. A. Cardoso, Diurnal and nocturnal measurements of PAH, nitro-PAH, and oxy-PAH compounds in atmospheric particulate matter of a sugar cane burning region, Atmospheric Environment, vol.83, pp.193-201, 2014.

K. R. Stcha, M. E. Staretz, M. Wang, L. Liang, P. M. Kenney et al., Effects of benzyl isothiocyanate and phenethyl isothiocyanate on benzo[a]pyrene metabolism and DNA adduct formation in the A/J mouse, Carcinogenesis, vol.21, pp.1711-1719, 2000.

G. Stroomberg, F. Ariese, C. Van-gestel, B. Van-hattum, N. Velthorst et al., Pyrene biotransformation products as biomarkers of polycyclic aromatic hydrocarbon exposure in terrestrial Isopoda: concentration-response relationship, and field study in a contaminated forest, Environ Toxicol. Chem, vol.22, issue.1, pp.224-231, 2003.

C. D. Swartz, L. C. King, S. Nesnow, D. M. Umbach, S. Kumard et al., Mutagenicity, stable DNA adducts, and abasic sites induced in Salmonella by phenanthro, Mutation Research, vol.661, pp.47-56, 2009.

N. Tang, T. Hattori, R. Taga, K. Igarashi, X. Y. Yang et al., Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries, Atmos. Environ, vol.39, pp.5817-5826, 2015.

E. Teixeira, K. Garcia, L. Meincke, and K. A. Leal, Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles, Atmos. Res, vol.101, pp.631-639, 2011.

H. Tokiwa and Y. Ohnishi, Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment, CRC Crit. Rev. Toxicol, vol.17, pp.23-60, 1986.

H. Tokiwa, R. Nakagawa, K. Morita, and Y. Ohnishi, Mutagenicity of nitro derivatives induced by exposure of aromatic compounds to nitrogen dioxide, Mutation Res, vol.85, pp.195-205, 1981.

S. Tomaz, J. Jaffrezo, O. Favez, E. Perraudin, E. Villenave et al., Sources and atmospheric chemistry of oxy-and nitro-PAHs in the ambient air of Grenoble (France), Atmospheric Environment, vol.161, pp.144-154, 2017.
URL : https://hal.archives-ouvertes.fr/ineris-01863155

. J. Topinka, L. Schwarz, F. Kiefer, F. Wiebel, O. Gajdgo et al., DNA adduct formation in mammalian cell cultures by polycyclic aromatic hydrocarbons (PAH) and nitro-PAH in coke oven emission extract, Mutation Research, vol.419, pp.91-105, 1998.

A. Toriba, H. Kitaoka, R. Dills, S. Mizukami, K. Tanabe et al., Identification and quantification of 1-nitropyrene metabolites in human urine as a proposed biomarker for exposure to diesel exhaust, Chem. Res. Toxicol, vol.20, issue.7, pp.999-1007, 2007.

J. Travares, J. Pinto, A. S. Souza, and M. Silci, Emission of polycyclic aromatic hydrocarbons from diesel engine in a bus station, Atmos Environ, vol.38, pp.5039-5044, 2004.

D. Traversi, T. Schiliro, R. Degan, C. Pignata, L. Alessandria et al., Involvement of nitro-compounds in the mutagenicity of urban Pm2.5 and Pm10 in Turin, Mutation Research, vol.726, pp.54-59, 2011.

M. P. Tsakas, I. E. Sitaras, and P. A. Siskos, Nitro polycyclic aromatic hydrocarbons in atmospheric particulate matter of Athens, Greece, Chem. Ecol, vol.26, pp.251-261, 2010.

S. , Department of Health and Human Services Secretary Kathleen Sebelius, 2011.

J. Unwin, J. Cocker, E. Scobbie, H. Chambers, B. L. Valle-hernandez et al., Temporal varia-tion of nitro-polycyclic aromatic hydrocarbons in PM10 and PM2.5 collected in Northern Mexico City, Sci. Total Environ, vol.50, issue.4, pp.5429-5438, 2006.

B. L. Van-drooge, P. Fernandez, J. O. Grimalt, E. Stuchlik, C. J. Garcia et al., Atmospheric polycyclic aromatic hydrocarbons in remote European and Atlantic sites located above the boundary mixing layer, Environmental Science and Pollution Research, vol.17, pp.1207-1216, 2010.

C. Varga and K. Szendi, In-vivo mutagenicity of the carcinogenic 1-nitropyrene: a model of a potential asbestos exposure, Magy. Onkol, vol.50, pp.337-340, 2006.

P. D. Vasconcellos, O. Sanchez-ccoyllo, C. Balducci, R. Mabilia, and A. Cecinato, Occurrence and concentration levels of nitro-PAH in the air of three Brazilian cities experiencing different emission impacts, Water Air Soil Pollut, vol.190, pp.87-94, 2008.

M. Vestenius, S. Leppänen, P. Anttila, K. Kyllönen, J. Hatakka et al., Background concentrations and source apportionment of 109 polycyclic aromatic hydrocarbons in south-eastern Finland, Atmospheric Environment, vol.45, issue.20, pp.3391-3399, 2011.

E. Vicente and C. Alves, An overview of particulate emissions from residential biomass combustion, Atmospheric Research, vol.199, pp.159-185, 2018.

E. Vicente, A. Vicente, B. M. Bandowe, and C. Alves, Particulate phase emission of parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, azaarenes and nitrated PAHs) from manually and automatically fired combustion appliances, Air Qual. Atmos. Health, vol.9, pp.653-668, 2016.

P. Vineis, F. Forastiere, G. Hoek, and M. Lipsett, Outdoor air pollution and lung cancer: recent epidemiologic evidence, Int. J. Cancer, vol.111, pp.647-652, 2004.

D. Vione, S. Barra, G. De-gennaro, M. De-rienzo, S. Gillardoni et al., Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate, Ann. Chim. (Rome), vol.94, pp.257-268, 2004.

M. Wada, H. Kido, N. Kishikawa, T. Tou, M. Tanaka et al., Assessment of air pollution in Nagasaki city: Determination of polycyclic aromatic hydrocarbons and their nitrated derivatives, and some metals, Environ. Pollut, vol.115, pp.139-147, 2001.

C. Walgraeve, K. Demeestere, J. Dewulf, R. Zimmermann, and H. V. Langenhove, Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence, Atmospheric Environment, vol.44, pp.1831-1846, 2010.

C. Wang, J. Yang, L. Zhu, L. Yan, D. Lu et al., Never deem lightly the "less harmful" low-molecular-weight PAH, NPAH, and OPAH d Disturbance of the immune response at real environmental levels, Chemosphere, vol.168, pp.568-577, 2017.

G. Wang, K. Kawamura, X. Zhao, L. Dai, and Z. Niu, Identification, abundance and seasonal variation of anthropogenic organic aerosols from a mega-city in China, Atmos. Environ, vol.41, pp.407-416, 2007.

J. Wang, H. Xu, B. Guinot, L. Li, S. H. Ho et al., Concentrations, sources and health effects of parent, oxygenated-and nitrated-polycyclic aromatic hydrocarbons (PAHs) in middleschool air in, Atmospheric Research, vol.192, pp.1-10, 2017.

L. R. Wang, Y. Wang, J. Chen, and L. H. Guo, A structure-based investigation on the binding interaction of hydroxylated polycyclic aromatic hydrocarbons with DNA, Toxicology, vol.262, issue.3, pp.250-257, 2009.

W. Wang, M. J. Huang, C. Chan, K. Cheung, and M. Wong, Risk assessment of non-dietary exposure to polycyclic aromatic hydrocarbons (PAHs) via house PM2.5, TSP and dust and the implications from human hair, vol.73, pp.204-213, 2013.

W. Wang, N. Jariyasopit, J. Schrlau, Y. Jia, S. Tao et al., Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic Games, Environ. Sci. Technol, vol.45, pp.6887-6895, 2011.

W. Wang, L. Jing, J. Zhan, B. Wang, D. Zhang et al., Nitrated polycyclic aromatic hydrocarbon pollution during the Shanghai World Expo, Atmos. Environ, vol.89, pp.242-248, 2010.

X. Wang, P. Thai, Y. Li, Q. Li, D. Wainwright et al., Changes in atmospheric concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls between the 1990s and 2010s in an Australian city and the role of bushfires as a source, Environ. Pollut, vol.213, pp.223-231, 2016.

Z. Wang, P. Ren, Y. Sun, X. Ma, X. Liu et al., Gas/particle partitioning of polycyclic aromatic hydrocarbons in coastal atmosphere of the north Yellow Sea, China, Environmental Science and Pollution Research, vol.20, issue.8, pp.5753-5763, 2013.

D. Watt, C. Utzat, P. Hilario, and A. Basu, Mutagenicity of the 1-nitropyrene-DNA adduct N-(deoxyguanosin-8-yl)-1-aminopyrene in mammalian cells, Chem. Res. Toxicol, vol.20, pp.1658-1664, 2007.

C. Wei, B. M. Bandowe, Y. Han, J. Cao, C. Zhan et al., Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi'an, Central China, Chemosphere, vol.134, pp.512-520, 2015.

S. Wei, B. Huang, M. Liu, X. Bi, Z. Ren et al., Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China, Atmospheric Research, vol.109, pp.76-83, 2012.

W. Wei, C. Zhang, A. Liu, S. Xie, X. Chen et al., PCB126 enhanced the genotoxicity of B[a]P in HepG2 cells bymodulating metabolic enzyme and DNA repair activities, Toxicol. Lett, vol.189, pp.91-95, 2009.

P. Wells, G. Mccallum, K. Lam, J. Henderson, and S. Ondovcik, Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits, Birth Defects Res C Embryo Today, vol.90, issue.2, pp.103-109, 2010.

R. W. West and K. L. Rowland, In-vitro transformation potential of N-Polycyclic Aromatic Hydrocarbons in rat tracheal eoithelial cells, Toxic. in Vitro, vol.8, issue.2, pp.301-307, 1994.

N. K. Wilson, T. R. Mccurd, and J. C. Chuang, Concentrations and phase distributions of nitrated and oxygenated Polycyclic Aromatic Hydrocarbons in ambient air, Atmospheric Environment, vol.29, pp.2575-2584, 1995.

P. G. Wislocki, E. Bagan, Y. H. Lu, K. L. Dooley, P. P. Fu et al., Tumorigenicity of nitrated derivatives of pyrene, Carcinogenesis, vol.7, pp.1317-1322, 1986.

S. Yin, M. Tang, F. Chen, T. Li, and W. Liu, Environmental exposure to polycyclic aromatic hydrocarbons (PAHs): The correlation with and impact on reproductive hormones in umbilical cord serum, Environmental Pollution, vol.220, pp.1429-1437, 2017.

H. Yu, Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity, Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews, vol.20, pp.149-183, 2002.

Y. Yuan, L. Jin, L. Wan, Z. Li, L. Zhang et al., Levels of PAH-DNA adducts in placental tissue and the risk of fetal neural tube defects in a Chinese population, Reprod. Toxicol, vol.37, pp.70-75, 2013.

M. Yunker, R. Macdonal, R. Vingarzan, R. Mitchell, D. Goyette et al., PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition, Org. Geochem, vol.33, pp.489-515, 2002.

M. Zaciera, J. Kurek, L. Dzwonek, B. Feist, and A. Jedrzejczak, Seasonal variability of PAHs and nitro-PAHs concentrations in total suspended particulate matter in ambi-ent air of cities in Silesian Voivodeship, Environ. Prot. Eng, vol.38, pp.45-50, 2012.

K. Zajda, A. Ptak, A. Rak, E. Fiedor, A. Grochowalski et al., Effects of human blood levels of two PAH mixtures on the AHR signalling activation pathway and CYP1A1 and COMT target genes in granulosa non-tumor and granulosa tumor cell lines, Toxicology, vol.389, pp.1-12, 2017.

J. Zhang, L. Yang, A. Mellouki, J. Chen, X. Chen et al., Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01744578

Y. Zhang and S. Tao, Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004, Atmos. Environ, vol.43, pp.812-819, 2009.

Y. Zhang, B. Yang, J. Gan, C. Liu, X. Shu et al., Nitration of particle-associated PAHs and their derivatives (nitro-, oxy-, and hydroxy-PAHs) with NO3 radicals, Atmos. Environ, vol.45, pp.2515-2521, 2011.

Z. Zhang, S. C. Xu, and Y. Wang, The concentrationand distribution of some organic matter in the aerosol of Qingdao coast, Periodical of Ocean university of China, vol.35, pp.661-664, 2005.

C. Zhou, X. Zhu, Z. Wang, X. Ma, J. Chen et al., Gas -Particle Partitioning of PAHs In the Urban Air of Dalian, China: Measurements and Assessments, Polycyclic Aromatic Compounds, vol.33, issue.11, pp.31-51, 2013.

L. Zhu, H. Lu, S. Chen, and T. Amagai, Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, J. Hazard Mater, vol.162, issue.2-3, pp.1165-1170, 2009.

K. Zimmermann, N. Jariyasopit, S. Simonich, S. Tao, R. Atkinson et al., Résumé La pollution de l'air et les particules fines (PM 2.5 ) ont été classées cancérogènes (groupe 1) par le Centre International de Recherche sur le Cancer en 2013. Cette fraction particulaire représente un mélange complexe dont la composition, très variable, influe sur la toxicité. Cependant, peu d'études ont déterminé l'implication respective des différentes fractions chimiques constitutives des PM dans leurs effets toxiques, Environ. Sci. Technol, vol.47, pp.8434-8442, 2013.

, la fraction organique extractible (EOM 2.5-0.3 ) et la fraction non-extractible par le dichlorométhane (NEM 2.5-0.3 ). De plus, les effets spécifiques de la fraction organique extraite des particules quasi-ultrafines (EOM 0.3 ) ont été comparés à ceux de la fraction organique extraite des particules fines (EOM 2.5-0.3 ). Nos résultats montrent que chacune des fractions considérées a été capable d'activer au moins un des mécanismes étudiés. Les PM 2.5-0.3 ont induit des effets toxiques généralement plus marqués que les EOM 2.5-0.3 et NEM 2.5-0.3 . La fraction organique des particules quasi-ultrafines (EOM 0.3 ), plus riche en composés organiques et notamment en HAP et autres congénères, est apparue responsable d'effets délétères globalement plus importants que celle extraite des particules fines (EOM 2.5-0.3 ). Les résultats de ce travail ont apporté des éléments nouveaux sur la toxicité relative des différentes fractions extractibles et non extractibles des particules fines et soulignent le rôle crucial joué par les particules ultrafines, encore trop peu étudiées. Abstract Air pollution and particulate matter (PM 2.5 ) were classified as carcinogens (group 1) by the International Agency for Research on Cancer in 2013. This particulate fraction represents a complex mixture with a highly variable composition influencing the toxicity. However, few studies have determined the respective involvement of the different chemical fractions of PM in their toxic effects. In this work, fine particles (PM 2.5-0.3 ) and quasi-ultrafine particles (PM 0.3 ) were sampled in an urban site located in Beirut (Lebanon), Après avoir réalisé la caractérisation physico-chimique de ces deux types de particules, leurs effets toxiques (cytotoxicité globale, activation métabolique, génotoxicité, inflammation, stress oxydant, autophagie et apoptose) ont été étudiés sur une lignée de cellules épithéliales bronchiques humaines (BEAS-2B). L'analyse des fractions organiques a révélé des différences entre les teneurs en hydrocarbures aromatiques polycycliques (HAP), de même qu'en congénères oxygénés (O-HAP) et nitrés (N-HAP), respectivement 43, 17 et 4 fois plus élevées dans les PM 0.3 que dans les PM 2.5-0.3 . L'étude toxicologique a porté sur les particules fines considérées dans leur entièreté