M. Adamaki, G. I. Lambrou, A. Athanasiadou, S. Vlahopoulos, A. G. Papavassiliou et al., HOXA9 and MEIS1 gene overexpression in the diagnosis of childhood acute leukemias: Significant correlation with relapse and overall survival, Leuk Res, vol.39, issue.8, pp.874-82, 2015.

B. Alberts, J. H. Wilson, and T. Hunt, Biologie mole?ulaire de la cellule, 2011.

. Alharbi-r-a, R. Pettengell, H. S. Pandha, and R. Morgan, The role of HOX genes in normal hematopoiesis and acute leukemia, Leukemia, vol.27, issue.5, pp.1000-1008, 2013.

R. A. Alharbi, H. S. Pandha, G. R. Simpson, R. Pettengell, K. Poterlowicz et al., Inhibition of HOX/PBX dimer formation leads to necroptosis in acute myeloid leukemia cells, Oncotarget, vol.8, issue.52, pp.89566-79, 2017.

R. J. Amato, Vaccine therapy for renal cell carcinoma, Rev Urol, vol.5, issue.2, pp.65-71, 2003.

, American Joint Commitee on Cancer. AJCC Cancer Staging Handbook. AJCC Cancer Staging Handbook, 2010.

M. B. Amin, M. B. Amin, P. Tamboli, J. Javidan, H. Stricker et al., Prognostic impact of histologic subtyping of adult renal epithelial neoplasms: An experience of 405 cases, Am J Surg Pathol, vol.26, issue.3, pp.281-91, 2002.

J. Anaya, OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs, PeerJ Comput Sci, vol.2, p.67, 2016.

H. Ando, A. Natsume, T. Senga, R. Watanabe, I. Ito et al., Peptide-based inhibition of the HOXA9/PBX interaction retards the growth of human meningioma, Cancer Chemother Pharmacol, vol.73, issue.1, pp.53-60, 2014.

A. Paul, A. Leite, J. Mitchell, K. Kim, H. M. Carvajal et al., Pharmacological inhibition of the transcription factor PU.1 in leukemia, J Clin Invest, vol.127, issue.12, pp.4297-313, 2017.

A. Aulehla, C. Wehrle, B. Brand-saberi, R. Kemler, A. Gossler et al., Wnt3a plays a major role in the segmentation clock controlling somitogenesis, Dev Cell, vol.4, issue.3, pp.395-406, 2003.

P. M. Ayton and M. L. Cleary, Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9, Genes Dev, vol.17, issue.18, pp.2298-307, 2003.

S. Azzi, S. Bruno, J. Giron-michel, D. Clay, A. Devocelle et al., Differentiation Therapy: Targeting Human Renal Cancer Stem Cells with Interleukin 15, JNCI J Natl Cancer Inst, vol.103, issue.24, pp.1884-98, 2011.

C. Bailly, L. Dassonneville, C. Carrasco, D. Lucas, A. Kumar et al., Relationships between topoisomerase II inhibition, sequence-specificity and DNA binding mode of dicationic diphenylfuran derivatives, Anticancer Drug Des, vol.14, issue.1, pp.47-60, 1999.

C. Bailly, C. Tardy, L. Wang, B. Armitage, K. Hopkins et al., Recognition of ATGA sequences by the unfused aromatic dication DB293 forming stacked dimers in the DNA minor groove, Biochemistry, vol.40, issue.33, pp.9770-9779, 2001.

R. P. Bakshi and T. A. Shapiro, DNA topoisomerases as targets for antiprotozoal therapy, Mini Rev Med Chem, vol.3, issue.6, pp.597-608, 2003.

S. Bandyopadhyay, M. Z. Ashraf, P. Daher, P. H. Howe, P. Dicorleto et al., Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model, Proc Natl Acad Sci, vol.27, issue.12, pp.16924-16933, 2006.

K. Bensalah, L. Albiges, J. Bernhard, P. Bigot, T. Bodin et al., CCAFU french national guidelines 2016-2018 on renal cancer

, Prog en Urol, vol.27, pp.67-91, 2016.

K. Bensalah, E. Leray, P. Fergelot, N. Rioux-leclercq, J. Tostain et al., Prognostic value of thrombocytosis in renal cell carcinoma, J Urol, vol.175, issue.3, pp.859-63, 2006.

C. Berlato, M. N. Khan, T. Schioppa, R. Thompson, E. Maniati et al., A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer, J Clin Invest, vol.127, issue.3, pp.801-814, 2017.

A. Bex, L. Albiges, B. Ljungberg, K. Bensalah, S. Dabestani et al., Updated European Association of Urology Guidelines Regarding Adjuvant Therapy for Renal Cell Carcinoma, Eur Urol, vol.71, issue.5, pp.719-741, 2017.

A. Bex, L. Albiges, M. Staehler, K. Bensalah, R. H. Giles et al., A Joint Statement from the European Association of Urology Renal Cell Cancer Guidelines Panel and the International Kidney Cancer Coalition: The Rejection of Ipilimumab and Nivolumab for Renal Cancer by the Committee for Medicinal Products for Human Use D, Eur Urol, 2018.

A. Bhan and S. S. Mandal, LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer, Biochim Biophys Acta -Rev Cancer, vol.1856, issue.1, pp.151-64, 2015.

S. Bhatlekar, S. Addya, M. Salunek, C. R. Orr, S. Surrey et al., Identification of a Developmental Gene Expression Signature, Including HOX Genes, for the Normal Human Colonic Crypt Stem Cell Niche: Overexpression of the Signature Parallels Stem Cell Overpopulation During Colon Tumorigenesis, Stem Cells Dev, vol.23, issue.2, pp.167-79, 2014.

S. Bhatlekar, V. Viswanathan, J. Z. Fields, and B. M. Boman, Overexpression of HOXA4 and HOXA9 genes promotes self-renewal and contributes to colon cancer stem cell overpopulation, J Cell Physiol, vol.233, issue.2, pp.727-762, 2018.

M. Bianchi, M. Sun, C. Jeldres, S. F. Shariat, Q. D. Trinh et al., Distribution of metastatic sites in renal cell carcinoma: A population-based analysis, Ann Oncol, vol.23, issue.4, pp.973-80, 2012.

C. Birchmeier, W. Birchmeier, and E. Gherardi, Vande Woude GF. Met, metastasis, motility and more, Nat Rev Mol Cell Biol, vol.4, issue.12, pp.915-940, 2003.

G. Botti, D. Chiara, A. , D. Bonito, M. Cerrone et al., Noncoding RNAs within the HOX gene network in tumor pathogenesis and progression, J Cell Physiol, 2018.

B. Bouteille, O. Oukem, S. Bisser, and M. Dumas, Treatment perspectives for human African trypanosomiasis, Fundam Clin Pharmacol, vol.17, issue.2, pp.171-81, 2003.

L. A. Boyer, K. Plath, J. Zeitlinger, T. Brambrink, L. A. Medeiros et al., Polycomb complexes repress developmental regulators in murine embryonic stem cells, Nature, vol.441, issue.7091, pp.349-53, 2006.

C. B. Bridges, Current Maps of the Location of the Mutant Genes of Drosophila Melanogaster, Proc Natl Acad Sci, vol.7, issue.4, pp.127-159, 1921.

T. Bruhl, C. Urbich, D. Aicher, A. Acker-palmer, A. M. Zeiher et al., Homeobox A9 Transcriptionally Regulates the EphB4 Receptor to Modulate Endothelial Cell Migration and Tube Formation, Circ Res, vol.94, issue.6, pp.743-51, 2004.

C. Burri, P. D. Yeramian, J. L. Allen, A. Merolle, K. K. Serge et al., Efficacy, Safety, and Dose of Pafuramidine, a New Oral Drug for Treatment of First Stage Sleeping Sickness, in a Phase 2a Clinical Study and Phase 2b Randomized Clinical Studies, PLoS Negl Trop Dis, vol.10, issue.2, 2016.

B. Bussolati, S. Bruno, C. Grange, U. Ferrando, and G. Camussi, Identification of a tumor-initiating stem cell population in human renal carcinomas, FASEB J, vol.22, issue.10, pp.3696-705, 2008.

R. Calvo, J. West, W. Franklin, P. Erickson, L. Bemis et al., Altered HOX and WNT7A expression in human lung cancer, Proc Natl Acad Sci, vol.97, issue.23, pp.12776-81, 2000.

R. Cao, L. Wang, H. Wang, L. Xia, H. Erdjument-bromage et al., Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science (80-), vol.298, pp.1039-1082, 2002.

U. Capitanio, F. Becker, M. L. Blute, P. Mulders, J. J. Patard et al., Lymph node dissection in renal cell carcinoma, Eur Urol, vol.60, issue.6, pp.1212-1232, 2011.

M. Capovilla and J. Botas, Functional dominance among Hox genes: repression dominates activation in the regulation of Dpp, Development, vol.125, issue.24, pp.4949-57, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02333146

J. D. Carpten, C. M. Robbins, A. Villablanca, L. Forsberg, S. Presciuttini et al., HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome, Nat Genet, vol.32, issue.4, pp.676-80, 2002.

N. S. Carter, B. J. Berger, and A. H. Fairlamb, Uptake of diamidine drugs by the P2 nucleoside transporter in melarsen-sensitive and -resistant Trypanosoma brucei brucei, J Biol Chem, vol.270, issue.47, pp.28153-28160, 1995.

C. P. Chang, L. Brocchieri, W. F. Shen, C. Largman, and M. L. Cleary, Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus, Mol Cell Biol, vol.16, issue.4, pp.1734-1779, 1996.

. Chapman-m-a, M. S. Lawrence, J. J. Keats, K. Cibulskis, C. Sougnez et al., Initial genome sequencing and analysis of multiple myeloma, Nature, vol.471, issue.7339, pp.467-72, 2011.

F. Chen and M. R. Capecchi, Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy, Proc Natl Acad Sci, vol.96, pp.541-547, 1999.

W. Chen, H. Hill, A. Christie, M. S. Kim, E. Holloman et al., Targeting renal cell carcinoma with a HIF-2 antagonist, Nature, vol.539, issue.7627, pp.112-119, 2016.

W. Cheng, J. Liu, H. Yoshida, D. Rosen, and H. Naora, Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract, Nat Med, vol.11, issue.5, pp.531-538, 2005.

Y. Cheng, I. Jutooru, G. Chadalapaka, C. J. Corton, and S. Safe, The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration, Oncotarget, vol.6, issue.13, 2015.

J. C. Cheville, C. M. Lohse, H. Zincke, A. L. Weaver, B. C. Leibovich et al., Sarcomatoid Renal Cell Carcinoma: An Examination of Underlying Histologic Subtype and an Analysis of Associations with Patient Outcome, Am J Surg Pathol, vol.28, issue.4, pp.435-476, 2004.

H. Cho, X. Du, J. P. Rizzi, E. Liberzon, A. A. Chakraborty et al., On-target efficacy of a HIF-2? antagonist in preclinical kidney cancer models, Nature, vol.539, issue.7627, pp.107-118, 2016.

T. Choueiri, N. Agarwal, T. Ho, S. K. Pal, B. Seon et al., TRAXAR study: A randomized phase 2 trial of axitinib and TRC105 versus axitinib alone in patients with advanced or metastatic renal cell carcinoma (mRCC), Ann Oncol, p.27, 2016.

T. K. Choueiri, B. Escudier, T. Powles, N. M. Tannir, P. N. Mainwaring et al., Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial, Lancet Oncol, vol.17, issue.7, pp.917-944, 2016.

T. K. Choueiri, C. Hessel, S. Halabi, B. Sanford, M. D. Michaelson et al., Cabozantinib versus sunitinib as initial therapy for metastatic renal cell carcinoma of intermediate or poor risk (Alliance A031203 CABOSUN randomised trial): Progression-free survival by independent review and overall survival update, Eur J Cancer, vol.94, pp.115-140, 2018.

T. K. Choueiri, M. D. Michaelson, E. M. Posadas, G. P. Sonpavde, D. F. Mcdermott et al., An Open Label Phase Ib Dose Escalation Study of TRC105 (Anti-Endoglin Antibody) with Axitinib in Patients with Metastatic Renal Cell Carcinoma, Oncologist, pp.2018-0299, 2018.

W. Chow, Rising Incidence of Renal Cell Cancer in the United States, Jama, vol.281, issue.17, p.1628, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02017509

M. Chuang, K. Sun, S. Tang, M. Deng, Y. Wu et al., Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells, Cancer Sci, 2008.

W. B. Chung and H. J. Youn, Pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity, Korean J Intern Med, vol.31, issue.4, pp.625-658, 2016.

C. Cillo, P. Barba, G. Freschi, G. Bucciarelli, M. C. Magli et al., HOX gene expression in normal and neoplastic human kidney, Int J Cancer, vol.51, issue.6, pp.892-899, 1992.

A. J. Cohen, F. P. Li, S. Berg, D. J. Marchetto, S. Tsai et al., Hereditary Renal-Cell Carcinoma Associated with a Chromosomal Translocation, N Engl J Med, vol.301, issue.11, pp.592-597, 1979.

C. T. Collins and J. L. Hess, Deregulation of the HOXA9/MEIS1 axis in acute leukemia, Curr Opin Hematol, vol.23, issue.4, pp.354-61, 2016.

C. T. Collins and J. L. Hess, Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets, Oncogene, vol.35, issue.9, pp.1090-1098, 2016.

G. Corrao, L. Scotti, V. Bagnardi, and R. Sega, Hypertension, antihypertensive therapy and renal-cell cancer: a meta-analysis, Curr Drug Saf, 2007.

C. Corrò and H. Moch, Biomarker discovery for renal cancer stem cells, J Pathol Clin Res, 2018.

B. M. Costa, J. S. Smith, Y. Chen, J. Chen, H. S. Phillips et al., Reversing HOXA9 oncogene activation by PI3K inhibition: Epigenetic mechanism and prognostic significance in human glioblastoma, Cancer Res, vol.70, issue.2, pp.453-62, 2010.

C. J. Creighton, M. Morgan, P. H. Gunaratne, D. A. Wheeler, R. A. Gibbs et al., Comprehensive molecular characterization of clear cell renal cell carcinoma, Nature, 2013.

, Jun, vol.23, issue.7456, pp.43-52

U. Creutzig, M. M. Van-den-heuvel-eibrink, B. Gibson, M. N. Dworzak, S. Adachi et al., Diagnosis and management of acute myeloid leukemia in children and adolescents: Recommendations from an international expert panel, Blood, vol.120, issue.16, pp.3167-205, 2012.

J. Dagher, B. Delahunt, N. Rioux-leclercq, L. Egevad, G. Coughlin et al., Assessment of tumour associated necrosis provides prognostic information additional to WHO/ISUP grading for clear cell renal cell carcinoma, Histopathology, 2018.

C. V. Dang, MYC on the path to cancer. Cell, vol.149, issue.1, pp.22-35, 2012.

T. R. Daniels, I. I. Neacato, J. A. Rodríguez, H. S. Pandha, R. Morgan et al., Disruption of HOX activity leads to cell death that can be enhanced by the interference of iron uptake in malignant B cells, Leukemia, vol.24, issue.9, pp.1555-65, 2010.

A. Davis and M. Capecchi, Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11, Development, vol.120, issue.8, pp.2187-98, 1994.

I. A. Deckers, . Van-den, P. A. Brandt, M. Van-engeland, F. J. Van-schooten et al., Polymorphisms in genes of the renin-angiotensin-aldosterone system and renal cell cancer risk: Interplay with hypertension and intakes of sodium, potassium and fluid, Int J Cancer, vol.136, issue.5, pp.1104-1120, 2015.

B. Delahunt, J. C. Cheville, G. Martignoni, P. A. Humphrey, C. Magi-galluzzi et al., The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters, Am J Surg Pathol, vol.37, issue.10, pp.1490-504, 2013.

B. Delahunt, D. Sika-paotonu, P. B. Bethwaite, M. Mccredie, G. Martignoni et al., Fuhrman grading is not appropriate for chromophobe renal cell carcinoma, Am J Surg Pathol, vol.31, issue.6, pp.957-60, 2007.

B. Delahunt, D. Sika-paotonu, P. B. Bethwaite, W. Jordan, T. Magi-galluzzi et al., Grading of clear cell renal cell carcinoma should be based on nucleolar prominence, Am J Surg Pathol, vol.35, issue.8, pp.1134-1143, 2011.

A. Dintilhac, R. Bihan, D. Guerrier, S. Deschamps, and I. Pellerin, A conserved non-homeodomain Hoxa9 isoform interacting with CBP is co-expressed with the "typical" Hoxa9 protein during embryogenesis, Gene Expr Patterns, vol.4, issue.2, pp.215-237, 2004.

H. Döhner, E. Estey, S. Amadori, F. Appelbaum, T. Büchner et al., Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, European LeukemiaNet. Blood, vol.115, issue.3, pp.453-74, 2010.

A. M. Dorrance, S. Liu, W. Yuan, B. Becknell, K. J. Arnoczky et al., Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations, J Clin Invest, vol.116, issue.10, pp.2707-2723, 2006.

K. A. Drake, M. Adam, R. Mahoney, and S. S. Potter, Disruption of Hox9,10,11 function results in cellular level lineage infidelity in the kidney, Sci Rep, vol.8, issue.1, 2018.

C. Dreyer, E. Raymond, and S. Faivre, La voie de signalisation PI3K/AKT/mTOR. Cancéro Dig, vol.1, p.187, 2009.

H. Du and H. S. Taylor, The role of hox genes in female reproductive tract development, adult function, and fertility. Cold Spring Harb Perspect Med, vol.6, 2016.

D. Duboule, A. Baron, P. Mähl, and B. Galliot, A new homeo-box is present in overlapping cosmid clones which define the mouse Hox-1 locus, EMBO J, vol.5, issue.8, pp.1973-80, 1986.

J. Dubrulle, M. J. Mcgrew, and O. Pourquié, FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation, Cell, vol.106, issue.2, pp.219-251, 2001.

J. Dubrulle and O. Pourquié, fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo, Nature, vol.427, issue.6973, pp.419-441, 2004.

M. J. Duffy, N. C. Synnott, P. M. Mcgowan, J. Crown, D. O'connor et al., P53 as a target for the treatment of cancer, Cancer Treat Rev, vol.40, issue.10, pp.1153-60, 2014.

V. Dupe, M. Davenne, J. Brocard, P. Dolle, M. Mark et al., In vivo functional analysis of the Hoxa-1 3' retinoic acid response element (3'RARE), Development, vol.124, issue.2, pp.399-410, 1997.

A. B. Ekici, P. L. Strissel, P. G. Oppelt, S. P. Renner, S. Brucker et al., HOXA10 and HOXA13 sequence variations in human female genital malformations including congenital absence of the uterus and vagina, Gene, vol.518, issue.2, pp.267-72, 2013.

S. C. Ekker, K. E. Young, V. Kessler, and D. P. , Beachy P a. Optimal DNA sequence recognition by the Ultrabithorax homeodomain of Drosophila, EMBO J, vol.10, issue.5, pp.1179-86, 1991.

B. Escudier, J. Bellmunt, S. Négrier, E. Bajetta, B. Melichar et al., Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): Final analysis of overall survival, J Clin Oncol, vol.28, issue.13, pp.2144-50, 2010.

B. Escudier, T. Eisen, W. M. Stadler, C. Szczylik, S. Oudard et al., Sorafenib in Advanced Clear-Cell Renal-Cell Carcinoma, N Engl J Med, vol.356, issue.2, pp.125-159, 2007.

B. Escudier, A. Pluzanska, P. Koralewski, A. Ravaud, S. Bracarda et al., Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, doubleblind phase III trial, Lancet, vol.370, issue.9605, pp.2103-2114, 2007.

B. Escudier, C. Szczylik, T. E. Hutson, T. Demkow, M. Staehler et al., Randomized phase II trial of first-line treatment with sorafenib versus interferon alfa-2a in patients with metastatic renal cell carcinoma, J Clin Oncol, vol.27, issue.8, pp.1280-1289, 2009.

J. Faber, A. V. Krivtsov, M. C. Stubbs, R. Wright, T. N. Davis et al., HOXA9 is required for survival in human MLL-rearranged acute leukemias, Blood, vol.113, issue.11, pp.2375-85, 2009.

B. Falini, N. Bolli, A. Liso, M. P. Martelli, R. Mannucci et al., Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: Molecular basis and clinical implications, Leukemia, vol.23, issue.10, pp.1731-1774, 2009.

J. Fogh, J. M. Fogh, and T. Orfeo, One hundred and twenty seven cultured human tumor cell lines producing tumors in nude mice, J Natl Cancer Inst, vol.59, issue.1, pp.221-227, 1977.

S. Forlani, Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo, Development, vol.130, issue.16, pp.3807-3826, 2003.

Z. Fu, C. Chen, Q. Zhou, Y. Wang, Y. Zhao et al., LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9, Cancer Lett, vol.410, pp.68-81, 2017.

S. Fuhrman, L. Lasky, and C. , Prognostic significance of morphological parameters in renal cell carcinoma, Am J Surg Pathol, vol.6, issue.6, pp.655-63, 1982.

S. Fujimoto, K. Araki, O. Chisaka, M. Araki, K. Takagi et al., Analysis of the murine Hoxa-9 cDNA: An alternatively spliced transcript encodes a truncated protein lacking the homeodomain, Gene, vol.209, issue.1-2, pp.77-85, 1998.

R. P. Gajula, S. T. Chettiar, R. D. Williams, S. Thiyagarajan, Y. Kato et al., The Twist Box Domain Is Required for Twist1-induced Prostate Cancer Metastasis, Mol Cancer Res, vol.11, issue.11, pp.1387-400, 2013.

M. Gassenmaier, D. Chen, A. Buchner, L. Henkel, M. Schiemann et al., CXC chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis, Stem Cells, vol.31, issue.8, pp.1467-76, 2013.

A. Gati, S. Kouidhi, R. Marrakchi, A. Gaaied, . El et al., Obesity and renal cancer: Role of adipokines in the tumor-immune system conflict, Oncoimmunology, vol.3, issue.1, 2014.

M. D. Gearhart, L. Dickinson, J. Ehley, C. Melander, P. B. Dervan et al., Inhibition of DNA binding by human estrogen-related receptor 2 and estrogen receptor ?? with minor groove binding polyamides, Biochemistry, vol.44, issue.11, pp.4196-203, 2005.

W. J. Gehring, Y. Q. Qian, M. Billeter, K. Furukubo-tokunaga, A. F. Schier et al., Homeodomain-DNA recognition, Cell, vol.78, issue.2, pp.211-234, 1994.

R. L. Gendron, H. Paradis, H. M. Hsieh-li, D. W. Lee, S. S. Potter et al., Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice, Biol Reprod, vol.56, issue.5, pp.1097-105, 1997.

M. Gerlinger, A. J. Rowan, S. Horswell, J. Larkin, D. Endesfelder et al., Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing, N Engl J Med, vol.366, issue.10, pp.883-92, 2012.

G. Ghannam, A. Takeda, T. Camarata, M. A. Moore, A. Viale et al., The Oncogene Nup98-HOXA9 Induces Gene Transcription in Myeloid Cells, J Biol Chem, vol.279, issue.2, pp.866-75, 2004.

P. M. Gilbert, J. K. Mouw, M. A. Unger, J. N. Lakins, M. K. Gbegnon et al., HOXA9 regulates BRCA1 expression to modulate human breast tumor phenotype, J Clin Invest, vol.120, issue.5, pp.1535-50, 2010.

M. Z. Gilcrease, M. Guzman-paz, G. Niehans, D. Cherwitz, J. B. Mccarthy et al., Correlation of CD44S expression in renal clear cell carcinomas with subsequent tumor progression or recurrence, Cancer, vol.86, issue.11, pp.2320-2326, 1999.

J. R. Gnarra, K. Tory, Y. Weng, L. Schmidt, M. H. Wei et al., Mutations of the VHL tumour suppressor gene in renal carcinoma, Nat Genet, vol.7, issue.1, pp.85-90, 1994.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek et al., Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science (80-), vol.286, pp.531-527, 1999.

L. Gossage, T. Eisen, and E. R. Maher, VHL, the story of a tumour suppressor gene, Nat Rev Cancer, vol.15, issue.1, pp.55-64, 2015.

C. Grange, M. Tapparo, F. Collino, L. Vitillo, C. Damasco et al., Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche, Cancer Res, vol.71, issue.15, pp.5346-56, 2011.

D. G. Grier, A. Thompson, A. Kwasniewska, G. J. Mcgonigle, H. L. Halliday et al., The pathophysiology of HOX genes and their role in cancer, J Pathol, vol.205, issue.2, pp.154-71, 2005.

J. Groene, U. Mansmann, R. Meister, E. Staub, S. Roepcke et al., Transcriptional census of 36 microdissected colorectal cancers yields a gene signature to distinguish UICC II and III, Int J Cancer, vol.119, issue.8, pp.1829-1865, 2006.

T. Gudbjartsson, S. Hardarson, V. Petursdottir, A. Thoroddsen, J. Magnusson et al., Histological subtyping and nuclear grading of renal cell carcinoma and their implications for survival: A retrospective nation-wide study of 629 patients, Eur Urol, vol.48, issue.4, pp.593-600, 2005.

M. Gurumurthy, C. H. Tan, R. Ng, L. Zeiger, J. Lau et al., Nucleophosmin Interacts with HEXIM1 and Regulates RNA Polymerase II Transcription, J Mol Biol, vol.378, issue.2, pp.302-319, 2008.

J. D. Hainsworth, J. A. Reeves, J. R. Mace, E. J. Crane, O. Hamid et al., Open-Label Phase 2 Study of the CXCR4 Inhibitor LY2510924 in Combination with Sunitinib Versus Sunitinib Alone in Patients with Metastatic Renal Cell Carcinoma (RCC), Target Oncol, vol.11, issue.5, pp.643-53, 2016.

A. A. Hakimi, C. G. Pham, and J. J. Hsieh, A clear picture of renal cell carcinoma, Nat Genet, vol.45, issue.8, pp.849-50, 2013.

M. Hassawi, E. A. Shestakova, M. Fournier, C. É. Lebert-ghali, G. Vaisson et al., Hoxa9 collaborates with E2A-PBX1 in mouse B cell leukemia in association with Flt3 activation and decrease of B cell gene expression, Dev Dyn, vol.243, issue.1, pp.145-58, 2014.

M. He, P. Chen, S. Arnovitz, Y. Li, H. Huang et al., Two isoforms of HOXA9 function differently but work synergistically in human MLL-rearranged leukemia, Blood Cells, Mol Dis, vol.49, issue.2, pp.102-108, 2012.

S. He, B. Malik, D. Borkin, H. Miao, S. Shukla et al., Menin-MLL inhibitors block oncogenic transformation by MLL-fusion proteins in a fusion partner-independent manner, Leukemia, vol.30, issue.2, pp.508-521, 2016.

N. Henry and P. Sèbe, Anatomie des reins et de la voie excrétrice supérieure, EMC -Néphrologie, pp.1-10, 2008.

E. Hirota, L. Yan, T. Tsunoda, S. Ashida, M. Fujime et al., Genome-wide gene expression profiles of clear cell renal cell carcinoma: Identification of molecular targets for treatment of renal cell carcinoma, IntJOncol, vol.29, issue.4, pp.799-827, 2006.

J. J. Hsieh, M. P. Purdue, S. Signoretti, C. Swanton, L. Albiges et al., Renal cell carcinoma, Nat Rev Dis Prim, vol.3, 2017.

Y. L. Hu, E. Passegué, S. Fong, C. Largman, and H. J. Lawrence, Evidence that the Pim1 kinase gene is a direct target of HOXA9, Blood, vol.109, issue.11, pp.4732-4740, 2007.

Y. Huang, K. Sitwala, J. Bronstein, D. Sanders, M. Dandekar et al., Identification and characterization of Hoxa9 binding sites in hematopoietic cells, Blood, vol.119, issue.2, pp.388-98, 2012.

M. D. Hughson, L. Schmidt, B. Zbar, S. Daugherty, A. M. Meloni et al., Renal cell carcinoma of end-stage renal disease: a histopathologic and molecular genetic study, J Am Soc Nephrol, vol.7, issue.11, pp.2461-2469, 1996.

J. D. Hunt, O. L. Van-der-hel, G. P. Mcmillan, P. Boffetta, and P. Brennan, Renal cell carcinoma in relation to cigarette smoking: Meta-analysis of 24 studies, Int J Cancer, vol.114, issue.1, pp.101-109, 2005.

T. E. Hutson, B. Escudier, E. E. Bjarnason, G. A. Lim, H. Y. Pittman et al., Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma, J Clin Oncol, vol.32, issue.8, pp.760-767, 2014.

J. Hwang, B. Lee, . Bin, Y. Kim, S. Hong et al., HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer, Mol Carcinog, pp.1-9, 2014.

S. H. Hwang, K. U. Kim, J. E. Kim, H. H. Kim, M. K. Lee et al., Detection of HOXA9 gene methylation in tumor tissues and induced sputum samples from primary lung cancer patients, Clin Chem Lab Med, vol.49, issue.4, pp.699-704, 2011.

O. Iliopoulos, A. Kibel, S. Gray, and W. G. Kaelin, Tumour suppression by the human von hippel-lindau gene product, Nat Med, vol.1, issue.8, pp.822-828, 1995.

A. Ingels, M. Hew, F. Algaba, O. J. De-boer, R. Van-moorselaar et al., Vimentin overexpression and carbonic anhydrase IX under-expression are independent predictors of recurrence, specific and overall survival in non-metastatic clear-cell renal carcinoma: a validation study, World J Urol, vol.35, issue.1, pp.81-88, 2017.

D. Inoue, J. Kitaura, K. Togami, K. Nishimura, Y. Enomoto et al., Myelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutations, J Clin Invest, vol.123, issue.11, pp.4627-4667, 2013.

F. Jiang, J. Richter, P. Schraml, L. Bubendorf, T. Gasser et al., Chromosomal imbalances in papillary renal cell carcinoma: Genetic differences between histological subtypes, Am J Pathol, vol.153, issue.5, pp.1467-73, 1998.

A. P. Jiménez, A. Traum, T. Boettger, H. Hackstein, M. Richter et al., The tumor suppressor RASSF1A induces the YAP1 target gene ANKRD1 that is epigenetically inactivated in human cancers and inhibits tumor growth, Oncotarget, pp.1-16, 2017.

X. Jin, X. Jiao, J. Jiao, T. Zhang, and B. Cui, Increased expression of FHL2 promotes tumorigenesis in cervical cancer and is correlated with poor prognosis, Gene, vol.669, issue.107, pp.99-106, 2018.

T. Ju, H. Jin, R. Ying, Q. Xie, C. Zhou et al., Overexpression of NAC1 confers drug resistance via HOXA9 in colorectal carcinoma cells, Mol Med Rep, vol.16, issue.3, pp.3194-200, 2017.

S. Kachgal, K. A. Mace, and N. J. Boudreau, The dual roles of homeobox genes in vascularization and wound healing, Cell Adhes Migr, vol.6, issue.6, pp.457-70, 2012.

Y. Kageyama, H. Sugiyama, H. Ayame, A. Iwai, Y. Fujii et al., Suppression of VEGF transcription in renal cell carcinoma cells by pyrrole-imidazole hairpin polyamides targeting the hypoxia responsive element, Acta Oncol (Madr), vol.45, issue.3, pp.317-341, 2006.

M. Kanai, J. I. Hamada, M. Takada, T. Asano, K. Murakawa et al., Aberrant expressions of HOX genes in colorectal and hepatocellular carcinomas, Oncol Rep, vol.23, issue.3, pp.843-51, 2010.

P. P. Kapitsinou and V. H. Haase, The VHL tumor suppressor and HIF: Insights from genetic studies in mice, Cell Death Differ, vol.15, issue.4, pp.650-659, 2008.

L. H. Kasper, P. K. Brindle, C. A. Schnabel, C. Pritchard, M. L. Cleary et al., CREB Binding Protein Interacts with Nucleoporin-Specific FG Repeats That Activate Transcription and Mediate NUP98-HOXA9 Oncogenicity, Mol Cell Biol, vol.19, issue.1, pp.764-76, 1999.

T. C. Kaufman, R. Lewis, and B. Wakimoto, Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: The homoeotic gene complex in polytene chromosome interval 84A-B, Genetics, vol.94, issue.1, pp.115-148, 1980.

I. Kawaciuk, L. Hyrsl, P. Dusek, L. Jarolim, M. Schmidt et al., Influence of tumour-associated symptoms on the prognosis of patients with renal cell carcinoma, Scand J Urol Nephrol, vol.42, issue.5, pp.406-417, 2008.

H. Kawagoe, R. K. Humphries, A. Blair, H. J. Sutherland, and D. D. Hogge, Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells, Leukemia, 1999.

B. Keith, R. S. Johnson, and M. C. Simon, HIF1 ? and HIF2 ?: sibling rivalry in hypoxic tumour growth and progression, Nat Rev Cancer, vol.12, issue.1, pp.9-22, 2012.

S. N. Khan, A. M. Jankowska, R. Mahfouz, A. J. Dunbar, Y. Sugimoto et al., Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies, Leukemia, vol.27, issue.6, pp.1301-1310, 2013.

C. Kim and H. C. Nielsen, Hoxa-5 in mouse developing lung: cell-specific expression and retinoic acid regulation, Am J Physiol Lung Cell Mol Physiol, 2000.

H. L. Kim, A. S. Belldegrun, D. G. Freitas, M. Bui, K. R. Han et al., Paraneoplastic signs and symptoms of renal cell carcinoma: Implications for prognosis, J Urol, vol.170, issue.5, pp.1742-1748, 2003.

H. L. Kim, K. R. Han, A. Zisman, R. A. Figlin, and A. S. Belldegrun, Cachexia-like, symptoms predict a worse prognosis in localized T1 renal cell carcinoma, J Urol, vol.171, issue.5, pp.1810-1813, 2004.

K. Kirito, N. Fox, and K. Kaushansky, Thrombopoietin induces HOXA9 nuclear transport in immature hematopoietic cells: potential mechanism by which the hormone favorably affects hematopoietic stem cells, Mol Cell Biol, vol.24, issue.15, pp.6751-62, 2004.

M. Kmita and D. Duboule, Organizing axes in time and space, vol.301, pp.331-334, 2003.

W. M. Knosp, V. Scott, H. P. Bächinger, and H. S. Stadler, HOXA13 regulates the expression of bone morphogenetic proteins 2 and 7 to control distal limb morphogenesis, Development, vol.131, issue.18, pp.4581-92, 2004.

S. Y. Ko, N. Barengo, A. Ladanyi, J. S. Lee, F. Marini et al., HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts, J Clin Invest, vol.122, issue.10, pp.3603-3620, 2012.

S. Y. Ko, A. Ladanyi, E. Lengyel, and H. Naora, Expression of the homeobox gene HOXA9 in ovarian cancer induces peritoneal macrophages to acquire an M2 tumor-promoting phenotype, Am J Pathol, vol.184, issue.1, pp.271-81, 2014.

S. Y. Ko and H. Naora, Adaptation of ovarian cancer cells to the peritoneal environment: Multiple mechanisms of the developmental patterning gene HOXA9. Cancer Cell Microenviron, vol.1, p.379, 2014.

S. Y. Ko and H. Naora, HOXA9 promotes homotypic and heterotypic cell interactions that facilitate ovarian cancer dissemination via its induction of P-cadherin, Mol Cancer, vol.13, issue.1, 2014.

S. Kojic, A. Nestorovic, L. Rakicevic, A. Belgrano, M. Stankovic et al., A novel role for cardiac ankyrin repeat protein Ankrd1/CARP as a co-activator of the p53 tumor suppressor protein, Arch Biochem Biophys, vol.502, issue.1, pp.60-67, 2010.

D. Koning and H. P. , Uptake of pentamidine in Trypanosoma brucei brucei is mediated by three distinct transporters: implications for cross-resistance with arsenicals, Mol Pharmacol, vol.59, issue.3, pp.586-92, 2001.

A. Kreso and J. E. Dick, Evolution of the cancer stem cell model, Cell Stem Cell, vol.14, issue.3, pp.275-91, 2014.

A. V. Krivtsov, Z. Feng, M. E. Lemieux, J. Faber, S. Vempati et al., H3K79 Methylation Profiles Define Murine and Human MLL-AF4 Leukemias, Cancer Cell, vol.14, issue.5, pp.355-68, 2008.

N. Kroeger, E. N. Rampersaud, J. J. Patard, T. Klatte, F. D. Birkhäuser et al., Prognostic value of microvascular invasion in predicting the cancer specific survival and risk of metastatic disease in renal cell carcinoma: A multicenter investigation, J Urol, vol.187, issue.2, pp.418-441, 2012.

E. Kroon, J. Krosl, U. Thorsteinsdottir, S. Baban, A. M. Buchberg et al., Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b, EMBO J, vol.17, issue.13, pp.3714-3739, 1998.

N. Kuroda, M. Tamura, T. Shiotsu, S. Nakamura, T. Taguchi et al., Chromosomal abnormalities of clear cell renal cell carcinoma: Frequent gain of chromosome 7, Pathol Int, vol.60, issue.1, pp.9-13, 2010.

M. Lambert, S. Jambon, S. Depauw, and M. David-cordonnier, Targeting Transcription Factors for Cancer Treatment, Molecules, vol.23, issue.6, p.1479, 2018.

A. Lansiaux, F. Tanious, Z. Mishal, L. Dassonneville, A. Kumar et al., Distribution of furamidine analogues in tumor cells: Targeting of the nucleus or mitochondria depending on the amidine substitution, Cancer Res, vol.62, issue.24, pp.7219-7248, 2002.

T. Lapidot, C. Sirard, J. Vormoor, B. Murdoch, T. Hoang et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice, Nature, vol.367, issue.6464, pp.645-653, 1994.

T. Lappin, D. G. Grier, A. Thompson, and H. L. Halliday, HOX genes: Seductive science, mysterious mechanisms, Ulster Med J, vol.75, issue.1, pp.23-31, 2006.

. Laronde-leblanc-n-a and C. Wolberger, Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior, Genes Dev, vol.17, issue.16, pp.2060-72, 2003.

F. Latif, K. Tory, J. Gnarra, M. Yao, F. M. Duh et al., Identification of the von Hippel-Lindau disease tumor suppressor gene. Science (80-), vol.260, pp.1317-1337, 1993.

H. J. Lawrence, C. D. Helgason, G. Sauvageau, S. Fong, D. J. Izon et al., Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis, Blood, vol.89, issue.6, pp.1922-1952, 1997.

C. T. Lee, J. Katz, P. A. Fearn, and P. Russo, Mode of presentation of renal cell carcinoma provides prognostic information, Urol Oncol, vol.7, issue.4, pp.135-175, 2002.

J. S. Lee, H. S. Kim, J. J. Jung, C. S. Park, and M. C. Lee, Expression of vascular endothelial growth factor in renal cell carcinoma and the relation to angiogenesis and p53 protein expression, J Surg Oncol, vol.77, pp.55-60, 2000.

X. Leroy, F. Zerimech, L. Zini, M. C. Copin, M. P. Buisine et al., MUC1 expression is correlated with nuclear grade and tumor progression in pT1 renal clear cell carcinoma, Am J Clin Pathol, vol.118, issue.1, pp.47-51, 2002.

X. Leroy, L. Zini, E. Leteurtre, F. Zerimech, N. Porchet et al., Morphologic subtyping of papillary renal cell carcinoma: Correlation with prognosis and differential expression of MUC1 between the two subtypes, Mod Pathol, vol.15, issue.11, pp.1126-1156, 2002.

E. Lewis, Pseudoallelism and gene evolution, Cold Spring Harb Symp Quant Biol, vol.16, pp.159-74, 1951.

E. Lewis, A gene complex controlling segmentation in Drosophila, Nature, vol.276, pp.565-70, 1978.

Z. Li, H. Huang, P. Chen, M. He, Y. Li et al., MiR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia, Nat Commun, vol.3, 2012.

Z. Li, Z. Zhang, Y. Li, S. Arnovitz, P. Chen et al., PBX3 is an important cofactor of HOXA9 in leukemogenesis, Blood, vol.121, issue.8, pp.1422-1453, 2013.

A. Liberzon, C. Birger, H. Thorvaldsdóttir, M. Ghandi, J. P. Mesirov et al., The Molecular Signatures Database Hallmark Gene Set Collection, Cell Syst, vol.1, issue.6, pp.417-442, 2015.

R. Lillico, C. K. Lawrence, and T. M. Lakowski, Selective DOT1L, LSD1, and HDAC Class i Inhibitors Reduce HOXA9 Expression in MLL-AF9 Rearranged Leukemia Cells, but Dysregulate the Expression of Many Histone-Modifying Enzymes, J Proteome Res, vol.17, issue.8, pp.2657-67, 2018.

H. Lim, C. S. Kim, J. Kim, Y. Go, D. Lee et al., Suppression of Oral Carcinoma Oncogenic Activity by microRNA-203 via Down-regulation of SEMA6A, Anticancer Res, vol.37, issue.10, pp.5425-5458, 2017.

Y. Liu, A. Kumar, S. Depauw, R. Nhili, M. H. David-cordonnier et al., Water-mediated binding of agents that target the DNA minor groove, J Am Chem Soc, vol.133, issue.26, pp.10171-83, 2011.

Y. J. Liu, Y. Zhu, H. X. Yuan, J. P. Zhang, J. M. Guo et al., Overexpression of HOXC11 homeobox gene in clear cell renal cell carcinoma induces cellular proliferation and is associated with poor prognosis, Tumor Biol, vol.36, issue.4, pp.2821-2830, 2015.

B. Ljungberg, K. Bensalah, A. B. Vice-chair, S. Canfield, R. Advocate et al., EAU Guidelines on Renal Cell Carcinoma, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-00511115

B. D. Looyenga, K. A. Furge, K. J. Dykema, J. Koeman, P. J. Swiatek et al., Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas, Proc Natl Acad Sci, vol.108, issue.4, pp.1439-1483, 2011.

R. Loria, G. Bon, V. Perotti, E. Gallo, I. Bersani et al., Sema6A and Mical1 control cell growth and survival of BRAF V600E human melanoma cells, Oncotarget, 2014.

Y. Ma, Y. Zhang, X. Mou, Z. Liu, G. Ru et al., High level of homeobox A9 and PBX homeobox 3 expression in gastric cancer correlates with poor prognosis, Oncol Lett, 2017.

B. Magella, R. Mahoney, M. Adam, and S. S. Potter, Reduced Abd-B Hox function during kidney development results in lineage infidelity, Dev Biol, vol.438, issue.2, pp.84-93, 2018.

P. Maisonneuve, L. Agodoa, R. Gellert, J. H. Stewart, G. Buccianti et al., Cancer in patients on dialysis for end-stage renal disease: An international collaborative study, Lancet, vol.354, issue.9173, pp.93-102, 1999.

R. Malek, R. P. Gajula, R. D. Williams, B. Nghiem, B. W. Simons et al., TWIST1-WDR5-hottip regulates Hoxa9 chromatin to facilitate prostate cancer metastasis, Cancer Res, vol.77, issue.12, pp.3181-93, 2017.

V. Mancini, M. Battaglia, P. Ditonno, S. Palazzo, G. Lastilla et al., Current insights in renal cell cancer pathology, Urol Oncol, vol.26, issue.3, pp.225-263, 2008.

J. C. Marini, S. D. Levene, D. M. Crothers, and P. T. Englund, Bent helical structure in kinetoplast DNA, Proc Natl Acad Sci, vol.79, issue.24, pp.7664-7672, 1982.

F. F. Marshall, Obesity and Renal Cell Cancer -a Quantitative Review, J Urol, vol.877, 2002.

H. Marshall, M. Studer, H. Pöpperl, S. Aparicio, A. Kuroiwa et al., A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1, Nature, vol.370, issue.6490, pp.567-71, 1994.

D. Martino, M. Klatte, T. Seemann, C. Waldert, M. Haitel et al., Validation of serum Creactive protein (CRP) as an independent prognostic factor for disease-free survival in patients with localised renal cell carcinoma (RCC), BJU Int, issue.8, p.111, 2013.

A. M. Mathis, J. L. Holman, L. M. Sturk, M. A. Ismail, D. W. Boykin et al., Accumulation and intracellular distribution of antitrypanosomal diamidine compounds DB75 and DB820 in African trypanosomes, Antimicrob Agents Chemother, vol.50, issue.6, pp.2185-91, 2006.

D. F. Mcdermott, M. M. Regan, J. I. Clark, L. E. Flaherty, G. R. Weiss et al., Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma, J Clin Oncol, vol.23, issue.1, pp.133-174, 2005.

R. E. Mdachi, J. K. Thuita, J. M. Kagira, J. M. Ngotho, G. A. Murilla et al., Efficacy of the novel diamidine compound 2,5-Bis(4-amidinophenyl)-furanbis-O-methlylamidoxime (pafuramidine, DB289) against Trypanosoma brucei rhodesiense infection in vervet monkeys after oral administration, Antimicrob Agents Chemother, vol.53, issue.3, pp.953-960, 2009.

, Medical Research Council Renal Cancer C. Interferon-alpha and survival in metastatic renal carcinoma: early results of a randomised controlled trial. Medical Research Council Renal Cancer Collaborators, Lancet, vol.353, issue.9146, pp.14-21, 1999.

A. Méjean, A. Ravaud, S. Thezenas, S. Colas, J. Beauval et al., Sunitinib Alone or after Nephrectomy in Metastatic Renal-Cell Carcinoma, N Engl J Med, vol.379, issue.5, pp.417-444, 2018.

C. H. Mermel, S. E. Schumacher, B. Hill, M. L. Meyerson, R. Beroukhim et al., GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers, Genome Biol, vol.12, issue.4, 2011.

C. Meyer, E. Kowarz, J. Hofmann, A. Renneville, J. Zuna et al., New insights to the MLL recombinome of acute leukemias, Leukemia, vol.23, issue.8, pp.1490-1499, 2009.

E. Meyer, D. Pasquier, G. Bernadou, G. Calais, P. Maroun et al., Stereotactic radiation therapy in the strategy of treatment of metastatic renal cell carcinoma: A study of the Getug group
URL : https://hal.archives-ouvertes.fr/hal-02021697

, Eur J Cancer, vol.98, pp.38-47, 2018.

C. Micucci, G. Matacchione, D. Valli, S. Orciari, and A. Catalano, HIF2? is involved in the expansion of CXCR4-positive cancer stem-like cells in renal cell carcinoma, Br J Cancer, vol.113, issue.8, pp.1178-85, 2015.

I. Midgley, K. Fitzpatrick, L. M. Taylor, T. L. Houchen, S. J. Henderson et al., Pharmacokinetics and metabolism of the prodrug DB289 (2,5-bis[4-(N-methoxyamidino)phenyl]furan monomaleate) in rat and monkey and its conversion to the antiprotozoal/antifungal drug DB75 (2,5-bis(4-guanylphenyl)furan dihydrochloride), Drug Metab Dispos, vol.35, issue.6, pp.955-67, 2007.

T. A. Milne, J. Kim, G. G. Wang, S. C. Stadler, V. Basrur et al., Multiple Interactions Recruit MLL1 and MLL1 Fusion Proteins to the HOXA9 Locus in Leukemogenesis, Mol Cell, vol.38, issue.6, pp.853-63, 2010.

Y. Mitsui, H. Hirata, N. Arichi, M. Hiraki, H. Yasumoto et al., Inactivation of bone morphogenetic protein 2 may predict clinical outcome and poor overall survival for renal cell carcinoma through epigenetic pathways, Oncotarget, vol.6, issue.11, 2015.

H. Moch, A. L. Cubilla, P. A. Humphrey, V. E. Reuter, and T. M. Ulbright, The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours, Eur Urol, vol.70, issue.1, pp.93-105, 2016.

H. Moch, T. Gasser, M. B. Amin, J. Torhorst, G. Sauter et al., Prognostic utility of the recently recommended histologic classification and revised TNM staging system of renal cell carcinoma: A swiss experience with 588 tumors, Cancer, vol.89, issue.3, pp.604-618, 2000.

H. Moch, P. A. Humphrey, T. M. Ulbright, and V. E. Reuter, WHO Classification of Tumours of the Urinary System and Male Genital Organs, 2016.

T. Montavon and N. Soshnikova, Hox gene regulation and timing in embryogenesis, Semin Cell Dev Biol, vol.34, pp.76-84, 2014.

R. Morgan, A. Boxall, K. J. Harrington, G. R. Simpson, C. Gillett et al., Targeting the HOX/PBX dimer in breast cancer, Breast Cancer Res Treat, vol.136, issue.2, pp.389-98, 2012.

R. Morgan, A. Boxall, K. J. Harrington, G. R. Simpson, A. Michael et al., Targeting HOX transcription factors in prostate cancer, BMC Urol, vol.14, issue.1, 2014.

R. Morgan, P. M. Pirard, L. Shears, J. Sohal, R. Pettengell et al., Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma, Cancer Res, vol.67, issue.12, pp.5806-5819, 2007.

R. Morgan, L. Plowright, K. J. Harrington, A. Michael, and H. S. Pandha, Targeting HOX and PBX transcription factors in ovarian cancer, BMC Cancer, 2010.

R. J. Motzer, B. Escudier, D. F. Mcdermott, S. George, H. J. Hammers et al., Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma, N Engl J Med, vol.373, pp.1803-1816, 2015.

R. J. Motzer, B. Escudier, S. Oudard, T. E. Hutson, C. Porta et al., Phase 3 trial of everolimus for metastatic renal cell carcinoma: Final results and analysis of prognostic factors, Cancer, vol.116, issue.18, pp.4256-65, 2010.

R. J. Motzer, B. Escudier, P. Tomczak, T. E. Hutson, M. D. Michaelson et al., Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: Overall survival analysis and updated results from a randomised phase 3 trial, Lancet Oncol, vol.14, issue.6, pp.552-62, 2013.

R. J. Motzer, T. E. Hutson, D. Cella, J. Reeves, R. Hawkins et al., Pazopanib versus Sunitinib in Metastatic Renal-Cell Carcinoma, N Engl J Med, vol.369, issue.8, pp.722-753, 2013.

R. J. Motzer, T. E. Hutson, P. Tomczak, M. D. Michaelson, R. M. Bukowski et al., Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma, N Engl J Med, vol.356, issue.2, pp.115-139, 2007.

R. J. Motzer, M. D. Michaelson, B. G. Redman, G. R. Hudes, G. Wilding et al., Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma, J Clin Oncol, vol.24, issue.1, pp.16-24, 2006.

R. J. Motzer, B. I. Rini, R. M. Bukowski, B. D. Curti, D. J. George et al., Sunitinib in patients with metastatic renal cell carcinoma, Jama, vol.295, issue.21, pp.2516-2540, 2006.

R. J. Motzer, N. M. Tannir, D. F. Mcdermott, A. Frontera, O. Melichar et al., Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma, N Engl J Med, 2018.

Y. Muragaki, S. Mundlos, J. Upton, and B. R. Olsen, Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science (80-), vol.272, pp.548-51, 1996.

S. Nagel, L. Venturini, V. E. Marquez, C. Meyer, M. Kaufmann et al., Polycomb repressor complex 2 regulates HOXA9 and HOXA10, activating ID2 in NK/T-cell lines, Mol Cancer, p.9, 2010.

K. Nakano, N. Sakai, Y. Yamazaki, H. Watanabe, N. Yamada et al., Novel mutations of the HOXD13 gene in hand and foot malformations, Int Surg, vol.92, issue.5, pp.287-95, 2007.

R. Neijts, S. Amin, C. Van-rooijen, S. Tan, M. P. Creyghton et al., Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos, Genes Dev, vol.30, issue.17, pp.1937-1979, 2016.

C. E. Nelson, . Morgan-b-a, A. C. Burke, E. Laufer, E. Dimambro et al., Analysis of Hox gene expression in the chick limb bud, Development, 1996.

Y. Neuzillet, X. Tillou, R. Mathieu, J. A. Long, M. Gigante et al., Renal cell carcinoma (RCC) in patients with end-stage renal disease exhibits many favourable clinical, pathologic, and outcome features compared with RCC in the general population, Eur Urol, vol.60, issue.2, pp.366-73, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00577215

R. Nhili, P. Peixoto, S. Depauw, S. Flajollet, X. Dezitter et al., Targeting the DNA-binding activity of the human ERG transcription factor using new heterocyclic dithiophene diamidines, Nucleic Acids Res, vol.41, issue.1, pp.125-163, 2013.

M. L. Nickerson, M. B. Warren, J. R. Toro, V. Matrosova, G. Glenn et al., Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome, Cancer Cell, vol.2, issue.2, pp.157-64, 2002.

D. Noordermeer, M. Leleu, E. Splinter, J. Rougemont, D. Laat et al., The dynamic architecture of Hox gene clusters. Science (80-), vol.334, pp.222-227, 2011.

R. L. Novak, D. P. Harper, D. Caudell, C. Slape, S. H. Beachy et al., Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes, Exp Hematol, vol.40, issue.12, pp.1016-1043, 2012.

P. C. Nowell, The clonal evolution of tumor cell populations. Science (80-), vol.194, pp.23-31, 1976.

H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono et al., Kyoto encyclopedia of genes and genomes, vol.27, pp.29-34, 1999.

A. Ooi, K. Dykema, A. Ansari, D. Petillo, J. Snider et al., CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma, Cancer Res, vol.73, issue.7, pp.2044-51, 2013.

I. Packer-a, D. Crotty, and D. J. Wolgemuth, Expression of the murine Hoxa4 gene requires both autoregulation and a conserved retinoic acid response element, Development, vol.125, issue.11, pp.1991-1999, 1998.

G. S. Palapattu, B. Kristo, and J. Rajfer, Paraneoplastic syndromes in urologic malignancy: the many faces of renal cell carcinoma, Rev Urol, vol.4, issue.4, pp.163-70, 2002.

S. M. Park, E. Y. Choi, M. Bae, J. K. Choi, and Y. J. Kim, A long-range interactive DNA methylation marker panel for the promoters of HOXA9 and HOXA10 predicts survival in breast cancer patients, Clin Epigenetics, vol.9, issue.1, 2017.

J. J. Patard, H. L. Kim, J. S. Lam, F. J. Dorey, A. J. Pantuck et al., Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: An international multicenter study, J Clin Oncol, vol.22, issue.16, pp.3316-3338, 2004.

J. J. Patard, E. Leray, N. Rioux-leclercq, L. Cindolo, V. Ficarra et al., Prognostic value of histologic subtypes in renal cell carcinoma: A multicenter experience, J Clin Oncol, vol.23, issue.12, pp.2763-71, 2005.

J. J. Patard, E. Leray, A. Rodriguez, N. Rioux-leclercq, F. Guillé et al., Correlation between symptom graduation, tumor characteristics and survival in renal cell carcinoma, Eur Urol, vol.44, issue.2, pp.226-258, 2003.

L. T. Patterson, M. Pembaur, and S. S. Potter, Hoxa11 and Hoxd11 regulate branching morphogenesis of the ureteric bud in the developing kidney, Development, vol.128, issue.11, pp.2153-61, 2001.

L. T. Patterson and S. S. Potter, Atlas of Hox Gene Expression in the Developing Kidney, Dev Dyn, vol.229, issue.4, pp.771-780, 2004.

C. P. Pavlovich and L. S. Schmidt, Searching for the hereditary causes of renal-cell carcinoma, Nat Rev Cancer, vol.4, issue.5, pp.381-93, 2004.

P. Peixoto, Y. Liu, S. Depauw, M. P. Hildebrand, D. W. Boykin et al., Direct inhibition of the DNAbinding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenylfuran-benzimidazole dication, Nucleic Acids Res, vol.36, issue.10, pp.3341-53, 2008.

F. Peng, X. Shi, Y. Meng, B. Dong, G. Xu et al., Long non-coding RNA HOTTIP is upregulated in renal cell carcinoma and regulates cell growth and apoptosis by epigenetically silencing of LATS2, Biomed Pharmacother, vol.105, pp.1133-1173, 2018.

N. B. Phuoc, H. Ehara, T. Gotoh, M. Nakano, S. Yokoi et al., Immunohistochemical Analysis with Multiple Antibodies in Search of Prognostic Markers for Clear Cell Renal Cell Carcinoma, Urology, vol.69, issue.5, pp.843-851, 2007.

M. Pichler, G. C. Hutterer, T. F. Chromecki, J. Jesche, K. Kampel-kettner et al., Histologic tumor necrosis is an independent prognostic indicator for clear cell and papillary renal cell carcinoma, Am J Clin Pathol, vol.137, issue.2, pp.283-292, 2012.

P. M. Pierorazio, M. H. Johnson, M. W. Ball, M. A. Gorin, B. J. Trock et al., Five-year Analysis of a Multi-institutional Prospective Clinical Trial of Delayed Intervention and Surveillance for Small Renal Masses: The DISSRM Registry, Eur Urol, vol.68, issue.3, pp.408-423, 2015.

G. Pignot, C. Elie, S. Conquy, A. Vieillefond, T. Flam et al., Survival Analysis of 130 Patients with Papillary Renal Cell Carcinoma: Prognostic Utility of Type 1 and Type 2 Subclassification, Urology, vol.69, issue.2, pp.230-235, 2007.

N. Pineault, C. D. Helgason, H. J. Lawrence, and R. K. Humphries, Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny, Exp Hematol, vol.30, issue.1, pp.49-57, 2002.

A. S. Pires-luís, P. Costa-pinheiro, M. J. Ferreira, L. Antunes, F. Lobo et al., Identification of clear cell renal cell carcinoma and oncocytoma using a three-gene promoter methylation panel, J Transl Med, vol.15, issue.1, 2017.

G. Pohlig, S. C. Bernhard, J. Blum, C. Burri, A. Mpanya et al., Efficacy and Safety of Pafuramidine versus Pentamidine Maleate for Treatment of First Stage Sleeping Sickness in a Randomized, Comparator-Controlled, International Phase 3 Clinical Trial, PLoS Negl Trop Dis, vol.10, issue.2, pp.1-17, 2016.

M. Pojo, C. S. Gonçalves, A. Xavier-magalhães, A. I. Oliveira, T. Gonçalves et al., A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide, Oncotarget, vol.6, issue.10, pp.257-69, 2001.

R. Quéré, G. Karlsson, F. Hertwig, M. Rissler, B. Lindqvist et al., Smad4 binds Hoxa9 in the cytoplasm and protects primitive hematopoietic cells against nuclear activation by Hoxa9 and leukemia transformation, Blood, vol.117, issue.22, pp.5918-5948, 2011.

A. M. Raines, B. Magella, M. Adam, and S. S. Potter, Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development, BMC Dev Biol, vol.15, issue.1, 2015.

B. Reddy, S. M. Sondhi, and J. W. Lown, Synthetic DNA minor groove-binding drugs, Pharmacol Ther, vol.84, issue.1, pp.1-111, 1999.

M. Rehman and L. Tamagnone, Semaphorins in cancer: Biological mechanisms and therapeutic approaches, Semin Cell Dev Biol, vol.24, issue.3, pp.179-89, 2013.

K. Rhoads, G. Arderiu, A. Charboneau, S. L. Hansen, W. Hoffman et al., A role for Hox A5 in regulating angiogenesis and vascular patterning, Lymphat Res Biol, vol.3, issue.4, pp.240-52, 2005.

C. J. Ricketts, D. Cubas, A. A. Fan, H. Smith, C. C. Lang et al., Comprehensive Molecular Characterization of Renal Cell Carcinoma, Cell Rep, vol.23, issue.1, pp.313-326, 2018.

B. I. Rini, S. C. Campbell, and B. Escudier, Renal cell carcinoma, Lancet, vol.373, issue.9669, pp.1119-1151, 2009.

B. I. Rini, S. Halabi, J. E. Rosenberg, W. M. Stadler, D. A. Vaena et al., Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: Final results of CALGB 90206, J Clin Oncol, vol.28, issue.13, pp.2137-2180, 2010.

B. I. Rini, S. Halabi, J. E. Rosenberg, W. M. Stadler, D. A. Vaena et al., Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206, J Clin Oncol, vol.26, issue.33, pp.5422-5430, 2008.

J. L. Rinn, M. Kertesz, J. K. Wang, S. L. Squazzo, X. Xu et al., Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs, Cell, vol.129, issue.7, pp.1311-1334, 2007.

N. Rioux-leclercq, P. I. Karakiewicz, Q. D. Trinh, V. Ficarra, L. Cindolo et al., Prognostic ability of simplified nuclear grading of renal cell carcinoma, Cancer, vol.109, issue.5, pp.868-74, 2007.

J. De-rooij, I. Hollink, S. Arentsen-peters, J. F. Van-galen, B. Beverloo et al., NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern, Leukemia, vol.27, issue.12, pp.2280-2288, 2013.

V. Rosen, BMP2 signaling in bone development and repair. Cytokine and Growth Factor Reviews, 2009.

J. G. Ruby, A. Stark, W. K. Johnston, M. Kellis, D. P. Bartel et al., Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs, Genome Res, vol.17, issue.12, pp.1850-64, 2007.

B. A. Ruggeri, F. Camp, and S. Miknyoczki, Animal models of disease: Pre-clinical animal models of cancer and their applications and utility in drug discovery, Biochem Pharmacol, vol.87, issue.1, pp.150-61, 2014.

M. Santoni, F. Massari, C. Amantini, M. Nabissi, F. Maines et al., Emerging role of tumorassociated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma, Cancer Immunol Immunother, vol.62, issue.12, pp.1757-68, 2013.

G. Sauvageau, P. M. Lansdorp, C. J. Eaves, D. E. Hogge, W. H. Dragowska et al., Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells, Proc Natl Acad Sci, vol.91, issue.25, pp.12223-12230, 1994.

A. Schlesinger-raab, U. Treiber, D. Zaak, D. Hölzel, and J. Engel, Metastatic renal cell carcinoma: Results of a population-based study with 25 years follow-up, Eur J Cancer, vol.44, issue.16, pp.2485-95, 2008.

L. Schmidt, F. M. Duh, F. Chen, T. Kishida, G. Glenn et al., Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas, Nat Genet, vol.16, issue.1, pp.68-73, 1997.

E. Scosyrev, E. M. Messing, R. Sylvester, S. Campbell, and H. Van-poppel, Renal function after nephronsparing surgery versus radical nephrectomy: Results from EORTC randomized trial 30904, Eur Urol, vol.65, issue.2, pp.372-379, 2014.

Y. ?enbabao?lu, R. S. Gejman, A. G. Winer, M. Liu, E. M. Van-allen et al., Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures, Genome Biol, vol.17, issue.1, 2016.

S. Sengupta, C. M. Lohse, B. C. Leibovich, I. Frank, R. H. Thompson et al., Histologic coagulative tumor necrosis as a prognostic indicator of renal cell carcinoma aggressiveness, Cancer, vol.104, issue.3, pp.511-531, 2005.

M. Shackleton, E. Quintana, E. R. Fearon, and S. J. Morrison, Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution, Cell, vol.138, issue.5, pp.822-831, 2009.

L. Shears, L. Plowright, K. Harrington, H. S. Pandha, and R. Morgan, Disrupting the Interaction Between HOX and PBX Causes Necrotic and Apoptotic Cell Death in the Renal Cancer Lines CaKi-2 and 769-P, J Urol, vol.180, issue.5, pp.2196-201, 2008.

L. Shen, C. Chen, X. Wei, X. Li, G. Luo et al., Overexpression of ankyrin repeat domain 1 enhances cardiomyocyte apoptosis by promoting p53 activation and mitochondrial dysfunction in rodents, Clin Sci, vol.128, issue.10, pp.665-78, 2015.

W. Shen, Y. Hu, L. Uttarwar, E. Passegue, and C. Largman, MicroRNA-126 Regulates HOXA9 by Binding to the Homeobox, Mol Cell Biol, vol.28, issue.14, pp.4609-4628, 2008.

W. Shen, S. Rozenfeld, A. Kwong, L. G. Kömüves, H. J. Lawrence et al., HOXA9 Forms Triple Complexes with PBX2 and MEIS1 in Myeloid Cells, Mol Cell Biol, vol.19, issue.4, pp.3051-61, 1999.

W. F. Shen, C. P. Chang, S. Rozenfeld, G. Sauvageau, R. K. Humphries et al., Hox homeodomain proteins exhibit selective complex stabilities with Pbx DNA, Nucleic Acids Res, vol.24, issue.5, pp.898-906, 1996.

W. F. Shen, J. C. Montgomery, S. Rozenfeld, J. J. Moskow, H. J. Lawrence et al., AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins, Mol Cell Biol, vol.17, issue.11, pp.6448-58, 1997.

W. F. Shen, S. Rozenfeld, H. J. Lawrence, and C. Largman, The Abd-B-like Hox homeodomain proteins can be subdivided by the ability to form complexes with Ppbx1a on a novel DNA target, J Biol Chem, vol.272, issue.13, pp.8198-206, 1997.

K. H. Shin, J. L. Ku, W. H. Kim, S. E. Lee, C. Lee et al., Establishment and characterization of seven human renal cell carcinoma cell lines, BJU Int, vol.85, issue.1, pp.130-137, 2000.

A. Shrewsberry, A. Osunkoya, K. Jiang, R. Westby, D. Canter et al., Renal cell carcinoma in patients with end-stage renal disease has favorable overall prognosis, Clin Transplant, vol.28, issue.2, pp.211-217, 2014.

L. D. Shultz, Y. Saito, Y. Najima, S. Tanaka, T. Ochi et al., Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r?null humanized mice, Proc Natl Acad Sci, vol.107, issue.29, pp.13022-13029, 2010.

M. Slattery, T. Riley, P. Liu, N. Abe, P. Gomez-alcala et al., Cofactor binding evokes latent differences in DNA binding specificity between hox proteins, Cell, vol.147, issue.6, pp.1270-82, 2011.

K. M. Small and S. S. Potter, Homeotic transformations and limb defects in Hox A11 mutant mice, Genes Dev, vol.7, issue.12 A, pp.2318-2346, 1993.

R. Soffietti, E. Trevisan, and R. Rudà, Neurologic complications of chemotherapy and other newer and experimental approaches, Handb Clin Neurol, vol.121, pp.1200-1218, 2014.

F. Speleman, B. Cauwelier, N. Dastugue, J. Cools, B. Verhasselt et al., A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias, Leukemia, vol.19, issue.3, pp.358-66, 2005.

M. Stassar, G. Devitt, M. Brosius, L. Rinnab, J. Prang et al., Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization, Br J Cancer, vol.85, issue.9, pp.1372-82, 2001.

S. Steffens, M. Janssen, F. C. Roos, F. Becker, S. Schumacher et al., Incidence and long-term prognosis of papillary compared to clear cell renal cell carcinoma -A multicentre study, Eur J Cancer, vol.48, issue.15, pp.2347-52, 2012.

C. N. Sternberg, I. D. Davis, J. Mardiak, C. Szczylik, E. Lee et al., Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial, J Clin Oncol, vol.28, issue.6, pp.1061-1069, 2010.

L. Sun, S. Yu, H. Xu, Y. Zheng, J. Lin et al., FHL2 interacts with EGFR to promote glioblastoma growth, Oncogene, 2018.

M. Sun, C. Song, H. Huang, C. A. Frankenberger, D. Sankarasharma et al., HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis

, Proc Natl Acad Sci, vol.110, issue.24, pp.9920-9925, 2013.

Y. Sun, B. Zhou, F. Mao, J. Xu, H. Miao et al., HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis, Cancer Cell, vol.34, issue.4, pp.643-658, 2018.

S. Tabaries, J. Lapointe, T. Besch, M. Carter, J. Woollard et al., Cdx Protein Interaction with Hoxa5 Regulatory Sequences Contributes to Hoxa5 Regional Expression along the Axial Skeleton, Mol Cell Biol, vol.25, issue.4, pp.1389-401, 2005.

Y. Takahashi, J. I. Hamada, K. Murakawa, M. Takada, M. Tada et al., Expression profiles of 39 HOX genes in normal human adult organs and anaplastic thyroid cancer cell lines by quantitative real-time RT-PCR system, Exp Cell Res, vol.293, issue.1, pp.144-53, 2004.

A. Tannapfel, H. A. Hahn, A. Katalinic, R. J. Fietkau, R. Kühn et al., Prognostic value of ploidy and proliferation markers in renal cell carcinoma, Cancer, vol.77, issue.1, pp.164-71, 1996.

H. S. Taylor, A. Arici, D. Olive, and P. Igarashi, HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium, J Clin Invest, vol.101, issue.7, pp.1379-84, 1998.

H. S. Taylor, C. Bagot, A. Kardana, D. Olive, and A. Arici, HOX gene expression is altered in the endometrium of women with endometriosis, Hum Reprod, vol.14, issue.5, pp.1328-1359, 1999.

H. S. Taylor, P. Igarashi, D. L. Olive, and A. Arici, Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium, J Clin Endocrinol Metab, vol.84, issue.3, pp.1129-1164, 1999.

W. M. Linehan, P. T. Spellman, C. J. Ricketts, C. J. Creighton, and S. S. Fei, Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma, The Cancer Genome Atlas Research Network, vol.374, pp.135-180, 2016.

H. De-thé and Z. Chen, Acute promyelocytic leukaemia: novel insights into the mechanisms of cure, Nat Rev Cancer, vol.10, issue.11, pp.775-83, 2010.

U. Thorsteinsdottir, A. Mamo, E. Kroon, L. Jerome, J. Bijl et al., Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion, Blood, vol.99, issue.1, pp.121-130, 2002.

J. K. Thuita, S. M. Karanja, T. Wenzler, R. E. Mdachi, J. M. Ngotho et al., Efficacy of the diamidine DB75 and its prodrug DB289, against murine models of human African trypanosomiasis

, Acta Trop, vol.108, issue.1, pp.6-10, 2008.

J. K. Thuita, K. K. Wolf, G. A. Murilla, A. S. Bridges, D. W. Boykin et al., Chemotherapy of Second Stage Human African Trypanosomiasis: Comparison between the Parenteral Diamidine DB829 and Its Oral Prodrug DB868 in Vervet Monkeys, PLoS Negl Trop Dis, vol.9, issue.2, 2015.

I. Tomlinson, N. A. Alam, A. J. Rowan, E. Barclay, E. Jaeger et al., Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer the multiple leiomyoma consortium, Nat Genet, vol.30, issue.4, pp.406-416, 2002.

M. C. Tsai, O. Manor, Y. Wan, N. Mosammaparast, J. K. Wang et al., Long noncoding RNA as modular scaffold of histone modification complexes. Science (80-), vol.329, pp.689-93, 2010.

L. A. Uyeno, J. A. Newman-keagle, I. Cheung, T. K. Hunt, D. M. Young et al., Hox D3 expression in normal and impaired wound healing, J Surg Res, vol.100, issue.1, pp.46-56, 2001.

S. Vanharanta, W. Shu, F. Brenet, A. Hakimi, A. Heguy et al., Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer, Nat Med, vol.19, issue.1, pp.50-56, 2013.

U. Vijapurkar, N. Fischbach, W. Shen, C. Brandts, D. Stokoe et al., Protein Kinase C-Mediated Phosphorylation of the Leukemia-Associated HOXA9 Protein Impairs Its DNA Binding Ability and Induces Myeloid Differentiation, Mol Cell Biol, vol.24, issue.9, pp.3827-3864, 2004.

M. V. Volpe, K. Archavachotikul, I. Bhan, M. S. Lessin, and H. C. Nielsen, Association of bronchopulmonary sequestration with expression of the homeobox protein Hoxb-5, J Pediatr Surg, vol.35, issue.12, pp.1817-1826, 2000.

M. H. Voss, R. S. Bhatt, E. R. Plimack, B. I. Rini, R. S. Alter et al., The DART study: Results from the dose-escalation and expansion cohorts evaluating the combination of dalantercept plus axitinib in advanced renal cell carcinoma, Clin Cancer Res, vol.23, issue.14, pp.3557-65, 2017.

V. Walf-vorderwülbecke, P. K. Brooks, T. Hubank, M. Van-den-heuvel-eibrink, M. M. Zwaan et al., Targeting acute myeloid leukemia by drug-induced c-MYB degradation, Leukemia, vol.32, issue.4, pp.882-891, 2018.

E. M. Wallace, J. P. Rizzi, G. Han, P. M. Wehn, Z. Cao et al., A small-molecule antagonist of HIF2? is efficacious in preclinical models of renal cell carcinoma, Cancer Res, vol.76, issue.18, pp.5491-500, 2016.

C. Q. Wang, Y. W. Huang, S. W. Wang, Y. L. Huang, C. H. Tsai et al., Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKC? pathway, Cancer Lett, vol.385, pp.261-70, 2017.

H. Wang, L. Wang, H. Erdjument-bromage, M. Vidal, P. Tempst et al., Role of histone H2A ubiquitination in Polycomb silencing, Nature, vol.431, issue.7010, pp.873-881, 2004.

K. C. Wang, Y. W. Yang, B. Liu, A. Sanyal, R. Corces-zimmerman et al., A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression, Nature, vol.472, issue.7341, pp.120-126, 2011.

L. Wang, P. Park, L. Marca, F. Than, K. D. Lin et al., BMP-2 inhibits tumor-initiating ability in human renal cancer stem cells and induces bone formation, J Cancer Res Clin Oncol, vol.141, issue.6, pp.1013-1037, 2015.

L. Wang, P. Park, H. Zhang, L. Marca, F. Claeson et al., BMP-2 inhibits tumor growth of human renal cell carcinoma and induces bone formation, Int J Cancer, vol.131, issue.8, pp.1941-50, 2012.

M. Z. Wang, J. Y. Saulter, E. Usuki, Y. Cheung, M. Hall et al., CYP4F Enzymes Are the Major Enzymes in Human Liver Microsomes That Catalyze the O-Demethylation of the Antiparasitic Prodrug DB289 [2,5-Bis(4-amidinophenyl)furan-bis-O-methylamidoxime, Drug Metab Dispos, vol.34, issue.12, pp.1985-94, 2006.

N. Wang, H. G. Kim, C. V. Cotta, M. Wan, Y. Tang et al., TGF?/BMP inhibits the bone marrow transformation capability of Hoxa9 by repressing its DNA-binding ability, EMBO J, vol.25, issue.7, pp.1469-80, 2006.

Q. Wang, G. Wu, Z. Zhang, Q. Tang, W. Zheng et al., Long non-coding RNA HOTTIP promotes renal cell carcinoma progression through the regulation of the miR-615/IGF-2 pathway, Int J Oncol, vol.53, pp.2278-88, 2018.

X. Wang, J. Bu, X. Liu, W. Wang, W. Mai et al., miR-133b suppresses metastasis by targeting HOXA9 in human colorectal cancer, Oncotarget, vol.8, issue.38, 2017.

X. Wang, N. Solban, P. Khanna, M. Callea, J. Song et al., Inhibition of ALK1 signaling with dalantercept combined with VEGFR TKI leads to tumor stasis in renal cell carcinoma, Oncotarget, vol.7, issue.27, pp.41857-69, 2016.

Y. Watanabe, M. Saito, K. Saito, Y. Matsumoto, Y. Kanke et al., Upregulated HOXA9 expression is associated with lymph node metastasis in colorectal cancer, Oncol Lett, vol.15, issue.3, pp.2756-62, 2018.

S. Weikert, H. Boeing, T. Pischon, C. Weikert, A. Olsen et al., Blood pressure and risk of renal cell carcinoma in the European prospective investigation into cancer and nutrition, Am J Epidemiol, vol.167, issue.4, pp.438-484, 2008.

R. H. Weiss, A. D. Borowsky, D. Seligson, P. Y. Lin, L. Dillard-telm et al., p21 is a Prognostic Marker for Renal Cell Carcinoma: Implications for Novel Therapeutic Approaches, J Urol, vol.177, issue.1, pp.63-72, 2007.

D. M. Wellik, P. J. Hawkes, and M. R. Capecchi, Hox11 paralogous genes are essential for metanephric kidney induction, Genes Dev, vol.16, issue.11, pp.1423-1455, 2002.

R. D. Williams, Y. Elliott-a, N. Stein, and E. E. Fraley, In vitro cultivation of human renal cell cancer. II. Characterization of cell lines, In Vitro, vol.14, issue.9, pp.779-86, 1978.

R. D. Williams, A. Y. Elliott, N. Stein, and E. E. Fraley, In vitro cultivation of human renal cell cancer -I. Establishment of cells in culture, In Vitro, vol.12, issue.9, pp.623-630, 1976.

W. D. Wilson, F. A. Tanious, A. Mathis, D. Tevis, J. E. Hall et al., Antiparasitic compounds that target DNA, Biochimie, vol.90, issue.7, pp.999-1014, 2008.

S. Wong, V. Agarwal, J. H. Mansfield, N. Denans, M. G. Schwartz et al., Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs, Proc Natl Acad Sci, vol.112, issue.35, pp.4884-93, 2015.

C. Xie, E. M. Schwarz, E. R. Sampson, R. S. Dhillon, D. Li et al., Unique angiogenic and vasculogenic properties of renal cell carcinoma in a xenograft model of bone metastasis are associated with high levels of vegf-a and decreased ang-1 expression, J Orthop Res, vol.30, issue.2, pp.325-358, 2012.

J. Xu, C. G. Pham, S. K. Albanese, Y. Dong, T. Oyama et al., Mechanistically distinct cancerassociated mTOR activation clusters predict sensitivity to rapamycin, J Clin Invest, vol.126, issue.9, pp.3526-3566, 2016.

Q. Xu, P. Chiao, and Y. Sun, Amphiregulin in cancer: New insights for translational medicine, Trends in Cancer, vol.2, issue.3, pp.111-114, 2016.

J. Yan, Y. X. Chen, A. Desmond, A. Silva, Y. Yang et al., Cdx4 and menin co-regulate Hoxa9 expression in hematopoietic cells, PLoS One, vol.1, issue.1, 2006.

J. C. Yang, R. M. Sherry, S. M. Steinberg, S. L. Topalian, D. J. Schwartzentruber et al., Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer, J Clin Oncol, vol.21, issue.16, pp.3127-3159, 2003.

Y. C. Yang, S. W. Wang, I. C. Wu, C. C. Chang, Y. L. Huang et al., A tumorigenic homeobox (HOX) gene expressing human gastric cell line derived from putative gastric stem cell, Eur J Gastroenterol Hepatol, vol.21, issue.9, pp.1016-1039, 2009.

E. Yildiz, S. Ayan, F. Goze, G. Gokce, and E. Y. Gultekin, Relation of microvessel density with microvascular invasion, metastasis and prognosis in renal cell carcinoma, BJU Int, vol.101, issue.6, pp.758-64, 2008.

A. Yokoyama, T. Somervaille, K. S. Smith, O. Rozenblatt-rosen, M. Meyerson et al., The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis, Cell, vol.123, issue.2, pp.207-225, 2005.

F. Yotsumoto, H. Yagi, S. O. Suzuki, E. Oki, H. Tsujioka et al., Validation of HB-EGF and amphiregulin as targets for human cancer therapy, Biochem Biophys Res Commun, vol.365, issue.3, pp.555-61, 2008.

J. Yu, X. Tian, J. Chang, P. Liu, and R. Zhang, RUNX3 inhibits the proliferation and metastasis of gastric cancer through regulating miR-182/HOXA9, Biomed Pharmacother, vol.96, issue.110, pp.782-91, 2017.

J. Yu, M. A. Vodyanik, K. Smuga-otto, A. Bourget, J. Frane et al., Induced pluripotent stem cell lines derived from human somatic cells. Science (80-), vol.318, pp.1917-1937, 2007.

S. L. Yu, D. C. Lee, H. A. Sohn, S. Y. Lee, H. S. Jeon et al., Homeobox A9 directly targeted by miR-196b regulates aggressiveness through nuclear Factor-kappa B activity in non-small cell lung cancer cells, Mol Carcinog, vol.55, issue.12, pp.1915-1941, 2016.

K. Zarrabi and S. Wu, Current and Emerging Therapeutic Targets for Metastatic Renal Cell Carcinoma, Curr Oncol Rep, vol.20, issue.5, 2018.

F. C. Zeng, M. Q. Zeng, L. Huang, Y. L. Li, B. M. Gao et al., Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma, Onco Targets Ther, vol.9, pp.2131-2172, 2016.

Y. Zhang, G. Morrone, J. Zhang, X. Chen, X. Lu et al., CUL-4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein, EMBO J, vol.22, issue.22, pp.6057-67, 2003.

Y. Zhang, B. Sun, X. Zhao, Z. Liu, X. Wang et al., Clinical significances and prognostic value of cancer stem-like cells markers and vasculogenic mimicry in renal cell carcinoma, J Surg Oncol, vol.108, issue.6, pp.414-423, 2013.

Z. Zhang, Y. Wang, S. Fan, S. Du, X. Li et al., MicroRNA-182 downregulates Wnt/?catenin signaling, inhibits proliferation, and promotes apoptosis in human osteosarcoma cells by targeting HOXA9, Oncotarget, vol.8, issue.60, pp.101345-61, 2017.

J. Zhao, H. Tang, H. Zhao, C. W. Zhang, L. Liang et al., SEMA6A is a prognostic biomarker in glioblastoma, Tumor Biol, 2015.

B. Zhou, H. Li, C. Xing, H. Ye, J. Feng et al., Honokiol induces proteasomal degradation of AML1-ETO oncoprotein via increasing ubiquitin conjugase UbcH8 expression in leukemia, Biochem Pharmacol, vol.128, pp.12-25, 2017.

Z. N. Zhou, V. P. Sharma, B. T. Beaty, M. Roh-johnson, E. A. Peterson et al., Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophageindependent invasion in vivo, Oncogene, vol.33, issue.29, pp.3784-93, 2014.

C. Zimmer, K. E. Reinert, G. Luck, U. Wähnert, G. Löber et al., Interaction of the oligopeptide antibiotics netropsin and distamycin a with nucleic acids, J Mol Biol, vol.58, issue.1, pp.329-377, 1971.

J. Zuber, J. Shi, E. Wang, A. R. Rappaport, H. Herrmann et al., RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia, Nature, vol.478, issue.7370, pp.524-532, 2011.

G. Badis, M. F. Berger, A. A. Philippakis, S. Talukder, A. R. Gehrke et al., Diversity and complexity in DNA recognition by transcription factors, Science, vol.324, pp.1720-1723, 2009.

D. A. Bernstein, Identification of Small Molecules That Disrupt SSB-Protein Interactions Using a High-Throughput Screen, Methods Mol. Biol, vol.922, pp.183-191, 2012.

J. M. Vaquerizas, S. K. Kummerfeld, S. A. Teichmann, and N. M. Luscombe, A census of human transcription factors: Function, expression and evolution, Nat. Rev. Genet, vol.10, pp.252-263, 2009.

O. An, G. M. Dall'olio, T. P. Mourikis, and F. D. Ciccarelli, 0: Updates of a manually curated repository of cancer genes and associated properties from cancer mutational screenings, Nucleic Acids Res, vol.44, pp.992-999, 2016.

T. Ravasi, H. Suzuki, C. V. Cannistraci, S. Katayama, V. B. Bajic et al., An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man, Cell, vol.140, pp.744-752, 2010.

M. Srinivasan and D. K. Lahiri, Significance of NF-?B as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer's disease and multiple sclerosis, Expert Opin. Ther. Targets, vol.19, pp.471-487, 2015.

P. C. Tiwari and R. Pal, The potential role of neuroinflammation and transcription factors in Parkinson disease, Dialogues Clin. Neurosci, vol.19, pp.71-80, 2017.

R. Gomez-pastor, E. T. Burchfiel, and D. J. Thiele, Regulation of heat shock transcription factors and their roles in physiology and disease, Nat. Rev. Mol. Cell Biol, 2017.

J. Y. Hwang and R. S. Zukin, REST, a master transcriptional regulator in neurodegenerative disease, Curr. Opin. Neurobiol, vol.48, pp.193-200, 2018.

A. T. Dinkova-kostova, R. V. Kostov, and A. G. Kazantsev, The role of Nrf2 signaling in counteracting neurodegenerative diseases, FEBS J, 2018.

S. Polvani, M. Tarocchi, S. Tempesti, L. Bencini, and A. Galli, Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer, World J. Gastroenterol, vol.22, pp.2441-2459, 2016.

A. J. Lilly, G. Lacaud, and V. Kouskoff, SOXF transcription factors in cardiovascular development, Semin. Cell Dev. Biol, 2016.

W. Link and P. J. Fernandez-marcos, FOXO transcription factors at the interface of metabolism and cancer, Int. J. Cancer, vol.141, pp.2379-2391, 2017.

L. Schito and G. L. Semenza, Hypoxia-Inducible Factors: Master Regulators of Cancer Progression, Trends Cancer, vol.2, pp.758-770, 2016.

I. Sur and J. Taipale, The role of enhancers in cancer, Nat. Rev. Cancer, vol.16, pp.483-493, 2016.

K. S. Chen, J. W. Lim, L. J. Richards, and J. Bunt, The convergent roles of the nuclear factor I transcription factors in development and cancer, Cancer Lett, vol.410, pp.124-138, 2017.

C. J. Poole and J. Van-riggelen, MYC-Master regulator of the cancer epigenome and transcriptome, Genes, vol.8, p.142, 2017.

G. M. Sizemore, J. R. Pitarresi, S. Balakrishnan, and M. C. Ostrowski, The ETS family of oncogenic transcription factors in solid tumours, Nat. Rev. Cancer, vol.17, pp.337-351, 2017.

J. Y. Ko, S. Oh, and K. H. Yoo, Functional Enhancers as Master Regulators of Tissue-Specific Gene Regulation and Cancer Development, Mol. Cells, vol.40, pp.169-177, 2017.

M. Fischer, Census and evaluation of p53 target genes, vol.36, pp.3943-3956, 2017.

B. R. Pires, R. C. Silva, G. M. Ferreira, E. Abdelhay, and . Nf-kappab, Genes, vol.9, p.24, 2018.

J. E. Bradner, D. Hnisz, and R. A. Young, Transcriptional Addiction in Cancer, vol.168, pp.629-643, 2017.

C. Yan and P. J. Higgins, Drugging the undruggable: Transcription therapy for cancer, Biochim. Biophys. Acta Rev. Cancer, vol.1835, pp.76-85, 2013.

H. Kawagoe, R. K. Humphries, A. Blair, H. J. Sutherland, and D. D. Hogge, Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells, Leukemia, vol.13, pp.687-698, 1999.

K. Ahmad, C. Katryniok, B. Scholz, J. Merkens, D. Löscher et al., Inhibition of class I HDACs abrogates the dominant effect of MLL-AF4 by activation of wild-type MLL, Oncogenesis, vol.3, 2014.

G. M. Matthews, P. Mehdipour, L. A. Cluse, K. J. Falkenberg, E. Wang et al., Functional-genetic dissection of HDAC dependencies in mouse lymphoid and myeloid malignancies, Blood, vol.126, pp.2392-2403, 2015.

A. T. Nguyen, O. Taranova, J. He, and Y. Zhang, DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-Mediated leukemogenesis, Blood, vol.117, pp.6912-6922, 2011.

H. Okuda, B. Stanojevic, A. Kanai, T. Kawamura, S. Takahashi et al., Cooperative gene activation by AF4 and DOT1L drives MLL-rearranged leukemia, J. Clin. Investig, vol.127, 1918.

K. Wood, M. Tellier, S. Murphy, and . Methylation, Transcription and Genomic Stability. Biomolecules, vol.8, issue.11, 2018.

A. J. Deshpande, L. Chen, M. Fazio, A. U. Sinha, K. M. Bernt et al., Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l, Blood, vol.121, pp.2533-2541, 2013.

A. Yokoyama and M. L. Cleary, Menin Critically Links MLL Proteins with LEDGF on Cancer-Associated Target Genes. Cancer Cell, vol.14, pp.36-46, 2008.

A. T. Thiel, J. Huang, M. Lei, and X. Hua, Menin as a hub controlling mixed lineage leukemia, BioEssays, vol.34, pp.771-780, 2012.

S. El-ashkar, J. Schwaller, T. Pieters, S. Goossens, J. Demeulemeester et al., LEDGF/p75 is dispensable for hematopoiesis but essential for MLL-rearranged leukemogenesis, Blood, vol.131, pp.95-107, 2018.

Z. Ge, E. J. Song, Y. I. Kawasawa, J. Li, S. Dovat et al., WDR5 high expression and its effect on tumorigenesis in leukemia, Oncotarget, vol.7, pp.37740-37754, 2016.

N. Cheung, T. K. Fung, B. B. Zeisig, K. Holmes, J. K. Rane et al., Targeting Aberrant Epigenetic Networks Mediated by PRMT1 and KDM4C in Acute Myeloid Leukemia, Cancer Cell, vol.29, pp.32-48, 2016.

D. Steinhilber and R. Marschalek, How to effectively treat acute leukemia patients bearing MLL-rearrangements?, Biochem. Pharmacol, vol.147, pp.183-190, 2018.

H. Fredly, B. T. Gjertsen, and Ø. Bruserud, Histone deacetylase inhibition in the treatment of acute myeloid leukemia: The effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents, Clin. Epigenet, issue.5, 2013.

G. Garcia-manero, H. Yang, C. Bueso-ramos, A. Ferrajoli, J. Cortes et al., Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes, Blood, vol.111, pp.1060-1066, 2008.

F. Morabito, M. T. Voso, S. Hohaus, M. Gentile, E. Vigna et al., Panobinostat for the treatment of acute myelogenous leukemia, Expert Opin. Investig. Drugs, vol.25, pp.1117-1131, 2016.

M. H. Kirschbaum, K. A. Foon, P. Frankel, C. Ruel, B. Pulone et al., A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: A California Cancer Consortium Study, Leuk. Lymphoma, vol.55, pp.2301-2304, 2014.

R. G. Mih?il?, From a better understanding of the mechanisms of action of histone deacetylases inhibitors to the progress of the treatment of malignant lymphomas and plasma cell myeloma, Recent Pat. Anticancer Drug Discov, vol.12, 2017.

W. Zhang, X. Xia, M. R. Reisenauer, C. S. Hemenway, and B. C. Kone, Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaC? in an aldosterone-sensitive manner, J. Biol. Chem, vol.281, pp.18059-18068, 2006.

Y. Okada, Q. Jiang, M. Lemieux, L. Jeannotte, L. Su et al., Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L, Nat. Cell Biol, vol.8, pp.1017-1024, 2006.

D. Mueller, C. Bach, D. Zeisig, M. P. Garcia-cuellar, S. Monroe et al., A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification, Blood, vol.110, pp.4445-4454, 2007.

A. Basavapathruni, L. Jin, S. R. Daigle, C. R. Majer, C. A. Therkelsen et al., Conformational Adaptation Drives Potent, Selective and Durable Inhibition of the Human Protein Methyltransferase DOT1L, Chem. Biol. Drug Des, vol.80, pp.971-980, 2012.

W. Yu, E. J. Chory, A. K. Wernimont, W. Tempel, A. Scopton et al., Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors, Nat. Commun, vol.3, 2012.

S. R. Daigle, E. J. Olhava, C. A. Therkelsen, C. R. Majer, C. J. Sneeringer et al., Selective Killing of Mixed Lineage Leukemia Cells by a Potent Small-Molecule DOT1L Inhibitor, Cancer Cell, vol.20, pp.53-65, 2011.

S. R. Daigle, E. J. Olhava, C. A. Therkelsen, A. Basavapathruni, L. Jin et al., Potent inhibition of DOT1L as treatment of MLL-fusion leukemia, Blood, vol.122, pp.1017-1025, 2013.

L. Chen, A. J. Deshpande, D. Banka, K. M. Bernt, S. Dias et al., Abrogation of MLL-AF10 and CALM-AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l, Leukemia, vol.27, pp.813-822, 2013.

R. E. Rau, B. Rodriguez, M. Luo, M. Jeong, A. Rosen et al., DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia, Blood, vol.128, 2016.

Y. Gao and W. Ge, The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis article, Cell Death Dis, vol.9, 2018.

H. Zhou, L. Liu, J. Huang, D. Bernard, H. Karatas et al., Structure-based Design of High-Affinity Macrocyclic Peptidomimetics to Block the Menin-MLL1 Protein-Protein Interaction, J. Med. Chem, vol.56, pp.1113-1123, 2013.

A. Shi, M. J. Murai, S. He, G. Lund, T. Hartley et al., Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia, Blood, vol.120, pp.4461-4469, 2012.

D. Borkin, S. He, H. Miao, K. Kempinska, J. Pollock et al., Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo, Cancer Cell, vol.27, pp.589-602, 2015.

S. He, T. J. Senter, J. Pollock, C. Han, S. K. Upadhyay et al., Highaffinity small-molecule inhibitors of the menin-mixed lineage leukemia (MLL) interaction closely mimic a natural protein-protein interaction, J. Med. Chem, vol.57, pp.1543-1556, 2014.

T. Senter, R. D. Gogliotti, C. Han, C. W. Locuson, R. Morrison et al., Progress towards small molecule menin-mixed lineage leukemia (MLL) interaction inhibitors with in vivo utility, Bioorgan. Med. Chem. Lett, vol.25, pp.2720-2725, 2015.

S. Xu, A. Aguilar, T. Xu, K. Zheng, L. Huang et al., Design of the First-in-Class, Highly Potent Irreversible Inhibitor Targeting the Menin-MLL Protein-Protein Interaction, Angew. Chem. Int. Ed, vol.57, pp.1601-1605, 2018.

C. Dafflon, V. J. Craig, H. Méreau, J. Gräsel, B. Schacher-engstler et al., Complementary activities of DOT1L and Menin inhibitors in MLL-rearranged leukemia, Leukemia, vol.31, pp.1269-1277, 2017.

S. Flajollet, C. Rachez, M. Ploton, C. Schulz, R. Gallais et al., The Elongation Complex Components BRD4 and MLLT3/AF9 Are Transcriptional Coactivators of Nuclear Retinoid Receptors, PLoS ONE, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00877102

M. Carretta, A. Z. Brouwers-vos, M. Bosman, S. J. Horton, J. H. Martens et al., BRD3/4 inhibition and FLT3-ligand deprivation target pathways that are essential for the survival of human MLL-AF9+ leukemic cells, PLoS ONE, vol.12, 2017.

O. Gilan, E. Y. Lam, I. Becher, D. Lugo, E. Cannizzaro et al., Functional interdependence of BRD4 and DOT1L in MLL leukemia, Nat. Struct. Mol. Biol, vol.23, pp.673-681, 2016.

W. Huang, X. Zheng, Y. Yang, X. Wang, and . Shen, Z. An Overview on Small Molecule Inhibitors of BRD4. Mini Rev. Med. Chem, vol.16, pp.1403-1414, 2016.

Z. Liu, P. Wang, H. Chen, E. A. Wold, B. Tian et al., Drug Discovery Targeting Bromodomain-Containing Protein 4, J. Med. Chem, vol.60, pp.4533-4558, 2017.

O. A. Kharenko and H. C. Hansen, Novel approaches to targeting BRD4, Drug Discov. Today Technol, vol.24, pp.19-24, 2017.

H. Karatas, E. C. Townsend, F. Cao, Y. Chen, D. Bernard et al., High-affinity, small-molecule peptidomimetic inhibitors of mll1/wdr5 protein-protein interaction, J. Am. Chem. Soc, vol.135, pp.669-682, 2013.

H. Karatas, Y. Li, L. Liu, J. Ji, S. Lee et al., Discovery of a Highly Potent, Cell-Permeable Macrocyclic Peptidomimetic (MM-589) Targeting the WD Repeat Domain 5 Protein (WDR5)-Mixed Lineage Leukemia (MLL) Protein-Protein Interaction, J. Med. Chem, vol.60, pp.4818-4839, 2017.

D. D. Li, W. L. Chen, Z. H. Wang, Y. Y. Xie, X. L. Xu et al., High-affinity small molecular blockers of mixed lineage leukemia 1 (MLL1)-WDR5 interaction inhibit MLL1 complex H3K4 methyltransferase activity, Eur. J. Med. Chem, vol.124, pp.480-489, 2016.

W. Chen, D. Li, Z. Wang, X. Xu, X. Zhang et al., Design, synthesis, and initial evaluation of affinity-based small molecular probe for detection of WDR5, Bioorg. Chem, p.76, 2018.

M. B. Dillon, D. A. Bachovchin, S. J. Brown, M. G. Finn, H. Rosen et al., Novel inhibitors for PRMT1 discovered by high-throughput screening using activity-based fluorescence polarization, ACS Chem. Biol, vol.7, pp.1198-1204, 2012.

C. Jin, L. Yang, M. Xie, C. Lin, D. Merkurjev et al., Chem-seq permits identification of genomic targets of drugs against androgen receptor regulation selected by functional phenotypic screens, Proc. Natl. Acad. Sci, vol.111, pp.9235-9240, 2014.

A. Sprüssel, J. H. Schulte, S. Weber, M. Necke, K. Händschke et al., Lysinespecific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation, Leukemia, vol.26, pp.2039-2051, 2012.

L. Yang, L. Liu, H. Gao, J. P. Pinnamaneni, D. Sanagasetti et al., The stem cell factor SALL4 is an essential transcriptional regulator in mixed lineage leukemia-rearranged leukemogenesis, J. Hematol. Oncol, vol.10, p.159, 2017.

S. Goossens, S. Peirs, W. Van-loocke, J. Wang, M. Takawy et al., Oncogenic ZEB2 activation drives sensitivity toward KDM1A inhibition in T-cell acute lymphoblastic leukemia, vol.129, pp.981-990, 2017.

T. Maes, C. Mascaró, I. Tirapu, A. Estiarte, F. Ciceri et al., ORY-1001, a Potent and Selective Covalent KDM1A Inhibitor, for the Treatment of Acute Leukemia, Cancer Cell, vol.33, pp.495-511, 2018.

P. Bose and M. Y. Konopleva, ORY-1001: Overcoming the Differentiation Block in AML, Cancer Cell, vol.33, pp.342-343, 2018.

B. Lehnertz, C. Pabst, L. Su, M. Miller, F. Liu et al., The methyltransferase G9a regulates HoxA9-dependent transcription in AML, Genes Dev, vol.28, pp.317-327, 2014.

S. K. Knutson, T. J. Wigle, N. M. Warholic, C. J. Sneeringer, C. J. Allain et al., A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells, Nat. Chem. Biol, vol.8, pp.890-896, 2012.

B. Xu, D. M. On, A. Ma, T. Parton, K. D. Konze et al., Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia, Blood, vol.125, pp.346-357, 2015.

R. G. Vaswani, V. S. Gehling, L. A. Dakin, A. S. Cook, C. G. Nasveschuk et al., Identification of (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a Potent and Selective Inhibitor of Histone Methyltransferase EZH2, Suitabl, J. Med. Chem, vol.59, pp.9928-9941, 2016.

D. Brach, D. Johnston-blackwell, A. Drew, T. Lingaraj, V. Motwani et al., EZH2 inhibition by tazemetostat results in altered dependency on B-cell activation signaling in DLBCL, Mol. Cancer Ther, vol.16, pp.2586-2597, 2017.

S. Göllner, T. Oellerich, S. Agrawal-singh, T. Schenk, H. Klein et al., Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia, Nat. Med, vol.23, pp.69-78, 2016.

N. Gulati, W. Béguelin, and L. Giulino-roth, Enhancer of zeste homolog 2 (EZH2) inhibitors, Leuk. Lymphoma, vol.2018, pp.1-12

S. Trop-steinberg and Y. Azar, Is Myc an Important Biomarker? Myc Expression in Immune Disorders and Cancer, Am. J. Med. Sci, vol.355, pp.67-75, 2018.

R. Taub, I. Kirsch, C. Morton, G. Lenoir, D. Swan et al., Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells, Proc. Natl. Acad. Sci, vol.79, pp.7837-7841, 1982.

M. Chesi and P. L. Bergsagel, Molecular pathogenesis of multiple myeloma: Basic and clinical updates, Int. J. Hematol, vol.97, pp.313-323, 2013.

A. Wilson, M. J. Murphy, T. Oskarsson, K. Kaloulis, M. D. Bettess et al., A. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation, Genes Dev, vol.18, pp.2747-2763, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01446619

T. Fowler, P. Ghatak, D. H. Price, R. Conaway, J. Conaway et al., Regulation of MYC expression and differential JQ1 sensitivity in cancer cells, PLoS ONE, vol.9, 2014.

J. Zuber, J. Shi, E. Wang, A. R. Rappaport, H. Herrmann et al., RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia, Nature, vol.478, pp.524-528, 2011.

M. Loosveld, R. Castellano, S. Gon, A. Goubard, T. Crouzet et al., Therapeutic Targeting of c-Myc in T-Cell Acute Lymphoblastic Leukemia (T-ALL), Oncotarget, vol.5, pp.3168-3172, 2014.

A. Nebbioso, V. Carafa, M. Conte, F. P. Tambaro, A. Ciro et al., C-Myc modulation and acetylation is a key HDAC inhibitor target in cancer, Clin. Cancer Res, vol.23, pp.2542-2555, 2016.

P. K. Mazur, A. Herner, S. S. Mello, M. Wirth, S. Hausmann et al., Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma, Nat. Med, vol.21, pp.1163-1171, 2015.

C. Delehouzé, K. Godl, N. Loaëc, C. Bruyère, N. Desban et al., CDK/CK1 inhibitors roscovitine and CR8 downregulate amplified MYCN in neuroblastoma cells, Oncogene, vol.33, pp.5675-5687, 2014.

E. Chipumuro, E. Marco, C. L. Christensen, N. Kwiatkowski, T. Zhang et al., CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer, Cell, vol.159, pp.1126-1139, 2014.

C. L. Christensen, N. Kwiatkowski, B. J. Abraham, J. Carretero, F. Al-shahrour et al., Targeting Transcriptional Addictions in Small Cell Lung Cancer with a Covalent CDK7 Inhibitor, Cancer Cell, vol.26, pp.909-922, 2014.

D. S. Rickman, J. H. Schulte, and M. Eilers, The expanding world of N-MYC-driven tumors, Cancer Discov, vol.8, pp.150-164, 2018.

J. M. Desterro, M. S. Rodriguez, and R. T. Hay, Regulation of transcription factors by protein degradation, Cell. Mol. Life Sci, vol.57, pp.1207-1219, 2000.

K. Nakagawa and H. Yokosawa, Degradation of transcription factor IRF-1 by the ubiquitin-proteasome pathway, Eur. J. Biochem, vol.267, pp.1680-1686, 2000.

M. Muratani and W. P. Tansey, How the ubiquitin-proteasome system controls transcription, Nat. Rev. Mol. Cell Biol, vol.4, pp.192-201, 2003.

A. Leung, F. Geng, A. Daulny, G. Collins, P. Guzzardo et al., Transcriptional control and the ubiquitin-proteasome system, Ernst Scher. Found. Symp. Proc, pp.75-97, 2008.

J. Liu, J. X. Shen, X. F. Wen, Y. X. Guo, and G. J. Zhang, Targeting Notch degradation system provides promise for breast cancer therapeutics, Crit. Rev. Oncol. Hematol, vol.104, pp.21-29, 2016.

V. Walf-vorderwülbecke, K. Pearce, T. Brooks, M. Hubank, M. M. Van-den-heuvel-eibrink et al., Targeting acute myeloid leukemia by drug-induced c-MYB degradation, Leukemia, vol.32, pp.882-889, 2018.

B. Zhou, H. Li, C. Xing, H. Ye, J. Feng et al., Honokiol induces proteasomal degradation of AML1-ETO oncoprotein via increasing ubiquitin conjugase UbcH8 expression in leukemia, Biochem. Pharmacol, vol.128, pp.12-25, 2017.

N. Kerres, S. Steurer, S. Schlager, G. Bader, H. Berger et al., Chemically Induced Degradation of the Oncogenic Transcription Factor BCL6, vol.20, pp.2860-2875, 2017.

N. Ohoka, T. Misawa, M. Kurihara, Y. Demizu, and M. Naito, Development of a peptide-based inducer of protein degradation targeting NOTCH1, Bioorgan. Med. Chem. Lett, vol.27, pp.4985-4988, 2017.

X. Wang, S. Feng, J. Fan, X. Li, Q. Wen et al., New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation, Biochem. Pharmacol, vol.116, pp.200-209, 2016.

C. Galdeano, M. S. Gadd, P. Soares, S. Scaffidi, I. Van-molle et al., Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von hippel-lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities, J. Med. Chem, vol.57, pp.8657-8663, 2014.

C. Maniaci, S. J. Hughes, A. Testa, W. Chen, D. J. Lamont et al., Homo-PROTACs: Bivalent smallmolecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation, Nat. Commun, vol.8, 2017.

E. Rayburn, R. Zhang, J. He, and H. Wang, Expression, clinical pathology, prognostic markers, and implications for chemotherapy, Curr. Cancer Drug Targets, vol.5, pp.27-41, 2005.

B. P. Zhou, Y. Liao, W. Xia, Y. Zou, B. Spohn et al., HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation, Nat. Cell Biol, vol.3, pp.973-982, 2001.

A. Lemos, M. Leão, J. Soares, A. Palmeira, M. Pinto et al., Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction, Med. Res. Rev, vol.36, pp.789-844, 2016.

S. K. Nayak, G. L. Khatik, R. Narang, V. Monga, and H. Chopra, p53-Mdm2 interaction inhibitors as novel nongenotoxic anticancer agents. Curr. Cancer Drug Targets, vol.17, 2017.

S. Wang, Y. Zhao, A. Aguilar, D. Bernard, and C. Y. Yang, Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: Progress and challenges. Cold Spring Harb. Perspect, 2017.

S. Wang, W. Sun, Y. Zhao, D. Mceachern, I. Meaux et al., SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression, Cancer Res, vol.74, pp.5855-5865, 2014.

J. Lu, D. Mceachern, S. Li, M. J. Ellis, and S. Wang, Reactivation of p53 by MDM2 Inhibitor MI-77301 for the Treatment of Endocrine-Resistant Breast Cancer, Mol. Cancer Ther, vol.15, pp.2887-2893, 2016.

A. K. Gupta, M. Bharadwaj, A. Kumar, and R. Mehrotra, Spiro-oxindoles as a Promising Class of Small Molecule Inhibitors of p53-MDM2 Interaction Useful in Targeted Cancer Therapy, Top. Curr. Chem, p.375, 2017.

Q. Ding, Z. Zhang, J. J. Liu, N. Jiang, J. Zhang et al., Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development, J. Med. Chem, vol.56, pp.5979-5983, 2013.

D. Bernard, Y. Zhao, and S. Wang, AM-8553: A novel MDM2 inhibitor with a promising outlook for potential clinical development, J. Med. Chem, vol.55, pp.4934-4935, 2012.

Y. Rew and D. Sun, Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer, J. Med. Chem, vol.57, pp.6332-6341, 2014.

A. Z. Gonzalez, J. Eksterowicz, M. D. Bartberger, H. P. Beck, J. Canon et al., Selective and potent morpholinone inhibitors of the MDM2-p53 protein-protein interaction, J. Med. Chem, vol.57, pp.2472-2488, 2014.

Z. Zhang, Q. Ding, J. J. Liu, J. Zhang, N. Jiang et al., Discovery of potent and selective spiroindolinone MDM2 inhibitor, RO8994, for cancer therapy, Bioorgan. Med. Chem, vol.22, pp.4001-4009, 2014.

O. Dos-santos, P. Lagarde, G. Pérot, F. Chibon, N. Ratet et al., Human Dedifferentiated Liposarcomas Growth Inhibition by SAR299155, a Potent and Selective Disruptor of the MDM2-p53 Interaction, Eur. J. Cancer, vol.48, pp.245-246, 2012.

J. Soares, M. Espadinha, L. Raimundo, H. Ramos, A. S. Gomes et al., DIMP53-1: A novel small-molecule dual inhibitor of p53-MDM2/X interactions with multifunctional p53-dependent anticancer properties, Mol. Oncol, vol.11, pp.612-627, 2017.

M. Pazgier, M. Liu, G. Zou, W. Yuan, C. Li et al., Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX, Proc. Natl. Acad. Sci, vol.106, pp.4665-4670, 2009.

B. B. Lao, K. Drew, D. A. Guarracino, T. F. Brewer, D. W. Heindel et al., Rational design of topographical helix mimics as potent inhibitors of protein-protein interactions, J. Am. Chem. Soc, vol.136, pp.7877-7888, 2014.

P. Wójcik and ?. Berlicki, Peptide-based inhibitors of protein-protein interactions, Bioorgan. Med. Chem. Lett, vol.26, pp.707-713, 2016.

R. Wallbrecher, P. Chène, S. Ruetz, T. Stachyra, T. Vorherr et al., A critical assessment of the synthesis and biological activity of p53/human double minute 2-stapled peptide inhibitors, Br. J. Pharmacol, vol.174, pp.2613-2622, 2017.

S. Sajadimajd and M. Khazaei, Oxidative Stress and Cancer: The role of Nrf2. Curr. Cancer Drug Targets, vol.17, 2017.

H. M. Leinonen, E. Kansanen, P. Pölönen, M. Heinäniemi, and A. L. Levonen, Role of the keap1-Nrf2 pathway in cancer, Adv. Cancer Res, vol.122, pp.281-320, 2014.

Y. Watai, A. Kobayashi, H. Nagase, M. Mizukami, J. Mcevoy et al., Subcellular localization and cytoplasmic complex status of endogenous Keap1, Genes Cells, vol.12, pp.1163-1178, 2007.

L. Baird, D. Lleres, S. Swift, and A. T. Dinkova-kostova, Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex, Proc. Natl. Acad. Sci, vol.110, pp.15259-15264, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02192863

Z. Y. Jiang, M. C. Lu, L. L. Xu, T. T. Yang, M. Y. Xi et al., Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis, J. Med. Chem, vol.57, pp.2736-2745, 2014.

D. Yasuda, M. Nakajima, A. Yuasa, R. Obata, K. Takahashi et al., Synthesis of Keap1-phosphorylated p62 and Keap1-Nrf2 protein-protein interaction inhibitors and their inhibitory activity, Bioorgan. Med. Chem. Lett, vol.26, pp.5956-5959, 2016.

D. Yasuda, A. Yuasa, R. Obata, M. Nakajima, K. Takahashi et al., Discovery of benzo[g]indoles as a novel class of non-covalent Keap1-Nrf2 protein-protein interaction inhibitor, Bioorg. Med. Chem. Lett, vol.27, pp.5006-5009, 2017.

N. Meng, H. Tang, H. Zhang, C. Jiang, L. Su et al., Fragment-growing guided design of Keap1-Nrf2 protein-protein interaction inhibitors for targeting myocarditis. Free Radic, Biol. Med, vol.117, pp.228-237, 2018.

M. C. Lu, Q. Jiao, T. Liu, S. J. Tan, H. S. Zhou et al., Discovery of a head-to-tail cyclic peptide as the Keap1-Nrf2 proteinprotein interaction inhibitor with high cell potency, Eur. J. Med. Chem, vol.143, pp.1578-1589, 2018.

M. J. Gorczynski, J. Grembecka, Y. Zhou, Y. Kong, L. Roudaia et al., Allosteric Inhibition of the Protein-Protein Interaction between the Leukemia-Associated Proteins Runx1 and CBF?, Chem. Biol, vol.14, pp.1186-1197, 2007.

L. Cunningham, S. Finckbeiner, R. K. Hyde, N. Southall, J. Marugan et al., Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBF interaction, Proc. Natl. Acad. Sci, vol.109, pp.14592-14597, 2012.

A. Illendula, J. A. Pulikkan, H. Zong, J. Grembecka, L. Xue et al., A small-molecule inhibitor of the aberrant transcription factor CBF?-SMMHC delays leukemia in mice, Science, vol.347, pp.779-784, 2015.

H. V. Erkizan, Y. Kong, M. Merchant, S. Schlottmann, J. S. Barber-rotenberg et al., A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma, Nat. Med, vol.15, pp.750-756, 2009.

S. Hong, S. E. Youbi, S. P. Hong, B. Kallakury, P. Monroe et al., Pharmacokinetic modeling optimizes inhibition of the "undruggable" EWS-FLI1 transcription factor in Ewing Sarcoma, Oncotarget, vol.5, pp.338-350, 2014.

J. S. Barber-rotenberg, S. P. Selvanathan, Y. Kong, H. V. Erkizan, T. M. Snyder et al., Single enantiomer of YK-4-279 demonstrates specificity in targeting the oncogene EWS-FLI1, Oncotarget, vol.3, pp.172-182, 2012.

T. Z. Minas, J. Han, T. Javaheri, S. Hong, M. Schlederer et al., YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model, Oncotarget, vol.6, pp.37678-37694, 2015.

W. Sun, Y. Rojas, H. Wang, Y. Yu, Y. Wang et al., EWS-FLI1 and RNA helicase A interaction inhibitor YK-4-279 inhibits growth of neuroblastoma, Oncotarget, vol.8, pp.94780-94792, 2017.

S. Rahim, E. M. Beauchamp, Y. Kong, M. L. Brown, J. A. Toretsky et al., YK-4-279 inhibits ERG and ETV1 mediated prostate cancer cell invasion, PLoS ONE, vol.6, 2011.

B. Winters, L. Brown, I. Coleman, H. Nguyen, T. Z. Minas et al., Inhibition of ERG Activity in Patient-derived Prostate Cancer Xenografts by YK-4-279, Anticancer Res, vol.37, pp.3385-3396, 2017.

K. A. Siddiquee, P. T. Gunning, M. Glen, W. P. Katt, S. Zhang et al., An oxazolebased small-molecule Stat3 inhibitor modulates Stat3 stability and processing and induces antitumor cell effects, ACS Chem. Biol, vol.2, pp.787-798, 2007.

Y. Liu, A. Liu, Z. Xu, W. Yu, H. Wang et al., XZH-5 inhibits STAT3 phosphorylation and causes apoptosis in human hepatocellular carcinoma cells, Apoptosis, vol.16, pp.502-510, 2011.

P. Daka, A. Liu, C. Karunaratne, E. Csatary, C. Williams et al., Design, synthesis and evaluation of XZH-5 analogues as STAT3 inhibitors, Bioorgan. Med. Chem, vol.23, pp.1348-1355, 2015.

S. L. Fossey, M. D. Bear, J. Lin, C. Li, E. B. Schwartz et al., The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines, BMC Cancer, vol.11, 2011.

M. Zuo, C. Li, J. Lin, and M. Javle, LLL12, a novel small inhibitor targeting STAT3 for hepatocellular carcinoma therapy, Oncotarget, vol.6, pp.10940-10949, 2015.

L. Brambilla, D. Genini, E. Laurini, J. Merulla, L. Perez et al., Hitting the right spot: Mechanism of action of OPB-31121, a novel and potent inhibitor of the Signal Transducer and Activator of Transcription 3 (STAT3), Mol. Oncol, vol.9, pp.1194-1206, 2015.

S. Guo, W. Luo, L. Liu, X. Pang, H. Zhu et al., Isocryptotanshinone, a STAT3 inhibitor, induces apoptosis and pro-death autophagy in A549 lung cancer cells, J. Drug Target, vol.24, pp.934-942, 2016.

J. R. Pallandre, C. Borg, D. Rognan, T. Boibessot, V. Luzet et al., Novel aminotetrazole derivatives as selective STAT3 non-peptide inhibitors, Eur. J. Med. Chem, vol.103, pp.163-174, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01666128

P. Ji, X. Xu, S. Ma, J. Fan, Q. Zhou et al., Novel 2-Carbonylbenzo[b]thiophene 1,1-Dioxide Derivatives as Potent Inhibitors of STAT3 Signaling Pathway, ACS Med. Chem. Lett, vol.6, pp.1010-1014, 2015.

P. Ji, C. Yuan, S. Ma, J. Fan, W. Fu et al., 4-Carbonyl-2,6-dibenzylidenecyclohexanone derivatives as small molecule inhibitors of STAT3 signaling pathway, Bioorgan. Med. Chem, vol.24, pp.6174-6182, 2016.

W. Zhang, T. Ma, S. Li, Y. Yang, J. Guo et al., Antagonizing STAT3 activation with benzo[b]thiophene 1, 1-dioxide based small molecules, Eur. J. Med. Chem, vol.125, pp.538-550, 2017.

X. Yu, L. He, P. Cao, and Q. Yu, Eriocalyxin B inhibits STAT3 signaling by covalently targeting STAT3 and blocking phosphorylation and activation of STAT3, PLoS ONE, vol.10, 2015.

N. Don-doncow, Z. Escobar, M. Johansson, S. Kjellström, V. Garcia et al., Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells, J. Biol. Chem, vol.289, pp.15969-15978, 2014.

G. Canesin, S. Evans-axelsson, R. Hellsten, O. Sterner, A. Krzyzanowska et al., The STAT3 Inhibitor Galiellalactone Effectively Reduces Tumor Growth and Metastatic Spread in an Orthotopic Xenograft Mouse Model of Prostate Cancer, Eur. Urol, vol.69, pp.400-404, 2016.

H. S. Kim, T. Kim, H. Ko, J. Lee, Y. S. Kim et al., Identification of galiellalactone-based novel STAT3-selective inhibitors with cytotoxic activities against triple-negative breast cancer cell lines, Bioorgan. Med. Chem, vol.25, pp.5032-5040, 2017.

Z. Escobar, A. Bjartell, G. Canesin, S. Evans-axelsson, O. Sterner et al., Preclinical Characterization of 3?-(N-Acetyl l-cysteine methyl ester)-2a?,3-dihydrogaliellalactone (GPA512), a Prodrug of a Direct STAT3 Inhibitor for the Treatment of Prostate Cancer, J. Med. Chem, vol.59, pp.4551-4562, 2016.

S. Fletcher and E. V. Prochownik, Small-molecule inhibitors of the Myc oncoprotein, Biochim. Biophys. Acta, vol.1849, pp.525-543, 2015.

J. R. Whitfield, M. Beaulieu, and L. Soucek, Strategies to Inhibit Myc and Their Clinical Applicability. Front. Cell Dev. Biol, vol.5, 2017.

M. A. Bouhlel, M. Lambert, and M. David-cordonnier, Targeting transcription factor binding to DNA by competition using DNA binders as an approach for controlling gene expression, Curr. Top. Med. Chem, vol.15, pp.1323-1358, 2015.

J. P. Kerckaert, C. Deweindt, H. Tilly, S. Quief, G. Lecocq et al., LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas, Nat. Genet, vol.5, pp.66-70, 1993.

R. Schmitz, G. W. Wright, D. W. Huang, C. A. Johnson, J. D. Phelan et al., Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma, N. Engl. J. Med, vol.378, pp.1396-1407, 2018.

L. Xu, Y. Chen, M. Dutra-clarke, A. Mayakonda, M. Hazawa et al., BCL6 promotes glioma and serves as a therapeutic target, Proc. Natl. Acad. Sci, vol.114, pp.3981-3986, 2017.

J. M. Polo, T. Dell'oso, S. M. Ranuncolo, L. Cerchietti, D. Beck et al., Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells, Nat. Med, vol.10, pp.1329-1335, 2004.

L. C. Cerchietti, S. N. Yang, R. Shaknovich, K. Hatzi, J. M. Polo et al., A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo, Blood, vol.113, pp.3397-3405, 2009.

K. Sakamoto, S. Sogabe, Y. Kamada, N. Sakai, K. Asano et al., Discovery of high-affinity BCL6-binding peptide and its structure-activity relationship, Biochem. Biophys. Res. Commun, vol.482, pp.310-316, 2017.

E. L. Osher, F. Castillo, N. Elumalai, M. J. Waring, G. Pairaudeau et al., A genetically selected cyclic peptide inhibitor of BCL6 homodimerization, Bioorgan. Med. Chem, 2018.

M. G. Cardenas, W. Yu, W. Beguelin, M. R. Teater, H. Geng et al., Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma, J. Clin. Investig, vol.126, pp.3351-3362, 2016.

Y. Kamada, N. Sakai, S. Sogabe, K. Ida, H. Oki et al., Discovery of a B-Cell Lymphoma 6 Protein-Protein Interaction Inhibitor by a Biophysics-Driven Fragment-Based Approach, J. Med. Chem, vol.60, pp.4358-4368, 2017.

T. Yasui, T. Yamamoto, N. Sakai, K. Asano, T. Takai et al., Discovery of a novel B-cell lymphoma 6 (BCL6)-corepressor interaction inhibitor by utilizing structure-based drug design, Bioorgan. Med. Chem, vol.25, pp.4876-4886, 2017.

W. Mccoull, R. D. Abrams, E. Anderson, K. Blades, P. Barton et al., Discovery of Pyrazolo[1,5-a]pyrimidine B-Cell Lymphoma 6 (BCL6) Binders and Optimization to High Affinity Macrocyclic Inhibitors, J. Med. Chem, vol.60, pp.4386-4402, 2017.

T. Sameshima, T. Yamamoto, O. Sano, S. Sogabe, S. Igaki et al., Discovery of an Irreversible and Cell-Active BCL6 Inhibitor Selectively Targeting Cys53 Located at the Protein-Protein Interaction Interface, Biochemistry, vol.57, pp.1369-1379, 2018.

A. T. Fancher, Y. Hua, D. P. Camarco, D. A. Close, C. J. Strock et al., Reconfiguring the AR-TIF2 Protein-Protein Interaction HCS Assay in Prostate Cancer Cells and Characterizing the Hits from a LOPAC Screen, Assay Drug Dev. Technol, vol.14, pp.453-477, 2016.

E. Viziteu, C. Grandmougin, H. Goldschmidt, A. Seckinger, D. Hose et al., targeting HIF-1?/p300 complex, exhibits antitumour activity in multiple myeloma, Br. J. Cancer, vol.114, pp.519-523, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01284314

R. Morgan, M. El-tanani, K. D. Hunter, K. J. Harrington, and H. S. Pandha, Targeting HOX/PBX dimers in cancer, Oncotarget, vol.8, pp.32322-32331, 2015.

F. Gibault, F. Bailly, M. Corvaisier, M. Coevoet, G. Huet et al., Molecular Features of the YAP Inhibitor Verteporfin: Synthesis of Hexasubstituted Dipyrrins as Potential Inhibitors of YAP/TAZ, the Downstream Effectors of the Hippo Pathway, vol.12, pp.954-961, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02060557

H. De-thé, C. Chomienne, M. Lanotte, L. Degos, and A. Dejean, The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor ? gene to a novel transcribed locus, Nature, vol.347, pp.558-561, 1990.

H. Yoshida, K. Kitamura, K. Tanaka, S. Omura, T. Miyazaki et al., Accelerated degradation of PML-retinoic acid receptor alpha (PML-RARA) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia: Possible role of the proteasome pathway, Cancer Res, vol.56, pp.2945-2948, 1996.

H. Tang, F. Chen, Q. Tan, S. Tan, L. Liu et al., Regulation of CD11b transcription by decreasing PRC2 and increased acH4 level during ATRA-induced HL-60 differentiation, Acta Biochim. Biophys. Sin, vol.41, pp.588-593, 2009.

D. Grimwade, A. R. Mistry, E. Solomon, and F. Guidez, Acute promyelocytic leukemia: A paradigm for differentiation therapy, Cancer Treat. Res, vol.145, pp.219-235, 2010.

H. Li, F. Ban, K. Dalal, E. Leblanc, K. Frewin et al., Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor, J. Med. Chem, vol.57, pp.6458-6467, 2014.

K. Dalal, M. Roshan-moniri, A. Sharma, H. Li, F. Ban et al., Selectively targeting the DNA-binding domain of the androgen receptor as a prospective therapy for prostate cancer, J. Biol. Chem, vol.289, pp.26417-26429, 2014.

S. Poulain, C. Roumier, E. Bertrand, A. Renneville, A. Caillault-venet et al., TP53 Mutation and Its Prognostic Significance in Waldenstrom's Macroglobulinemia. Clin, Cancer Res, vol.23, pp.6325-6335, 2017.

M. J. Duffy, N. C. Synnott, and J. Crown, Mutant p53 as a target for cancer treatment, Eur. J. Cancer, vol.83, pp.258-265, 2017.

M. J. Duffy, N. C. Synnott, and J. Crown, Mutant p53 in breast cancer: Potential as a therapeutic target and biomarker, Breast Cancer Res. Treat, vol.170, pp.213-219, 2018.

G. W. Xu, I. A. Mawji, C. J. Macrae, C. A. Koch, A. Datti et al., A high-content chemical screen identifies ellipticine as a modulator of p53 nuclear localization, Apoptosis, vol.13, pp.413-422, 2008.

N. Zache, J. M. Lambert, N. Rökaeus, J. Shen, P. Hainaut et al., Mutant p53 targeting by the low molecular weight compound STIMA-1, Mol. Oncol, vol.2, pp.70-80, 2008.

J. M. Lambert, P. Gorzov, D. B. Veprintsev, M. Söderqvist, D. Segerbäck et al., PRIMA-1 Reactivates Mutant p53 by Covalent Binding to the Core Domain, Cancer Cell, vol.15, pp.376-388, 2009.

P. Izetti, A. Hautefeuille, A. L. Abujamra, C. B. De-farias, J. Giacomazzi et al., PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreatic cancer cell lines, Investig. New Drugs, vol.32, pp.783-794, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01262507

R. Zandi, G. Selivanova, C. L. Christensen, T. A. Gerds, B. M. Willumsen et al., PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53, Clin. Cancer Res, vol.17, pp.2830-2841, 2011.

Å. Fransson, D. Glaessgen, J. Alfredsson, K. G. Wiman, S. Bajalica-lagercrantz et al., Strong synergy with APR-246 and DNAdamaging drugs in primary cancer cells from patients with TP53 mutant High-Grade Serous ovarian cancer, J. Ovarian Res, vol.9, p.27, 2016.

C. Deben, F. Lardon, A. Wouters, K. Op-de-beeck, J. Van-den-bossche et al., APR-246 (PRIMA-1MET) strongly synergizes with AZD2281 (olaparib) induced PARP inhibition to induce apoptosis in non-small cell lung cancer cell lines, Cancer Lett, vol.375, pp.313-322, 2016.

M. Krayem, F. Journe, M. Wiedig, R. Morandini, A. Najem et al., P53 Reactivation by PRIMA-1Met(APR-246) sensitisesV600E/KBRAF melanoma to vemurafenib, Eur. J. Cancer, vol.55, pp.98-110, 2016.

M. R. Bauer, A. C. Joerger, and A. R. Fersht, 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells, Proc. Natl. Acad. Sci, vol.113, pp.5271-5280, 2016.

N. C. Synnott, A. Murray, P. M. Mcgowan, M. Kiely, P. A. Kiely et al., Mutant p53: A novel target for the treatment of patients with triple-negative breast cancer?, Int. J. Cancer, vol.140, pp.234-246, 2017.

W. Huang, Z. Dong, F. Wang, H. Peng, J. Y. Liu et al., A small molecule compound targeting STAT3 DNA-binding domain inhibits cancer cell proliferation, migration, and invasion, ACS Chem. Biol, vol.9, pp.1188-1196, 2014.

W. Huang, Z. Dong, Y. Chen, F. Wang, C. J. Wang et al., Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo, Oncogene, vol.35, pp.783-792, 2015.

R. Buettner, R. Corzano, R. Rashid, J. Lin, M. Senthil et al., Alkylation of cysteine 468 in stat3 defines a novel site for therapeutic development, ACS Chem. Biol, vol.6, pp.432-443, 2011.

A. Weber, C. Borghouts, C. Brendel, R. Moriggl, N. Delis et al., The inhibition of Stat5 by a peptide aptamer ligand specific for the DNA binding domain prevents target gene transactivation and the growth of breast and prostate tumor cells, Pharmaceuticals, vol.6, pp.960-987, 2013.

A. Weber, C. Borghouts, C. Brendel, R. Moriggl, N. Delis et al., Stat5 exerts distinct, vital functions in the cytoplasm and nucleus of Bcr-Abl+K562 and Jak2(V617F)+HEL leukemia cells, Cancers, vol.7, pp.503-537, 2015.

A. Agyeman, B. K. Jha, T. Mazumdar, and J. A. Houghton, Mode and specificity of binding of the small molecule GANT61 to GLI determines inhibition of GLI-DNA binding, Oncotarget, vol.5, pp.4492-4503, 2014.

M. H. Shahi, R. Holt, and R. B. Rebhun, Blocking signaling at the level of GLI regulates downstream gene expression and inhibits proliferation of canine osteosarcoma cells, PLoS ONE, vol.9, 2014.

L. Ghezali, B. Liagre, Y. Limami, J. L. Beneytout, and D. Y. Leger, Sonic hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells, PLoS ONE, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01058423

R. Yan, X. Peng, X. Yuan, D. Huang, J. Chen et al., Suppression of growth and migration by blocking the Hedgehog signaling pathway in gastric cancer cells, Cell. Oncol, vol.36, pp.421-435, 2013.

T. Matsumoto, K. Tabata, and T. Suzuki, The GANT61, a GLI Inhibitor, Induces Caspase-Independent Apoptosis of SK-N-LO Cells, Biol. Pharm. Bull, vol.37, pp.633-641, 2014.

T. Kiesslich, C. Mayr, J. Wachter, D. Bach, J. Fuereder et al., Activated hedgehog pathway is a potential target for pharmacological intervention in biliary tract cancer, Mol. Cell. Biochem, vol.396, pp.257-268, 2014.

L. Huang, V. Walter, D. N. Hayes, and M. Onaitis, Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer, Clin. Cancer Res, vol.20, pp.1566-1575, 2014.

H. O. Oladapo, M. Tarpley, S. J. Sauer, K. A. Addo, S. M. Ingram et al., Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells, Cancer Lett, vol.411, pp.136-149, 2017.

J. Kurebayashi, Y. Koike, Y. Ohta, W. Saitoh, T. Yamashita et al., Anti-cancer stem cell activity of a hedgehog inhibitor GANT61 in estrogen receptor-positive breast cancer cells, Cancer Sci, vol.108, pp.918-930, 2017.

H. Yang, L. Hu, Z. Liu, Y. Qin, R. Li et al., Inhibition of Gli1-mediated prostate cancer cell proliferation by inhibiting the mTOR/S6K1 signaling pathway, Oncol. Lett, vol.14, pp.7970-7976, 2017.

W. Tong, L. Qiu, M. Qi, J. Liu, K. Hu et al., GANT-61 and GDC-0449 induce apoptosis of prostate cancer stem cells through a GLI-dependent mechanism, J. Cell. Biochem, vol.119, pp.3641-3652, 2018.

R. Takahashi, M. Yamagishi, K. Nakano, T. Yamochi, T. Yamochi et al., Epigenetic deregulation of Ellis Van Creveld confers robust Hedgehog signaling in adult T-cell leukemia, Cancer Sci, vol.105, pp.1160-1169, 2014.

E. Latuske, H. Stamm, M. Klokow, G. Vohwinkel, J. Muschhammer et al., Combined inhibition of GLI and FLT3 signaling leads to effective anti-leukemic effects in human acute myeloid leukemia, Oncotarget, vol.8, pp.29187-29201, 2017.

H. Nagao-kitamoto, M. Nagata, S. Nagano, S. Kitamoto, Y. Ishidou et al., GLI2 is a novel therapeutic target for metastasis of osteosarcoma, Int. J. Cancer, vol.136, pp.1276-1284, 2015.

Q. Chen, R. Xu, C. Zeng, Q. Lu, D. Huang et al., Down-regulation of Gli transcription factor leads to the inhibition of migration and invasion of ovarian cancer cells via integrin ?4-mediated FAK signaling, PLoS ONE, vol.9, 2014.

A. Gonnissen, S. Isebaert, C. M. Mckee, R. Dok, K. Haustermans et al., The hedgehog inhibitor GANT61 sensitizes prostate cancer cells to ionizing radiation both in vitro and in vivo, Oncotarget, vol.7, pp.84286-84298, 2016.

J. Li, J. Cai, S. Zhao, K. Yao, Y. Sun et al., GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment, J. Exp. Clin. Cancer Res, vol.35, 2016.

T. Ishiwata, S. Iwasawa, T. Ebata, M. Fan, Y. Tada et al., Inhibition of Gli leads to antitumor growth and enhancement of cisplatin-induced cytotoxicity in large cell neuroendocrine carcinoma of the lung, Oncol. Rep, vol.39, pp.1148-1154, 2018.

M. S. Pop, N. Stransky, C. W. Garvie, J. Theurillat, E. C. Hartman et al., A Small Molecule That Binds and Inhibits the ETV1 Transcription Factor Oncoprotein, Mol. Cancer Ther, vol.13, pp.1492-1502, 2014.

E. Grimley, C. Liao, E. J. Ranghini, Z. Nikolovska-coleska, and G. R. Dressler, Inhibition of Pax2 Transcription Activation with a Small Molecule that Targets the DNA Binding Domain, ACS Chem. Biol, vol.12, pp.724-734, 2017.

N. Vilaboa, A. Boré, F. Martin-saavedra, M. Bayford, N. Winfield et al., New inhibitor targeting human transcription factor HSF1: Effects on the heat shock response and tumor cell survival, Nucleic Acids Res, vol.45, pp.5797-5817, 2017.

S. A. Tabatabaei-dakhili, R. Aguayo-ortiz, L. Domínguez, and C. A. Velázquez-martínez, Untying the knot of transcription factor druggability: Molecular modeling study of FOXM1 inhibitors, J. Mol. Graph. Model, vol.80, pp.197-210, 2018.

M. V. Gormally, T. S. Dexheimer, G. Marsico, D. A. Sanders, C. Lowe et al., Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition, Nat. Commun, vol.5, 2014.

G. Marsico and M. V. Gormally, Small molecule inhibition of FOXM1: How to bring a novel compound into genomic context, vol.3, pp.19-23, 2015.

N. Tanaka, Inhibition of transcription by Pluramycin and Bleomycin, J. Antibiot, vol.23, pp.523-530, 1970.

J. L. Kim, D. B. Nikolov, and S. K. Burley, Co-crystal structure of TBP recognizing the minor groove of a TATA element, Nature, vol.365, pp.520-527, 1993.

D. Sun and L. H. Hurley, TBP binding to the TATA box induces a specific downstream unwinding site that is targeted by pluramycin, Chem. Biol, vol.2, pp.457-469, 1995.

M. Hansen, S. Yun, and L. Hurley, Hedamycin intercalates the DNA helix and, through carbohydrate-mediated recognition in the minor groove, directs N7-alkylation of guanine in the major groove in a sequence-specific manner, Chem. Biol, vol.2, pp.229-240, 1995.

S. Y. Chiang, J. Welch, T. A. Beerman, and F. J. Rauscher, Effects of Minor Groove Binding Drugs on the Interaction of TATA Box Binding Protein and TFIIA with DNA, Biochemistry, vol.33, pp.7033-7040, 1994.

M. J. Cairns and V. Murray, Detection of protein-DNA interactions at ?-globin gene cluster in intact human cells utilizing hedamycin as DNAdamaging agent, DNA Cell Biol, vol.17, pp.325-333, 1998.

J. M. Malinge, C. Pérez, and M. Leng, Base sequence-independent distorsions induced by interstrand cross-links in cisdiamminedichloroplatinum (II)-modified DNA, Nucleic Acids Res, vol.22, pp.3834-3839, 1994.

S. F. Bellon, J. H. Coleman, and S. J. Lippard, DNA Unwinding Produced by Site-Specific Intrastrand Cross-Links of the Antitumor Drug cis-Diamminedichloroplatinum (II), Biochemistry, vol.30, pp.8026-8035, 1991.

J. Kasparkova, V. Marini, V. Bursova, and V. Brabec, Biophysical studies on the stability of DNA intrastrand cross-links of transplatin, Biophys. J, vol.95, pp.4361-4371, 2008.

P. L. Privalov, A. I. Dragan, C. Crane-robinson, K. J. Breslauer, D. P. Remeta et al., What Drives Proteins into the Major or Minor Grooves of DNA?, J. Mol. Biol, vol.365, pp.1-9, 2007.

T. H. Nguyen, G. Rossetti, F. Arnesano, E. Ippoliti, G. Natile et al., Molecular recognition of platinated DNA from chromosomal HMGB1, J. Chem. Theory Comput, vol.10, pp.3578-3584, 2014.

A. Sharma, R. Ray, and M. R. Rajeswari, Overexpression of high mobility group (HMG) B1 and B2 proteins directly correlates with the progression of squamous cell carcinoma in skin, Cancer Investig, vol.26, pp.843-851, 2008.

A. Sharma, A. Ramanjaneyulu, R. Ray, and M. R. Rajeswari, Involvement of High Mobility Group B Proteins in Cisplatin-Induced Cytotoxicity in Squamous Cell Carcinoma of Skin, DNA Cell Biol, vol.28, pp.311-318, 2009.

S. Park and S. J. Lippard, Binding Interaction of HMGB4 with Cisplatin-Modified DNA, Biochemistry, vol.51, pp.6728-6737, 2012.

E. E. Trimmer, D. B. Zamble, S. J. Lippard, and J. M. Essigmann, Human testis-determining factor SRY binds to the major DNA adduct of cisplatin and a putative target sequence with comparable affinities, Biochemistry, vol.37, pp.352-362, 1998.

K. Chválová, M. A. Sari, S. Bombard, and J. Kozelka, LEF-1 recognition of platinated GG sequences within double-stranded DNA. Influence of flanking bases, J. Inorg. Biochem, vol.102, pp.242-250, 2008.

C. Bounaix-morand-du-puch, E. Barbier, A. Kraut, Y. Couté, J. Fuchs et al., TOX4 and its binding partners recognize DNA adducts generated by platinum anticancer drugs, Arch. Biochem. Biophys, vol.507, pp.296-303, 2011.

S. Murakami, W. Ninomiya, E. Sakamoto, T. Shibata, H. Akiyama et al., SRY and OCT4 Are Required for the Acquisition of Cancer Stem Cell-Like Properties and Are Potential Differentiation Therapy Targets, Stem Cells, vol.33, pp.2652-2663, 2015.

L. Santiago, G. Daniels, D. Wang, F. Deng, and P. Lee, Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment, Am. J. Cancer Res, vol.7, pp.1389-1406, 2017.

S. M. Cohen, E. R. Jamieson, and S. J. Lippard, Enhanced binding of the TATA-binding protein to TATA boxes containing flanking cisplatin 1,2-cross-links, Biochemistry, vol.39, pp.8259-8265, 2000.

D. Yan, I. Aiba, H. H. Chen, and M. T. Kuo, Effects of Cu(II) and cisplatin on the stability of Specific protein 1 (Sp1)-DNA binding: Insights into the regulation of copper homeostasis and platinum drug transport, J. Inorg. Biochem, vol.161, pp.37-39, 2016.

J. Kasparkova, T. Thibault, H. Kostrhunova, J. Stepankova, M. Vojtiskova et al., Different affinity of nuclear factor-kappa B proteins to DNA modified by antitumor cisplatin and its clinically ineffective trans isomer, FEBS J, vol.281, pp.1393-1408, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01179156

J. Kasparkova, M. Fojta, N. Farrell, and V. Brabec, Differential recognition by the tumor suppressor protein p53 of DNA modified by the novel antitumor trinuclear platinum drug BBR3464 and cisplatin, Nucleic Acids Res, vol.32, pp.5546-5552, 2004.

C. C. Wetzel and S. J. Berberich, p53 binds to cisplatin-damaged DNA, Biochim. Biophys. Acta Gene Struct. Expr, vol.1517, pp.392-397, 2001.

Y. D. Wei, K. Tepperman, M. Y. Huang, M. A. Sartor, and A. Puga, Chromium Inhibits Transcription from Polycyclic Aromatic Hydrocarboninducible Promoters by Blocking the Release of Histone Deacetylase and Preventing the Binding of p300 to Chromatin, J. Biol. Chem, vol.279, pp.4110-4119, 2004.

A. Vonhandorf, F. J. Sánchez-martín, J. Biesiada, H. Zhang, X. Zhang et al., Chromium disrupts chromatin organization and CTCF access to its cognate sites in promoters of differentially expressed genes, Epigenetics, vol.2018, pp.1-13

D. Henderson and L. H. Hurley, Specific targeting of protein-DNA complexes by DNA-reactive drugs (+)-CC-1065 and pluramycins, J. Mol. Recognit, vol.9, pp.75-87, 1996.

Y. Pommier, G. Kohlhagen, C. Bailly, M. Waring, A. Mazumder et al., DNA sequence-and structure-selective alkylation of guanine N2 in the DNA minor groove by ecteinascidin 743, a potent antitumor compound from the caribbean tunicate Ecteinascidia turbinata, Biochemistry, vol.35, pp.13303-13309, 1996.

M. Zewail-foote and L. H. Hurley, Ecteinascidin 743: A minor groove alkylator that bends DNA toward the major groove, J. Med. Chem, vol.42, pp.2493-2497, 1999.

M. David-cordonnier, C. Gajate, O. Olmea, W. Laine, J. De-la-iglesia-vicente et al., DNA and non-DNA targets in the mechanism of action of the antitumor drug trabectedin, Chem. Biol, vol.12, pp.1201-1210, 2005.

S. Jin, B. Gorfajn, G. Faircloth, and K. W. Scotto, Ecteinascidin 743, a transcription-targeted chemotherapeutic that inhibits MDR1 activation, Proc. Natl. Acad. Sci. USA, vol.97, pp.6775-6779, 2000.

M. Minuzzo, S. Marchini, M. Broggini, G. Faircloth, M. D'incalci et al., Interference of transcriptional activation by the antineoplastic drug ecteinascidin-743, Proc. Natl. Acad. Sci, vol.97, pp.6780-6784, 2000.

D. D'angelo, E. Borbone, D. Palmieri, S. Uboldi, F. Esposito et al., The impairment of the High Mobility Group A (HMGA) protein function contributes to the anticancer activity of trabectedin, Eur. J. Cancer, vol.49, pp.1142-1151, 2013.

C. Forni, M. Minuzzo, E. Virdis, E. Tamborini, M. Simone et al., ET-743) promotes differentiation in myxoid liposarcoma tumors, Mol. Cancer Ther, vol.8, pp.449-457, 2009.

S. Uboldi, S. Bernasconi, M. Romano, S. Marchini, I. Fuso-nerini et al., Characterization of a new trabectedin-resistant myxoid liposarcoma cell line that shows collateral sensitivity to methylating agents, Int. J. Cancer, vol.131, pp.59-69, 2012.

S. Di-giandomenico, R. Frapolli, E. Bello, S. Uboldi, S. A. Licandro et al., Mode of action of trabectedin in myxoid liposarcomas, Oncogene, vol.33, pp.5201-5210, 2013.

G. Germano, R. Frapolli, M. Simone, M. Tavecchio, E. Erba et al., Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells, Cancer Res, vol.70, pp.2235-2244, 2010.

P. J. Grohar, L. B. Griffin, C. Yeung, Q. Chen, Y. Pommier et al., Ecteinascidin 743 Interferes with the Activity of EWS-FLI1 in Ewing Sarcoma Cells, Neoplasia, vol.13, pp.145-153, 2011.

M. L. Harlow, N. Maloney, J. Roland, M. J. Guillen-navarro, M. K. Easton et al., Lurbinectedin inactivates the Ewing sarcoma oncoprotein EWS-FLI1 by redistributing it within the nucleus, Cancer Res, vol.76, pp.6657-6668, 2016.

S. Uboldi, I. Craparotta, G. Colella, E. Ronchetti, L. Beltrame et al., Mechanism of action of trabectedin in desmoplastic small round cell tumor cells, BMC Cancer, vol.17, 2017.

P. Peixoto, C. Bailly, and M. David-cordonnier, Topoisomerase I-mediated DNA relaxation as a tool to study intercalation of small molecules into supercoiled DNA, Methods Mol. Biol, vol.613, pp.235-256, 2010.

H. Fritzsche, H. Triebel, J. B. Chaires, N. Dattagupta, and D. M. Crothers, Studies on Interaction of Anthracycline Antibiotics and Deoxyribonucleic Acid: Geometry of Intercalation of Iremycin and Daunomycin, Biochemistry, vol.21, pp.3940-3946, 1982.

J. L. Tichadou, D. Genest, P. Wahl, and G. Aubel-sadron, The use of fluorescence anisotropy decay of poly d(A-T) ethidium bromide complex to estimate the unwinding angle of the double helix, Biophys. Chem, vol.3, pp.142-146, 1975.

B. M. Cons and K. R. Fox, Effects of sequence selective drugs on the gel mobility of a bent DNA fragment, Biochem. Biophys. Res. Commun, vol.171, pp.1064-1070, 1990.

L. Leoni, S. Morosetti, C. Palermo, B. Sampaolese, and M. Savino, Specific interactions between DNA left-handed supercoils and actinomycin D, Biophys. Chem, vol.33, pp.11-17, 1989.

M. J. Waring and L. P. Wakelin, Echinomycin: A bifunctional intercalating antibiotic, Nature, vol.252, pp.653-657, 1974.

J. Aishima, R. K. Gitti, J. E. Noah, H. H. Gan, T. Schlick et al., A Hoogsteen base pair embedded in undistorted B-DNA, Nucleic Acids Res, vol.30, pp.5244-5252, 2002.

Y. Xu, J. Mcsally, I. Andricioaei, and H. M. Al-hashimi, Modulation of Hoogsteen dynamics on DNA recognition, Nat. Commun, vol.9, 1473.

D. Kong, E. J. Park, A. G. Stephen, M. Calvani, J. H. Cardellina et al., Echinomycin, a smallmolecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity, Cancer Res, vol.65, pp.9047-9055, 2005.

C. Regazzetti, F. Bost, Y. Le-marchand-brustel, J. F. Tanti, and S. Giorgetti-peraldi, Insulin induces REDD1 expression through hypoxiainducible factor 1 activation in adipocytes, J. Biol. Chem, vol.285, pp.5157-5164, 2010.

Z. Wang, Z. Zhang, Y. Wu, L. Chen, Q. Luo et al., Effects of echinomycin on endothelin-2 expression and ovulation in immature rats primed with gonadotropins, Exp. Mol. Med, vol.44, pp.615-621, 2012.

J. Yu, J. Li, S. Zhang, X. Xu, M. Zheng et al., IGF-1 induces hypoxia-inducible factor 1?-mediated GLUT3 expression through PI3K/Akt/mTOR dependent pathways in PC12 cells, Brain Res, vol.1430, pp.18-24, 2012.

S. Yonekura, M. Itoh, Y. Okuhashi, Y. Takahashi, A. Ono et al., Effects of the HIF1 inhibitor, echinomycin, on growth and NOTCH signalling in leukaemia cells, Anticancer Res, vol.33, pp.3099-3104, 2013.

H. Vakili, Y. Jin, and P. A. Cattini, Negative regulation of human growth hormone gene expression by insulin is dependent on hypoxiainducible factor binding in primary non-tumor pituitary cells, J. Biol. Chem, vol.287, pp.33282-33292, 2012.

T. Tsuzuki, H. Okada, H. Shindoh, K. Shimoi, A. Nishigaki et al., Effects of the hypoxia-inducible factor-1 inhibitor echinomycin on vascular endothelial growth factor production and apoptosis in human ectopic endometriotic stromal cells, Gynecol. Endocrinol, vol.32, pp.323-328, 2016.

K. Hattori, K. Koike, K. Okuda, T. Hirayama, M. Ebihara et al., Solution-phase synthesis and biological evaluation of triostin A and its analogues, Org. Biomol. Chem, vol.14, pp.2090-2111, 2016.

J. Dai, C. Punchihewa, P. Mistry, A. T. Ooi, and D. Yang, Novel DNA bis-intercalation by MLN944, a potent clinical bisphenazine anticancer drug, J. Biol. Chem, vol.279, pp.46096-46103, 2004.

N. Sidell, R. I. Mathad, F. J. Shu, Z. Zhang, C. B. Kallen et al., Intercalation of XR5944 with the estrogen response element is modulated by the tri-nucleotide spacer sequence between half-sites, J. Steroid Biochem. Mol. Biol, vol.124, pp.121-127, 2011.

C. Lin, R. I. Mathad, Z. Zhang, N. Sidell, and D. Yang, Solution structure of a 2:1 complex of anticancer drug XR5944 with TFF1 estrogen response element: Insights into DNA recognition by a bis-intercalator, Nucleic Acids Res, vol.42, pp.6012-6024, 2014.

K. C. Bible, R. H. Bible, T. J. Kottke, P. A. Svingen, K. Xu et al., Flavopiridol Binds to Duplex DNA Flavopiridol Binds to Duplex DNA 1, Cancer Res, vol.60, pp.2419-2428, 2000.

Y. K. Lee, C. R. Isham, S. H. Kaufman, and K. C. Bible, Flavopiridol disrupts STAT3/DNA interactions, attenuates STAT3-directed transcription, and combines with the Jak kinase inhibitor AG490 to achieve cytotoxic synergy, Mol. Cancer Ther, vol.5, pp.138-148, 2006.

A. T. Fathi and J. E. Karp, New agents in acute myeloid leukemia: Beyond cytarabine and anthracyclines, Curr. Oncol. Rep, vol.11, pp.346-352, 2009.

J. Talib, J. L. Beck, T. Urathamakul, C. D. Nguyen, J. R. Aldrich-wright et al., A mass spectrometric investigation of the ability of metal complexes to modulate transcription factor activity, Chem. Commun, pp.5546-5548, 2009.

K. Chakree, C. Ovatlarnporn, P. J. Dyson, and A. Ratanaphan, Altered DNA binding and amplification of human breast cancer suppressor gene BRCA1 induced by a novel antitumor compound

, Int. J. Mol. Sci, vol.13, pp.13183-13202, 2012.

J. J. Welch, F. J. Rauscher, and T. A. Beerman, Targeting DNA-binding drugs to sequence-specific transcription factor-DNA complexes. Differential effects of intercalating and minor groove binding drugs, J. Biol. Chem, vol.269, pp.31051-31058, 1994.

Y. C. Liaw, Y. G. Gao, H. Robinson, G. A. Van-der-marel, J. H. Van-boom et al., Antitumor Drug Nogalamycin Binds DNA in Both Grooves Simultaneously: Molecular Structure of Nogalamycin-DNA Complex, Biochemistry, vol.28, pp.9913-9918, 1989.

L. D. Williams, M. Egli, Q. Gao, and A. Rich, DNA intercalation: Helix unwinding and neighbor exclusion, Struct. Funct, vol.1, pp.107-125, 1992.

D. T. Odom, C. S. Parker, and J. K. Barton, Site-specific inhibition of transcription factor binding to DNA by a metallointercalator, Biochemistry, vol.38, pp.5155-5163, 1999.

C. Hélène, The anti-gene strategy: Control of gene expression by triplex-forming-oligonucleotides, Anticancer Drug Des, vol.6, pp.569-584, 1991.

C. Giovannangeli and C. Helene, Triplex-forming molecules for modulation of DNA information processing, Curr. Opin. Mol. Ther, vol.2, pp.288-296, 2000.

M. Duca, P. Vekhoff, K. Oussedik, L. Halby, and P. B. Arimondo, The triple helix: 50 years later, the outcome, Nucleic Acids Res, vol.36, pp.5123-5138, 2008.

R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, and B. U. Nair, Interaction of DNA with [Cr(Schiff base)(H2O)2]ClO4, Biochim. Biophys. Acta Gen. Subj, pp.157-162, 1475.

P. K. Fu, .. Turro, and C. , Transcription inhibition by Rh(phi)2(phen)3+, Chem. Commun, vol.2, pp.279-280, 2001.

P. Wang, C. H. Leung, D. L. Ma, R. W. Sun, S. C. Yan et al., Specific blocking of CREB/DNA binding by cyclometalated platinum(II) complexes, Angew. Chem. Int. Ed, vol.50, pp.2554-2558, 2011.

S. Wang, M. Munde, S. Wang, and W. D. Wilson, Minor groove to major groove, an unusual DNA sequence-dependent change in bend directionality by a distamycin dimer, Biochemistry, vol.50, pp.7674-7683, 2011.

C. Zimmer, K. E. Reinert, G. Luck, U. Wähnert, G. Löber et al., Interaction of the oligopeptide antibiotics netropsin and distamycin a with nucleic acids, J. Mol. Biol, vol.58, pp.329-348, 1971.

A. F. Melnikova, A. S. Zasedatelev, A. M. Kolchinsky, G. V. Gursky, A. L. Zhuze et al., Accessibility of the minor groove of DNA in chromatin to the binding of antibiotics netropsin and distamycin A, Mol. Biol. Rep, vol.2, pp.135-142, 1975.

M. A. Grant, R. M. Baron, A. A. Macias, M. D. Layne, M. A. Perrella et al., Netropsin improves survival from endotoxaemia by disrupting HMGA1 binding to the NOS2 promoter, Biochem. J, vol.418, pp.103-112, 2009.

R. Baliga and D. M. Crothers, On the kinetics of distamycin binding to its target sites on duplex DNA, Proc. Natl. Acad. Sci, vol.97, pp.7814-7818, 2000.

M. Broggini, M. Ponti, S. Ottolenghi, M. D'incalci, N. Mongelli et al., Distamycins inhibit the binding of OTF-1 and NFE-1 transfactors to their conserved DNA elements, Nucleic Acids Res, vol.17, pp.1051-1059, 1989.

A. Ciucci, G. Feriotto, C. Mischiati, R. Gambari, F. Animati et al., Distamycin analogues with improved sequence-specific DNA binding activities, Biochem. Pharmacol, vol.48, pp.1583-1591, 1994.

G. Feriotto, A. Ciucci, C. Mischiati, F. Animati, P. Lombardi et al., Binding of Epstein-Barr virus nuclear antigen 1 to DNA: Inhibition by distamycin and two novel distamycin analogues, Eur. J. Pharmacol. Mol. Pharmacol, vol.267, pp.143-149, 1994.

S. Y. Chiang, J. C. Azizkhan, and T. A. Beerman, A comparison DNA-binding drug as inhibitors of E2F1-and Sp1-DNA complexes and associated gene expression, Biochemistry, vol.37, pp.3109-3115, 1998.

L. Massaad-massade, S. Navarro, U. Krummrei, R. Reeves, P. Beaune et al., HMGA1 enhances the transcriptional activity and binding of the estrogen receptor to its responsive element, Biochemistry, vol.41, pp.2760-2768, 2002.

R. M. Baron, S. Lopez-guzman, D. F. Riascos, A. A. Macias, M. D. Layne et al., Distamycin A inhibits HMGA1-binding to the P-selectin promoter and attenuates lung and liver inflammation during murine endotoxemia, PLoS ONE, vol.5, 2010.

M. Munde, G. M. Poon, and W. D. Wilson, Probing the electrostatics and pharmacological modulation of sequence-specific binding by the dna-binding domain of the ETS family transcription factor Pu.1: A binding affinity and kinetics investigation, J. Mol. Biol, vol.425, pp.1655-1669, 2013.

N. P. Bazhulina, A. M. Nikitin, S. A. Rodin, A. N. Surovaya, Y. V. Kravatsky et al., Binding of Hoechst 33258 and its derivatives to DNA, J. Biomol. Struct. Dyn, vol.26, pp.701-718, 2009.

C. M. White, O. Heidenreich, A. Nordheim, and T. A. Beerman, Evaluation of the effectiveness of DNA-binding drugs to inhibit transcription using the c-fos serum response element as a target, Biochemistry, vol.39, pp.12262-12273, 2000.

J. Wu, P. Apontes, L. Song, P. Liang, L. Yang et al., Molecular mechanism of upregulation of survivin transcription by the AT-rich DNAbinding ligand, Hoechst33342: Evidence for survivin involvement in drug resistance, Nucleic Acids Res, vol.35, pp.2390-2402, 2007.

T. C. Bruice, D. Sengupta, A. Blaskó, S. Y. Chiang, and T. A. Beerman, A microgonotropen branched decaaza decabutylamine and its DNA and DNA/transcription factor interactions, Bioorgan. Med. Chem, vol.5, pp.685-692, 1997.

C. M. White, A. L. Satz, L. S. Gawron, T. C. Bruice, and T. A. Beerman, Inhibiting transcription factor/DNA complexes using fluorescent microgonotropens (FMGTs), Biochim. Biophys. Acta Gene Struct. Expr, vol.1574, pp.100-108, 2002.

P. B. Dervan, R. M. Doss, and M. Marques, a Programmable DNA binding oligomers for control of transcription, Curr. Med. Chem. Anticancer Agents, vol.5, pp.373-387, 2005.

Y. Kawamoto, T. Bando, and H. Sugiyama, Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications, Bioorgan. Med. Chem, vol.26, pp.1393-1411, 2018.

F. Yang, N. G. Nickols, B. C. Li, G. K. Marinov, J. W. Said et al., Antitumor activity of a pyrrole-imidazole polyamide, Proc. Natl. Acad. Sci, vol.110, pp.1863-1868, 2013.

J. A. Ehley, C. Melander, D. Herman, E. E. Baird, H. A. Ferguson et al., Promoter scanning for transcription inhibition with DNA-binding polyamides, Mol. Cell. Biol, vol.22, pp.1723-1733, 2002.

L. Supekova, J. P. Pezacki, A. I. Su, C. J. Loweth, R. Riedl et al., Genomic effects of polyamide/DNA Interactions on mRNA expression, Chem. Biol, vol.9, pp.821-827, 2002.

M. D. Gearhart, L. Dickinson, J. Ehley, C. Melander, P. B. Dervan et al., Inhibition of DNA binding by human estrogen-related receptor 2 and estrogen receptor alpha with minor groove binding polyamides, Biochemistry, vol.44, pp.4196-4203, 2005.

N. G. Nickols and P. B. Dervan, Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide, Proc. Natl. Acad. Sci, vol.104, pp.10418-10423, 2007.

D. M. Chenoweth and P. B. Dervan, Structural basis for cyclic Py-Im polyamide allosteric inhibition of nuclear receptor binding, J. Am. Chem. Soc, vol.132, pp.14521-14529, 2010.

E. J. Fechter and P. B. Dervan, Allosteric inhibition of protein-DNA complexes by polyamide-intercalator conjugates, J. Am. Chem. Soc, vol.125, pp.8476-8485, 2003.

R. E. Bremer, E. E. Baird, and P. B. Dervan, Inhibition of major-groove-binding proteins by pyrrole-imidazole polyamides with an Arg-Pro-Arg positive patch, Chem. Biol, vol.5, pp.119-133, 1998.

H. Matsuda, N. Fukuda, T. Ueno, Y. Tahira, H. Ayame et al., Development of gene silencing pyrrole-imidazole polyamide targeting the TGF-?1 promoter for treatment of progressive renal diseases, J. Am. Soc. Nephrol, vol.17, 2006.

M. Inami, A. Fukushima, T. Ueno, T. Yamada, A. Tsunemi et al., Reduction of Dimethylnitrosamine-Induced Liver Fibrosis by the Novel Gene Regulator PI Polyamide Targeting Transforming Growth Factor ?1 Gene, Biol. Pharm. Bull, vol.38, pp.1836-1842, 2015.

T. Ueno, N. Fukuda, A. Tsunemi, E. H. Yao, H. Matsuda et al., A novel gene silencer, pyrrole-imidazole polyamide targeting human lectin-like oxidized low-density lipoprotein receptor-1 gene improves endothelial cell function, J. Hypertens, vol.27, pp.508-516, 2009.

L. A. Dickinson, J. W. Trauger, E. E. Baird, P. B. Dervan, B. J. Graves et al., Inhibition of Ets-1 DNA binding and ternary complex formation between Ets-1, NF-?B, and DNA by a designed DNA-binding ligand, J. Biol. Chem, vol.274, pp.12765-12773, 1999.

J. K. Bashkin, K. Aston, J. P. Ramos, K. J. Koeller, R. Nanjunda et al., Promoter scanning of the human COX-2 gene with 8-ring polyamides: Unexpected weakening of polyamide-DNA binding and selectivity by replacing an internal N-Mepyrrole with ?-alanine, Biochimie, vol.95, pp.271-279, 2013.

Y. Zhang, G. Sicot, X. Cui, M. Vogel, C. A. Wuertzer et al., Targeting a DNA binding motif of the EVI1 protein by a pyrrole-imidazole polyamide, Biochemistry, vol.50, pp.10431-10441, 2011.

J. Syed, G. N. Pandian, S. Sato, J. Taniguchi, A. Chandran et al., Targeted suppression of EVI1 oncogene expression by sequence-specific Pyrrole-imidazole polyamide, Chem. Biol, vol.21, pp.1370-1380, 2014.

B. Liu, S. Wang, K. Aston, K. J. Koeller, S. F. Kermani et al., D. ?-Alanine and N-terminal cationic substituents affect polyamide-DNA binding, Org. Biomol. Chem, vol.15, pp.9880-9888, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-00367140

J. M. Gottesfeld, C. Melander, R. K. Suto, H. Raviol, K. Luger et al., Sequence-specific recognition of DNA in the nucleosome by pyrrole-imidazole polyamides, J. Mol. Biol, vol.309, pp.615-629, 2001.

L. Neely, J. W. Trauger, E. E. Baird, P. B. Dervan, and J. M. Gottesfeld, Importance of minor groove binding zinc fingers within the transcription factor IIIA-DNA complex, J. Mol. Biol, vol.274, pp.439-445, 1997.

D. H. Nguyen-hackley, E. Ramm, C. M. Taylor, J. K. Joung, P. B. Dervan et al., Allosteric Inhibition of Zinc-Finger Binding in the Major Groove of DNA by Minor-Groove Binding Ligands, Biochemistry, vol.43, pp.3880-3890, 2004.

J. A. Henry, N. M. Le, B. Nguyen, C. M. Howard, S. L. Bailey et al., Targeting the inverted CCAAT box 2 in the topoisomerase IIalpha promoter by JH-37, an imidazole-pyrrole polyamide hairpin: Design, synthesis, molecular biology, and biophysical studies, Biochemistry, vol.43, pp.12249-12257, 2004.

D. Hochhauser, M. Kotecha, C. O'hare, P. J. Morris, J. A. Hartley et al., Modulation of topoisomerase IIalpha expression by a DNA sequence-specific polyamide, Mol. Cancer Ther, vol.6, pp.346-354, 2007.

K. Kiakos, L. Pett, V. Satam, P. Patil, D. Hochhauser et al., Nuclear Localization and Gene Expression Modulation by a Fluorescent Sequence-Selective p-Anisyl-benzimidazolecarboxamido Imidazole-Pyrrole Polyamide, Chem. Biol, vol.22, pp.862-875, 2015.

F. Brucoli, R. M. Hawkins, C. H. James, P. J. Jackson, G. Wells et al., An extended pyrrolobenzodiazepine-polyamide conjugate with selectivity for a DNA sequence containing the ICB2 transcription factor binding site, J. Med. Chem, vol.56, pp.6339-6351, 2013.

L. Pett, K. Kiakos, V. Satam, P. Patil, S. Laughlin-toth et al., Modulation of topoisomerase II? expression and chemosensitivity through targeted inhibition of NF-Y:DNA binding by a diamino p-anisylbenzimidazole (Hx) polyamide, Biochim. Biophys. Acta Gene Regul. Mech, vol.1860, pp.617-629, 2017.

J. A. Raskatov, J. L. Meier, J. W. Puckett, F. Yang, P. Ramakrishnan et al., Modulation of NF-?B-dependent gene transcription using programmable DNA minor groove binders, Proc. Natl. Acad. Sci, vol.109, pp.1023-1028, 2012.

T. Kojima, X. Wang, K. Fujiwara, S. Osaka, Y. Yoshida et al., Inhibition of Human Osteosarcoma Cell Migration and Invasion by a Gene Silencer, Pyrrole-Imidazole Polyamide, Targeted at the Human MMP9 NF-?B Binding Site, Biol. Pharm. Bull, vol.37, pp.1460-1465, 2014.

B. Z. Olenyuk, G. Zhang, J. M. Klco, N. G. Nickols, W. G. Kaelin et al., Inhibition of vascular endothelial growth factor with a sequence-specific hypoxia response element antagonist, Proc. Natl. Acad. Sci, vol.101, pp.16768-16773, 2004.

Y. Kageyama, H. Sugiyama, H. Ayame, A. Iwai, Y. Fujii et al., Suppression of VEGF transcription in renal cell carcinoma cells by pyrrole-imidazole hairpin polyamides targeting the hypoxia responsive element, Acta Oncol, vol.45, pp.317-324, 2006.

J. O. Szablowski, J. A. Raskatov, and P. B. Dervan, An HRE-Binding Py-Im Polyamide Impairs Hypoxic Signaling in Tumors, Mol. Cancer Ther, vol.15, pp.608-617, 2016.

V. S. Mysore, J. Szablowski, P. B. Dervan, and P. J. Frost, A DNA-binding Molecule Targeting the Adaptive Hypoxic Response in Multiple Myeloma Has Potent Antitumor Activity, Mol. Cancer Res, vol.14, pp.253-266, 2016.

M. Taniguchi, K. Fujiwara, Y. Nakai, T. Ozaki, N. Koshikawa et al., Inhibition of malignant phenotypes of human osteosarcoma cells by a gene silencer, a pyrrole-imidazole polyamide, which targets an E-box motif, FEBS Open Bio, vol.4, pp.328-334, 2014.

R. Mishra, T. Watanabe, M. T. Kimura, N. Koshikawa, M. Ikeda et al., Identification of a novel E-box binding pyrrole-imidazole polyamide inhibiting MYC-driven cell proliferation, Cancer Sci, vol.106, pp.421-429, 2015.

D. Obinata, K. Takayama, K. Fujiwara, T. Suzuki, S. Tsutsumi et al., Targeting Oct1 genomic function inhibits androgen receptor signaling and castration-resistant prostate cancer growth, Oncogene, vol.35, pp.6350-6358, 2016.

K. Hayatigolkhatmi, G. Padroni, W. Su, L. Fang, E. Gómez-castañeda et al., Investigation of a minor groove-binding polyamide targeted to E2F1 transcription factor in chronic myeloid leukaemia (CML) cells, Blood Cells Mol. Dis, vol.69, pp.119-122, 2018.

W. D. Wilson, B. Nguyen, F. A. Tanious, A. Mathis, J. E. Hall et al., Dications that target the DNA minor groove: Compound design and preparation, DNA interactions, cellular distribution and biological activity, Curr. Med. Chem. Anticancer Agents, vol.5, pp.389-408, 2005.

C. Yeates, DB-289 Immtech International, IDrugs, vol.6, pp.1086-1093, 2003.

C. Bailly, C. Tardy, L. Wang, B. Armitage, K. Hopkins et al., Recognition of ATGA sequences by the unfused aromatic dication DB293 forming stacked dimers in the DNA minor groove, Biochemistry, vol.40, pp.9770-9779, 2001.

P. Peixoto, Y. Liu, S. Depauw, M. P. Hildebrand, D. W. Boykin et al., Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication, Nucleic Acids Res, vol.36, pp.3341-3353, 2008.

S. A. Tomlins, D. R. Rhodes, S. Perner, S. M. Dhanasekaran, R. Mehra et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer, Science, vol.310, pp.644-648, 2005.

P. H. Sorensen, S. L. Lessnick, D. Lopez-terrada, X. F. Liu, T. J. Triche et al., A second ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG, Nat. Genet, vol.6, pp.146-151, 1994.

K. Shimizu, H. Ichikawa, A. Tojo, Y. Kaneko, N. Maseki et al., An ets-related gene, ERG, is rearranged in human myeloid leukemia with t(16;21) chromosomal translocation, Proc. Natl. Acad. Sci, vol.90, pp.10280-10284, 1993.

S. D. Moore, O. Offor, J. A. Ferry, P. C. Amrein, C. C. Morton et al., ELF4 is fused to ERG in a case of acute myeloid leukemia with a t(X;21)(q25-26;q22), Leuk. Res, vol.30, pp.1037-1042, 2006.

G. Marcucci, C. D. Baldus, A. S. Ruppert, M. D. Radmacher, K. Mrózek et al., Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: A Cancer and Leukemia Group B study, J. Clin. Oncol, vol.23, pp.9234-9242, 2005.

R. Nhili, P. Peixoto, S. Depauw, S. Flajollet, X. Dezitter et al., Targeting the DNA-binding activity of the human ERG transcription factor using new heterocyclic dithiophene diamidines, Nucleic Acids Res, vol.41, pp.125-138, 2013.

M. Munde, A. Kumar, P. Peixoto, S. Depauw, M. A. Ismail et al., The unusual monomer recognition of guanine-containing mixed sequence DNA by a dithiophene heterocyclic diamidine, Biochemistry, vol.53, pp.1218-1227, 2014.

S. Flajollet, T. V. Tian, A. Flourens, N. Tomavo, A. Villers et al., Abnormal Expression of the ERG Transcription Factor in Prostate Cancer Cells Activates Osteopontin, Mol. Cancer Res, vol.9, pp.914-924, 2011.

M. Munde, S. Wang, A. Kumar, C. E. Stephens, A. A. Farahat et al., Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines, Nucleic Acids Res, vol.42, pp.1379-1390, 2014.

I. Antony-debré, A. Paul, J. Leite, K. Mitchell, H. M. Kim et al., Pharmacological inhibition of the transcription factor PU.1 in leukemia, J. Clin. Investig, vol.127, pp.4297-4313, 2017.

L. A. Solomon, S. K. Li, J. Piskorz, L. S. Xu, and R. P. Dekoter, Genome-wide comparison of PU.1 and Spi-B binding sites in a mouse B lymphoma cell line, BMC Genom, vol.16, p.76, 2015.

G. Rao, N. Rekhtman, G. Cheng, T. Krasikov, and A. I. Skoultchi, Deregulated expression of the PU.1 transcription factor blocks murine erythroleukemia cell terminal differentiation, Oncogene, vol.14, pp.123-131, 1997.

F. Rosenbauer, K. Wagner, J. L. Kutok, H. Iwasaki, M. M. Le-beau et al., Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat. Genet, vol.36, pp.624-630, 2004.

N. Bonadies, T. Pabst, and B. U. Mueller, Heterozygous deletion of the PU.1 locus in human AML, Blood, vol.115, pp.331-334, 2010.

B. Will, T. O. Vogler, S. Narayanagari, B. Bartholdy, T. I. Todorova et al., Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia, Nat. Med, vol.21, pp.1172-1181, 2015.

M. E. Budiman, U. Bierbach, and R. W. Alexander, DNA minor groove adducts formed by a platinum-acridine conjugate inhibit association of TATA-binding protein with its cognate sequence, Biochemistry, vol.44, pp.11262-11268, 2005.

P. Y. Ng, Y. Tang, W. M. Knosp, H. S. Stadler, and J. T. Shaw, Synthesis of diverse lactam carboxamides leading to the discovery of a new transcription-factor inhibitor, Angew. Chem. Int. Ed, vol.46, pp.5352-5355, 2007.

Z. Zhang, J. Zhang, L. Jin, T. Song, G. Wu et al., Tanshinone IIA interacts with DNA by minor groove-binding, Biol. Pharm. Bull, vol.31, pp.2342-2345, 2008.

S. Park, J. S. Song, D. K. Lee, and C. H. Yang, Suppression of AP-1 activity by tanshinone and cancer cell growth inhibition, Bull. Korean Chem. Soc, vol.20, pp.925-928, 1999.

M. H. Tsai, Z. C. Lin, C. J. Liang, F. L. Yen, Y. C. Chiang et al., Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47phoxpathway, Toxicol. Appl. Pharmacol, vol.279, pp.240-251, 2014.

Z. Zhang, J. Gao, Y. Wang, T. Song, J. Zhang et al., Tanshinone IIA triggers p53 responses and apoptosis by RNA polymerase II upon DNA minor groove binding, Biochem. Pharmacol, vol.78, pp.1316-1322, 2009.

A. Malek, L. Núñez, M. Magistri, L. Brambilla, S. Jovic et al., Modulation of the Activity of Sp Transcription Factors by Mithramycin Analogues as a New Strategy for Treatment of Metastatic Prostate Cancer, PLoS ONE, vol.7, 2012.

J. P. Zhang, H. Zhang, H. B. Wang, Y. X. Li, G. H. Liu et al., Down-regulation of Sp1 suppresses cell proliferation, clonogenicity and the expressions of stem cell markers in nasopharyngeal carcinoma, J. Transl. Med, vol.12, 2014.

M. Sastry and D. J. Patel, Solution Structure of the Mithramycin Dimer-DNA Complex, Biochemistry, vol.32, pp.6588-6604, 1993.

C. Bailly, D. Payet, A. A. Travers, and M. J. Waring, PCR-based development of DNA substrates containing modified bases: An efficient system for investigating the role of the exocyclic groups in chemical and structural recognition by minor groove binding drugs and proteins, Proc. Natl. Acad. Sci, vol.93, pp.13623-13628, 1996.

R. Ray, R. C. Snyder, S. Thomas, C. A. Koller, and D. M. Miller, Mithramycin blocks protein binding and function of the SV40 early promoter, J. Clin. Investig, vol.83, 1989.

R. C. Snyder, R. Ray, S. Blume, and D. M. Miller, Mithramycin Blocks Transcriptional Initiation of the c-myc P1 and P2 Promoters, Biochemistry, vol.30, pp.4290-4297, 1991.

V. Petrovic, R. H. Costa, L. F. Lau, P. Raychaudhuri, and A. L. Tyner, Negative regulation of the oncogenic transcription factor FoxM1 by thiazolidinediones and mithramycin, Cancer Biol. Ther, vol.9, pp.1008-1016, 2010.

N. Mihara, T. Chiba, K. Yamaguchi, H. Sudo, H. Yagishita et al., Minimal essential region for krüppel-like factor 5 expression and the regulation by specificity protein 3-GC box binding, vol.601, pp.36-43, 2017.

R. Liu, X. Zhi, Z. Zhou, H. Zhang, R. Yang et al., Mithramycin A suppresses basal triple-negative breast cancer cell survival partially via down-regulating Krüppel-like factor 5 transcription by Sp1, Sci. Rep, vol.8, 2018.

J. Li, H. Gao, L. Meng, and L. Yin, Mithramycin inhibits epithelial-tomesenchymal transition and invasion by downregulating SP1 and SNAI1 in salivary adenoid cystic carcinoma, vol.39, 2017.

G. Koutsodontis and D. Kardassis, Inhibition of p53-mediated transcriptional responses by mithramycin A, Oncogene, vol.23, pp.9190-9200, 2004.

P. O. Estève, G. C. Hang, and S. Pradhan, Molecular mechanisms of transactivation and doxorubicin-mediated repression of survivin gene in cancer cells, J. Biol. Chem, vol.282, pp.2615-2625, 2007.

H. Tian, G. W. Qian, W. Li, F. F. Chen, J. H. Di et al., A critical role of Sp1 transcription factor in regulating the human Ki-67 gene expression, Tumor Biol, vol.32, pp.273-283, 2011.

C. Vizcaíno, L. Núñez, F. Morís, and J. Portugal, Genome-wide modulation of gene transcription in ovarian carcinoma cells by a new mithramycin analogue, PLoS ONE, vol.9, 2014.

S. Logotheti, I. Michalopoulos, M. Sideridou, A. Daskalos, S. Kossida et al., Sp1 binds to the external promoter of the p73 gene and induces the expression of TAp73? in lung cancer, FEBS J, vol.277, pp.3014-3027, 2010.

X. Kong, P. Xu, W. Cai, H. Wang, B. Li et al., ZBP-89 and Sp1 contribute to Bak expression in hepatocellular carcinoma cells, BMC Cancer, vol.18, p.419, 2018.

G. Krikun, F. Schatz, N. Mackman, S. Guller, R. Demopoulos et al., Regulation of tissue factor gene expression in human endometrium by transcription factors Sp1 and Sp3, Mol. Endocrinol, vol.14, pp.393-400, 2000.

F. Aslam, L. Palumbo, L. H. Augenlicht, and A. Velcich, The Sp family of transcription factors in the regulation of the human and mouse MUC2 gene promoters, Cancer Res, vol.61, pp.570-576, 2001.

J. J. Lee, K. Park, M. H. Shin, W. J. Yang, M. J. Song et al., Accessible chromatin structure permits factors Sp1 and Sp3 to regulate human TGFBI gene expression, Biochem. Biophys. Res. Commun, vol.409, pp.222-228, 2011.

X. Dang, X. Zeng, R. Coimbra, B. P. Eliceiri, and A. Baird, Counter regulation of ECRG4 gene expression by hypermethylation-dependent inhibition and the Sp1 transcription factor-dependent stimulation of the c2orf40 promoter, Gene, vol.636, pp.103-111, 2017.

L. G. Wang and A. C. Ferrari, Mithramycin targets sp1 and the androgen receptor transcription level-potential therapeutic role in advanced prostate cancer, Transl. Oncogenom, vol.1, pp.19-31, 2006.

W. J. Yang, M. J. Song, E. Y. Park, J. J. Lee, J. H. Park et al., Transcription factors Sp1 and Sp3 regulate expression of human ABCG2 gene and chemoresistance phenotype, Mol. Cells, vol.36, pp.368-375, 2013.

S. Yu, L. M. Yerges-armstrong, Y. Chu, J. M. Zmuda, and Y. Zhang, Transcriptional regulation of frizzled-1 in human osteoblasts by Sp1, PLoS ONE, vol.11, 2016.

S. W. Blume, R. C. Snyder, R. Ray, S. Thomas, C. A. Koller et al., Mithramycin inhibits SP1 binding and selectively inhibits transcriptional activity of the dihydrofolate reductase gene in vitro and in vivo, J. Clin. Investig, vol.88, pp.1613-1621, 1991.

S. Kaluz, M. Kaluzová, and E. J. Stanbridge, Expression of the hypoxia marker carbonic anhydrase IX is critically dependent on SP1 activity. Identification of a novel type of hypoxia-responsive enhancer, Cancer Res, vol.63, pp.917-922, 2003.

M. R. Zhang, S. Xi, V. Shukla, J. A. Hong, H. Chen et al., The Pluripotency Factor Musashi-2 Is a Novel Target for Lung Cancer Therapy, Ann. Am. Thorac. Soc, vol.15, 2018.

D. Y. Jun, J. Y. Lee, H. S. Park, Y. H. Lee, and Y. H. Kim, Tumor suppressor protein p53-mediated repression of human mitotic centromereassociated kinesin gene expression is exerted via down-regulation of Sp1 level, PLoS ONE, vol.12, 2017.

C. Hou, S. Weidenbach, K. E. Cano, Z. Wang, P. Mitra et al., Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1, Nucleic Acids Res, vol.44, pp.8990-9004, 2016.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, vol.144, pp.646-674, 2011.

P. J. Grohar, J. Glod, C. J. Peer, T. M. Sissung, F. I. Arnaldez et al., A phase I/II trial and pharmacokinetic study of mithramycin in children and adults with refractory Ewing sarcoma and EWS-FLI1 fusion transcript, Cancer Chemother. Pharmacol, vol.80, pp.645-652, 2017.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, vol.100, pp.57-70, 2000.

C. P. Morales, R. F. Souza, and S. J. Spechler, Hallmarks of cancer progression in Barrett's oesophagus, Lancet, vol.360, pp.1587-1589, 2002.

M. De-palma and D. Hanahan, The biology of personalized cancer medicine: Facing individual complexities underlying hallmark capabilities, Mol. Oncol, vol.6, pp.111-127, 2012.

J. M. Bernstein, C. R. Bernstein, C. M. West, and J. J. Homer, Molecular and cellular processes underlying the hallmarks of head and neck cancer, Eur. Arch. Otorhinolaryngol, vol.270, pp.2585-2593, 2013.

M. Stahl, N. Kohrman, S. D. Gore, T. K. Kim, A. M. Zeidan et al., Epigenetics in Cancer: A Hematological Perspective, PLoS Genet, vol.12, 2016.

D. Datta, M. Aftabuddin, D. K. Gupta, S. Raha, and P. Sen, Human Prostate Cancer Hallmarks Map

D. S. Nørøxe, H. S. Poulsen, and U. Lassen, Hallmarks of glioblastoma: A systematic review

P. Viatour, M. Merville, V. Bours, A. Chariot, M. Karin et al., Phosphorylation of NF-kappaB and IkappaB proteins: Implications in cancer and inflammation, Trends Biochem. Sci, vol.30, pp.43-52, 2005.

S. J. Yeung, J. Pan, and M. H. Lee, Roles of p53, MYC and HIF-1 in regulating glycolysis-The seventh hallmark of cancer, Cell. Mol. Life Sci, vol.65, pp.3981-3999, 2008.

A. Reddy, C. C. Huang, H. Liu, C. Delisi, M. T. Nevalainen et al., Robust gene network analysis reveals alteration of the STAT5a network as a hallmark of prostate cancer, Genome Inf, vol.24, pp.139-153, 2010.

M. Gabay, Y. Li, and D. W. Felsher, MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb

K. Kasai, GLI1, a master regulator of the hallmark of pancreatic cancer, Pathol. Int, vol.66, pp.653-660, 2016.

H. Abou-ouf, L. Zhao, and T. A. Bismar, ERG expression in prostate cancer: Biological relevance and clinical implication, J. Cancer Res. Clin. Oncol, vol.142, pp.1781-1793, 2016.

E. Deltcheva and R. Nimmo, RUNX transcription factors at the interface of stem cells and cancer, Biochem. J, vol.474, pp.1755-1768, 2017.

R. K. Yadav, A. S. Chauhan, L. Zhuang, and B. Gan, FoxO transcription factors in cancer metabolism, Semin. Cancer Biol, 2018.

S. Monterisi, P. L. Riso, K. Russo, G. Bertalot, M. Vecchi et al., HOXB7 overexpression in lung cancer is a hallmark of acquired stem-like phenotype, Oncogene, 2018.

R. De-la, M. Vega, E. Chapman, and D. D. Zhang, NRF2 and the Hallmarks of Cancer, Cancer Cell, 2018.

W. A. Freed-pastor and C. Prives, Mutant p53: One name, many proteins, Genes Dev, vol.26, pp.1268-1286, 2012.

A. Parrales and T. Iwakuma, Targeting Oncogenic Mutant p53 for Cancer Therapy. Front, Oncol, vol.5, 2015.

L. Liu, G. Jin, and X. Zhou, Modeling the relationship of epigenetic modifications to transcription factor binding, Nucleic Acids Res, vol.43, pp.3873-3885, 2015.

N. Ahuja, A. R. Sharma, and S. B. Baylin, Epigenetic Therapeutics: A New Weapon in the War Against Cancer, Annu. Rev. Med, vol.67, pp.73-89, 2016.

, The diamidines were prepared by first converting the bis-nitrile into the corresponding amidoximes, which were acetylated, and subsequently subjected to hydrogenolysis to yield the desired diamidines. In the case of DB928, the hydrogenolysis in addition to cleaving the N-OAc bond also cleaved the benzyl group. The route employed for synthesis of the thiazole benzimidazole (7; DB2651) is shown in Scheme 2. In this case Suzuki crosscoupling between 5-bromothiazole-2-carbaldhyde and 4-cyanophenylboronic acid was utilized to obtain 5-(4-cyanophenyl) thiazole-2-carbaldehyde, cyanoaryl-5-formyl furans using benzoquinone as the oxidant

, Scheme 3 the synthesis approach to five, p.11

, The 2-arylcyanofurans and thiophenes were obtained using Stille coupling between 2-(tri-n-butylstannyl) furan and 2-(tri-n-butylstannyl) thiophene with the indicated cyanoaryl bromides. NBS bromination of the 2-aryl furans and thiophenes at room temperature yielded the corresponding 5-bromo-2-aryl furans and thiophenes. Reaction of either the Boc-protected 5 or 6-cyano-2-(trimethlystannyl) indole with the 5-bromo-2-aryl furans or thiophenes yield the Boc-protected bis-nitriles. The bis-nitriles were converted into the diamidines by reaction with lithium bis(trimethylsilyl) amide

, The former was obtained from the bis-nitrile by conversion into the corresponding imidate ester, which on reaction with 4-nitrophenethyl amine yielded DB421. Reaction of 2, 5-bis-(4-cynophenyl) tellurophene with lithium bis(trimethylsilyl)amide provided DB1751. The synthesis of the N-methylbenzimidazole analogue (14; DB1314) is shown in Scheme 5. The required bis-nitrile was obtained by oxidative coupling of 3-(methylamino)-4-aminobenzonitrile with 4-cyano-3'-formyl-1, 1'-biphenyl using sodium metabisulfite as the oxidant

, DB1504) is outlined in Scheme 6. The Pfitzinger reaction between 2-acetylthiophene and 6-bromoisatin provided six-bromo-2-(thiophen-2-yl)quinoline-4-carboxylic acid which on heating in the presence of copper(I)cyanide results in both decarboxylation and replacement of the bromo group with a cyano group. Once again, NBS bromination of the 2-aryl thiophene at room temperature yielded the desired 5-bromo-2-aryl thiophene analogue. Reaction of 4-cyanphenylboronic acid with the 5-bromo-2-aryl thiophene derivative under, The route utilized for synthesis of the quinoline analog

M. A. Bouhlel, M. Lambert, and M. David-cordonnier, Targeting Transcription Factor Binding to DNA by Competing with DNA Binders as an Approach for Controlling Gene Expression, Curr. Top. Med. Chem, issue.14, pp.1323-1358, 2015.

J. Hagenbuchner and M. J. Ausserlechner, Targeting Transcription Factors by Small Compounds-Current Strategies and Future Implications, Biochem. Pharmacol, vol.107, pp.1-13, 2016.

J. Portugal and F. Barcel, Noncovalent Binding to DNA: Still a Target in Developing Anticancer Agents, Curr. Med. Chem, vol.23, issue.36, pp.4108-4134, 2016.

M. Lambert, S. Jambon, S. Depauw, and M. David-cordonnier, Targeting Transcription Factors for Cancer Treatment, Molecules, vol.23, p.1479, 2018.

F. Lo-coco and L. Cicconi, History of Acute Promyelocytic Leukemia: A Tale of Endless Revolution, Mediterr. J. Hematol. Infect. Dis, vol.3, issue.1, p.2011067, 2011.

C. V. Dang, E. P. Reddy, K. M. Shokat, and L. Soucek, Drugging the "undruggable" Cancer Targets, Nat. Rev. Cancer, vol.17, issue.8, pp.502-508, 2017.

V. Tisato, R. Voltan, A. Gonelli, P. Secchiero, and G. Zauli, MDM2/X Inhibitors under Clinical Evaluation: Perspectives for the Management of Hematological Malignancies and Pediatric Cancer, J. Hematol. Oncol, vol.2017, issue.1, p.133

R. J. Leeman-neill and G. Bhagat, BCL6 as a Therapeutic Target for Lymphoma, Expert Opin. Ther. Targets, vol.22, issue.2, pp.143-152, 2018.

S. L. Furtek, D. S. Backos, C. J. Matheson, and P. Reigan, Strategies and Approaches of Targeting STAT3 for Cancer Treatment, ACS Chem. Biol, vol.11, issue.2, pp.308-318, 2016.

Y. Liu-chittenden, B. Huang, J. S. Shim, Q. Chen, S. J. Lee et al., Genetic and Pharmacological Disruption of the TEAD-YAP Complex Suppresses the Oncogenic Activity of YAP, Genes Dev, vol.26, issue.12, pp.1300-1305, 2012.

F. Gibault, F. Bailly, M. Corvaisier, M. Coevoet, G. Huet et al., Molecular Features of the YAP Inhibitor Verteporfin: Synthesis of Hexasubstituted Dipyrrins as Potential Inhibitors of YAP/TAZ, the Downstream Effectors of the Hippo Pathway, ChemMedChem, vol.2017, issue.12, pp.954-961
URL : https://hal.archives-ouvertes.fr/hal-02060557

Y. Kim, E. Gang, M. Kahn, and . Cbp/, Catenin Antagonists: Targeting LSCs' Achilles Heel, vol.52, pp.1-11, 2017.

E. Grimley, C. Liao, E. J. Ranghini, Z. Nikolovska-coleska, and G. R. Dressler, Inhibition of Pax2 Transcription Activation with a Small Molecule That Targets the DNA Binding Domain, ACS Chem. Biol. 2017, vol.12, issue.3, pp.724-734

C. H. Leung, D. S. Chan, V. P. Ma, and D. L. Ma, DNA-Binding Small Molecules as Inhibitors of Transcription Factors, Med. Res. Rev, vol.33, issue.4, pp.823-846, 2013.

F. Fontaine, J. Overman, . Fran, and M. Ois, Pharmacological Manipulation of Transcription Factor Protein-Protein Interactions: Opportunities and Obstacles, Cell Regen, vol.4, issue.1, 2015.

S. W. Blume, R. C. Snyder, R. Ray, S. Thomas, C. A. Koller et al., Mithramycin Inhibits SP1 Binding and Selectively Inhibits Transcriptional Activity of the Dihydrofolate Reductase Gene in Vitro and in Vivo, J. Clin. Invest, vol.88, issue.5, pp.1613-1621, 1991.

P. J. Grohar, G. M. Woldemichael, L. B. Griffin, A. Mendoza, Q. R. Chen et al., Identification of an Inhibitor of the EWS-FLI1 Oncogenic Transcription Factor by High-Throughput Screening, J. Natl. Cancer Inst, vol.103, issue.12, pp.962-978, 2011.

P. J. Grohar, J. Glod, C. J. Peer, T. M. Sissung, F. I. Arnaldez et al., A Phase I/II Trial and Pharmacokinetic Study of Mithramycin in Children and Adults with Refractory Ewing Sarcoma and EWS-FLI1 Fusion Transcript, Cancer Chemother. Pharmacol, vol.2017, issue.3, pp.645-652

K. Morita, K. Suzuki, S. Maeda, A. Matsuo, Y. Mitsuda et al., Genetic Regulation of the RUNX Transcription Factor Family Has Antitumor Effects, J. Clin. Invest, vol.2017, issue.7, pp.2815-2828

I. Antony-debré, A. Paul, J. Leite, K. Mitchell, H. M. Kim et al., Pharmacological Inhibition of the Transcription Factor PU.1 in Leukemia, J. Clin. Invest, vol.2017, issue.12, pp.4297-4313

N. Shah and S. Sukumar, The Hox Genes and Their Roles in Oncogenesis, Nat. Rev. Cancer, vol.10, issue.5, pp.361-371, 2010.

. Gon, C. S. Alves, . Xavier-magalh, A. Es, M. Pojo et al., Transcriptional Profiling of HOXA9-Regulated Genes in Human Glioblastoma Cell Models, Genomics Data, vol.5, pp.54-58, 2015.

A. S. Pires-lu.s, P. Costa-pinheiro, M. J. Ferreira, L. Antunes, F. Lobo et al., Identification of Clear Cell Renal Cell Carcinoma and Oncocytoma Using a Three-Gene Promoter Methylation Panel, J. Transl. Med, vol.2017, issue.1, p.15

R. Malek, R. P. Gajula, R. D. Williams, B. Nghiem, B. W. Simons et al., TWIST1-WDR5-Hottip Regulates Hoxa9 Chromatin to Facilitate Prostate Cancer Metastasis, Cancer Res, vol.77, issue.12, pp.3181-3193, 2017.

Y. Ma, Y. Zhang, X. Mou, Z. Liu, G. Ru et al., High Level of Homeobox A9 and PBX Homeobox 3 Expression in Gastric Cancer Correlates with Poor Prognosis, Oncol. Lett, vol.2017, issue.5, pp.5883-5889

U. Vijapurkar, N. Fischbach, W. Shen, C. Brandts, D. Stokoe et al., Protein Kinase C-Mediated Phosphorylation of the Leukemia-Associated HOXA9 Protein Impairs Its DNA Binding Ability and Induces Myeloid Differentiation, Mol. Cell. Biol, vol.24, issue.9, pp.3827-3837, 2004.

J. Faber, A. V. Krivtsov, M. C. Stubbs, R. Wright, T. N. Davis et al., HOXA9 Is Required for Survival in Human MLL-Rearranged Acute Leukemias, Blood, vol.113, issue.11, pp.2375-2385, 2009.

C. T. Collins and J. L. Hess, Role of HOXA9 in Leukemia: Dysregulation, Cofactors and Essential Targets, Oncogene, vol.2016, issue.9, pp.1090-1098

C. T. Collins and J. L. Hess, Deregulation of the HOXA9/MEIS1 Axis in Acute Leukemia, Curr. Opin. Hematol, vol.23, issue.4, pp.354-361, 2016.

S. Chen, J. Yu, X. Lv, and L. Zhang, HOXA9 Is Critical in the Proliferation, Differentiation, and Malignancy of Leukaemia Cells Both in Vitro and in Vivo, Cell Biochem. Funct, vol.2017, issue.7, pp.433-440

H. Xu, D. G. Valerio, M. E. Eisold, A. Sinha, R. P. Koche et al., NUP98 Fusion Proteins Interact with the NSL and MLL1 Complexes to Drive Leukemogenesis, vol.30, pp.863-878, 2016.

A. Rio-machin, G. ;-g.mez-l.pez, . Mu, J. Oz, F. Garcia-martinez et al., The Molecular Pathogenesis of the NUP98-HOXA9 Fusion Protein in Acute Myeloid Leukemia, vol.2017, pp.2000-2005

J. Borrow, A. M. Shearman, V. P. Stanton, R. Becher, T. Collins et al., The t(7;11)(P15;P15) Translocation in Acute Myeloid Leukaemia Fuses the Genes for Nucleoporin NUP98 and Class I Homeoprotein HOXA9, Nat. Genet, vol.12, issue.2, pp.159-167, 1996.

L. Tan, H. Xu, G. Chen, X. Wei, B. Yu et al., Silencing of HMGA2 Reverses Retardance of Cell Differentiation in Human Myeloid Leukaemia, Br. J. Cancer, vol.118, issue.3, pp.405-415, 2018.

K. R. Calvo, D. B. Sykes, M. Pasillas, and M. Kamps, Hoxa9 Immortalizes a Granulocyte-Macrophage Colony-Stimulating Factor-Dependent Promyelocyte Capable of Biphenotypic Differentiation to Neutrophils or Macrophages, Independent of Enforced Meis Expression, Mol. Cell. Biol, vol.20, issue.9, pp.3274-3285, 2000.

Y. L. Hu, E. Passegu, S. Fong, C. Largman, and H. J. Lawrence, Evidence That the Pim1 Kinase Gene Is a Direct Target of HOXA9, Blood, vol.109, issue.11, pp.4732-4738, 2007.

C. Breitinger, E. Maethner, M. P. Garcia-cuellar, and R. K. Slany, The Homeodomain Region Controls the Phenotype of HOX-Induced Murine Leukemia, Blood, vol.2012, issue.19, pp.4018-4027

S. W. Ng, A. Mitchell, J. A. Kennedy, W. C. Chen, J. Mcleod et al., A 17-Gene Stemness Score for Rapid Determination of Risk in Acute Leukaemia, Nature, vol.2016, issue.7633, pp.433-437

Y. Huang, K. Sitwala, J. Bronstein, D. Sanders, M. Dandekar et al., Identification and Characterization of Hoxa9 Binding Sites in Hematopoietic Cells, Blood, vol.2012, issue.2, pp.388-398

N. A. Laronde-leblanc and C. Wolberger, Structure of HoxA9 and Pbx1 Bound to DNA: Hox Hexapeptide and DNA Recognition Anterior to Posterior, Genes Dev, vol.17, issue.16, pp.2060-2072, 2003.

P. Peixoto, Y. Liu, S. Depauw, M. P. Hildebrand, D. W. Boykin et al., Direct Inhibition of the DNA-Binding Activity of POU Transcription Factors Pit-1 and Brn-3 by Selective Binding of a Phenyl-Furan-Benzimidazole Dication, Nucleic Acids Res, vol.36, issue.10, pp.3341-3353, 2008.

R. Nhili, P. Peixoto, S. Depauw, S. Flajollet, X. Dezitter et al., Targeting the DNA-Binding Activity of the Human ERG Transcription Factor Using New Heterocyclic Dithiophene Diamidines, Nucleic Acids Res, vol.41, issue.1, pp.125-138, 2013.

M. Munde, A. Kumar, P. Peixoto, S. Depauw, M. A. Ismail et al., The Unusual Monomer Recognition of Guanine-Containing Mixed Sequence DNA by a Dithiophene Heterocyclic Diamidine, Biochemistry, vol.53, issue.7, pp.1218-1227, 2014.

M. Munde, A. Kumar, R. Nhili, S. Depauw, M. H. David-cordonnier et al., DNA Minor Groove Induced Dimerization of Heterocyclic Cations: Compound Structure, Binding Affinity, and Specificity for a TTAA Site, J. Mol. Biol, issue.5, pp.847-864, 2010.

Y. Liu, A. Kumar, S. Depauw, R. Nhili, M. H. David-cordonnier et al., Water-Mediated Binding of Agents That Target the DNA Minor Groove, J. Am. Chem. Soc, issue.26, pp.10171-10183, 2011.

S. Mallena, M. P. Lee, C. Bailly, S. Neidle, A. Kumar et al., Thiophene-Based Diamidine Forms a "Super" AT Binding Minor Groove Agent, J. Am. Chem. Soc, vol.126, issue.42, pp.13659-13669, 2004.

J. Sheng, J. Gan, and Z. Huang, Structure-Based DNA-Targeting Strategies with Small Molecule Ligands for Drug Discovery, Med. Res. Rev, vol.33, issue.5, pp.1119-1173, 2013.

A. Lansiaux, F. Tanious, Z. Mishal, L. Dassonneville, A. Kumar et al., Distribution of Furamidine Analogues in Tumor Cells: Targeting of the Nucleus or Mitochondria Depending on the Amidine Substitution, Cancer Res, vol.62, issue.24, pp.7219-7229, 2002.

G. Ghannam, A. Takeda, T. Camarata, M. A. Moore, A. Viale et al., The Oncogene Nup98-HOXA9 Induces Gene Transcription in Myeloid Cells, J. Biol. Chem, vol.279, issue.2, pp.866-875, 2004.

S. Nagel, L. Venturini, V. E. Marquez, C. Meyer, M. Kaufmann et al., Polycomb Repressor Complex 2 Regulates HOXA9 and HOXA10, Activating ID2 in NK/T-Cell Lines, Mol. Cancer, p.151, 2010.

C. S. Velu, A. Chaubey, J. D. Phelan, S. R. Horman, M. Wunderlich et al., Therapeutic Antagonists of MicroRNAs Deplete Leukemia-Initiating Cell Activity, J. Clin. Invest, vol.124, issue.1, pp.222-236, 2014.

J. J. Wu, A. Cantor, and L. C. Moscinski, ?2 Integrins Are Characteristically Absent in Acute Promyelocytic Leukemia and Rapidly Upregulated in Vivo upon Differentiation with All-Trans Retinoic Acid, Leuk. Res, vol.31, issue.1, pp.49-57, 2007.

J. Fang, H. Ying, T. Mao, Y. Fang, Y. Lu et al., Upregulation of CD11b and CD86 through LSD1 Inhibition Promotes Myeloid Differentiation and Suppresses Cell Proliferation in Human Monocytic Leukemia Cells, Oncotarget, vol.2017, issue.49, pp.85085-85101

P. Jin, T. H. Han, J. Ren, S. Saunders, E. Wang et al., Molecular Signatures of Maturing Dendritic Cells: Implications for Testing the Quality of Dendritic Cell Therapies, J. Transl. Med, vol.8, p.4, 2010.

S. R. Daigle, E. J. Olhava, C. A. Therkelsen, C. R. Majer, C. J. Sneeringer et al., Selective Killing of Mixed Lineage Leukemia Cells by a Potent Small-Molecule DOT1L Inhibitor, Cancer Cell, vol.20, issue.1, pp.53-65, 2011.

N. J. Waters, Preclinical Pharmacokinetics and Pharmacodynamics of Pinometostat (EPZ-5676), a First-in-Class, Small Molecule S-Adenosyl Methionine Competitive Inhibitor of DOT1L, Eur. J. Drug Metab. Pharmacokinet, vol.2017, issue.6, pp.891-901

A. Shi, M. J. Murai, S. He, G. Lund, T. Hartley et al., Structural Insights into Inhibition of the Bivalent Menin-MLL Interaction by Small Molecules in Leukemia, Blood, vol.2012, issue.23, pp.4461-4469

S. Xu, A. Aguilar, T. Xu, K. Zheng, L. Huang et al., Design of the First-in-Class, Highly Potent Irreversible Inhibitor Targeting the Menin-MLL Protein-Protein Interaction, Angew. Chemie -Int. Ed, vol.57, issue.6, pp.1601-1605, 2018.

R. Morgan, M. El-tanani, K. D. Hunter, K. J. Harrington, and H. S. Pandha, Targeting HOX/PBX Dimers in Cancer, Oncotarget, vol.8, issue.19, pp.32322-32331, 2015.

M. Munde, S. Wang, A. Kumar, C. E. Stephens, A. A. Farahat et al., Structure-Dependent Inhibition of the ETS-FamilyTranscription Factor PU.1 by Novel Heterocyclic Diamidines, Nucleic Acids Res, vol.42, issue.2, pp.1379-1390, 2014.

L. Racané, V. Trali?-kulenovi?, S. K. Paveli?, I. Ratkaj, P. Peixoto et al., Novel Diamidino-Substituted Derivatives of Phenyl Benzothiazolyl and Dibenzothiazolyl Furans and Thiophenes: Synthesis, Antiproliferative and DNA Binding Properties, J. Med. Chem, issue.6, pp.2418-2432, 2010.

S. Messaoudi, F. Anizon, S. ;-l.once, A. Pierr, B. Pfeiffer et al., Synthesis and Cytotoxicities of 7-Aza Rebeccamycin Analogues Bearing Various Substituents on the Sugar Moiety, on the Imide Nitrogen and on the Carbazole Framework, Eur. J. Med. Chem, issue.10, pp.961-971, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00125819

C. Gros, L. Fleury, V. Nahoum, C. Faux, S. Valente et al., New Insights on the Mechanism of Quinoline-Based DNA Methyltransferase Inhibitors, J. Biol. Chem, issue.10, pp.6293-6302, 2015.

B. Nguyen, F. A. Tanious, and W. D. Wilson, Biosensor-Surface Plasmon Resonance: Quantitative Analysis of Small Molecule-Nucleic Acid Interactions, Methods, vol.42, issue.2, pp.150-161, 2007.

R. Nanjunda, M. Munde, Y. Liu, and W. D. Wilson, Real-Time Monitoring of Nucleid Acid Interactions with Biosensor-Surface Plasmon Resonance, In Methods for Studying Nucleic Acid/Drug Interactions, 2011.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies, Nucleic Acids Res, vol.43, issue.7, p.47, 2015.

C. , Quantitative analysis of the inhibition of HOXA9/DNA complex formation from EMSA defines sub-groups based on their HOXA9/DNA binding inhibition activity. The percentage of bound HOXA9/DNA complex was quantified from EMSA in panel B, relatively to the mean of the three control samples (100%) and plotted over drug concentration

, Figure 2. Comparison and mode of binding to an oligonucleotide containing a HOXA9/DNA binding site

, Double stranded HBS-containing oligonucleotides (0.5?M) were incubated with 0.5?M (R=1:1) or 1?M (R=2:1) of the indicated compounds in TNE buffer prior to be subjected to the measurement of the DNA hyperchromic variation upon step by step heating using absorbance measurement at 260nm. The _Tm values are, A. Melting temperature studies on the HBS-containing DNA

B. , Double stranded HBS-containing oligonucleotides (5?M) were incubated in TNE buffer with increasing concentrations of the indicted compounds at increasing drug/oligonucleotide ratios R as indicated

A. , Commonly deregulated genes with |mean fold changes| ? 1.5 are presented as heatmap for upregulated genes (top panel) or down-regulated genes (bottom panel). Arrows identified genes upor down-regulated during hematopoietic differentiation from progenitors to granulocyte/monocyte differentiated cells as presented in Supplementary Figure S5

B. , GSEA analyses of up-regulated or down-regulated gene expression data on MSigDB C2-Chemical and Genetic Perturbation genesets

C. Networks, Diseases and functions" analysis in Hematological systems) deduced from Ingenuity Pathway Analysis of genes that were significantly deregulated (adjusted pvalues? 0.05) by DB818 treatment of MigA9 cells with |fold-changes|?1.5. Z-score, the number of genes, # Genes

, Quantification of deregulated genes using qRT-PCR on total mRNA from MigA9 cells treated with DB818, DB1055 or DB828 (5 or 10 ?M) for 48 hours, as 6 independent replicates, Statistics

. ***,

*. ,

, Poids des rates au sacrifice après implantation de cellules leucémiques EOL-1 et après 2 semaines de traitement