
HAL Id: tel-02881987
https://theses.hal.science/tel-02881987

Submitted on 26 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Steganalysis and steganography by deep learning
Mehdi Yedroudj

To cite this version:
Mehdi Yedroudj. Steganalysis and steganography by deep learning. Autre [cs.OH]. Université Mont-
pellier, 2019. Français. �NNT : 2019MONTS095�. �tel-02881987�

https://theses.hal.science/tel-02881987
https://hal.archives-ouvertes.fr

Acknowledgement

I am grateful for Almighty Allah for giving me the strength and ability to fulfil

this goal.

My sincere appreciation and gratitude go to my primary supervisor Doctor Marc

CHAUMONT and my co-supervisor Doctor Frederic COMBY. Thank you for

your help, advises and your availability, which have been essential for me to

understand and adapt to the challenges of research. Your many reviews,

corrections and constructive feedback of my work, especially those of this thesis,

have been very important for their final qualities. Working under your direction

has been very pleasant and for that, thank you.

Also, I would like to thank my examination committee: Professor Patrick BAS,

Professor Caroline FONTAINE, Professor Sandra BRINGAY and Doctor Rémi

COGRANNE for their time and efforts.

I dedicate great thanks with love to my beautiful family, My mother, my father,

my brother and my precious sisters. I could not have achieved this without your

prayers and your encouragements. Thank you for being by my side all the time.

My friends, it is a blessing to have you in my life. Many thanks are also due to

the administration staff in LIRMM laboratory, and all the members of the ICAR

team for being such kind and cooperative.

Finally, I would like to thank the Algerian Ministry of Higher Education and

scientific research, and Constantine 2 University for funding my PhD thesis.

Contents

Bibliography 1

List of Figures 7

List of Tables 10

1 Introduction 6

1.1 A brief history of Steganography 7

1.2 Modern steganography . 9

1.3 The prisoners’ problem . 11

1.4 Notation . 12

I State of the art 15

2 Machine learning approaches 16

2.1 Machine learning: Two-step learning approach 19

2.2 Deep learning: One-step learning approach 21

2.2.1 Artificial Neuron . 21

The Perceptron . 22

2.2.2 Artificial Neural Networks (ANN) 24

2.2.3 ANN different architectures 26

Multi-layer Perceptrons 26

Auto-encoder . 27

2.2.4 Deep learning . 29

2.2.5 Artificial neural networks training 30

Reflection about the use of ANN for images inputs . . 33

2.2.6 Convolutional Neural Network (CNN) 34

2.2.6.1 The Convolution layer 35

2.2.6.2 Activation layer . 37

2.2.6.3 Normalization layer 40

2.2.6.4 Pooling layer . 41

2.2.6.5 Fully connected layer (FC) 44

2.2.6.6 Loss function . 44

2.3 Adversarial learning . 45

2.3.1 Generative Adversarial Network (GAN) 46

3

Contents 4

2.3.2 Training of a Generative Adversarial Network (GAN) 48

2.4 Conclusion . 50

3 Steganography in spatial domain 53

3.1 General presentation . 54

3.2 The three families of the steganography 55

3.2.1 Steganography by cover selection 56

3.2.2 Steganography by cover synthesis 57

3.2.3 Steganography by cover modification 57

3.3 Adaptive Steganography . 59

3.3.1 Distortion measure and cost map 60

3.3.2 Syndrome coding . 64

3.3.2.1 Error detection and correction code 64

3.3.2.2 Error correcting code for steganography 66

Hamming codes
. 67

Wet paper codes
. 67

Syndrome Trellis Codes (STC)
. 67

3.3.3 Embedding . 69

3.3.4 Simulator . 72

3.4 Embedding in spatial domain . 74

3.4.1 Highly Undetectable steGO (HUGO) 74

3.4.2 Spatial-UNIversal WAvelet Relative Distortion (S-UNIWARD) 76

3.4.3 Wavelet Obtained Weights (WOW) 77

3.4.3.1 A new cost function for spatial image steganogra-
phy (HILL) . 78

3.4.3.2 Content-Adaptive Steganography by Minimizing Sta-
tistical Detectability (MiPOD) 79

3.4.3.3 Discussion . 80

Natural steganography 80

Strategic adaptive steganography 80

3.5 Conclusion . 81

4 Steganography using deep learning 82

4.1 Approach by synthesis with/without modifications 85

4.2 Approach generating a probability map 87

4.3 Approach adversarial-embedding iterated 90

4.4 The 3 players approach . 92

4.5 Conclusion . 95

5 Steganalysis in spatial domain 97

5.1 General presentation . 98

5.2 Different classes of steganalysis . 98

Contents 5

5.2.1 Specific versus generic steganalysis 101

5.3 Steganalysis scenario . 103

5.3.1 Clairvoyant scenario . 103

5.3.2 Clairvoyant scenario with side channel informed 104

5.3.3 Mismatch scenarios . 105

5.4 Steganalysis using two-step learning approaches 106

5.4.1 Feature vector extraction (Rich Model) 109

5.4.1.1 Computing residuals: 109

5.4.1.2 Building descriptors (co-occurrence matrices): . . . 110

5.4.1.3 Producing feature vector 111

5.4.2 maxSRM . 112

5.4.3 Ensemble classifier . 113

5.5 Steganalysis using one-step learning approaches 115

5.5.1 Xu-Net . 118

5.5.2 Ye-Net . 122

5.5.3 ReST-Net . 126

5.5.4 SRNet . 131

5.6 Conclusion . 134

II Contributions 135

6 YEDROUDJ-NET: An efficient CNN for spatial steganalysis 136

6.1 Motivation . 137

6.2 Yedroudj-Net . 138

6.2.1 Difference between the 3 CNNs 141

6.3 Experiments . 143

6.3.1 Dataset and software platform 143

6.3.2 Training, Validation, Test 143

6.3.3 Hyper-parameters . 144

6.3.4 Results without using any tricks 145

6.3.4.1 General performance comparisons 145

6.3.4.2 Additional experiments 147

Size of the kernels filters in the last convolutions . . . 150

6.3.5 Results with a Base augmentation 151

6.3.6 Results with an ensemble of CNN 153

6.4 Conclusion . 154

7 How to augment a small learning set for improving the perfor-
mances of a CNN-based steganalyze? 156

7.1 Motivation . 158

7.2 Experimental methodology . 160

7.2.1 Objectives and Dataset baseline 160

7.2.2 Software platform . 161

7.2.3 Datasets . 161

Contents 6

7.2.4 Description of the different experimental setups 162

7.3 Results and discussions . 163

7.3.1 Setup 1: Classical enrichment 163

7.3.2 Setup 2: Enrichment with other cameras 164

7.3.3 Setup 3: Enrichment with strongly dissimilar sources and
unbalance proportions . 166

7.3.4 Setup 4: Enrichment with the same RAW images but with
a different development . 167

7.3.5 Setup 5: Enrichment with a re-processing of the learning set 170

7.3.5.1 Extra: Different development using a totally dif-
ferent program . 172

7.4 Conclusion . 173

8 Steganography using a 3 player game 175

8.1 Introduction . 177

8.2 General concept . 178

8.3 Related work . 180

8.3.1 Generating Steganographic Images Via Adversarial Training
(GSIVAT) . 180

8.3.2 HiDDeN: Hiding Data With Deep Network 181

8.3.3 Discussion . 183

8.4 Our steganographic system’s Architecture 185

8.4.1 The training process . 186

8.4.2 The proposed architecture of the Agent-Eve 187

8.4.3 First-Architecture . 187

8.4.4 Second-Architecture (noise power reduction) 189

8.4.5 Third-Architecture (source separation) 191

8.5 Experiments . 195

8.5.1 Dataset and software platform 195

8.5.2 Training, Validation, Test 195

8.5.3 Results of the three architectures 197

8.6 Conclusion and perspectives . 202

9 Conclusions and Perspectives 204

9.1 Conclusions . 205

9.1.1 Steganalysis . 205

9.1.2 Steganography . 206

Bibliography 209

List of Figures

1.1 Illustration of a hidden message on the head of a person. 8

1.2 Examples of ancient steganography using invisible ink. 9

1.3 The general model of Simmons’ "prisoner problem". 11

2.1 The global frame of artificial intelligence. 18

2.2 The two-step learning approach for a classification problem. 20

2.3 Comparison between a biological neuron and an artificial neuron.
Extracted from [Ghannay, 2017]. 22

2.4 Perceptron model. 22

2.5 Perceptron model. 24

2.6 Artificial neural network. 25

2.7 Multilayer perceptron. 26

2.8 An auto-encoder composed of an input layer, a hidden layer and an
output layer. For reasons of readability, biases are omitted. 28

2.9 a side-by-side comparison between a deep neural network (A) and
a shallow neural network (B). 30

2.10 ANN training protocol. 31

2.11 The architecture of Lenet-5 CNN [Lecun et al., 1998]. 34

2.12 Two modules of a CNN. 35

2.13 Convolutional neural network Kernel. 36

2.14 Convolutional neural network Kernel (from : https://www.uihere.com/free-
cliparts). 37

2.15 The graphs of the three main activation functions. 38

2.16 Derivative graphs of the three main activation functions. 38

2.17 Illustration of a pooling layer. 42

2.18 The two methods of pooling (max/average). 43

2.19 A demonstration of an adversarial sample, obtained by adding an
imperceptibly small noise vector. The classification of the image is
changed. (Extracted from [Goodfellow et al.]). 46

2.20 A general structure of a generative adversarial network (exttacted
from : https://sthalles.github.io/intro-to-gans/). 47

3.1 The embedding and extraction framework of a steganographic scheme. 56

3.2 General diagram of steganography. 58

3.3 Example illustrating 1) an image partitioning, 2) the click system
[Kouider, 2013]. 63

7

List of Figures 8

3.4 Illustration of the functioning principle of the trellis approach (STC).
H is the check-parity matrix. The graph is navigated from left to
right during the message embedding, gradually exploring the rele-
vant possibilities for the choice of the stego vector. 69

3.5 Illustration of the embedding algorithm in the case of an LSB re-
placement. The cost map (3.3.1) as well as the key will determine
a sequence of pixels to be modified in the cover image x. It is from
these pixels that we generate the cover vector vc through the ex-
traction of the LSBs. A syndrome coding technique is applied to
transform the vector vc into a stego vector vs (explained in Sec-
tion. 3.3.2.2). Finally, the stego image is generated by modifying
the value of the selected pixels in the cover image x so that their
LSB correspond to the stego vector vs. 70

3.6 Illustration of the embedding algorithm in the case of an LSB
matching. The cost map (3.3.1), as well as the key, will deter-
mine a sequence of pixels to be modified in the cover image x. It is
from these pixels that we generate the cover vector vc through the
extraction of the LSBs. A syndrome coding technique is applied to
transform the cover vector into a stego vector vs (explained in sub-
section3.3.2.2). Finally, for each element of the stego vector vs that
differs from that of the cover vector vc, we have the choice between
two bytes: the one obtained by adding 1, and the one obtained by
subtracting 1. however, be careful with the values that are out of
the interval [0 : 255], otherwise it would be immediately detected
by a steganalyst. 71

3.7 Embedding framework in adaptive steganography. 72

3.8 Image from the BOSS base [Bas et al., 2011]. 73

3.9 Embedding probability map of image in Figure. 3.8 when using
Hugo at a payload of 0.2 bpp [Pevný et al., 2010b]. 74

4.1 Workflow diagram of approaches by synthesis with modification. . . 86

4.2 Workflow diagram of approaches by synthesis without modification. 86

4.3 Workflow diagram of approaches with probability map generation. . 88

4.4 ASDL-GAN framework (extracted from [Tang et al., 2017]). 89

4.5 Illustration of the process of the proposed ADV-EMB scheme. ex-
tracted from [Tang et al., 2019]. 91

4.6 The overall architecture of the 3 player game. 93

5.1 Eve is passive warden: In the case of no secret message is detected,
the sent file can be further transmitted through the communication
channel, as shown in (a). However, if a secret message is detected,
the warden will block the transmission and Bob will not receive the
file (b). 99

5.2 Eve is active warden: in this case when a secret message is detected
Eve objective is to alter the intercepted medium sufficiently to pre-
serve only the perceptible content and prevent the extracting and
reading of a possible hidden message. 100

List of Figures 9

5.3 Eve is malicious warden: when a secret message is detected, Eve
will try to understand the used steganographic technique so she can
reintroduce a falsified message. 100

5.4 Specific and generic steganalysis. 101

5.5 Steganalysis with regard to machine learning tasks. 107

5.6 The two-step learning approach versus one step learning approach
for steganalysis. 117

5.7 Xu-Net overall architecture. 119

5.8 Ye-Net overall architecture. 123

5.9 ReST-Net overall architecture. 127

5.10 the overall architecture of a Sub-network of ReST-Net. 128

5.11 SRNet overall architecture. 132

6.1 Yedroudj-Net CNN architecture. 138

6.2 Comparison of Yedroudj-Net, Xu-Net, and Ye-Net architectures. . . 142

6.3 Steganalysis error probability comparison of Yedroudj-Net, Ye-Net,
SRNet and Zhu-Net for different embedding algorithms. Extracted
from [Zhang et al., 2019]. 147

8.1 GSIVAT [Hayes and Danezis, 2017] architecture. 180

8.2 HiDDeN architecture. 182

8.3 Agent-Alice and Agent-Bob with the first architecture. 188

8.4 Agent-Alice and Agent-Bob with the second architecture. 190

8.5 Agent-Alice and Agent-Bob with the third architecture. 192

8.6 Generic loss evolution of Agent-Alice, Agent-Bob and Agent-Eve
after 300000 iterations (first architecture). 196

8.7 BER and Pe for the second architecture for a payload size of 0,4
bpp in function of change rate β. 198

8.8 (Left) The BOSSBase cover image. (Middle) the corresponding
stego images with 0.4 bpp and β = 0.1 using the second architec-
ture. (right) the modification maps between the cover image and
the corresponding stego where black=0, white=+/- 1. 200

8.9 BER and Pe for the third architecture for a payload size of 0.4 bpp
in function of change rate β. 200

8.10 (Left) The BOSSBase cover image. (Middle) The stego images
with payload size 0.4 bpp and β = 0.1 using the third architec-
ture. (right) the modification maps between the cover image and
the corresponding stego where black=0, white=+/- 1. 202

List of Tables

5.1 Xu-Net convolutional module. 121

5.2 Ye-Net convolutional module. 125

5.3 ReST-Net convolutional module. 130

6.1 Steganalysis error probability comparison of Yedroudj-Net, Xu-Net,
Ye-Net, and SRM+EC for two embedding algorithms WOW and S-
UNIWARD at 0.2 bpp and 0.4 bpp. 146

6.2 Evaluation of a filter-bank as a pre-processing. We report the
error probability obtained when steganalyzing WOW [Holub and
Fridrich, 2012] at 0.2 bpp and 0.4 bpp with the steganalysis method
Yedroudj-Net CNN with or without the SRM filter-bank. When
used without modification, the Yedroudj-Net CNN use the SRM
filter-bank. Otherwise, we only use the Kv filter. 148

6.3 Evaluation of different activation functions for the first and second
blocks. We report the error probability obtained when steganalyz-
ing WOW [Holub and Fridrich, 2012] at 0.2 bpp and 0.4 bpp with
the steganalysis method Yedroudj-Net CNN with different activa-
tion functions. When used without modifications, the Yedroudj-Net
CNN use the truncation activation function. 148

6.4 Evaluation of the Fully Connected Layers. We report the error
probability obtained when steganalizing WOW [Holub and Fridrich,
2012] at 0.2 bpp and 0.4 bpp with the steganalysis method Yedroudj-
Net CNN with or without a third layer. When used without mod-
ification, the Yedroudj-Net CNN has three fully connected layer.
Otherwise, there is two layers. 149

6.5 Impact of using the Scale Layer. We report the error probability
obtained when steganalyzing WOW [Holub and Fridrich, 2012] at
0.2 bpp and 0.4 bpp with the Yedroudj-Net CNN with or without
the Scale Layer. Basically the Yedroudj-Net CNN uses the sepa-
rate Scale Layer. When no Scale Layer is used, the shift and scale
parameters are included in the Batch Normalization layer. 150

10

List of Tables 11

6.6 Evaluation of the Size of the kernels filters in the last convolutions
(blocks 3 to 5). We report the error probability obtained when
steganalizing WOW [Holub and Fridrich, 2012] at 0.2 bpp and 0.4
bpp with the Yedroudj-Net CNN steganalysis method with kernels
whose size are 1×1 or 3×3 in the last convolutions. When used
without modification, the Yedroudj-Net CNN has kernels of size
3×3 in blocks 3 to 5. 150

6.7 Base Augmentation influence: error probability comparison of Yedroudj-
Net, Xu-Net and Ye-Net on WOW at 0.2 bpp with a learning base
augmented with BOWS2, and Virtually Augmented (VA). 151

6.8 Evaluation of the efficiency of the Yedroudj-Net ensemble version.
We report the error probability obtained when steganalizing WOW
[Holub and Fridrich, 2012], S-UNIWARD [Holub et al., 2014], at
0.2 bpp and 0.4 bpp. 154

7.1 Base Augmentation influence: error probability of Yedroudj-Net,
on WOW and S-UNIWARD at 0.2 bpp with and without Data
Augmentation.. 163

7.2 Base Augmentation influence: error probability of Yedroudj-Net, on
WOW and S-UNIWARD at 0.2 bpp with a learning base augmented
with either LIRMM, LIRMM+BOWS2, or LIRMM+BOWS2+VA. . 165

7.3 Base Augmentation influence: error probability of Yedroudj-Net, on
WOW and S-UNIWARD at 0.2 bpp with a learning base augmented
with different portions of PLACES2. 166

7.4 Base Augmentation influence: error probability of Yedroudj-Net, on
WOW and S-UNIWARD at 0.2 bpp with a learning base augmented
with different BOSSBase versions.. 167

7.5 Base Augmentation influence: error probability of Yedroudj-Net, on
WOW and S-UNIWARD at 0.2 bpp with a learning base augmented
with different versions of BOSSBase.. 169

7.6 Base Augmentation influence: error probability of Yedroudj-Net, on
WOW and S-UNIWARD at 0.2 bpp with a learning base augmented
with a re-processing of BOSSBase.. 170

7.7 Base Augmentation influence: error probability of Yedroudj-Net, on
WOW and S-UNIWARD at 0.2 bpp with a learning base augmented
with pixels-off re-development of BOSSBase 172

7.8 Base Augmentation influence: error probability of Yedroudj-Net, on
WOW and S-UNIWARD at 0.2 bpp with a learning base augmented
with two different versions of BOSSBase. 173

8.1 First architecture BER and Pe for different payloads. 198

Preface and positioning of the

thesis

Since the 1990s, the Internet and storage devices have become more important in

our daily lives. Nowadays, the Internet/storage devices (communication channels)

offers an open space for information exchange, as it is an easy and perfect carrier.

The information may consist in images, videos or audio. Such media may be used

to conceal secret information, which is then transmitted over the communication

channel. However, communicating secret information on a public channel, such as

the Internet, can be dangerous as privacy and confidentiality are not guaranteed.

Under such circumstances, it is important to find a way to send or receive informa-

tion from and to specific persons secretly, i.e. without any suspicious from other

persons. The communication on such a channel is known as secret communication.

The latter has been an active field of research for several decades and flourished

in the early 21st century.

The confidentiality and security of communications over an unsecured or monitored

communication channel is associated with cryptography, which transforms a given

message into an incomprehensible text. The encrypted text is transmitted on a

public channel, where only the authorized person, who held an encryption key,

can decrypt it. As for the stealthy communication, i.e. secret communication, it

is associated with steganography. It strives to hide the very fact of the existence

of communication. To further explain, in steganography, the encrypted message

must be hidden insight of regular traffic, and only the associate person is aware of

1

Preface and positioning of the thesis 2

its existence. With the appropriate key called stego-key, a hidden message can be

retrieved and eventually decrypted.

Nowadays, there are hundreds of steganographic tools capable of hiding informa-

tion within another innocent file. These innocent files are usually digital multi-

media files known as cover. Speaking of images -the kind of files that we will be

using in this thesis-, an image is a set of values (pixels) that can be used to embed

a message. These digital media (images) are a perfect choice for steganography,

as they are not suspicious (given the large number of images on the Internet).

Furthermore, they are easy to process.

For modern steganography and more precisely adaptive steganography, the em-

bedding process begins with the attribution of a cost to each pixel of the image.

These costs reflect the level of detectability if modifying the pixel. Pixels with low

modification cost are preferably modified at first to perfectly embed the message

bits while minimizing a cover distortion measure. Modern steganography tech-

niques (adaptive) start by calculating a cost map using a distortion function that

serves the purpose of identifying pixels with low impact on the cover distortion.

The way such a cost map is constructed is a crucial element in the designing of

steganographic algorithms.

During the embedding process, steganographic methods (approach by modifica-

tion) inevitably modify the statistical characteristics of images. Such non-natural

distortions may be detected and reveal that secret communication is taking place.

The techniques that attempt to detect the presence of such non-natural distortions

to distinguish original content (cover) from media with a hidden message (known

as stego) are called steganalysis. Steganalysis is considered as a hypothesis-testing

problem since a steganalyst needs to determine whether or not the given digital

medium is "stego". It is practically viewed as a classification problem and ad-

dressed using machine learning tools and more recently Deep Learning tools. The

most commonly used tools in the steganalysis community are Ensemble classifiers

[Kodovský et al., 2012], regularised linear classifier [Cogranne et al., 2015] and

Convolutional Neural Networks [Chaumont, 2020].

Preface and positioning of the thesis 3

Until 2015, we were talking about conventional steganalysis based on two-step

machine learning approaches. First, a set of features is extracted from a database

made of cover/stego images. Then, a given classifier is trained to discriminate, the

most precise possible, the two classes of objects based on the part of the extracted

features. Its accuracy is then evaluated on the remaining part. A well-extracted

feature space can capture different dependencies between image elements (pixels,

coefficient); these dependencies are often distorted during the message embedding.

After 2015, and with the evolution of steganography field, more adapted and

complex feature space was needed in steganalysis field. This led to the arrival

of Deep Learning-Based steganalysis approach where the two-steps learning are

combined into one-step learning. Thus the feature space is automatically explored,

explaining why deep learning-based approach outperforms conventional methods.

Once again, the evolution of steganalysis has led the research community to work

on new steganographic methods that can withstand the novel and well-designed

steganalyst models. For that purpose, the researchers propose more and more

complex and sophisticated distortion functions to obtain more refined cost-map.

They even go further and propose a novel conception of steganography based on

deep learning techniques. The new steganographic system appeared in 2018. In

contrast, as steganalysis field is now challenged by this new generation of stegano-

graphic algorithms, steganalysis should then find and propose new image descrip-

tors or new models that can cope with these updated steganographic systems.

The never-ending battle between steganography and steganalysis creates a self-

stimulating environment that is beneficial for both fields. It is in this essence that

we began this thesis.

The objective of this thesis was first to design a new, efficient and powerful frame-

work for the steganalysis of digital images and more precisely uncompressed grey-

scale images. Secondly, the proposed framework for steganalysis was incorporated

to design a steganographic system based on deep learning where the entire em-

bedding process is carried out automatically and without any human intervention

to simulate embedding algorithms that use human-based rules.

Preface and positioning of the thesis 4

This manuscript is composed of two parts: the first part devoted to the state of

the art where we introduce the concepts and basic tools that will be necessary

to understand the rest of the thesis, then the second part is devoted to the main

contributions of this thesis.

In chapter 1, we provide an introduction to the two fields of steganography and

steganalysis by reviewing the historical background of steganography and outlining

the role of steganalysis and its different types that are described in the Simmons

model. Then we refer to some recent cases of modern steganography used for

legitimate and malicious purposes. The notations used in the thesis are introduced

at the end of this section.

In chapter 2, we discuss machine learning concepts. We start by presenting what

machine learning is while providing some basic concepts and definitions. Next,

we explain the difference between two-step learning-based approaches and one-

step learning-based approaches. After that, we will discuss the different types

of learning algorithms for machine learning. We will mainly focus on feature

extraction and classification techniques. Next, we review deep learning models

and, more specifically, Convolutional Neural Networks (CNN). In the end, we

conclude with the generative model, and we will present the all-new technique

called Generative Adversarial Network (GAN).

Chapter 3 is devoted to steganography algorithms. We start by presenting steganog-

raphy by mentioning the three steganography models defined by Simmons [Sim-

mons, 1984]. Then we give the different philosophies of steganography. Next,

we discuss modern steganography algorithms known as adaptive-steganography.

The elementary building blocks of adaptive modern steganography algorithms are

presented and discussed one by one, although we will mainly focus on the no-

tion of a cost map (generated using a cost function known as distortion function).

We conclude this chapter, presenting some famous state-of-the-art steganography

algorithms.

Thanks to the emergence of deep learning and GAN models, new steganography

approaches have appeared. It is known as strategic adaptive steganography. In

Preface and positioning of the thesis 5

chapter 4, we discuss the strategic adaptive steganography, and we present the four

families that include techniques and methods coming from this new approach of

steganography.

Chapter 5 is dedicated to digital image steganalysis using machine learning tech-

niques. The first sections will address the elementary notions of steganalysis for a

better understanding. The following sections will be devoted to the essential prim-

itives of steganalysis, whether two-step steganalysis methods (residue calculation,

classification) or one-step steganalysis methods (CNN design). We conclude by

illustrating some CNNs models designed for steganalysis ends. These CNN repre-

sent the state-of-the-art of nowadays steganalysis.

In chapter 6, we present our proposed framework, which is a deep learning-based

approach mainly designed for spatial steganalysis purposes. The proposed model

called Yedroudj-Net is a CNN that defeats the state-of-the-art in a classical clair-

voyant scenario. We discuss in this section the strong part of the proposed CNN,

as we put it to compete against other CNN models.

We then explore the ways to improve the performances of our proposed framework

Yedroudj-Net. To this end, we have studied the effects of base augmentation on

the performance of steganalysis using a CNN. In chapter 7, we present the results

of this study using various experimental protocols and various databases to define

the good practices in base augmentation for steganalysis.

In chapter 8, we propose a new fashion to do steganography, i.e. strategic adaptive

steganography using Generative Adversarial Network. The proposed stenographic

system competes against our proposed steganalysis model. For further details,

we present the concept of strategic adaptive steganography while illustrating the

three architectures models that we have proposed for steganographic purposes.

The thesis is concluded in Chapter 9. In this chapter, we give a general conclu-

sion where we summarize the contributions of this thesis and outline the future

directions and considered perspectives.

Chapter 1

Introduction

Contents

1.1 A brief history of Steganography 7

1.2 Modern steganography . 9

1.3 The prisoners’ problem . 11

1.4 Notation . 12

6

Chapter 1. Introduction 7

The evolution of computer technology and telecommunications have contributed

to a multitude of problems related to the protection (security) of information.

This led to a broad scientific and technological development in order to respond

to these new emerging challenges. Among these challenges, we find computer

viruses, access authorization, copyright protection, and data integrity verification.

In addition, it is possible to add issues such as authentication, conditional ac-

cess, watermarking, digital signature, secret communication and steganography.

In our work, we focus on the issue of secret communication, based mainly on the

steganography.

We will discuss in Section. 1.1 the historical context of steganography and give

examples of some ancient steganographic techniques. Then in Section. 1.2 we will

discuss some uses of the nowadays steganography (modern steganography).

In Section. 1.3, we will present the prisoners’ problem where we discuss the goal

and role of each of the three actors of a steganographic system (Alice, Bob, and

Eve).

The notation used throughout this dissertation is introduced in Section. 1.4.

1.1 A brief history of Steganography

If cryptography is the art of secrecy, then steganography may be considered as the

art of hiding data secretly.To take a metaphor, steganography would be to make

a file in your computer invisible where cryptography would be to lock this file -

but there is nothing to stop you from combining the two techniques, just as you

can lock it and then make it invisible.

Steganography has roots in Greek civilization with the word steganos, which means

protected, or covered, and graphei which means writing, and translated as "covered

writing." Steganography’s purpose is to hide a message within an innocuous carrier

called cover objects; this is to make the message imperceptible to anyone other

than the legitimate recipient. The cover object may be basically anything, from

Chapter 1. Introduction 8

Figure 1.1: Illustration of a hidden message on the head of a person.

a physical text document to a painting, or even a piece of wood, as long as it

can be used to deliver a hidden message to the intended recipient without raising

suspicion of untrusted parties.

The emergence of steganography, the art of concealing information, is very old,

and almost contemporary with that of cryptography. The first example dates back

to the 5th century BC and is told in the biography of Herodotus [Fridrich, 2009].

The Greeks shaved a slave’s hair, then tattooed a message on his head as shown

in the figure 1.1. Once the hair was pushed back, the slave could cross enemy

territory without arousing suspicion. Once there, all it took was another shave of

the head to get the message back.

Since then, many examples of setganography have been reported over the past

2000 years.

Another example is Invisible inks [Kipper, 2003]. It has been the most widely used

steganography method over the centuries. In the middle of the texts written in

ink, a message is written using lemon juice, milk or certain chemicals, making the

message disappear after the paper dries. It is invisible to the eye, but a simple

flame, or a bath in a chemical reagent, reveals the message. Figure. 1.2 illustrates

a good example of this technique.

The Second World War saw many forms of steganography [Guillot, 2013]. The

methods were sometimes quite rudimentary, like this message sent by a German

spy:

Chapter 1. Introduction 9

Figure 1.2: Examples of ancient steganography using invisible ink.

Apparently neutral’s protest is thoroughly discounted

and ignored. Ismam hard hit. Blockade issue affects

pretext for embargo on by-products, ejecting suets and

vegetable oils.

It seems quite innocuous. Now, by taking the second letter of each word, we get:

’pershing sails from ny June i’ (the Pershing leaves New York on June 1). This

explains why Americans, who feared very much the use of steganography, censored

many communications, including requests to broadcast records on the radio.

1.2 Modern steganography

In a world where digital media overtake physical media, ancient steganography is

no more, as it has been replaced by modern steganography. We give some possible

applications (malicious and legitimate ones) of modern steganography with the

following examples.

Malicious uses

The Internet is an inexhaustible source of digital data, the countless electronic

files that circulate on the web and the many digital media that are exchanged via

point-to-point communications make it difficult to detect hidden messages in these

media.

This may be what makes steganography, despite its multiple applications, always

associated with malicious uses. The media report that terrorist organizations

Chapter 1. Introduction 10

with mafia groups and hackers are the main users of steganography. They use this

technology mainly to communicate harmless and dangerous content. We mention

here a few examples:

• Steganography for terrorist purposes:

In February 2001, Wired News mentioned in its article "Secret Messages

Come in.Wavs"1 that steganography technique is widely used over the inter-

net, where they reported the existence of hidden data within images of the

eBay and Amazon sites. Terrorists reportedly used steganography to com-

municate, and Al-Qaida even used it in its preparations for the September

11 attack.

In 2002, University of Michigan researcher had automated a search for images

with hidden content on the Internet. Through their published article, they

reveal that out of the 2 million images uploaded to the USENET forums and

the eBay auction site, 1% of all images conceal hidden content (about 20,000

images) [Provos and Honeyman, 2002].

• Espionage: People who possess illegal data, such as those related to espi-

onage, want to hide them. Steganography offers them the ideal tool to hide

these data in another "innocent" file, a sound, an image, and then save them

on their own hard drive in a safe way.

• Computer hacking: The magazine of computer security MISC evokes in its

September issue (MISC n9, sept-oct 2003, p.11), malicious use of steganog-

raphy by hackers: "a hacker can for example code a multi-threaded pro-

gram and distributed it in memory". The multi-threaded program can be

fragmented and sent to the victim hidden in dispatched files using batch

steganography2 processes in images. The "reassembly" of the multi-thread

program being done locally, just by calling the appropriate place. A hacker

may also attempt to hide a Trojan horse or other malicious code in the

autorun of a removable media.
1The article can found Here
2Batch steganography consists of embedding a secret message by spreading it over several

innocent files.

Chapter 1. Introduction 11

Legitimate uses

In some non-democratic countries where freedom of expression is totally prohib-

ited, steganography appears as a means of communicating more freely. In these

countries, the use of steganography is illegal, but its use, in this case, is legitimate.

This art is at measured risk as it applies to information. Despite the fact that these

techniques strive at all cost to hide the presence of a secret message, yet they may

be detected and compromised by an eavesdropper during the transmission. This

eavesdropper will analyze all messages that go through the communication channel

with the objective of preventing, modifying or destroying the secret message. The

field of research that explores techniques that counter steganography is known as

steganalysis.

1.3 The prisoners’ problem

The classic model of secret or invisible communication was first proposed by Sim-

mons with the "prisoner problem" (Figure. 1.3) [Simmons, 1984].

Text

Alice Bob

Eve

message

hidden message

Figure 1.3: The general model of Simmons’ "prisoner problem".

Chapter 1. Introduction 12

Alice and Bob are arrested for a criminal offence and placed in two separate cells.

They wish to establish an escape plan, but unfortunately, all communication be-

tween them is monitored by a warden named Eve. The use of encryption is im-

possible since any suspicion of secret information exchange would result in an

immediate communication cut off and they would be placed in solitary, a confine-

ment where no exchange is possible. Under such circumstances, Alice and Bob

need to establish a secret communication in order to communicate without at-

tracting Eve’s attention. They can hide the secret information within an innocent

message. Eve, in this case, would let the message get through. For instance, Bob

could draw a white bird flying in clear sky and send this artwork to Alice. Warden

Eve does not know that the colours and shapes in the image mean anything.

Unlike encryption techniques that aim to hide the content of a message, steganog-

raphy goes further by trying to hide the very fact of communication. Thus, an

eavesdropper cannot suspect the existence of secret communication. This makes

Simmons’ model a perfect choice to illustrate steganography and steganalysis. Al-

ice and Bob represent the two parts of communication that want to exchange

information secretly; their task is then steganography. Eve the attentive warden,

she is likely to check each message goes through the communication channel, and

the mere suspicion of a secret communication would lead to immediate discon-

nection of that channel, i.e. the failure of steganography. Warden Eve’s job is

steganalysis. In the literature, three types of steganalysis can be found. These

types are identified according to the action that the warden Eve can take when

she detects a secret communication. We have steganalysis with the passive war-

den, steganalysis with the active warden or steganalysis with the malicious warden

(explained in Chapter 5).

1.4 Notation

In order to make the reading of this manuscript more fluid and to avoid any

ambiguity for the reader, we provide this section in which we give notations used

Chapter 1. Introduction 13

throughout the dissertation. Nevertheless, we do not describe all notations, but

rather the notation necessary to proceed. We introduce additional notation if

needed.

Scalar a: lowercase letter in italic represent scalars.

Set A: calligraphic font is reserved for sets.

Matrix or a vector a: Boldface for lower-upper case letter is used for vectors and

matrices.

We will define by C a set of covers, and S a set of stegos.

The used Symbols:

D = {(x(1), y(1)), ..., (x(s), y(s))}: a dataset.

D(x,y): the distortion between the cover image x and the stego image y.

f(.): a function to return the features vector.

i = {(y1, ..., yn) ∈ {0, ..., 255}n} ∈ S: an image with unknown label.

m = (m1, ..., mm) ∈ {0, 1}m: the secret m-bit message.

n = {ni ∈ {−1, 0, 1}}n
i : the modification map.

p = {pi ∈ R}n
i : a probability map associated with the cover image (x).

PE: the probability of error. This notation will be used to compare the perfor-

mance of the different steganalysis models.

x = {(x1, ..., xn) ∈ {0, ..., 255}n} ∈ C: a grayscale cover image composed of n =

n1 × n2 pixels.

x(i): an element of the database D

y = {(y1, ..., yn) ∈ {0, ..., 255}n} ∈ S: a stego image composed of n = n1 × n2

pixels.

Chapter 1. Introduction 14

yx∼xi
: the stego image obtained after modification of the ith element xi of the

cover image x.

y(i): a label of the element x(i) in the dataset D

z = {z(i)
j }: a feature vector.

z: a random noise vector.

θ = (w, b): neural network’s parameters. w: the vector of weights. b: the vector

of bias.

ρ = {ρi ∈ [0, ∞[}n
i : a cost map associated with the cover image x.

Part I

State of the art

15

Chapter 2

Machine learning approaches

Contents

2.1 Machine learning: Two-step learning approach 19

2.2 Deep learning: One-step learning approach 21

2.2.1 Artificial Neuron . 21

2.2.2 Artificial Neural Networks (ANN) 24

2.2.3 ANN different architectures 26

2.2.4 Deep learning . 29

2.2.5 Artificial neural networks training 30

2.2.6 Convolutional Neural Network (CNN) 34

2.3 Adversarial learning . 45

2.3.1 Generative Adversarial Network (GAN) 46

2.3.2 Training of a Generative Adversarial Network (GAN) . . . 48

2.4 Conclusion . 50

16

Chapter 2. Machine learning approaches 17

Artificial intelligence (AI) is a research field that groups all techniques that aim to

reproduce, through artificial systems, the various human cognitive capacities and

more broadly the "intelligent" behaviours of living beings, in particular with regard

to their ability to solve complex problems. AI techniques may cover tasks as varied

as learning a simple XOR function, recognizing/segmenting objects, ending with

self-driving car.

In the past, building an intelligent system consisted in coding a complex program

such as searching a tree (to play chess), or performing logical deductions from rules

written by experts (medical diagnosis based on symptoms). This "hand-crafted"

approach has its limits. It is difficult to apply it to tasks with high complexity

level, such as images recognition, or voice recognition. It is virtually impossible to

write a robust program that can handle all variables of such complex tasks. This

is where machine learning is required.

Machine learning is a sub-domain of AI that aims at providing intelligent systems

with the ability to self-learn, from data and examples, solving complex problems.

The principle is not to use "hand-coded" programs, but a well-designed model that

can analyze data in order to find distinctive patterns for a specific task.

The classical machine learning systems are generally composed of two blocks: a

feature extractor, followed by a trainable classifier. The feature extractor is a

program designed by an expert in the field of application. It is used to extract

discriminating features from the raw data. The classifier is another program which

is used to learn, from the extracted features, a function most suitable for the de-

sired objective (in classification tasks, the objective is to define the best separation

between the different classes).

Although these systems are astonishingly effective in addressing a wide variety of

complex problems, they do have their limitations. Building a well-adapted feature

extractor is very difficult, as it requires the knowledge and expertise of a qualified

expert in the target field. Moreover, the extracted features cannot be extended

from one problem to another. One way to overcome these problems is through

"deep learning". As illustrated in Figure. 2.1, deep learning is a subclass of machine

Chapter 2. Machine learning approaches 18

Deep learning

Machine learning

Artificial intelligence

Figure 2.1: The global frame of artificial intelligence.

learning methods that combines the two-learning blocks of a traditional machine

learning approach (feature extractor, classifier) into one block represented by a

neural network, that "automatically" learns the best extractor for a given task.

Machine learning and deep learning share the same concept of learning complex

tasks from a given data set. Depending on the nature of this data set, two main

learning classes can be identified, the supervised learning and unsupervised learn-

ing.

Supervised learning

Let D = {(x(1), y(1)), ..., (x(s), y(s))} be a given dataset where s is the number

of samples in the database, x(i) is a data sample, and y(i) its associated label.

The aim of supervised learning is to learn a function that best approximates the

relationship between an input x(i) and its label y(i). As an example of supervised

learning approach, we can mention supervised classification, regression.

Unsupervised learning

Unlike supervised learning, for non-supervised learning no annotated data is re-

quired and thus the dataset is limited to D = {x(1), ...,x(s)}. This type of learning

approach strives to find structures, dependencies between the given samples; in

other words, unsupervised learning task is to find the most appropriate represen-

tation of the data. The most well known non-supervised approach is the K-mean.

Chapter 2. Machine learning approaches 19

In this thesis, we focused in particular on supervised learning, more specifically

on supervised classification; thus, all techniques and methods presented in this

chapter are oriented towards classification purposes. In the next sections, we

describe more accurately the two-step machine learning approaches, as well as the

one-step deep learning approaches.

2.1 Machine learning: Two-step learning approach

The term machine learning was first introduced in 1959 by Arthur Samuel [Samuel,

1959]. It refers to a specific field of computer science that provides computers with

the ability to learn without being explicitly programmed.

Until recently, traditional machine learning systems were made of two steps: a

feature extractor, followed by a simple classifier trained using a data set D =

{(x(1), y(1)), ..., (x(s), y(s))} (see Figure. 2.2).

Feature extractor

In computer vision, features extraction consists of a mathematical transformation

of a data sample x(i) (digital image, sound, ...etc.) into an m-dimension feature

vector z(i) ∈ R
m with i ∈ {1, s}. Each component of z(i) corresponds to a describ-

ing feature of x(i). The main goals of features is first to reflect the discriminating

properties of x(i) relatively to the classification problem, and second to reduce x(i)

dimensionality. Formally, the features vector z(i) can be written as follow:

z(i) = fext(x
(i)), (2.1)

where fext(.) is a transformation function applied by the feature extractor.

Classifier

With the help of a feature extractor, a dataset D = {(z(1), y(1)), ..., (z(s), y(s))} is

created, where z(i) = {z(i)
j } is a feature vector with i ∈ {1, s} and j ∈ {1, m}. This

dataset is sent to a trainable classifier (illustrated in Figure. 2.2.) in order to learn

Chapter 2. Machine learning approaches 20

a mapping function fclassif (.). This function takes a feature vector z(i) as input

and outputs a discrete value (prediction) ŷ(i) ∈ {0, c−1}, where c is the number of

classes of the problem. Classifier training consists in making the predicted value,

ŷ(i), for a given feature vector z(i), equal to the desired label y(i). The trained

classifier is then used for a prediction phase where no training is needed.

raining set samples eature extractor
fext(.)

raining set feature
vectors fclassif(.)

prediction
error (loss)

raining set
labels

data samples
eature extractor

fext(.)
feature vector z

trained classifier
fclassif(.)

prediction

Prediction

Training phase

x
(i) z

(i)

y(i)

(i)

x

optimization (learning)

Figure 2.2: The two-step learning approach for a classification problem.

ŷ(i) = fclassif (z(i)) =
m

∑

j

z
(i)
j × wj + b, (2.2)

A common type of classifier is logistic regression. It operates, as shown in Equa-

tion. 2.2, by calculating a weighted sum with the component of the features

vector. Each component is multiplied by a weight (positive or negative) before

being summed. Depending on the comparison of this sum with a threshold, the

class is decided. The weights w ∈ R
m form a kind of "prototype" for the class to

which the feature vector is correlated. The weights are different for each category,

and they are the parameters updated during the training phase.

The two-step learning approach for a classification problem can be summarized as

illustrated in Figure. 2.2. First, we design a feature extractor that extracts the

relevant features from the raw data. Secondly, we form a classifier using labelled

data (features and their corresponding labels). Finally, after the training phase,

we obtain a trained model that can be directly used for prediction.

Chapter 2. Machine learning approaches 21

2.2 Deep learning: One-step learning approach

In this section, we briefly present the development of an artificial Neural network

(ANN) by introducing the main concepts, models and relevant algorithms. For a

more detailed review of the field, we recommend reading [Goodfellow et al., 2016].

2.2.1 Artificial Neuron

In 1943, McCulloch and walter Pitts had proposed a computational model inspired

of the biological neuron [McCulloch and Pitts, 1943]. In the present time, this

model is known as artificial neuron. The progression from biological to artificial

neurons can be summarized in Figure. 2.3. In a biological neuron, the dendrites

receive signals, the frequency of each signal depends on the synapse. These

signals are then transmitted to the body of the cell, which is characterized by an

activation condition. It is by checking the activation condition that the axon is

activated to emit signals again to the neurons that follow through their dendrites.

In the artificial neuron, dendrites are represented by input values, the synapse by

the weight of each input, the body cell is represented by the activation function

and the axon by the output.

An artificial neuron is a mathematical unit that maps data inputs to an output

value which, by its turns, may be passed as an input to another neuron. With

the help of a vector of weights w = (w1, ..., wm) where wi ∈ R, artificial neurons

process the input vector x = (x1, ..., xm) as in Equation. 2.3 and then applies a

non-linear function f(.) (known as activation function) to produce a scalar output

ŷ according to the following function:

o =
n

∑

i=1

wi × xi + b

ŷ = f(o) (2.3)

where o is the output of the weighted sum of the input vector x plus a bias b.

Chapter 2. Machine learning approaches 22

Figure 2.3: Comparison between a biological neuron and an artificial neuron.
Extracted from [Ghannay, 2017].

The most famous artificial neuron example is the well-known perceptron.

The Perceptron Introduced in [Rosenblatt, 1958], the perceptron is the first

artificial neuron that was used for pattern recognition. Its first implementation

used hardware transistors (therefore not derivable) to compute the weighted sum

of the inputs.

x1

x2

x3

xn

∑ f(.)

...

w1

w2

w3

wn

output " "

+1

b

inputs

Figure 2.4: Perceptron model.

In Figure. 2.4 we give an example of perceptron, that takes as inputs a vector

x = (x1, ..., xm) and outputs a prediction ŷ(j). Each element of x(j) is associated

Chapter 2. Machine learning approaches 23

with a a weight wj that modulates its importance. Same as an artificial neuron, a

perceptron’s objective is to learn the weights vector w = (w1, ...wm) such that it

best approximates a mapping F : X → Y . To this end, after a random initializa-

tion of the weight vector w, the perceptron, proceeds by repeating the following

steps across the entire database D = {(x(1), y(1)), ..., (x(s), y(s))}.

1. Select a training example x(i) = (x1, ..., xm) ∈ D, and its ground truth binary

label y(i) ∈ {0, 1},

2. compute the perceptron’s prediction, with regard to the input x(i), using the

following equation:

ŷ(i) = f(
m

∑

j=1

x
(i)
j × wj + b), (2.4)

where f(.) is the activation function. Among the most used activation func-

tion, we find the Heaviside function (known as the unit step function):

Heaviside (x) =















0 if x < 0

1 if x ≥ 0

(2.5)

3. update all perceptron weights w over time with respect to the difference

between the ground truth label y(i) and the predicted one ŷ(i):

wj(t + 1) = wj(t) + ∆wj,

∆wj = λ(y(i) − ŷ(i))x
(i)
j , (2.6)

with ∆wj the amount of changing of the weight value, and λ the learning rate (a

value greater than 0 controlling how much the weights change), t is the iteration

step whit t = 0 is the initialization step.

When it was created, the perceptron appeared to be a major step forward in

the development of artificial intelligence. Unfortunately, the technical limits were

Chapter 2. Machine learning approaches 24

quickly reached. Authors in [Minsky and Papert, 1969] have demonstrated that

XOR function can not be expressed with a perceptron, because a perceptron works

only on linearly separable data as shown in Figure. 2.5 (b). Indeed, a single

straight line is enough to divide the inputs into their correct categories. However,

Figure 2.5: Perceptron model.

it was later discovered that the use of a more complex model consisting in many

perceptrons would allow circumventing the stated limitation of classification of

non-linearly separable data (where splitting the inputs into their correct categories

using a straight line or a plane is impossible (Figure. 2.5 (a))). This complex model

is known as artificial neural network.

2.2.2 Artificial Neural Networks (ANN)

Artificial Neural Networks are a widely used method today. Thanks to their

success and their promising results in many different fields, for both supervised

and unsupervised learning, ANN has been identified as the dominant algorithms

of machine learning.

Despite the fact that ANN goes back to 1943 [McCulloch and Pitts, 1943], they get

to become famous a bit later. This is thanks to the arrival of new architectures such

those in [Hopfield, 1982, 1984], and new learning methods like back-propagation

algorithm [Rumelhart et al., 1986, 1988, Lecun, 1988] (to be discussed later in

Section. 2.2.5) that allows ANN to learn efficiently. However, the true potential of

Chapter 2. Machine learning approaches 25

ANN has revealed later through the provision of powerful computing tools (such

as graphics processors).

Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 2.6: Artificial neural network.

Artificial Neural Networks, are made up of a succession of L layers, each layer

l ∈ {0, ..., L} is composed of Nl neurons (presented in Section. 2.2.1). Generally, as

illustrated in Figure. 2.6, layers are related to each other by weighted connections.

For instance the neuron n
[l]
j from the l-th layer is connected, through a weighted

connection w
[l],[l+1]
j,k , to the neuron n

[l+1]
k from (l+1)-th layers, where j ∈ {1, ..., Nl},

k ∈ {1, ..., Nl+1} are neuron indexes in a layer and l, (l + 1) are layers indexes. All

these weights w
[l],[l+1]
j,k form the weight vector w.

In general, an ANN is composed of three types of layer.

1. Input layer (0-th layer): The neurons in the input layer (green layer in Figure.

2.6) are fed with the input data that is supposed to describe the problem

to be analyzed. Taking the example of steganalysis, these neurons will be

associated with the image’s pixels.

2. Hidden layers: These are all layers between the input layer and the output

layer, and illustrated with red layers in Figure. 2.6. The hidden layers roles

are to perform calculations and transmit the information from the input

layer to the output layer. The choice of the number of hidden layers within

an ANN is crucial, but it is not implicit and must be adjusted. In general,

Chapter 2. Machine learning approaches 26

the complexity of a neural network model is defined by the number of its

hidden layer (know as network depth).

3. Output layer: It is the last (L-th) layer of the network (blue layer in Figure.

2.6). This layer contains the artificial neurons that are associated with the

model outputs. Each neuron corresponds to one target class. The number

of neurons in this layer is equal to the number of classes (NL = c). In the

example of steganalysis, this layer will contain two neurons, one for class

cover and the other for class stego.

2.2.3 ANN different architectures

There are many types of artificial neural networks (ANN), in what follows, we will

discuss the architectures of some of the most known types.

Multi-layer Perceptrons A world-wide known example of an artificial neural

network is a multilayer perceptron (MLP), an oriented connection graph (i.e. ar-

chitecture) of a succession of layers of artificial neurons [Rumelhart et al., 1988].

Every neuron of the l-th layer is connected to all neuron of the (l + 1) layer. This

explains why MLP is also referred to as a fully connected network.

Figure 2.7: Multilayer perceptron.

Chapter 2. Machine learning approaches 27

When a data sample x = (x1, ..., xm) is fed to the input (0-th) layer of an MLP

(each neuron n
[0]
k , k ∈ {1, ..., N0} is associated with all elements of the flattened

input xj as shown in Figure. 2.7). The model afterwards computes the output

of each neuron in all layers one by one until the last (L-th) layer. Considering a

neuron n
[l+1]
k , the k-th neuron of the (l + 1)-th layer, its output is calculated as

following:

n
[l+1]
k = f(

Nl
∑

j=1

n
[l]
j × w

[l],[l+1]
j,k + b

[l+1]
k), (2.7)

with f(.) a non-linear function (will be discussed later in Section. 2.2.6.2, while

w
[l],[l+1]
j,k is the weighted connection between the neurons n

[l]
j and n

[l+1]
k , Nl is the

number of the neurons in the l-th layer.

The training of an MLP consists in adjusting its parameters θ=(w, b) for a given

problem (i.e. a multi-class classification problem) with respect to the training data.

The weight adjustment can be considered as an optimization problem. Therefore,

several optimization algorithms can be used for the training of an MLP. Authors in

[Werbos, 1974, Lecun, 1988, Rumelhart et al., 1986] have shown that MLP can be

effectively trained using stochastic gradient descent through back-propagation,

which will be further discussed in Section. 2.2.5.

Auto-encoder (AE) is another example of artificial neural network. It is first

introduced in the 1980s by Hinton in [Rumelhart et al., 1986] but they gained

attention later with [Hinton et al., 2006, Bengio, 2009]. In Figure. 2.8, we give

the architecture of a simple AE composed of three layers (L=3). The first layer,

with the hidden layer forms the encoder part, while the hidden layers, and the last

layer, form the decoder part.

Chapter 2. Machine learning approaches 28

Input vector Output vector

Encoder Decoder

compresed input

Figure 2.8: An auto-encoder composed of an input layer, a hidden layer and
an output layer. For reasons of readability, biases are omitted.

From an input sample x, the encoder calculates an Nh-dimension encoded vector

h (with Nh the number of neurons in the hidden layer) as follows:

hj = f(
m

∑

k=1

w
[1]
k,j × xk + b

[1]
j), (2.8)

where w[1] is a matrix of size Nh × m and b[1] a bias vector of size Nh. f(.) is an

activation function.

The decoder tries to reconstruct vector x from the encoded vector h. The resulting

reconstructed vector is noted as x̂ and computed as follow:

x̂j = f(
Nh
∑

k=1

w
[2]
k,j × hk + b

[2]
j), (2.9)

where w[2] is a weight matrix of size m × Nh and b[2] is an m-element bias vector.

Chapter 2. Machine learning approaches 29

The objective of an auto-encoder consists in reducing a reconstruction error be-

tween x̂ and x. To this end, AE minimizes the mean square error MSE(x, x̂)

by adjusting the parameters with the set of parameters θ = {w[2], b[2],w[1], b[1]},

where

MSE(x, x̂) = ||x − x̂|| (2.10)

Another version of AE is the stacked auto-encoder (SAE) presented in [Vincent

et al., 2010]. It is like a simple autoencoder but with more hidden layers. The

encoded vector h[l] of the l-th layer is calculated using the outputs of (l − 1)-th

layer as follows:

h
[l]
j = f(

Nl−1
∑

k=1

w
[l−1],[l]
k,j × x

[l−1]
k + b

[l]
j), (2.11)

with h[0] = x the input vector. To train an SAE we use a "Greedy Layer-Wise

Pretraining", where each layer l is pre-trained as a basic auto-encoder. Then the

learned vector h[l] is retrained and used to train the next layer l + 1 and so on

until the desired level of abstraction is reached.

ANNs like those presented above are called shallow networks (with a limited num-

ber of layers). These networks are powerful learning models. However, to represent

more complex features and "learn" increasingly sophisticated models, more com-

plex ANN architectures are required. This can be effectively achieved by simply

increasing the number of hidden layers and thus introducing a depth notion to

ANN (such as SAE compared to a simple AE). These deep ANNs are studied in

a field called deep learning.

2.2.4 Deep learning

Deep neural network, as presented in Figure. 2.9.A, is nothing more than a deeper

version of a simple ANN, shown in Figure. 2.9.B. The depth notion is related to

Chapter 2. Machine learning approaches 30

A B

Figure 2.9: a side-by-side comparison between a deep neural network (A) and
a shallow neural network (B).

the number of hidden layers. The more layers a network has, the more features it

can learn. These features are then combined in the output layer in order to make

a prediction. The role of hidden layers is then to transform the input data into a

more abstract representation.

Since the deeper the network is, the more neurons there are and therefore, the more

weights to learn, deep neural networks require massive datasets and a considerable

training time compared to an ANN. Here and below, we will be referring to the

deep neural network as "artificial neural network" (ANN).

2.2.5 Artificial neural networks training

The training (or training phase) of a shallow or deep neural network consists in

adjusting its parameters θ = (w, b), where w represents the weight matrix and b

the bias vector, while trying to correctly classify the samples of a given learning

set D = {(x(1), y(1)), ..., (x(s), y(s))}, and their associated labels. Computing the

set of parameters θ can be modelled as an optimization problem.

One of the most widely used algorithm for ANN training is the backpropagation.

It was proposed for the first time in [Werbos, 1974] but adopted for artificial

neural network training later in [Rumelhart et al., 1986, Lecun, 1988]. It is based

on the minimization of a derivable function called the loss function, E , using the

Chapter 2. Machine learning approaches 31

gradient descent method. The loss function is calculated between ŷ(i), the ANN’s

prediction given an input sample x(i), and the ground truth label y(i). Many types

of loss functions can be considered, such as root mean square error or cross-entropy

[Stemmer et al., 2002].

Figure 2.10: ANN training protocol.

As illustrated in Figure. 2.10, the back-propagation is preceded by a forward

propagation during which the ANN will use the the current weight matrix, w(t),

and bias vector b(t) vector to make a prediction ŷ(i) for a given input x(i). The

error between prediction ŷ(i) and the ground truth label y(i) is then computed

using a loss function E , such as the L1 loss (Mean Absolute Error).

E = MAE(y(i), ŷ(i)) =
∑

i

||ŷ(i) − y(i)|| (2.12)

Next the back-propagation is carried out by back-propagating the partial deriva-

tive of the error, with respect to the parameters θ = (w(t), b(t)), while updating,

in the opposite direction of the gradient, w(t) and b(t), with the help of gradient

Chapter 2. Machine learning approaches 32

descent algorithms, as follow:

∂E
∂w(t)

= ∆w,

w(t + 1) = w(t) − λ∆w,

∂E
∂b(t)

= ∆b, (2.13)

b(t + 1) = b(t) − λ∆b,

with λ the learning rate.

The partial derivative ∂E

∂w
, ∂E

∂b
in Formula. 2.13 are calculated consecutively, layer

by layer, from the output layer to the input layer following the chain rule 1. The

updates of the parameters θ (cf. Equation. 2.13) are computed either based

on each training sample (fully stochastic training) or based on small batches of

several training examples (mini-batch training).

For t = 0 the weights w(t = 0) are randomly initialized according to a given

distribution. The most commonly used types of distributions are the Gaussian,

the uniform or Xavier’s distribution [Glorot and Bengio, 2010].

The learning rate λ determines the updating step of the ANN parameters (weight

and bias). Its values must be chosen wisely since a low learning rate offers training

stability by reducing the chances of missing a good minima, but in that case,

training may take a lot of time. On the other hand, a large value of λ speeds up

the training but can also lead to a learning instability as the loss function fluctuates

around the minimum. A rule of thumb is to start training with a relatively high

λ value. Then, after a sufficient number of iteration, this value is reduced in

order to make the update less abrupt. It is important to note that there are some

algorithms that change λ value in an automatic and clever way, such as Adagrad

[Duchi et al., 2011], Adadelta [Zeiler, 2012].

1The chain rule is a technique to differentiate composite functions.

Chapter 2. Machine learning approaches 33

To resume, The learning or training consists of applying Equation. 2.13 T times

in order to find a good set of parameters θ(t = T), that delivers the best re-

sult. One iteration is a forward/backward passage of a small part of the training

data (example/lot/mini-lot). However, the term epoch is the most commonly

used (rather than iterations) in order to describe the necessary amount of time

to train a network. An epoch is composed of many iterations and consists of one

forward/backward passage of all training dataset.

The number of epochs, the learning rate value, the number of hidden layers, the

activation function...etc, are called the hyper-parameters. These parameters are

decisive for defining a well-designed ANN model. Despite the importance of these

parameters, they are usually set manually. To this end, many validations are done,

and the set of the hyper-parameters giving the best results are kept. The learned

model’s generalization is then evaluated on a test set (during the test phase).

Reflection about the use of ANN for images inputs With the exception

of small object-centred images [Lecun et al., 1995]), neural networks, presented

in the previous section, have proven their inability to handle tasks that include

images, such as image classification, and object recognition. This is due to their

architecture specificity (the neurons from one layer are fully connected to the

neurons of the next layer).

For instance, considering an image of size 256×256, if this image is to be passed to

an ANN with only one hidden layer of 512 neurons, the image is then flattened into

a vector of 256 × 256 = 65536 elements. Each element is assigned to a neuron on

the input layer. By linking the input layer to the hidden layer, we obtain more than

33 million weighted connections (w size is 65536 × 512). Very quickly, the images

become too large for this type of network, the number of parameters explodes, and

the network no longer holds in memory. Furthermore, when the image is flattened

(to be fed to the input layer), certain key features of the image can be lost, such

as the spatial and colour structures. This is a very serious problem because such

Chapter 2. Machine learning approaches 34

features may be necessary for the learning process. To overcome this problem, a

new ANN architecture is used, the Convolutional Neural Network (CNN).

2.2.6 Convolutional Neural Network (CNN)

Convolutional Neural Networks, known as CNN, is a particular form of ANN

whose connection architecture is inspired by that of the visual cortex of mammals

[Fukushima, 1975]. Although, unlike ANN, CNN has proven effective handling

images processing tasks such as classification, detection and segmentation. First

CNN used for object detection dates back to 1989 [Lecun, 1989], which was later

called LeNet-5 [Lecun et al., 1995, Lecun et al., 1998] (Figure. 2.11). The ar-

chitectures of current CNNs are quite similar to that of the LeNet-5 but more

complex.

Figure 2.11: The architecture of Lenet-5 CNN [Lecun et al., 1998].

As illustrated in Figure. 2.12, a CNN architecture can be split in two parts called

convolutional module, and classification module.. The convolutional module is the

one connected to the input layer that receives the input image. This module

is basically composed of a set of blocks which, in their turn, consist in a set of

layers (usually, but not necessarily, layers are in the following order: convolution

layer → activation layer → normalization layer→ pooling layer), with convolution

layer being the main building-block. This module works as a feature extractor as

it transforms a given image into a feature vector.

This vector is then connected to the input of the classification module. It

consists in a set of fully connected layers (the MLP of Section. 2.2.3). The role

Chapter 2. Machine learning approaches 35

L
o

s
s

Class 1

Class 2

Class 1

.

.

.

......

Convolutional block 1

C
o

n
v

o
lu

t
io

n

A
c

t
iv

a
t
io

n

P
o

o
li
n

g

B
a

t
c

h
 N

o
r
m

a
li
z
a

t
io

n

C
o

n
v

o
lu

t
io

n

A
c

t
iv

a
t
io

n

P
o

o
li
n

g

B
a

t
c

h
 N

o
r
m

a
li
z
a

t
io

n

ClassificationConvolutional block L...

Convolutional module Classification module

Input Image
Fully connected

F
e

a
t
u

r
 v

e
c

t
o

r

...

Figure 2.12: Two modules of a CNN.

of this classification module is to combine the obtained features to classify the

input image. The last layer of this module will provide the CNN output (the

prediction). The numerical values of the obtained output are usually normalized,

between [0, 1], with the help of a softmax function.

We discuss in the following the basic components of convolutional neural networks,

highlighting the different layers used over convolutional and classification modules.

It is important to note that in the next section, for better understanding, we will

consider that each convolutional block includes only one layer of the same type,

which is not necessarily the case in the literature.

2.2.6.1 The Convolution layer

The convolution layer is the key component of convolutional neural networks and

the main element of the convolutional block. Its purpose is to identify the presence

of a set of features in the input image with the help of a convolution operator.

Convolution aims at replacing a pixel value I(i,j) by a weighted sum of its neigh-

bors. The set of weights define what we call a kernel K ∈ R
(2k1+1)×(2k2+1) where

k1 and k2 are the horizontal and vertical size of the neighborhood. This operation

produce an output O(i,j) according to the following equation:

Chapter 2. Machine learning approaches 36

O(i,j) = (I ⋆ k)(i,j) =
k1

∑

u=−k1

k2
∑

v=−k2

I(i+u,j+v) K(u,v) (2.14)

Figure 2.13: Convolutional neural network Kernel.

Considering a CNN with L-convolutional block, let l ∈ {1, ..., L} be the block

index. The convolutional layer of the l-th block includes M [l] filters (also called

convolution kernels). Each filter k[l]
m, with m = {1, ..., M [l]}, produces a filtered

image F [l]
m called feature-map [Jarrett et al., 2009] by "sliding" the kernel over

the resulting feature-output F [l−1] of the (l − 1)-th block as illustrated in Figure.

2.13 and according to the Equation. 2.15. However, the output of the (l − 1)-th

convolutional layer may be composed of more than one feature-map in a kind of

multi-channel image, in this case, Equation. 2.15 is no more valid, it needs to be

rewritten as follow:

F [l]
m = F [l−1] ⋆ k[l]

m (2.15)

with k[l]
m is a 3D kernel composed of M [l−1] times the same 2D kernel k

[l]
i,m. In the

case of l = 1, the raw image I is given as the input F [0] = I (see Figure. 2.11).

Chapter 2. Machine learning approaches 37

Figure 2.14: Convolutional neural network Kernel
(from : https://www.uihere.com/free-cliparts).

If we compare Equation. 2.7 with Equation. 2.15, we can notice that kernels

are the trainable parameters of the convolutional layer, i.e. the weights for an

ANN. However, when the CNN’s use one kernel per feature-map, ANN use several

weights per neuron-output. This explains why CNN’s have considerably fewer pa-

rameters compared to conventional ANN. Since whatever the neuron, the weights

are the same (for the same kernel), the CNN convolution is referenced as weight

sharing.

2.2.6.2 Activation layer

A non-linear function follows every convolutional layer on each block. It consists

in introducing a non-linearity into the network in order to take advantage of the

many stacked convolutional layers. Put it differently, without the non-linearity;

the CNN would behave like a single-layer perceptron, regardless of the number

of convolutional layers it has, since stacking linear function (filtering performed

during convolutions) would only give another linear function.

An activation layer is defined by its non-linear activation function. It takes as

inputs the generated feature-maps from the convolutional layer F [l] , and outputs

Chapter 2. Machine learning approaches 38

another features-map called activation-map A[l]. The activation function is an

element-wise operation. Therefore, the dimensions of the input features-map and

the resulting activation-map are identical (see equation 2.16).

A[l] = f(F [l]), (2.16)

−4 −2 2 4

−2

2

x

y

sigmoid

−4 −2 2 4

−2

2

x

y

tanh

−4 −2 2 4

−2

2

x

y

ReLU

Figure 2.15: The graphs of the three main activation functions.

−4 −2 2 4

−2

2

x

y

−4 −2 2 4

−2

2

x

y

tanh

−4 −2 2 4

−2

2

x

y

ReLU

Figure 2.16: Derivative graphs of the three main activation functions.

Activation function f(.) The three main activation functions in literature are

as follows: sigmoid, tanh, and relu, plotted in Figure. 2.15:

Chapter 2. Machine learning approaches 39

1. sigmoid [Neal, 1992]: When we talk about the sigmoid function, we refer by

default to the logistics function:

sigmoid(x) =
1

1 + e−x
. (2.17)

This function addresses the problem of the non-derivability of the Heaviside

function (Equation. 5.14). This function has two problems. Outside the

range [−3; 3], the sigmoid derivative is almost zero (see Figure. 2.16), which

can prevent learning, this is known as vanishing gradient problem which is

related to back-propagation nature, as the gradient of early layers is obtained

by multiplying the gradients of later layers. So, if the gradients of later

layers are already small (less than one), their multiplication will lead to an

even smaller gradient for earlier layer, and thus the gradient vanishes very

fast (gradient equals 0). Moreover, the sigmoid function does not produce

a negative value. Thus, if the input consists only of positive values, the

update of the weights will systematically be of the sign of the error. We will,

therefore, see all weights increase or decrease when it would be appropriate

to increase some and decrease others. The tanh activation function solves

this problem.

2. Tangente hyperbolique tanh [Kalman and Kwasny, 1992]: The outputs of

this function are zero centered which makes it easier to model inputs with

negative, neutral, and positive values:

tanh(x) =
e2x − 1

e2x + 1
, (2.18)

However, similarly to Sigmoid, tanh is also susceptible to the Vanishing

gradient problem.

Chapter 2. Machine learning approaches 40

3. Rectified Linear Units relu[NairandHinton, 2010]: It is the default and the

most used function. It has several advantages.

relu(x) = max(0, x), (2.19)

relu (z) =















0 if x < 0

x else ≥ 0

Its non-linearity for small values allows the normalization of its inputs. More-

over, Its derivative is very simple to compute, which allows very fast calcu-

lations and therefore helps to reduce the time of learning. However, when

the input value approaches zero or equals to negative, the gradient becomes

zero; thus, the network cannot perform back-propagation and cannot learn.

2.2.6.3 Normalization layer

Usually, before training a neural network, we first normalize its inputs (pre-

processing step). For example, inputs data can be normalized to have normal

distribution (zero mean and unitary variance). This is to prevent an early satu-

ration of the activation functions such as the sigmoid function, assuring that all

data are in the same range of values.

Just as it made intuitive to have a uniform distribution for the input layer, it

is beneficial to have the same identical normalized distribution for each hidden

layer. Though, when we start learning, the features’ distribution is continuously

changing. This may slow down the training process since each layer must learn

to adapt its parameter to a new distribution in every training step. Indeed, each

layer’s input is affected by the parameters of all the subsequent layers due to

back-propagation. This problem is known as "Internal Covariate Shift", [Ioffe and

Szegedy, 2015a]. The author’s exact definition is the change in the distribution

of network activations due to the change in network parameters during training.

The normalization layer is usually used after the activation layer. The most used

one is the batch Normalization (BN). It was first introduced in [Ioffe and Szegedy,

Chapter 2. Machine learning approaches 41

2015a], where authors introduced BN as a possible solution to the "internal co-

variate shift". They claim that using this layer within their network can improve

the results of ImageNet (2014) [Russakovsky et al., 2015] by a significant margin.

The output of the BN layer is given as follow:

N
[l] = BN(A[l]), (2.20)

where N
[l] is a normalized activation-maps, thus we will maintain the name of

activation-map. The BN normalizes the distribution of the output layer yi across

a mini-batch of examples x ∈ {x(1), ..., x(bs)}, with bs the number of sample in

a mini-batch, to a zero-mean and a unit-variance. It operates according to the

following equation:

yi = BN(xi) =
xi − µ√
σ2 + ǫ

γ + β (2.21)

µ =
1

bs

bs
∑

i=1

xi

σ2 =
1

bs

bs
∑

i=1

(xi − µ)2

where γ and β are two learned parameters. These parameters are used to scale

and shift the normalized values, in order to make the network more flexible by

allowing it to counter the normalization of the distribution. ǫ is a small number

to avoid a division by zero.

2.2.6.4 Pooling layer

The pooling layer, also known as a down-sampling layer consists in reducing the

spatial size of the activation-maps. It allows:

1. to reduce the number of parameters, and the calculation requirements;

2. to compact the activation-maps so that the network becomes more efficient;

Chapter 2. Machine learning approaches 42

3. additionally, this allows minimizing the likelihood of overfitting [Jarrett

et al., 2009, Krizhevsky et al., 2012].

This type of layers has no weights to updates. It is commonly used after a succes-

sion of other layers (i.e. convolutional, activation, and BN layers).

Figure 2.17: Illustration of a pooling layer.

A pooling layer is defined by two parameters, p[l]
s , W [l] the the pooling stride, and

the pooling window respectively. The size of the pooling window is w
[l]
1 ×w

[l]
2 . This

layer takes as input an activation-map N
[l] of size n[l]

c × n[l]
w × n

[l]
h , with c[l]

n being

the number of the activation-map in the l-th block, and it produces an output P [l]

of size p[l]
c × p[l]

w × p
[l]
h where:

P [l] = Poolmax/avg(N[l]), (2.22)

and its size is to be computed as follow:

p[l]
c = n[l]

c , (2.23)

p[l]
w = (n[l]

w − w
[l]
1)/p[l]

s + 1,

p
[l]
h = (n

[l]
h − w

[l]
2)/p[l]

s + 1.

Chapter 2. Machine learning approaches 43

As shown in Figure. 2.17, this layer operates by sliding the window W [l] over

each map of N[l] separately, and reducing the data within this windows to a single

value. This operation is repeated while sliding this window by p[l]
s position until

the entire map is spatially reduced.

The two most common methods of pooling are max and average pooling (presented

in Figure. 2.18. Max pooling [Scherer et al., 2010] operates by selecting the highest

value in the window region and discarding the rest of the values. The key concept

of a max pooling layer is to ensure translational invariance, thus makes the network

focused on feature extraction, and less sensitive to features spatial location. Put

it differently, the fact that a feature is bigger or smaller, or even has a slightly

different orientation, should not induce a drastic shift in the classification of the

image.

The average pooling [Lin et al., 2014], on the other hand, makes it possible to

consider all the values of the feature map by using the mean of the values within

the window region. This kind of pooling helps the network to better generalize as

it effectively combines several values into a single one, which decreases the chance

of overfitting by combining several features into one. Besides these two pooling

 Max pooling

 Average pooling

6 5 22 9

15 4 19 30

8 11 15 18

9 4 2 13

15 30

11 18

10 20

8 14

Figure 2.18: The two methods of pooling (max/average).

methods, we can find other methods such as the Spatial Pyramid Pooling (SPP)

[He et al., 2015, Lazebnik et al., 2006, Grauman and Darrell, 2005]. This method

allows having a fixed size vector at the output whatever the size of the input.

This may be interesting knowing that, the input vector of a fully connected layer

Chapter 2. Machine learning approaches 44

must be of fixed size. This method, therefore, makes it possible to have images

of variable size at the input of the network since the output feature vector will

always have the same size.

Classification module After several convolutional blocks, the resulting feature-

maps dimension is reduced to a one-dimensional vector using, either a global pool-

ing layer (a standard pooling with windows size equal to the feature size), or an

SPP layer, or simply by a flatten layer. The obtained vector is called feature-

vector (equivalent to feature-vector in the two-step machine learning approach).

This feature vector is the input of the classification module presented in Fig. 2.12

and designed to predict the correct class or category of the image resulting in this

feature-vector [LeCun et al., 2010, 1989]. The classification module consists of a

succession of one or more fully connected layer, followed by a loss function.

2.2.6.5 Fully connected layer (FC)

Neurons in a fully connected layer (FC) are fully connected with neurons of the

previous layer (usually two to three-layer). A set of these layers acts as an MLP

(seen in Section. 2.2.3) that takes the feature-vector as input, and transforms it

into the final output classes or class scores. Said differently, this fully-connected

part (set of FC layers) is used to associate the different important features from

the input image in order to deduce its correct class.

2.2.6.6 Loss function

The fully-connected part ended with a Loss function (commonly "misnamed" as

a loss layer). The Loss function specifies how training penalizes the deviation

between the predicted (output) and true labels while using the stochastic gradient

descent. Among the most known loss functions, we can mention, the "Softmax

function", the "Mean Squared Error (L2)" and the "Sigmoid/softmax cross-entropy"

function.

Chapter 2. Machine learning approaches 45

Now that we have talked about machine learning and deep learning techniques, we

are going to talk about another technique which is intended to fool machine learn-

ing and deep learning models through malicious input. This technique, known as

Adversarial learning, can be applied for a variety of reasons, that are discussed

below.

2.3 Adversarial learning

In our daily life, competing against an adversarial, whether in games or competi-

tions, make us perform better. The adversarial idea also exists in the AI domain.

In deep learning field, the adversarial concept is treated in two different ways;

thus, we find two researcher groups that use the adversarial idea for two different

objectives. The first group main interests are adversarial samples and adver-

sarial learning. Their objective is to treat the deep learning vulnerabilities to

make the learning more robust.

Adversarial samples [Szegedy et al., McDaniel et al., 2016] consists in techniques

used by an attacker (adversarial) to make a learned-model (i.e. ANN) unstable

and behave in a way that is favourable to its benefit. To produce such unexpected

behaviour, the adversary conducts a sophisticated manipulation of the input data

(i.g. introducing a small noise signal to an image as shown in Figure. 2.19) to

creates some tricking examples. These images confuse the model in a way that is

no longer capable of classifying them (classifies the image into the wrong category

with high confidence).

In a commonly cited example of adversarial samples, an altered stop sign was

capable of tricking a self-driving car [Eykholt et al., 2018]. When it was simple

for a human to notice the altered sign and correctly interpreting its meaning, the

deep-learning model erroneously interpreted it as a 45 mph speed limit posting. In

a real-world, an attack like this would resulting in the self-driving car acceleration

through the stop sign, which can lead to a potentially disastrous outcome.

Chapter 2. Machine learning approaches 46

+ =

x

“panda”

57.7%

x+

“gibbon”
99.3 % confidence

Figure 2.19: A demonstration of an adversarial sample, obtained by adding
an imperceptibly small noise vector. The classification of the image is changed.

(Extracted from [Goodfellow et al.]).

Robust learning, on the other hand, consists in the process of training a model

(ANN) on adversarial examples, intending to make it more robust to adversarial

examples attacks. So far, robust learning has primarily been applied to a small

variety of problems.

The second group had a completely different view of the adversarial idea; it is

seen as a stimulating factor in the learning process. The adversarial role is to help

to train a model (neural network) while competing with it, which creates a self-

stimulating environment for the learning process. This field of interest is known

as adversarial network.

2.3.1 Generative Adversarial Network (GAN)

An example of an adversarial network is presented in [Silver et al., 2016], where

two networks compete with each other in order to learn to play AlphaGo (learn

the game state and policy). The learned model was capable of defeating a human

master. Another example is the sample generator. Given a model (generator),

who wants to generate images that share the same probability distribution of a

dataset of real images, the adversary role is to help the generator learning how

to produce realistic images. It evaluates the generated images (fake image) by

comparing them with real images. The adversary evaluation is then used by the

Chapter 2. Machine learning approaches 47

generator in order to improve the quality of its generated images (like a student

and his teacher), this is known as GANs.

The main idea of GAN is driven from the Nash equilibrium in game theory [Good-

fellow, 2017]. It assumes two or more player who competes against each other.

An equilibrium is obtained when each player is capable of taking the best possible

move in the game, taking into account the moves of the others player.

In this context, [Goodfellow et al., 2014] have proposed a game with two players

where each player is represented by an artificial neural network. The first player

called the generator (noted as G) aims to generate images from random noise

while respecting the distribution of a given database of real images. The second

is a judge known as discriminator (noted as D). It aims to correctly determine

whether a given image is a real image (from the training set) or a "fake" image

generated by the generator. We give in Figure. 2.20 an illustration of a GAN

architecture.

Figure 2.20: A general structure of a generative adversarial network (exttacted
from : https://sthalles.github.io/intro-to-gans/).

In order to win the game, the two players (D, G) need to continuously optimize

their parameters to improve the generation (resp. discrimination) capacity of

generator (resp. discriminator). In the optimal case, the stopping criterion of the

optimization process is to attain a Nash equilibrium between the two participants.

Chapter 2. Machine learning approaches 48

The use of GANs for generating new data is interesting for several reasons. The

first is that it does not directly optimize a log-likelihood function, such as the

Kullback-Leibler distance (cross-entropy) [Stemmer et al., 2002], between gener-

ated images and real images because this would be difficult to exploit (the dimen-

sion of the image space is too large to even indirectly access to the real probability

of the images). Instead, the gradient is calculated by the intermediary of the dis-

criminator whose performances evolve over time according to all examples in the

database. Besides, confronting an opponent introduces free supervision since data

are simply noted as real/fake.

2.3.2 Training of a Generative Adversarial Network (GAN)

G and D are parameterized by neural networks where each network competes

against the other. Thus the training of such networks is considered as a two-

player minimax game. The intent of the discriminator (D) is to maximize its

accuracy of discriminating real image x from the generated images. On the other

side, the generator’s goal is to generate images the most realistic possible, and

thus ensures that the discriminator makes more classification error.

Like any regular ANN, back-propagation is used to train the network parameters,

but the fact that there are two networks makes the use of back-propagation slightly

different. More precisely, the used loss functions and the number of iterations (the

training is altered between each model) are two major components where the

GANs differ. For the discriminator, the used loss function will be nothing more

than a regular binary cross-entropy loss. Other loss functions may be used such

as Wasserstein distance, Maximum Mean Discrepancy, ..etc.

− (y log(ŷ) + (1 − y) log(1 − ŷ)) (2.24)

In this context, y = 1 if the image fed to the discriminator is a real image where

y = 0 if it is a fake one. ŷ is the probability that the image is a real image,

Chapter 2. Machine learning approaches 49

where (1 − ŷ) is the predicted probability of the input image being a fake image.

In Equation. 2.24 the probability ŷ is the prediction output of the discriminator,

thus it can be represented as D(x(i)) with x(i) being the ith input image of the

database. Equation. 2.24 then looks like below:

− (y(i) log(D(x(i))) + (1 − y(i)) log(1 − D(x(i)))) (2.25)

Taking a close look at Equation. 2.25, one can notice that for real images x, the

equation is resumed in its first part since the second part will be zero. As for

fake images, it is exactly the reverse. Keeping this in mind, the image x in the

second part can be replaced by G(z) since fake image represents the output of the

generator G, with z being a random noise vector that feeds the generator. The

discriminator loss function is given as follow:

LD = −(y(i) log(D(x(i))) + (1 − y(i)) log(1 − D(G(z)))) (2.26)

However, in the GAN paper [Goodfellow et al., 2014], the Equation. 2.26 was

given as follow:

LD = (y(i) log(D(x(i))) + (1 − y(i)) log(1 − D(G(z)))) (2.27)

were the first sign was flipped so that the updating of the discriminator weight

can be done by “ascending” its stochastic gradient.

As for the generator G, its loss function LG is designed to make the discrimina-

tor less confident of his prediction, which is equivalent to a maximization of the

discriminator loss function LD . However, the first part of Equation. 2.26 is mean-

ingless to the generator (we do not want that the discriminant mispredicts the real

images), so only the second part should be maximized. In other words, the loss

function of G will be the same as D’s loss function with the first term ignored,

Chapter 2. Machine learning approaches 50

and the sign flipped. As indicated in the GAN paper [Goodfellow et al., 2014],

we can just ignore the sign flipping, and instead of updating generator weight by

"ascending" its stochastic gradient, it is updated by "descending" its stochastic

gradient, the generator loss is then giving as follow:

LG = log(1 − D(G(z))) (2.28)

The training procedure consists of k iteration of alternative training. First, we fix

the parameters of G and optimize D parameters for kD iteration through maxi-

mization of LD of equation. 2.27. Then, we fix D and optimize G by minimizing

LG in Equation. 2.28 for kG iteration.

We stop the training of the GAN when we attain a Nash equilibrium, or when we

reach the maximum number of iterations.

2.4 Conclusion

In this chapter, we have focused on machine learning techniques used for classi-

fication purposes. We have first presented in Section. 2.1 the two-step learning

approach, which consists in a feature extractor and a trainable classifier. Feature

extractor extracts pertinent features, which are then fed to the trainable classifier

to learn a separable function. We have, therefore provided a brief overview of how

these approaches process, then we have highlighted the limits of such approaches.

We, therefore, discussed the second category of approaches, the neural networks

that automatically extract features by learning from examples in Section. 2.2. We

started by presenting the elementary component (neuron), the architecture and

the training method. In Section. 2.2.6, we focused on convolution neural networks

since they are more adapted to process images.

Chapter 2. Machine learning approaches 51

In Section. 2.3, we have presented a totally different family of deep-learning ap-

proach which is the generative model, where the objective is not only to dis-

criminate data but also to generate new samples that share the same probability

distribution as real images.

Chapter 3

Steganography in spatial domain

Contents

3.1 General presentation . 54

3.2 The three families of the steganography 55

3.2.1 Steganography by cover selection 56

3.2.2 Steganography by cover synthesis 57

3.2.3 Steganography by cover modification 57

3.3 Adaptive Steganography . 59

3.3.1 Distortion measure and cost map 60

3.3.2 Syndrome coding . 64

3.3.3 Embedding . 69

3.3.4 Simulator . 72

3.4 Embedding in spatial domain 74

3.4.1 Highly Undetectable steGO (HUGO) 74

3.4.2 Spatial-UNIversal WAvelet Relative Distortion (S-UNIWARD) 76

3.4.3 Wavelet Obtained Weights (WOW) 77

3.5 Conclusion . 81

53

Chapter 3. Steganography in spatial domain 54

3.1 General presentation

In all histories of civilization, whether in wars, business or politics, information was

a decisive factor. Those who had access to critical information could be empowered

to win any challenge. That is why exchanging secret information has always been

a hot topic. This has led to the emergence of private communication, such as cryp-

tography and steganography. Cryptographic techniques secure information access

through an encryption process, thereby making it unintelligible to those who do

not have the necessary rights. But in most cases, communication with encrypted

messages can attract attention. Especially knowing that the communication chan-

nel can be monitored by a third party who analyzes all messages passing through

the communication channel. In such a case, the only feasible solution for both

parts to communicate is to hide the very fact that they are communicating. This

may be possible using steganography.

Steganography, or the science of secret communication, is the art of hiding a secret

message within another carrier (text, image, sound, video...) of an innocuous

nature so that the very existence of the secret message is hidden from view. In

other words, in steganography, we want to make it difficult, or even impossible,

for a third-party to distinguish between an innocent carrier and a carrier holding

a secret message.

The first reference to the term "steganography" was found in Johannes Trithemius

Steganographia’s book in 1499. Although steganography techniques had existed

a long time before, at the time, it was the story of what could be called ancient

steganography, i.e. methods of dissimulating information using, for example, in-

visible ink on paper, or simple mechanical aids [Fridrich, 2009].

Recently, with the rise of the digital world, digital media has become a practical

communication medium carrier. This is what gave birth to the modern steganog-

raphy [Pfitzmann, 1996]. The purpose of modern steganography is to hide a secret

message, of relatively large size, in a digital media called cover, so that the result-

ing media, called stego, remains, at least to the naked eye, identical to the cover.

Chapter 3. Steganography in spatial domain 55

This means that the existence of the secret message in the stego is imperceptible

and practically undetectable by an eavesdropper. The secret message can be any-

thing that can be converted into a bit stream, plain text, encrypted text or even

an image. As for cover media, many different types are available, such as image,

sound, video, text, etc. Nevertheless, images are the most commonly used media

in steganography, as they are very commonly exchanged over the Internet, making

it an excellent carrier for hiding secret information.

We give in Figure. 3.1 a simple representation of a modern stenographic system

during the embedding and the extraction procedure.

• Embedding process: The sender, Alice, embeds the secret message into an

innocent digital media using a shared-secret key 1, the resulting stego media

is then transmitted via a public channel (e. g. Internet) to the recipient

Bob.

• Extraction process: The receiver, Bob, uses the shared-secret key, re-

trieves the secret message from the received stego media.

However, these tasks can prove very challenging given the existence of an eaves-

dropper, Eve, who examines all data that passes through the communication chan-

nel. The eavesdropper should not be aware of the existence of communication

between Alice and Bob. Otherwise, she will break the communication channel.

In this document, we focus mainly on spatial steganographic 2 schemes that use

digital grayscale images as a transmission medium.

3.2 The three families of the steganography

In steganography, three main families can be found. These families were proposed

based on how we embed the secret message [Fridrich, 2009]; there is

1The secret key is shared between the sender and the recipient prior to communication.
2Spatial domain referring to the fact that the pixel values are used to embed a message (by

opposition to frequency domain resulting of the Fourier transform of the image).

Chapter 3. Steganography in spatial domain 56

Figure 3.1: The embedding and extraction framework of a steganographic
scheme.

1. the steganography by cover selection,

2. the steganography by cover syntheses,

3. the steganography by cover modification.

In the following, we will present these three families of steganography, highlighting

their advantages and drawbacks.

3.2.1 Steganography by cover selection

In steganography by cover selection, the sender Alice has a fixed database of images

beforehand. From this database, Alice selects the one that best fit the desired

message. For example, Alice can transmit a bit of information to Bob simply by

considering the time of day the image was taken (day or night). Similarly, the

presence or not of a bird within the image sent may have a hidden signification

shared only between the sender and receiver, such as whether or not we escape

tomorrow.

An important case of steganography by cover selection is the use of a Message-

digest (hash) function where Alice uses a hash function, with a secret key shared

with Bob, to transmit her message. In such a case, Alice scans her image database

using message digestion functions with the objective of finding an image whose

digest corresponds to the desired message bitstream. Once found, the image is

Chapter 3. Steganography in spatial domain 57

forwarded to Bob, who can easily read the secret message by reapplying the hash

function with his secret key. One can notice that this method becomes very quickly

impracticable in reality because the number of attempts required to obtain a match

can be impracticably high because it depends exponentially on the length of the

digest.

The advantage of such approaches is that they are almost undetectable [Fridrich,

2009]. Indeed, since the cover does not undergo any modification, it is impossible

to guess that there is a hidden message. However, the major problem with these

methods remains its very limited embedding capacity.

3.2.2 Steganography by cover synthesis

In steganography by cover synthesis, instead of choosing a cover from an existing

database, Alice would simply create such a cover that best conveys the secret

message. If Alice is able to create a cover, with a known distribution between her

and Bob, she will be able to hide safely its secret message.

A real example of steganography by cover synthesis, in which text is used as

cover instead of digital images, is a program 3 using the so-called mimic function

[Wayner, 1992]. The goal of this program is to encode the secret message so that

it looks like a spam message.

The benefit of such approach is that it offers a high-security level. However, it

is very limited in term of embedding capacity, which makes it a less interesting

approach [Fridrich, 2009].

3.2.3 Steganography by cover modification

Steganography by cover modification is the most widely used and studied steganog-

raphy paradigm. Its principle consists in modifying a (already existing) cover ob-

ject to hide a secret message with the help of a shared-secret key while trying to

3http://www.spammimic.com

Chapter 3. Steganography in spatial domain 58

Emb Ext

Text

Alice Bob

Eve

cover

message

message

stego

stego

cover

secret key

or

Figure 3.2: General diagram of steganography.

preserve "as much as possible" the original statistics of the used cover.

We illustrate in Figure. 3.2 the general principle of steganography by cover mod-

ification. Considering the following notation:

– C a set of cover objects,

– K a set of secret-key shared between both Alice and Bob,

– M a set of messages,

– S a set of stegos objects.

The embedding and extraction represented by Alice and Bob can be formulated

as follow:

Emb : C × M × K → S, (3.1)

Emb(c,m,k) = s,

Ext : S × K → M,

Ext(s,k) = m.

with , c ∈ C, m ∈ M, k ∈ K

Emb and Ext are the embedding and extracting mapping functions respectively.

c ∈ C is a cover media, m ∈ M is a secret message embedded in c using k ∈ K,

where k stands for the secret key shared between Alice and Bob in the prisoner

Chapter 3. Steganography in spatial domain 59

problem [Simmons, 1984], s ∈ S is the stego obtained by embedding. In this

manuscript, we focus on steganography by cover modification methods.

By taking a look at steganography methods that exist in the literature, we can

find two ways of designing a good steganographic algorithm:

1. By defining a cover image model that will be preserved during the embedding

process [Sallee, 2003, Kodovský and Fridrich, 2008].

Statistical model-preserving steganography relies on preserving (as

well as possible) a particular type of a cover image model that was previously

defined. These methods are undetectable and highly secured as long as the

defined model describes perfectly the covers. Nevertheless, these methods

can be detected by an attacker (steganalyst) who works outside the defined

model by identifying a quantity that is not perfectly preserved during the

embedding.

2. By using content-adaptive embedding which relies on minimization of em-

bedding distortion function, presented in section 3.3.1, which is usually de-

fined heuristically. As an example of these methods we have, HILL [Li et al.,

2014], UNIWARD [Holub et al., 2014], WOW [Holub and Fridrich, 2012],

HUGO [Pevný et al., 2010b].

3.3 Adaptive Steganography

Since the STC coding proposal [Filler et al., 2010], giving the possibility to code a

message by taking into account the content of the image (i.e. adaptive coding) and

the first algorithm uses this coding HUGO [Pevný et al., 2010b] in 2010, adaptive

steganography has been introduced as the most secure approach.

It consists in embedding the secret message while trying to introduce the smallest

possible distortion into the cover image. Said differently, adaptive steganography

algorithms attempt to embed the secret message in the areas of the cover image

Chapter 3. Steganography in spatial domain 60

that are difficult to detect. Since steganography by a cover modification disrupts

the cover statistics during the message embedding, it is, therefore, necessary to

select secure areas of the cover which, even when modified, do not have a sig-

nificant impact on the overall cover statistics. This is achieved by most current

adaptive methods using a distortion function that models the embedding impact

on security (presented in Section. 3.3.1). Compared to model-preserving method

[Kodovský and Fridrich, 2008], adaptive steganography methods offer a better gen-

eralization and even a better security level. Besides, it enables the development of

steganographic algorithms driven by the performance, in term of security, against

a steganalyser.

Adaptive steganography algorithms, just like other steganography by cover modi-

fication algorithms follow the following three steps:

1. determine which positions are best for the embedding,

2. encode the message,

3. embed the message.

Each of these is detailed in the following sections as well as the way to put them

together to create an "adaptive embedding algorithm".

3.3.1 Distortion measure and cost map

Modern or adaptive steganography algorithms, as indicated before, aim at embed-

ding a given message into a cover, while trying to minimize the impact induced by

the embedding process [Fridrich and Filler, 2007]. In order to achieve this objec-

tive, it is important first to establish a distortion measure capable of quantifying

the statistical detectability due to embedding. Before proceeding with the cost

map explanation, it is essential at this point to have first a better understanding

of what is a distortion measure.

Chapter 3. Steganography in spatial domain 61

Distortion is a measure used by a steganographer to model the overall embedding-

impact induced by the message embedding process. Adaptive steganographic

schemes embed a secret message according to the minimization of a function for

the purpose of preserving the cover medium as much as possible. It is modelled

by a mathematical function as follow,

D : C × S → [0, ∞[, (3.2)

In the case of grayscale image the Equation. 3.2 is given as:

D : {0, ...255}n × {0, ...255}n → [0, ∞[(3.3)

Where D reflects the total distortion, it should give an approximation of the

statistical detectability caused by the embedding of a secret message.

The embedding impact can be modelled by a function that measures the distance

between the cover image and the stego image in feature space or another descriptive

space [Ker et al., 2013]. Let x = (x1, ..., xn) ∈ C with xi ∈ {0, ..., 255} a cover

image composed of n elements, and y = (y1, ..., yn) ∈ S with yi ∈ {0, ..., 255} the

associated stego image. m is a secret message composed of m elements where

m = (m1, ..., mm) ∈ {0, 1}m ∈ M. Then, the distortion function D can be defined

as follow:

D(x, y) = ||f(x) − f(y)||, (3.4)

with f(x), f(y) the features vector that describes the cover, and stego, respec-

tively. Usually, the function f returns a vector composed of real values. These

real values are often calculated using the occurrence of pixel values [Ker et al.,

2013].

The distortion function in its non-additive and non-local form given in Equation.

3.4 presents a real problem for the steganographer since it is too complex finding a

Chapter 3. Steganography in spatial domain 62

code minimizing it. In order to overcome and simplify the problem, two approaches

have been proposed.

The first approach is to make the hypothesis that the modification of a pixel

does not affect the detectability of neighbouring pixels so that the distortion can

be approximated in an additive version. The authors in [Filler et al., 2010] and

[Filler et al., 2011], among other, adopt this perspective. They propose an additive

version of the distortion which is based on the use of the so-called cost map

ρ = {ρi ∈ [0, ∞[}n
i . It consists in assigning to each pixel of the cover xi a value

ρi ∈ [0, ∞[. This value reflects the impact of the modification of the ith pixel on

the global security. It is defined as in Equation. 3.5 [Holub et al., 2014]. The case

where ρi = ∞ means that the pixel xi is not allowed to be modified, known as a

wet pixel.

ρi = D(X,X∼Xi), (3.5)

where X∼Xi is the cover image whose i-th pixel is modified.

With the hypotheses of ρ+
i = ρ−

i which means that the modification cost of a

pixel xi is the same regardless of whether it is modified by −1 or +1, the equation

in. 3.4 can be then approximated to a an additive version using the cost map as

follow:

D(x, y) =
n

∑

i=0

ρi |xi − yi|, (3.6)

where |.| is the absolute function.

As mentioned before, the objective of adaptive steganography is to minimize the

impact induced by the embedding process, which is measured using a defined

distortion function such as Equation. 3.6. As it stands, we can quickly conclude

that the major challenge of this approach is the computation of the cost map

ρ = {ρi ∈ [0, ∞[}n
i .

Chapter 3. Steganography in spatial domain 63

(a)

(b)

∪ ∪ ∪ , 1:

, 2: , 3:

, e 4 :

(c)

3×3

Figure 3.3: Example illustrating 1) an image partitioning, 2) the click system
[Kouider, 2013].

How computing the ρi scores to measure the impact of the embedding process

on security remains an open question, which began to be studied at the end of

2010, through the BOSS competition [Bas et al., 2011] using the HUGO algorithm

[Pevný et al., 2010b].

In later sub-section 3.4 we will present the current state-of-the-art algorithms, and

how they derive the cost map in the context of additive distortion.

The second approach, in order to minimize D from Equation. 3.6 consists in

dividing the global problem into simple local sub-problems that may be relatively

easier to solve. In [Filler and Fridrich, 2010] authors have proposed a new non-

additive distortion function. It is defined as a sum of local distortion functions

calculated on a particular neighbourhood system. Their approach operates by

grouping the cover pixels in sub-lattice of pixels where each pixel is independent

of other pixels. These sub-lattice are noted as S = {S1 ∪ ... ∪ Sn}. The message

is then split into small parts where each part has to be embedded in a sub-lattice

while minimizing a distortion measure. The used distortion function is a sum of

local distortions calculated on cliques, where a clique is sub-lattice where each pair

of its different elements are neighbours, an example is given in Figure. 3.3. More

details can be found in [Filler and Fridrich, 2010].

Now that we have seen how to define a cost map and the distortion to be minimized,

we will see in the following how to encode our message.

Chapter 3. Steganography in spatial domain 64

3.3.2 Syndrome coding

3.3.2.1 Error detection and correction code

Error-correcting codes have their roots in a very concrete problem related to data

transmission. In the vast majority of cases, data transmission is made using a

communication channel which is not entirely reliable. In other words, data, when

circulating on such channel, are likely to be altered. For instance, we can cite the

example of digital communication via the Internet of a digital medium (image,

sound, text file, etc.). During transmission, the transmitted digital media may be

altered due to the interference of noise that may be present in the transmission

channel, i.e. bits may be switched from 0 to 1 or inversely. The meaning of the

message can be altered or even damaged. Therefore, it is important to find a way

to make the transmission of these data more reliable.

With the aim of correcting the errors that may occur during data transmission,

or even during read/write to a physical medium such as hard disk, DVD, ..etc.,

error-correcting codes were developed. These codes proceed as follows: first, check

the integrity of the intercepted data, then correct, as far as possible, the errors

produced during transmission.

For a better understanding of the coding method, we provide the following simple

example. The sender (an encoder) wants to send a message that is presented as

a bit sequence (b1b2..bn). To this end, the encoder reports 3 times the message

bits as follows (b1b1b1, b2b2b2..bnbnbn). The encoded message is then transmitted

to the receiver (decoder). On the receiver side, and in order to detect possible

errors, the decoder can simply compare the received triplet of bits. If the bits of

the triplet are different, then an error has occurred during the transmission. Now,

Considering that there is at most one error for each 3-bit sequence, to correct the

error, the decoder has to choose the symbol that appears twice in each received

triplet. However, the presented example is only a toy example, many more effective

and sophisticated codes have been proposed in the literature [Pach, 2007]. One of

the most studied and most common error correcting-codes is liner code.

Chapter 3. Steganography in spatial domain 65

Linear Error-Correcting Codes

A linear code is used to match each information word to a code word, by using a

linear function. It facilitates the construction of the code as well as the control of

received messages.

A linear code C is described by three parameters: [n, k, δ], with n > k. n refers

to the length of the code, k represents the size of the code, corresponding to the

size of the words once decoded. δ defines the minimum distance between each

word in the code. The encoding application is linear. It is therefore calculated

and represented thanks to its generator matrix. A code is entirely defined by its

generator matrix.

Generator matrix It is a matrix whose rows form a basis for linear code. To

transmit a message m ∈ Fk
2 , -with F2 the finite field with 2 elements- through a

noisy channel, it is first transformed into a code word c ∈ Fn
2 ∈ C, using code’s

generator matrix, noted G ∈ Mn,k(F2) (i. e. with n rows, k columns). The

messaging encoding operation is performed by the following equation:

c = G · m. (3.7)

If the matrix G is of the form (Ik; A) where Ik denotes the k × k identity matrix,

and A is a redundancy matrix, we say that G is in standard form.

Parity-check matrix The main interest in considering linear codes is that they

do dispose of effective decoding algorithms, thanks to the use of the Parity-check

matrix. The receiver can check whether the received word c′ ∈ Fn
2 is a code word.

To that purpose a syndrome s ∈ Fn−k
2 is computed using the so-called parity-check

matrix H ∈ Mn−k,n(F2):

s = H · c′. (3.8)

The syndrome s is the result of the received codeword on a parity check matrix to

determine whether it is error-free or not. If the syndrome elements equal to zero

Chapter 3. Steganography in spatial domain 66

(s = (0, ..., 0)), the receiver infers that the received word is a code word and that

no error has occurred during the transmission (c′ is error-free). Otherwise, the

received word contains one or more bit errors that occurred during transmission.

3.3.2.2 Error correcting code for steganography

In [Crandall, 1998], the author has proposed for the first time to model the mes-

sage embedding/extracting steps using error-correcting codes. This model called

syndrome coding or matrix embedding. Despite the fact that this model was pro-

posed in 1998, it has been made popular -in 2001- by its use in the design of the F5

algorithm using Hamming codes [Westfeld, 2001]. This has paved the way for the

appearance of more sophisticated codes which are used by current state-of-the-art

steganography algorithms.

Syndrome coding methods use the error-correcting codes to transform the trans-

mitted message into a syndrome. The sender must determine how to modify the

cover image, so that the syndrome calculated at the receiver’s side corresponding

to the desired message, and so that the image is the least altered.

Let suppose that x = {(x1, ..., xn) ∈ {0, ..., 255}n is a cover image, the sender

objective is then to find a stego y = {(y1, ..., yn) ∈ {0, ..., 255}n} where:

y = lsbx(x,v),

H · v = m.
(3.9)

with v = (v1, ..., vn) ∈ {0, 1}n being the modification vector, and H the parity-

check matrix. lsbx is the embedding method, which we will discuss later in Section.

3.3.3). We give in the following some examples of the matrix embedding. Matrix

embedding methods are used to find a solution to Equation 3.9 by mapping m =

(m1, ..., mm) ∈ {0, 1}m to v = (v1, ..., vn) ∈ {0, 1}n.

Chapter 3. Steganography in spatial domain 67

Hamming codes

Thanks to their very particular properties, this family of linear codes allows

both error detection and correction, for maximum error. Among the properties

that make this code very interesting is that its minimum distance δ is equal to 3.

The Hamming codes are are defined by an integer p ∈ N
+, such as n = 2p − 1 and

k = 2p − 1 − p.

Hamming codes are the first correcting codes to have been used for the matrix

embedding concept, and the first implementation was with F5 algorithm [West-

feld, 2001]. This algorithm, among with other embedding algorithms which use

hamming code, consider that the embedding could take place in an equivalent way

in each element of the host sequence. In terms of cost maps, this is equivalent to

having a detectability map in the form ρ = {ρi = 1}n
i=1.

Wet paper codes

This family of codes is another effective solution that allows the communication

of secret information. It consists in preventing the use of certain elements of the

host sequence to ensure a high undetectability (these elements are called "wet" and

cannot be written on). By using the notion of a cost map, we can say that the

cost map is a two-valued map. ρ = {ρi ∈ {0, ∞}}n
i=1. An example of an algorithm

using this approach is nsFS The reader can have further details on how to use

the wet paper code for steganography in [Iranpour and Safabakhsh, 2015, Fridrich

et al., 2005].

Syndrome Trellis Codes (STC)

In 2010, a new code was proposed taking into account a more subtle and adapt-

able detectability map, with ρ = {ρi ∈ [0, ∞[ni=1}. This is the so-called STC

approach, for "Syndrome Trellis Codes" [Pevný et al., 2010b]. We report here the

codes description as presented in [Filler et al., 2010, 2011]. The STC are codes

whose decoding algorithm (i.e. Viterbi decoding) is based on a trellis algorithm.

Let m = (m1, ..., mm) ∈ {0, 1}m be a secret message, we want to find the vector

vs, such that during of the reception of m, the syndrome s is defined as:

Chapter 3. Steganography in spatial domain 68

s = H · vs = m, (3.10)

where vs represent the stego vector.

To this end, the trellis approach uses a check-parity matrix H obtained by filling

the diagonal of a sparse matrix with a set of sub-matrix Ĥ of size h × w together.

The n copy of sub-matrices Ĥ are placed one next to the other and shifted one

line down, as shown in Figure. 3.4. The rest of the matrix is set to 0.

In order to find a stego vector vs associated to the stego image with the smallest

distortion, STC uses a trellis that includes corresponding vertices to the possible

values for vs, while the edges hold the costs given in the cost map (seen previously

in Section. 3.3.1).

The graph is navigated with the purpose of finding a code word v that satisfies

H · vs = m. Each found vector v is represented as a path through the trellis that

goes from the leftmost to the right(end) of the trellis. Paths are created, continued

or stopped according to the costs from the given cost map. The optimal solution is

given by the lowest cost path (the shortest path). Currently, the trellis approach

is the most effective practical approach in terms of embedding efficiency; it is the

closest method to the theoretical boundary obtained via a simulator (see Section.

3.3.4). The example in Figure. 3.4 is a simplified illustration of the workings

principle of the trellis approach (STC).

Note that these codes are used in almost all modern steganography algorithms

such as Hugo [Pevný et al., 2010b], S/J/SI-UNIWARD [Holub et al., 2014], HILL

[Li et al., 2014], MVGG [Sedighi et al., 2015], [Holub and Fridrich, 2012], [Kouider

et al., 2013] ..etc.

Now that we have seen how to associate cost to pixels in Section. 3.3.1, and how to

encode a message in Section. 3.3.2.2, we discuss in the last part the embedding.

Chapter 3. Steganography in spatial domain 69

Figure 3.4: Illustration of the functioning principle of the trellis approach
(STC). H is the check-parity matrix. The graph is navigated from left to right
during the message embedding, gradually exploring the relevant possibilities for

the choice of the stego vector.

3.3.3 Embedding

Message embedding (after application of syndrome coding) is achieved by modi-

fying the pixels of the cover image x. For this purpose, we proceed as follows:

1. x = (x1, ..., xn) ∈ {0, ...255}n is the cover image (grayscale image),

2. consider the least significant bits (LSB) of x’s pixels to generate the so-called

cover vector and noted as LSB(x) = vc = (vc1, ..., vcn) ∈ {0, 1}n,

3. use the shared secret key (between both Alice and Bob) to shuffle vc and

the associated cost map ρ (as explained in sub-section. 3.3.1). noted v′
c

and

ρ′.

4. use STC (presented in Section. 3.3.2.2) to generate the stego vector vs =

(vs1, ..., vsn) ∈ {0, 1}n. STC is fed with cover vector vc, cost map , and the

message m,

5. embed vs within the cover image x, in order to obtain the stego image y.

In step 5, the stego vector is embedded within the cover image by modifying

some selected pixels. These selected pixels are modified whether by making their

LSB correspond to the stego vector (LSB replacement) or by adding/subtracting

Chapter 3. Steganography in spatial domain 70

Cover x

5 = 00000101

88 = 01011000

171 = 01110101

147 = 01111111

200 = 11001000

1

0

1

1

0

0

0

0

1

1

4 = 00000100

88 = 01011000

170 = 01110100

147 = 01111111

201 = 11001001

stego yPixels to modify vc

LSB(x)

vs modify pixels

LSB
replacement

Figure 3.5: Illustration of the embedding algorithm in the case of an LSB
replacement. The cost map (3.3.1) as well as the key will determine a sequence
of pixels to be modified in the cover image x. It is from these pixels that we
generate the cover vector vc through the extraction of the LSBs. A syndrome
coding technique is applied to transform the vector vc into a stego vector vs
(explained in Section. 3.3.2.2). Finally, the stego image is generated by mod-
ifying the value of the selected pixels in the cover image x so that their LSB

correspond to the stego vector vs.

"1" from the pixel’s value when the stego vector element is different from the

corresponding cover vector element (LSB matching).

Steganography with LSB Replacement embedding

LSBR, for practical reason, is the most commonly used technique for embedding.

As illustrated in Figure. 3.5, this technique consists in replacing the least signifi-

cant bits (LSBs) of the selected pixels with the bits of a message to be embedded

(stego vectore). In other words, the least significant bit of each selected pixel is

replaced by an element of the vector stego. However, it is important to note that

it is possible to modify the pixels by replacing more than just one bit of the LSB,

this is referred to as "2LSB replacement".

That being said, Steganography by LSB replacement is not very safe [Pevný et al.,

2010b]. Indeed, even if the modifications made do not affect the external appear-

ance of the medium, they considerably alter its statistical distribution leading to

a phenomenon of probability equalization (stair-step effect in the histogram). As

a consequence, a simple pairwise statistical analysis, such as X 2, would be suffi-

cient to detect the modification [Westfeld and Pfitzmann, 1999]. For very small

Chapter 3. Steganography in spatial domain 71

Cover x

5 = 00000101

88 = 01011000

171 = 01110101

147 = 01111111

200 = 11001000

1

0

1

1

0

0

0

0

1

1

4 = 00000100

88 = 01011000

172 = 01110110

147 = 01111111

201 = 11001001

stego yPixels to modify vc

LSB(x)

vs modify pixels

LSB

199= 11000111

170 = 01110100

6 = 00000110

Figure 3.6: Illustration of the embedding algorithm in the case of an LSB
matching. The cost map (3.3.1), as well as the key, will determine a sequence
of pixels to be modified in the cover image x. It is from these pixels that we
generate the cover vector vc through the extraction of the LSBs. A syndrome
coding technique is applied to transform the cover vector into a stego vector vs
(explained in sub-section3.3.2.2). Finally, for each element of the stego vector
vs that differs from that of the cover vector vc, we have the choice between
two bytes: the one obtained by adding 1, and the one obtained by subtracting
1. however, be careful with the values that are out of the interval [0 : 255],

otherwise it would be immediately detected by a steganalyst.

payload, machine learning [Fridrich and Kodovský, 2013] and deep learning [Chen

et al., 2019] are very efficient.

Steganography with LSB Matching embedding

In Figure. 3.6, we illustrate the embedding algorithm using the LSB matching,

also known as ±1 embedding. This embedding algorithm is very close to the LSB

replacement, as it also embeds the stego vector vs into the cover pixels. However,

instead of replacing the LSB pixels, this approach works by randomly incrementing

or decrementing the value of the pixel by 1. The LSB matching embedding method

was proposed for the first time by [Sharp, 2001]. It was presented as a solution

to overcome the LSB replacement low-security problem. Indeed, LSB matching

techniques are much more difficult to detect compared to LSB replacement tech-

niques. It is important to point out that all modern and secure algorithms are

based on an embedding by "LSB matching".

In Section. 3.3, we first presented the concept of the adaptive steganography

method, then reviewed the three essential elements of any adaptive steganography

Chapter 3. Steganography in spatial domain 72

Cover x

 stego y

vc

 vsCompute cost map Shuffle STC encoding
Embedding (LSB
replacement or

matching)

vc'

 ρ'cost map ρ

Key Message m

LSB (x)

Figure 3.7: Embedding framework in adaptive steganography.

algorithm, from the computation of a cost map to the encoding of the message

ending with the embedding method. In Figure. 3.7, we illustrate how to put these

elements together to make an adaptive steganography algorithm.

3.3.4 Simulator

Using a specific coding scheme, such as STC (Section. 3.3.2.2, instead of optimal

coding leads to a small sub-optimality in terms of embedding, this can be handled

by using a simulator that simulates the embedding changes.

In [Fridrich and Filler, 2007] the minimal expected embedding distortion, for a

fixed payload (m), is given by the following equation:

minD(x, y) =
n

∑

i=0

ρi pi, (3.11)

with pi the probability of modification of the ith pixel, which is directly related to

the detectability value ρi of the pixel at position i. It is defined as follows [Pevný

Chapter 3. Steganography in spatial domain 73

Figure 3.8: Image from the BOSS base [Bas et al., 2011].

et al., 2010b]:

pi =
e−λρi

1 + e−λρi

, (3.12)

with λ > 0 a constant determined by the constraint on the message’s size:

−
n

∑

i=0

(pi log2 pi + (1 − pi) log2(1 − pi)) = m, (3.13)

The modification probability map can be then defined as follows: p = {pi, i ∈
[0, ..., n]}, where pixels with higher modification probability have a higher chance

of being modified. The simulator carry out the embedding process by generating

random values in the form of r ∈ [0, 1]n1 . These values are used later to decide

how to change each pixel of the cover image x (±1 or 0 modification).

We give in Figure. 3.9 the map of the modification probabilities associated with

the image given in Figure. 3.8 when the HUGO [Pevný et al., 2010b] algorithm is

used. Each pixel is associated with a modification probability.

Chapter 3. Steganography in spatial domain 74

Figure 3.9: Embedding probability map of image in Figure. 3.8 when using
Hugo at a payload of 0.2 bpp [Pevný et al., 2010b].

.

3.4 Embedding in spatial domain

Spatial domain embedding techniques carry out the embedding directly on the

pixels. Thus, the embedding rate (the amount of data we embed for a given cover)

is measured in bit per pixel (BPP). These techniques offer better embedding-

capacity and less processing time compared to transform domain techniques where

covers are transformed into another domain (i.g. frequency domain JPEG) before

embedding.

In this section, we present some of the current state-of-the-art steganographic

algorithms, highlighting how computing the cost map. The message encoding

and embedding parts will not be discussed here as they remain identical to those

illustrated in Figure. 3.7.

3.4.1 Highly Undetectable steGO (HUGO)

In this sub-section, we will present HUGO [Pevný et al., 2010b], the first adaptive

algorithm proposed in the literature. It was proposed in 2010 and used in the

same year as an embedding algorithm for the BOSS (Break Our Steganography

System) competition [Bas et al., 2011].

Chapter 3. Steganography in spatial domain 75

The cost map ρ = {ρi ∈ [0, ∞[}n
i=0 of the HUGO algorithm is defined such that,

for the ith pixel, the cost of its modification is:

ρi =
d

∑

j=1

w[j] |fx[j] − fx∼xi
[j]|, (3.14)

with:

• f is a feature vector generated from the co-occurrence matrix. Each bin

from this matrix contains the number of occurrences of values triplets (d1,

d2, d3) in the residual image. This latter is obtained by filtering the image

with the kernel [1- 1], followed by a truncation in the interval {−T, ..., T}.

• fx refers to d-dimension feature vector of the image x,

• fx∼xi
refers to the features vector of the image x whose ith pixel has been

modified,

• w[j] is the weight associated with the triplet (d1, d2, d3) ∈ {−T, ..., T}, it is

calculated as follow:

w[j] =
1

[

√

d2
1 + d2

2 + d2
3 + σ

]γ ,
(3.15)

with σ and γ are two parameters that can be tuned to minimize the detectability.

The term w[j] is used to promote the embedding in images zones where the triplet

(d1, d2, d3) ∈ {−T, ...T} is high, which tends to favour embedding in textured or

contour zones. This can be noticed in Figure. 3.9.

Once the ρ cost map is found, we move on to the next step, where we select pixels

to modify either by the help of a simulator, or by using STC. These pixels are

then modified by ∓1 depending on the distortion caused by each.

Chapter 3. Steganography in spatial domain 76

3.4.2 Spatial-UNIversal WAvelet Relative Distortion (S-

UNIWARD)

S-UNIWARD is an embedding algorithm for the spatial domain. Its distortion

function is defined in the wavelet domain. It made the first appearance through

an article submitted to IHMMSec 2013 [Holub et al., 2014].

In S-UNIWARD the cost map ρ is composed of {ρi ∈ [0, ∞[}n
i=1, where ρi is given

by the following equation:

ρi =
d

∑

k=n

n1
∑

u=1

n2
∑

v=1

|W (k)
uv (x) − W (k)

uv (x ∼ xi)|
σ + |W (k)

uv (x)|
, (3.16)

with

• W (k)
uv (x) the wavelet coefficient in the (u, v) ∈ {1, .., n1}×{1, ..., n2} position

for the kth sub-band of the image x,

• W (k)
uv (x ∼ xi) the wavelet coefficient in the (u, v) ∈ {1, .., n1} × {1, ..., n2}

position for the kth sub-band of the image x whose pixel i has been modified,

• σ a numerical stabilization constant 4.

Note that there are three filtering directions for wavelet decomposition: horizontal,

vertical, diagonal. A closer look at the equation shows that the cost ρi is small

in textured areas. Indeed, for a pixel i, the intensity variations in the vertical,

horizontal, and diagonal directions are obtained via wavelet decomposition. The

higher the amplitude is in one or more directions, the larger the denominator is -

and therefore the smaller the ρi; this indicates that it is possible preferably choose

this pixel to make a modification.

4in [Holub et al., 2014] σ is set to 1

Chapter 3. Steganography in spatial domain 77

3.4.3 Wavelet Obtained Weights (WOW)

The WOW algorithm [Holub and Fridrich, 2012], was proposed in 2012, this al-

gorithm is very similar to S-UNIWARD considering the fact that the embedding

costs are also calculated from three directional residues. It first calculates the

weighted difference between the residual wavelet coefficients of the cover image,

and the residual wavelet coefficients of the stego image and then aggregates the

result obtained to construct a cost map. ρi is given as follow:

ρi =
d

∑

k=1

1

ξ
(k)
i

, (3.17)

with ξ(k), known as embedding suitabilities, is computed as follow:

ξ
(k)
i =

n1
∑

u=1

n2
∑

v=1

|W (k)
uv (x)| ⋆ |W (k)

uv (x) − W (k)
uv (x ∼ xi)|, (3.18)

By taking a closer look at those equations, we notice that it tends to force the

embedding modification to textured ones and avoid the smooth regions.

Chapter 3. Steganography in spatial domain 78

3.4.3.1 A new cost function for spatial image steganography (HILL)

HILL is another embedding algorithm for the spatial domain, it was proposed

in 2014 as an upgraded version of WOW. The authors [Li et al., 2014], when

analyzing the cost map derived from Equation. 3.17 of WOW algorithm, have

noticed the existence of some pixels with high-cost values inside texture regions;

this is because the pixels may be predictable in one of the directions. However, a

pixel in a texture region, even being predictable in one of the directions, should be

assigned a lower cost value To this end, and to ensure that pixels within textured

regions have relatively low costs, they replaced the three directional kernels with

one non-directional high-pass filter which is then followed by two low-pass filters.

Based on the above analysis, they have proposed a cost map given by the following

equation:

W (k) = x ⋆ H(k),

ξ(k) = |W (k)| ⋆ L1,

ρ =
d

∑

k=1

1

ξ(k)
⋆ L2,

(3.19)

with W (k) is the residual obtained by convolution the image x with a high pass

filter H(k). ξ(k) is the embedding suitability.

The high-pass filter is used to locate the less predictable parts in an image, where

the two low-pass filters are used to make the low-cost values more clustered.

The given results (see next section) show that HILL algorithm makes the embed-

ding changes more concentrated in texture region.

Chapter 3. Steganography in spatial domain 79

3.4.3.2 Content-Adaptive Steganography by Minimizing Statistical De-

tectability (MiPOD)

MiPOD algorithm [Sedighi et al., 2016a], was proposed in 2016. It is one of

the most secure embedding algorithms for spatial domain. This algorithm differs

fundamentally from the previously presented algorithms as there are no pixel costs

to start with. Instead, based on a residual model, the embedding change rates p =

{p1, ..., pn} are first computed by solving numerically the two following equation:

piσ
−4
i =

1

2λ
ln

1 − 2pi

pi

, i = 1, , N, (3.20)

R =
N

∑

i=1

H(pi), (3.21)

with σ2
i is the variance of the cover’s pixel xi, that is computed using a variance

estimator. λ is the Lagrange multiplier.

Once the change rates are computed p, using the method of Lagrange multipliers,

they are converted to costs ρ = {ρ1, ..., ρn} using the following equation:

ρi = ln (1/pi − 2) (3.22)

These costs are then used by the syndrome-trellis codes to embed the payload R

during the embedding process.

Chapter 3. Steganography in spatial domain 80

3.4.3.3 Discussion

Since 2010, steganography researchers have focused on developing well-designed

cost functions in order to generate subtle cost maps that may lead to optimal adap-

tive embedding based on the content of the images. After 2016 and the MiPOD

algorithm, there was no more major progress, except for some small improvement.

Other steganography techniques have then emerged. We list below two techniques

with strong potential.

Natural steganography In adaptive steganography, the steganographer tries

to concentrate the embedding in certain regions of the cover, while considering

the image content, for the objective of minimizing the distortion caused by the

embedding.

However, even a small distortion will change the statistical cover distribution.

Considering this fact, Natural steganography [Denemark et al., 2018] aims to em-

bed the message by mimicking another cover source different from the initial one,

i.e. a different ISO sensitivity. Thus the image obtained via the embedding is no

more seen as stego but a cover from a different source. To do so, the added signal

allows to switch from one source to another source.

Strategic adaptive steganography In adaptive steganography, the evolution

of Eve’s steganalysis strategy is not taken into account. It is then more interesting

to propose an optimal adaptive steganography [Schöttle and Böhme, 2016], also

called strategic adaptive steganography. With such a steganography algorithm, the

pixels’ modification probability is set to ensure the Nash equilibrium in the cat-

and-mouse game between Alice/Bob and Eve (explained more in detail in next

chapter.

Chapter 3. Steganography in spatial domain 81

3.5 Conclusion

In this chapter, we have introduced the modern notions of steganography, as well

as the main methods for embedding. Among the presented embedding methods,

we were particularly interested in adaptive steganography methods, which are

based on the principle of minimizing a distortion function. For secret message

embedding, we have seen that most current adaptive methods use a cost map,

which assigns to each cover pixel a detectability cost ρi (in the most of the case

ρ+
i = ρ−

i , reflecting its level of security during the embedding. Then we briefly

presented the techniques of syndrome coding, we defined the concept of matrix

embedding, and we presented some examples of corrective codes used for modern

steganography, particularly STC. Then we have seen how to embed the stego

vector within the medium carrier (cover image). Finally, we present a few recent

embedding algorithms.

Chapter 4

Steganography using deep

learning

Contents

4.1 Approach by synthesis with/without modifications 85

4.2 Approach generating a probability map 87

4.3 Approach adversarial-embedding iterated 90

4.4 The 3 players approach . 92

4.5 Conclusion . 95

82

Chapter 4. Steganography using adversarial learning approach 83

As mentioned previously, Simmons [Simmons, 1984] has formalized the reasoning

framework for the steganography/steganalysis domain as a 3 player game. The

steganographs, Alice and Bob, create a secret communication channel in order to

converse secretly without being suspected by third-party (Eve). So, they use a

banal medium, for example, an image, and dissimulate in this medium a message.

Eve, the steganalyst, observes the exchanges between Alice and Bob. Its role is

to make a binary decision, i.e. a two-class classification. In the case where the

exchanges are images, Eve has to figure out whether they are natural image (cover

images) or if they hide a message (stego images).

As discussed previously in Section. 3.3, modern embedding algorithms are adap-

tive which means that they take into account the content of the hosting medium

(the cover) in order to better hide the message [Holub et al., 2014, Holub and

Fridrich, 2012, Sedighi et al., 2016a]. Despite the fact that modern embedding ap-

proaches are the result of almost 20 years of research using codes and adaptivity,

these algorithms, from a game theory point of view, are qualified as naive adaptive

steganography. Indeed, when creating an embedding algorithm, the evolution of

Eve’s steganalysis strategy is not taken into account.

The game between Alice, Bob and Eve in Simmons model can be used in a game

theory context. In this context, each player tries to find the strategy that maxi-

mizes his or her profits. For that purpose, we express the problem as a min-max

problem that we strive to optimize. The optimum solution, if it exists, is called

the Nash equilibrium solution. When all players use a strategy in the Nash equi-

librium, the change in strategy of one player results in a counter-attack by the

other players allowing them to increase their winnings. To this end, [Schöttle and

Böhme, 2012, 2016] has proposed a formal solution for steganography named as

optimal adaptive steganography, and also called strategic adaptive steganography.

With such a steganographic algorithm, pixels, others than those modified by a

naive approach, have a chance to be modified. In other words, in a strategic adap-

tive steganography, the pixels’ modification probability is set to ensure the Nash

equilibrium in the cat-and-mouse game between Alice/Bob and Eve and not only

to minimize a distortion measure.

Chapter 4. Steganography using adversarial learning approach 84

The strategic adaptive steganography is a very nice concept, but trying to formal-

ize it mathematically often requires simplifying assumptions which are far from

modelling the practical reality. Another way to obtain a Nash equilibrium is to

"simulate" the game. Alice can play the game alone (from her side and without

interacting with Bob or Eve) by using three algorithms which competes against

each other (two algorithms in a simplified version). Those algorithms are the

embedding algorithm, the extracting algorithm, and the steganalysis algorithm.

They are named conventionally as agents; and more precisely Agent-Alice for the

embedding algorithm, Agent-Bob for the extracting algorithm, and Agent-Eve for

the steganalysis algorithm ([Yedroudj et al., 2019]), thus making a distinction

with the Humans’ users Alice (sender), Bob (receiver), and Eve (Eavesdropper-

in-the-middle).

As far as we know, the first attempt to simulate a strategic equilibrium dates back

to 2011 with two approaches known as MOD in [Kodovsky et al., 2011] and ASO in

[Kouider et al., 2013]. Whether for MOD or ASO, the game simulation is carried

out through the rivalry between Agent-Alice and Agent-Eve. In both approaches,

Agent-Bob is not used since Agent-Alice is simply generating a cost map, which is

then used for coding and embedding the message thanks to an STC [Filler et al.,

2010] (see Section. 3.3.2).

Both MOD and ASO are trained by repeating the two next steps until a stop

criterion is reached:

• Agent-Alice updates the embedding cost map while requesting an Oracle how

to update the embedding costs so that the corresponding stego is even less

detectable (this is equivalent to an adversarial attack against a discriminant),

• The Oracle (Agent-Eve) updates the parameters of its classifier (SVM for

MOD [Kodovsky et al., 2011] and an Ensemble Classifier for ASO [Kouider

et al., 2013])

With the emergence of Generative Adversarial Networks (GAN) (discussed previ-

ously in Section. 2.3.1), many areas have been revolutionized; among them, there

Chapter 4. Steganography using adversarial learning approach 85

is the strategic embedding. As a result, game simulation, already implemented

in MOD [Kodovsky et al., 2011] and ASO [Kouider et al., 2013], becomes easier

to deploy and to optimize through the use of neural networks. This has led to

the emergence of new steganographic approaches based on the use of GANs and

adversarial concepts. These approaches may be categorized into four families:

1. Approaches by synthesis/no modifications,

2. Approaches with probability map generation,

3. Approaches with adversarial embedding iterated,

4. Approaches with the 3 players concept.

4.1 Approach by synthesis with/without modi-

fications

Approaches belonging to this family can be divided into two sub-categories.

1. approaches based image synthesis via a GAN with modification,

2. approaches based image synthesis via a GAN with no modification.

Approaches under the first sub-category proceed in two steps which are illustrated

in Figure. 4.1. First, the GAN’s generator G is trained to generate synthetic

images which are then used as covers. The second step consists in embedding

the secret message into a cover-generated image (by cover modification). The

argument in favour of such approach is that the generated base would be more

secure. One example of these approaches is the SSGAN [Shi et al., 2017], which

was published on September 2017. Nevertheless, even if this protocol is feasible,

it offers no advantage and only complicates the embedding process. It seems more

reasonable to use an existing database from which Alice selects the image that

best suits a secret message, with a lot of noise or textures [Sedighi et al., 2016b],

Chapter 4. Steganography using adversarial learning approach 86

Z G D

Emb
cover

message

stego

secret key

Generator Discrimant

Random noise

set of syntetic
images

Adversarial learning

First step: covers generation

Second step: message embedding

Figure 4.1: Workflow diagram of approaches by synthesis with modification.

poorly classified by a classifier [Kouider et al., 2012] or with a small deflection

coefficient [Sedighi et al., 2016a].

Z G D

Generator Discrimant

Random noise

Adversarial learning

first step: covers generation

Z G E

Extractor

Z

Z G E Z'

message

Map

stego
Alice-agent Bob-agent

Syntetic image

message

restore

second step: extractor training

third step: secret communication

Figure 4.2: Workflow diagram of approaches by synthesis without modifica-
tion.

The second sub-category includes approaches of image synthesis without modifi-

cations. This sub-category is much more interesting compared to the first one.

This is because the stego generation is made directly by a neural network (the

Chapter 4. Steganography using adversarial learning approach 87

generator of the GAN). Approaches in this category, as illustrated in Figure. 4.2,

operate following the steps below:

1. pre-train a GAN to obtain generator G capable of generating synthesize

images from a noise vector of fixed-size, and uniformly distributed in [-1; 1],

2. train another CNN, called the extractor E, to extract the noise vector from a

synthesized image delivered by the generator G. The extracted vector must

correspond to the one used by G when generating the synthetic image,

3. both the sender (Agent-Alice) and the extractor (Agent-Bob) hold the net-

work and parameters of G and E, respectively. Thus, Alice, thanks to

Agent-Alice network, can map the secret message to a fixed-size uniformly

distributed vector, and then use it to generate a synthetic image, and then

send it to Bob. Bob can extract the vector and retrieve the corresponding

message through the use of Agent-Bob model.

As an example of this sub-category, we cite the following paper [Hu et al., 2018].

In this paper, the DCGAN generator [Radford et al., 2016] is used to synthesize

images with a preliminary learning thanks to GAN methodology, and the size of

the synthesized images is fixed to 64*64.

As already mentioned in a previous Section. 3.2.2, no modification approaches

are considered as safe and secure approaches; however, one of the most significant

drawbacks is the low number of bits that can be communicated compared to

approaches with modifications.

4.2 Approach generating a probability map

In contrast to the first family, approaches from the "generation of a probability

map" family are, exclusively, approaches with modifications. It means that a

stego image is obtained by altering a giving cover image. The protocol of these

approaches is resumed in Figure. 4.3.

Chapter 4. Steganography using adversarial learning approach 88

The steganographic framework of these approaches is composed of two convo-

lutional neural networks (a network for the generator G and the other for the

discriminator D), and an embedding simulator. The role of the generator G is to

generate, from a given image (cover), the modification probability map, which is

then transformed to modification map whose values belong to [-1, 0, +1], thanks to

the embedding simulator (an activation function). This modification map is then

added (point-to-point sum) to the used cover image in order to obtain a stego

image. The stego is then transferred with the cover to the discriminant network

(steganalyst).

During the training phase, the discriminant’s objective is defined as to minimize

its detection error. As for the generator, it is set to create a modification map that

reduces the detection accuracy of the discriminator (deceive the discriminator).

The family by generation of the modification probability map can be summarized

in two papers: ASDL-GAN [Tang et al., 2017], and UT-6HPF-GAN [Yang et al.,

2019]. We can also cite [Yang et al., 2019] which is another GAN that belongs to

the "generation of a probability map" family but for JPEG images.

cover imagecover image

+

Generator

stego imagestego image

probability mapprobability map modification map

Figure 4.3: Workflow diagram of approaches with probability map generation.

For the ASDL-GAN, as illustrated in Figure. 4.4 (a), the discriminator D adopts

the architecture of the Xu-Net model presented in Section. 5.5.1. In the generator

Chapter 4. Steganography using adversarial learning approach 89

side, ASDL-GAN includes a convolutional neural network and an embedding sim-

ulator. The convolutional neural network is composed of 25 convolutional blocks.

Each block is made of a succession of a convolutional layer, BN layer and an activa-

tion layer (ReLU excepts for the last block where a sigmoid is used). The generator

network is used to generate, from a cover image, the modification probability map,

which is then transmitted to the embedding simulator.

Figure 4.4: ASDL-GAN framework (extracted from [Tang et al., 2017]).

As for the embedding simulator, the authors have proposed the use of the TES

(Ternary Embedding Simulator). As shown in 4.4 (b) TES is implemented as a

mini neural network and composed of four parallel fully connected layers. This

mini-network is first pre-trained to generate a modification map, from a modifi-

cation probability map p and another map n of a random number drawn from a

uniform distribution over the interval [0,1]. Once trained, the TES is used as an

activation function by the generator to produce the modification map. The stego

is then obtained through a point-to-point sum with the cover image.

Inspired by ASDL-GAN, UT-6HPF-GAN [Yang et al., 2019] is another frame-

work for steganography within the generation of the modification probability map

family. Employing the same component modules as ASDL-GAN, UT-6HPF-GAN

includes a generator, an embedding simulator and a discriminator. For the embed-

ding simulator, UT-6HPF-GAN employs an activation function (Tanh-simulator)

instead of the TES in ASDL-GAN. This activation function is differentiable and

Chapter 4. Steganography using adversarial learning approach 90

therefore allows the formal expression of the gradient and thus the propagation.

This makes learning generator parameters easier and more efficient as compared

to the ASDL-GAN. As for the generator, a more compact architecture based on

U-NET [Ronneberger et al., 2015] is adopted. The discriminant remains the same

as the one used on ASDL-GAN (Xu-Net [Xu et al., 2016a]).

4.3 Approach adversarial-embedding iterated

Another family of steganography is the adversarial embedding iterated. Ap-

proaches that fall within this family re-use the same game simulation concept

discussed earlier in this chapter. However, instead of simulating the game using

three agents (algorithms), Alice only uses two (Agent-Alice and Agent-Eve).

Historically, the idea of adversarial examples in steganography is not a recent

one. However, the first truly adversarial iterated approaches are presented with

MOD [Kodovsky et al., 2011] and ASO [Kouider et al., 2013]. Nevertheless, these

approaches are not dynamic; they do not use a GAN.

In 2018, Tang proposed a new steganography scheme which is in the same spirit

of the game simulation. This approach is named ADV-EMB [Tang et al., 2019]

(previously named AMA on ArXiv arXiv:1803.09043). It re-uses the principle

of ASO whose objective is to update the costs map while trying to mislead a

steganalysis classifier (an oracle in ASO).

ADV-EMB algorithm operates by putting Agent-Eve (using the Xu-Net architec-

ture [Xu et al., 2016a]) and Agent-Alice to compete against each other. Agent-

Alice has access to the gradient of Agent-Eve loss and updates the costs map

according to the gradients back propagated from the steganalyst (Agent-Eve).

Therefore, the direction of modification of a cost value is more likely to be the

inverse sign of the gradient. Before the game starts, the cost map values are

initialized with the costs of S-UNIWARD.

Chapter 4. Steganography using adversarial learning approach 91

Figure 4.5: Illustration of the process of the proposed ADV-EMB scheme.
extracted from [Tang et al., 2019].

The ADV-EMB scheme is illustrated in Figure. 4.5. In practical terms, ADV-

EMB works by randomly splitting the image into two groups, i.e., a common

group containing pixels used for modification-based embedding (illustrated with

blue colour), and an adjustable group containing pixels to be modified to generate

an adversarial sample that may deceive a steganalyst (red color in Figure. 4.5).

The objective is to minimize the amount β of adjustable pixels necessary to deceive

a steganalyst (Agent-Eve). For that purpose, ADV-EMB repeats the following

Chapter 4. Steganography using adversarial learning approach 92

steps, after initializing the value of β:

1. Embed a part of the secret message bits in the common group using an

adaptive steganography algorithm (S-UNIWARD, presented in the Section.

3.4). The image Zc is then obtained (with C is the cover image),

2. embed the remaining part of the message in the adjustable group, thus pro-

ducing Z image. The adjustable pixels are modified so that Agent-Eve (the

steganalyst) makes an erroneous prediction of the class label, based on the

embedding costs for the adjustable elements q+, q-, whose their computation

is explained in [Tang et al., 2019],

3. If the resulting image Z misleads the steganalyst successfully, then Z is

considered as the final stego and therefore stop the iteration. Otherwise,

increase the number of adjustable pixels β = β + ∆β and repeat the above

steps.

The approaches within this family are achieving good results and attain a good

security level. Moreover, even though the embedding algorithm is trained against

a specific steganalyst, given the few traces that it introduces, it may not be easy

to detect by another steganalyzer. This is probably because these approaches

introduce only a limited number of modification to the initial cost map; thus, the

initial embedding approach is likely to be preserved.

However, as it was the case for ASO, if the steganalyst (Agent-Eve) is not suffi-

ciently effective to perform steganalysis, then this may have a totally counterpro-

ductive impact on Agent-Alice.

4.4 The 3 players approach

The last steganography GAN family is the 3-players game family. This family

takes the concept of the previous family (Approach adversarial-embedding iter-

ated in Section. 4.3) to the next level. So instead of two agents, 3-players game

Chapter 4. Steganography using adversarial learning approach 93

Agent-Alice

Cover (x)

Message (m)

Key (k)

ỹ Discretisation Agent-Bob

Agent-Eve

stego(y)

Message (m')

Score∈ [0,1]

Figure 4.6: The overall architecture of the 3 player game.

approaches use three agents: Agent-Alice (embedding algorithm), Agent-Bob (ex-

traction algorithm), and Agent-Eve (the discriminant). It is important to mention

that Agent-Alice and Agent-Bob are "linked" since Agent-Bob is only present to

add a constraint to the solution obtained by Agent-Alice. Therefore, Agent-Alice

and Agent-Eve play from their side an adversarial game where the objective is to

learn an embedding algorithm. For the "game" between Agent-Alice and Agent-

Bob, it is a cooperative game with the objective of making Agent-Bob capable of

extracting the secret message without errors. We summarize the principle of the

3-player game family in Figure. 4.6.

The system takes as input a cover image x, a secret messagem and a keyk. These

inputs are first introduced to Agent-Alice’s network that generates a non-discrete-

stego ỹ (ỹ∈ R
w×h). Then the discretization module receives ỹ and generates

y a stego image with discrete values. y is then given to both Agent-Bob and

Agent-Eve.

Agent-Bob tries to recover the secret message m from the stego y using the shared

secret key k. Agent-Bob inputs (y, and k) go through a set of layers and mathe-

matical operations; the extracted message m’ is then generated.

Agent-Eve receives an image z, and returns the probability score of z belonging

to the cover or stego class.

The training process of the 3 player game is described in the following algorithm.

Chapter 4. Steganography using adversarial learning approach 94

Algorithm 1: 3-player game training process.

Result: stegos, extracted_messages
Data: covers-list, messages-list, keys-list
while not converge OR loop ≤ max-iter do

// Alice and Bob learning

for iter_team1 ≤ it1 do
get_batch (covers_list, messages_list,keys_list,batch_size);
forward-propagation (covers, messages,keys);
update_Agent-Bob (LBob);
update_Agent-Alice (LAlice);

end
// Eve learning

for iter_team2 ≤ it2 do
get_batch (covers_list, stegos_list);
forward-propagation (covers, stegos);
update_Agent-Eve (LEve);

end
loop + +;

end

As shown in Algorithm 1 in line 1, the global system is trained at the maximum

for max-iter “loop”. In each loop, the learning is done sequentially by first, the

team Agent-Bob and Agent-Alice (line 2) and then, the Agent-Eve (line 8). Note

that there is a high number of loops in order to reach an equilibrium. Also, note

that inside a loop there is also a certain number of back-propagation iterations for

each agent.

Thus, for the learning of Agent-Bob and Agent-Alice (lines 2 to 7), there are

it1 iterations (line 2). For an iteration, we load a mini-batch of cover images,

secret messages, and keys (line 3), we forward-propagate all the cover images on

Agent-Bob and Agent-Alice networks (line 4), and then we update Agent-Bob and

Agent-Alice by minimizing their losses, LBob and LAlice respectively, thanks to the

stochastic gradient descent (lines 5 and 6). During this learning, the weights of

Agent-Eve are fixed.

The learning of Agent-Eve (lines 8 to 12) is similar to the learning of Agent-Bob

and Agent-Alice. There are it2 iterations (line 8). For an iteration, we load a

mini-batch of cover images and stego images (line 9), we forward-propagate all

the cover and stego images on Agent-Eve network (line 10), and then we update

Chapter 4. Steganography using adversarial learning approach 95

Agent-Eve by minimizing Agent-Eve loss LEve thanks to the stochastic gradient

descent (lines 11).

Since equilibrium is reached, the last agent playing the game will not change its

strategy. Thus, the fact to be the last player, i.e. the last learning agent, will not

impact the performances of the other agents.

To our best knowledge, the idea of three players has appeared for the first time

in 2016, where Abadi and Andersen proposed a cryptographic toy example: an

encryption algorithm using three Neural Networks [Abadi and Andersen, 2016].

The use of Neural Networks facilitates obtaining a strategic equilibrium since the

problem is expressed as a min-max problem. Moreover, its optimization could

be completed through the back-propagation optimization (discussed in Section.

2.2.5). Naturally, this 3 player game concept can be transposed in the steganog-

raphy domain using deep learning.

In December 2017 [Hayes and Danezis, 2017], and September 2018 [Zhu et al.,

2018], two different teams from the machine learning community proposed, in

NIPS 2017 and ECCV 2018, two steganographic systems based on a 3 player game

approach. Both use 3 CNNs iteratively updated. These CNN play the roles of the

Agent-Alice, Agent-Bob, and Agent-Eve. Those two papers fly over the 3 player

game concept, but their assertions are faulty, mainly because the security notions

and their evaluation are not treated correctly [Yedroudj et al., 2019]. This leads to

a ‘Non-functioning’ system for an embedding purpose. When Eve is clairvoyant,

these two approaches are, in reality, very detectable.

4.5 Conclusion

In this chapter, we reviewed image steganography with GAN. We first give the

principle of strategic adaptive steganography, pointing the difficulties of adopting

the game theory concepts on steganography fields. This chapter focuses mainly on

the GAN-based steganography methods, which are categorized into four families.

Chapter 4. Steganography using adversarial learning approach 96

First is the synthesis family. This family is also divided into two sub-categories:

with and without modification. For the modification methods, the GAN is used

to construct the original carrier. As for the no-modification methods the GAN

is responsible for the generation of the stego image. Second, we have a family

of generation of the modification probability map. Methods that belong to this

family use GAN to generate a modification map which is summed up with the

cover image to obtain the stego image. Approaches with adversarial embedding

iterated form the third steganography by deep learning family. The idea behind

these approaches is to put the generator and the discriminant in competition to

learn an embedding algorithm. The last family is the 3 player game. As its name

suggests, approaches from this family use three agents where a neural network

represents each agent.

Chapter 5

Steganalysis in spatial domain

Contents

5.1 General presentation . 98

5.2 Different classes of steganalysis 98

5.2.1 Specific versus generic steganalysis 101

5.3 Steganalysis scenario . 103

5.3.1 Clairvoyant scenario . 103

5.3.2 Clairvoyant scenario with side channel informed 104

5.3.3 Mismatch scenarios . 105

5.4 Steganalysis using two-step learning approaches 106

5.4.1 Feature vector extraction (Rich Model) 109

5.4.2 maxSRM . 112

5.4.3 Ensemble classifier . 113

5.5 Steganalysis using one-step learning approaches 115

5.5.1 Xu-Net . 118

5.5.2 Ye-Net . 122

5.5.3 ReST-Net . 126

5.5.4 SRNet . 131

5.6 Conclusion . 134

97

Chapter 5. Steganalysis background 98

5.1 General presentation

Steganography’s objective is to hide the presence of a secret message and to create a

covert channel. For that purpose, steganography by cover modification algorithms

(presented previously in Section. 3.2.1) operates by embedding the secret message

within a digital media (cover). To assure a good security level, the embedding

process is guided by a distortion function. This function is used to minimize

the impact induced by the embedding process, thus, making the algorithm more

secure. However, none of the current steganographic algorithms attains perfect

security [Cox et al., 2007]. This is because steganographic algorithms introduce

small changes (artefacts) during the embedding process. These changes may be

leveraged by an attacker to identify altered images (stegos) from covers. The

attacker is known as steganalyst, while the techniques used by the steganalyst are

called steganalysis.

Steganalysis is the counterpart of steganography. It is defined as the art or science

of detecting hidden data in suspicious files. Note that steganalysis does not have

as its initial objective to extract the data hidden using a steganographic algorithm,

it consists only of detecting the presence of hidden data. In other words, the main

purpose of steganalysis is to identify whether or not a given medium is used as a

steganographic carrier. Jessica Fridrich in [Fridrich et al., 2002] stated that the

ability to detect a hidden message in a given image (stego) is related to the length

of the message embedded in that image. Indeed, the smaller the size of the secret

message, the less cover-change is carried out (during the embedding process), and

therefore the slighter the possibility of introducing detectable artefacts.

5.2 Different classes of steganalysis

In the field of steganalysis, three main classes can be distinguished (active, passive,

malicious steganalysis). These steganalysis classes are identified according to the

action that the warden Eve, from the Simmons’ model, takes when she detects

Chapter 5. Steganalysis background 99

a secret communication. Mostly, Eve is supposed to be a passive warden, which

means she has no right to interfere with Alice and Bob’s communication. We

discuss by following this option among other options of the warden Eve:

• The passive warden scenario: Eve in this scenario shall not interfere with the

content of the communication channel, as its goal is only to detect the mere

presence of secret communication. The passive warden can only prevent or

authorize the delivery of the message; no message sent can be destroyed nor

modified.

As indicated in Figure. 5.1, when Alice sends a message to Bob (or the other

way around), the message goes through Eve who analyses this message. If

the message is considered as "clear", (see Figure. 5.1 (a)) then it will be

delivered to the concerned person; otherwise, the communication channel is

cut off [Anderson and Petitcolas, 1998], see Figure. 5.1 (b).

Nevertheless, if Bob does not receive the message he is waiting for, he may

suspect that a steganalyst has managed to cut off the communication, in

such case Alice and Bob will modify the used steganography techniques and

send the message back.

.

Alice

Eve

Bob Alice

Eve

Bobx

a) Eve passive warden when secret message is not detected b) Eve passive warden when secret message is detected

Figure 5.1: Eve is passive warden: In the case of no secret message is detected,
the sent file can be further transmitted through the communication channel, as
shown in (a). However, if a secret message is detected, the warden will block

the transmission and Bob will not receive the file (b).

• The active warden scenario: As shown in Figure. 5.2, the objective of the

active warden is to detect, alter and eventually delete a secret message hidden

within the sent message (cover). The altered cover is then re-sent to the

other prisoner, and thus, he (or she) will not suspect that their system was

Chapter 5. Steganalysis background 100

compromised [Ettinger, 1998, Cachin, 1998]. In an active warden scenario,

Eve wants to destroy the secret message by applying some modification in

the received object. For example, compression can be applied by an active

warden to modify a digital image sent from Alice to Bob.

Alice

Eve

Bob

Figure 5.2: Eve is active warden: in this case when a secret message is detected
Eve objective is to alter the intercepted medium sufficiently to preserve only the
perceptible content and prevent the extracting and reading of a possible hidden

message.

• The malicious warden scenario: In this case, and as illustrated in Figure.

5.3, when the warden detects the presence of secret message, she will at-

tempt to understand the used steganographic system in order to modify the

sent message or even produce new messages to impersonate the sender and

mislead the receiver [III and Gomez, 2006].

Alice

Eve

Bob

Figure 5.3: Eve is malicious warden: when a secret message is detected, Eve
will try to understand the used steganographic technique so she can reintroduce

a falsified message.

Chapter 5. Steganalysis background 101

Note that this scenario is difficult in practice because it is necessary to maintain

semantic consistency in communication and also to be technically capable of doing

so. [Craver, 1998] The works presented in this manuscript consider only the first

class of passive steganalysis.

5.2.1 Specific versus generic steganalysis

In general, there are two categories of steganalysis that are summarized in Figure.

5.4. 1) targeted steganalysis, which is more a forensic steganalysis approach, 2)

blind steganalysis, which is a generic approach.

Secret
message (m)

Cover image
(c)

Stego key (k)

Stego image
(s)

Steganalysis categories

Targeted or specific
steganalysis

Blind or generic
steganalysisEmbedding algorithm

cover

stego

Binary classification

Figure 5.4: Specific and generic steganalysis.

Specific steganalysis, also known as targeted steganalysis, is based on the prac-

tice of attacking a specific steganographic algorithm through the identification of

its security weaknesses (statistical flaws). The steganalyst analyzes the imple-

mentation and details of a specific embedding algorithm to find a weakness that

can lead to statistical traces in the stego. In other words, targeted steganalysis is

based on the identification of implementation flaws and weakness that introduce

specific patterns that may characterize a steganographic algorithm. This type of

attack is effective when the steganalyst is tested against stego images generated by

a known embedding algorithm. However, the steganalyst can fail considerably if

tested against stego images resulting from an algorithm other than the one being

attacked.

Chapter 5. Steganalysis background 102

As an example of targeted steganalysis, we have the attack developed by [Kodovsky

et al., 2011]. This targeted steganalysis method is dedicated to the detection of

any HUGO algorithm [Pevný et al., 2010b]. In this attack, a 4-d feature vector

(see Section. 5.4.1) was sufficient to detect HUGO algorithm.

Nowadays, in the era of adaptive steganography algorithms, it is almost impos-

sible to find an embedding algorithm with exploitable weakness, hence targeted

steganography is not an "up to date" paradigm.

Blind steganalysis, also named generic steganalysis, is the current paradigm

used to attack a steganographic scheme. Unlike targeted steganalysis, blind ste-

ganalysis techniques are not designed to attack one specific embedding algorithm

which is a more general approach which it is supposed to detect different types of

steganography content.

Because blind steganalysis can detect a broader class of steganographic techniques,

it is generally less accurate; however, blind steganalysis is an irreplaceable detec-

tion tool if the embedding algorithm is unknown or secret.

Blind steganalysis is mainly based on the use of machine learning methods (dis-

cussed in the previous chapter 2). The objective of this type of approach is to

learn the features that characterize a cover image and those that characterize

stego image, in order to distinguish between the two classes of cover and stego.

In practice, this is carried out either by using machine learning techniques seen in

Section. 2.1 or by using deep learning techniques. In the first case, the steganalyst

starts by extracting relevant features that allow separating the two classes (cover

and stego), then a particular classifier is used to learn a separation function of

the two classes cover/stego. In the second case, the features extraction and clas-

sification are regrouped together in one block (see Section. 2.2). Three examples

of blind steganalysis are presented in [Fridrich, 2004, Shi et al., 2006, Xu et al.,

2016a]. In this thesis, we interest only in blind steganalysis.

Chapter 5. Steganalysis background 103

5.3 Steganalysis scenario

In steganalysis, there are several possible scenarios. These scenarios define several

rules and assumptions on what the steganalyst knows about the steganographer’s

embedding process. In this section, we present some of the different scenarios.

5.3.1 Clairvoyant scenario

Kerckhoffs declares with the so-called Kerckhoffs principle Kerckhoffs [pp. 5-38

Jan. 1883, pp. 161-191, Feb. 1883] that the security of the message must not

depend on the secret of the algorithm (which must be publicly released), but only

on the security of a secret key.

Clairvoyant steganalysis operates within the context of this principle, as the secu-

rity of the steganographic scheme relies only on the secret key. In this scenario,

the warden Eve has a rough idea of probability distribution of the cover

images. In addition, except for the secret key, Eve has all the elements of the

steganographic scheme (payload, and embedding algorithm,image size), i.e.

she can roughly guess the distribution of stego images. Thus, the role of the ste-

ganalyst Eve is reduced to examining whether an intercepted image is a cover

image or stego image.

Formally, for a given image i = (i1, ..., in), the secret message detection problem

can be represented as a test between two hypotheses:















H0 : i ∼ Pc the image i is a cover image

H1 : i ∼ Ps the image i is a stego image

(5.1)

with Pc the distribution of the cover images, and Ps the distribution of stego

images.

Chapter 5. Steganalysis background 104

From a steganographer point of view, the clairvoyant steganalysis is the most

difficult scenario. Indeed, for the steganalyst, it is easier to develop an effective

attack knowing almost all parameters. In recent years, a lot of work has been

done on this scenario, both in steganography [Kodovsky et al., 2011, Holub and

Fridrich, 2012] or in steganalysis [Fridrich et al., 2011, Pibre et al., 2016, Kodovský

et al., 2012, Fridrich and Kodovský, 2012].

5.3.2 Clairvoyant scenario with side channel informed

The development of increasingly sophisticated adaptive steganography (Section.

3.3) has given considerable attention to the design of adaptive steganalysis schemes,

clairvoyant steganalysis with Selection Channel Aware (SCA).

This scenario can be considered as an upgrade of the clairvoyant steganalysis sce-

nario. In the context of this scenario, Eve, the steganalyst has access to stegano-

graphic scheme but also, to an additional information related to content-adaptive

steganographic algorithms, which is the modification probability map (the

selection channel).

It is assumed that Eve knows or can have a good estimate of the modification

probability map since she knows the embedding scheme and can compute the em-

bedding costs and deduce the probability map, or she can simply embed multiple

times in an image and directly estimate the modification probability map.

Incorporating this extra information (the modification probability map) into an

already existing steganalysis scheme can improve its performance, especially for a

low embedded payload [Tang et al., 2014]. For this scenario, there are two possible

practical approaches:

1. The handcrafted approach based on the use of machine learning techniques.

Among the most well-known methods that belong to this approach, we find

MaxSRM [Denemark et al., 2014], tSRM [Tang et al., 2014], σmaxSRM

[Denemark et al., 2016b].

Chapter 5. Steganalysis background 105

2. The modern approach based on the use of deep learning techniques such as

SCA-Ye-Net and SCA-SRNet, which are the selection channel aware versions

of Ye-Net [Ye et al., 2017] and SRNet [Boroumand et al., 2019], respectively.

5.3.3 Mismatch scenarios

Clairvoyant steganalysis (with and without selection channel) is currently the

methodology that achieves the best performances, this is explained by the fact

that the steganalyst is positioned in a controlled environment, where both the

steganographic scheme, the payload size and also the image source are known.

However, in the case where one of these three parameters becomes unknown, the

performance of the steganalysis scheme may be reduced. This scenario is called

mismatch steganalysis. We can distinguish two types of mismatch, cover-source

mismatch (different sources: different cameras, or different development such as

interpolation, demosaicing, and gamma correction ...etc.) [Cancelli et al., 2008]

and stego mismatch (different stego).

The problem of Cover-Source Mismatch (CSM) occurs when the images to be ste-

ganalyzed come from unknown sources [Fridrich et al., 2011]. Indeed, in practice,

the images used during the steganalyst training do not come from the same source

as the images used during the tests. In such a case, it is essential to determine

what characterizes a cover distribution to avoid the strong dependence on the

cover distribution during training. This kind of mismatch was identified, as far

as we can tell, during the BOSS contest. The steganalyst was first trained on the

BOSSBase [Bas et al., 2011], once trained, it was tested on real-world images that

did not belong to the training set. The conclusion was that performance dropped

down dramatically compared to the tests performed on the BOSSbase image.

One possible solution to avoid the CSM is to used a huge dataset to ensure image

diversity and thus reduce the chance of encountering a cover image of an unknown

distribution [Lubenko and Ker, 2012a], [Lubenko and Ker, 2012b]. This approach

is referred to as "holistic approach". The other way is "the atomistic approach,"

Chapter 5. Steganalysis background 106

i.e. to pre-process the image database in order to partition it into a few clusters

where images that share similar features are grouped together. Then, a particular

classifier is assigned to each cluster to learn how to classify its vectors [Pasquet

et al., 2014].

The Stego Mismatch (SM), is similar to the CSM scenario. However, in this sce-

nario, the parameter considered as unknown for the steganalyst is no more the

cover source (probability distribution of the cover images) but the steganographic

scheme, i.e. the probability distribution of the stego images. In practice, the em-

bedding algorithm used to generate the stego images used during the steganalyst’s

training are not necessarily those present in the test-set.

Another kind of Stego Mismatch can be triggered when the steganalyst has no

access to the payload size information. Despite the fact that the steganalyst

knows the steganographic scheme, she/he is unable, without knowing the payload

size, to access to the probability distribution of the stego images. Thus training

and testing the steganalyst on two different distribution will lead to a mismatch

problem.

In this thesis, we will only consider the clairvoyant scenario.

5.4 Steganalysis using two-step learning approaches

As mentioned before, steganalysis is considered as a hypothesis-testing problem

where a steganalyst needs to determine whether or not, a given digital medium is

"stego". Therefore, steganalysis can be treated as a binary classification problem

(two classes). This implies that steganalysis may be addressed using machine

learning tools (ML) (see Figure. 5.5) and more recently, deep learning tools. ML-

based steganalysis generally follows the following classification frameworks.

Let D = {(x(1), y(1)), ..., (x(s), y(s))} a dataset with s sample. x(i) = (x1, ..., xn) ∈
{0, ...255}n is a 8-bit grayscale images, y(i) ∈ {0, 1} is the corresponding label,

y = 0 if x(i) is a cover, and y = 1 if x(i) is a stego. We want thus to learn a

Chapter 5. Steganalysis background 107

input image pre-processing
building

descriptors
statistical

aggregating
features

input image
high-pass
filtering

building
descriptors

statistical
aggregating

features

(1) (2) (3)

Machine learning
tasks

ML-based
steganalysis

Figure 5.5: Steganalysis with regard to machine learning tasks.

mapping function f : x → y that can give the most accurate prediction ŷ(i) of the

image x(i) compared to its correct label y(i) where:

ŷ(i) = f(x(i)) (5.2)

In practice the mapping function f(.) is learned through the minimization of the

probability of error given in Equation. 5.3, over a part of the dataset D. This part

of the dataset is known as training set Dtrain = {(x(1), y(1)), ..., (x(strain), y(strain))}.

Once learned, the accuracy of f(.) is empirically evaluated on the other part of the

dataset, called testing set and refereed as Dtest = {(x(1), y(1)), ..., (x(stest), y(stest))},

satisfying s = strain + stest and strain ∩ stest = ∅

Pe =
1

strain

strain
∑

i

|y(i) − ŷ(i)| (5.3)

ML-based steganalysis, like any other machine learning application, involves two

steps: 1) features extraction, 2) classification with learnable classifier.

The feature extraction step consists in applying the hand-crafted transformation

function fext(.) to transform the database D = {(x(1), y(1)), ..., (x(s), y(s))} to D′ =

{(z(1), y(1)), ..., (z(s), y(s))}, with z(i) ∈ R
m is m-dimension feature vector.

Chapter 5. Steganalysis background 108

The obtained database D′, more precisely D′
train is used to train a generic classifier

to learn a mapping function fclassif (.), which maps feature vectors z(i) to a label

y(i) (stego, cover). Therefore, the mapping function f(.) is a composition of the

two function fext(.) and fclass(.).

ŷ(i) = f(x(i)) = fclassif (fext(x
(i))), (5.4)

Despite the importance of the learnable classifier and its direct impact on the

performance of the machine-learning-based methods, features extraction is gener-

ally the most crucial step. A well-designed and sophisticated feature extraction

allows not only to reduce the search space of the classifier chosen by the stegana-

lyst, but also a good separation of the required classes (in our case the cover and

stego classes). Therefore, it is important to choose features that best discriminate

cover images from stego images. In this thesis, ML-based steganalysis methods

are refereed as two-step learning approaches.

In common with other machine learning tasks, feature extraction in steganalysis

based two-step learning approaches generally consists of three essential steps (see

Figure. 5.5):

1. computing ’residuals’ (the residual noise images);

2. building descriptors that reflect the links between each pixel and its neigh-

bours over each residual;

3. producing a feature vector by aggregating the descriptors together.

In this context, several studies have been proposed that follow the same typical 3-

steps procedure such us SPAM [Pevný et al., 2010a], SRM [Fridrich and Kodovský,

2012], PSRM [Holub et al., 2013], CCJRM [Kodovský and Fridrich, 2012].

For the classification step, a classifier is used to learn from the feature vector

delivered by the feature extraction algorithm. The most commonly used classifiers

are SVM [Hearst, 1998], and Ensemble classifiers [Kodovský et al., 2012].

Chapter 5. Steganalysis background 109

5.4.1 Feature vector extraction (Rich Model)

Unlike most of pattern recognition tasks, in steganalysis, the signals of interest are

the embedding modification hidden in the cover image pixels. Thus, the extracted

features must be sensitive to steganographic modifications and insensitive to the

content of the image. To this end, Fridrich have proposed a feature extractor that

follows the typical 3-steps features extraction, and in the same time is well adapted

to steganalysis particularity known as Rich Model (RM) [Fridrich and Kodovský,

2012]. In the following, we will present the functioning of this feature extractor

(RM).

5.4.1.1 Computing residuals:

As pointed before, steganalysis is a classification problem with extremely low

signal-noise-ratio (SNR). To boost the SNR, RM algorithm performs a high-pass

filtering in early stages of the feature extraction process in order to suppress the

irrelevant image-content signal, and to extract and model the residual noise noted

r = (rij) ∈ R
n1×n2 which is computed using the high-pass filters of the following

form:

ri,j = X̂i,j(Ni,j) − cxi,j (5.5)

with Ni,j the neighborhood of the pixel xi,j, (xij /∈ Ni,j), c ∈ N the order of residual

noise, and X̂i,j a prediction function that estimates the value of the cover pixel

xi,j from its neighborhood Ni,j.

The residuals generated from the above equation are called SPAM residuals. To

introduce a certain non-linearity into the calculation of the residual, SPAM resid-

uals are processed to generate MINMAX residuals by element-wise taking the

minimum or maximum of the corresponding pixel values in multiple residuals.

Chapter 5. Steganalysis background 110

Once calculated, the residual noise is then quantified and truncated according to

the following equation:

ri,j = Trunc(round

(

ri,j

q

)

, (5.6)

where q > 0 is a quantification step, and Trunc() is a truncation function that is

defined as:

Trunc (x) =



































T if x ≥ T

−T if x ≤ −T

x otherwise ,

(5.7)

with T ∈ N is a threshold parameter.

Quantification is an essential step, as it allows the analysis of different ranges of

noise amplitude (low amplitude: flat, medium and high amplitude: borders and

textured areas). Truncation, on the other hand, reduces the range of residual noise

values (by taking a small T). Both the truncation threshold T and quantization q

are empirically determined to be T = 2 and q ∈ {1, 2, 3}.

In essence, the combined effect of quantification and truncation is equivalent to

the reduction of the dynamic range of residues; this is to facilitate the production

of co-occurrence matrices sensitive to the embedding modification changes (see

next section on co-occurrence matrices) for accurate statistical modelling.

5.4.1.2 Building descriptors (co-occurrence matrices):

The second step for the feature extraction is descriptors building. In RM this

consists of the calculation of the co-occurrence matrices on the neighbourhood of

Chapter 5. Steganalysis background 111

the residuals elements. During this step, the steganalyst calculates, the proba-

bilities of occurrence in the residuals matrices resulting from the first step (after

quantification and truncation).

In practice, RM operates by assigning to each element in r , denoted as ri,j a

descriptor value. This value is computed based on the values of the four consecutive

neighbors of ri,j over the residual matrix in horizontal, vertical directions, or

diagonals directions e.g., for a vertical direction, the co-occurrence value of a 4

neighborhoods-pixel is calculated by:

Cv
(k0,k1,k2,k3) =

∑

i,j

[(ri,j, ri+1,j, ri+2,j, ri+3,j) = (k0, k1, k2, k3)] (5.8)

with [.] kronecker operator, and {k0, k1, k2, k3} ∈ [−T, ..., T].

It is important to enlighten the reader on the fact that the spatial information is

discarded when constructing the co-occurrence matrices. This makes the classifier

less sensitive to features spatial location and thus prevents from reducing the

steganalysis problem to the memorization of the embedding locations. Also, it

makes the process less sensitive to the size of test-set images.

5.4.1.3 Producing feature vector

This step is intended to construct the final feature vector, z ∈ R
m, of high dimen-

sion by merging the different features from the different co-occurrence matrices

and different filters.

In order to reduce the dimensionality and generate more compacted and robust

features, both the symmetric natures of co-occurrences and signs of residual values

have been considered, i.e. {k0, k1, k2, k3}, {−k0, −k1, −k2, −k3} and {k3, k2, k1, k0}
are aggregated into one value.

Once constructed, the final feature vector z, that characterize a given image is

passed to the classification. The dimensionality of the feature vector for the Spatial

Chapter 5. Steganalysis background 112

domain Rich Model (SRM) is 34671. Note that many features are useless and

thus the feature vector can be improved to a reduced version of 32016 features

[Boroumand and Fridrich, 2017]

5.4.2 maxSRM

To further improve the steganalysis performance against the ever more sophis-

ticated steganography algorithms, more discriminating statistical features are in

demand. One way to do that is to incorporate the extra information of the clair-

voyant scenario with side channel informed (seen in Section. 5.3.2). One of the

most well-known practical algorithms that go in this direction is the maxSRM

[Denemark et al., 2014].

The maxSRM algorithm is built on the SRM algorithm and proceeds in the same

way. The only exception comes from the computation of the co-occurrence fea-

tures where the selection channel information is used Denemark et al. [2014]. For

instance, taking the horizontal 4 neighbourhoods the co-occurrences given by:

Ch
(k0,k1,k2,k3) =

∑

i,j

max(βi,j, βi,j+1, βi,j+2, βi,j+3)×[(ri,j, ri,j+1, ri,j+2, ri,j+3) = (k0, k1, k2, k3)]

(5.9)

where (βi,j, βi,j+1, βi,j+2, βi,j+3) are the estimated probability of the embedding

modification, which are computed using the cost map obtained from the image to

be examined with the help of an optimal simulator (seen in Section. 3.3.4).

From Equation. 5.9, only the highest modification probability of the four consec-

utive pixels is used to contributes to the feature.

A more adapted version of maxSRM was later proposed in [Denemark et al.,

2016b] which is called ad σmaxSRM. Compared to maxSRM, σmaxSRM replaces

the maximum value of the estimated embedding modification probabilities with a

Chapter 5. Steganalysis background 113

maximum of the expected difference in the filtered residual.

Ch
(k0,k1,k2,k3) =

∑

i,j

max(σi,j, σi,j+1, σi,j+2, σi,j+3)×[(ri,j, ri,j+1, ri,j+2, ri,j+3) = (k0, k1, k2, k3)]

(5.10)

where σi,j is an estimated value of the expected difference in the filtered residual.

5.4.3 Ensemble classifier

The next step, after features extraction, is classification. For this purpose, a

learnable classifier is used. The classifier relies on the relevant extracted features

resulting from the first step to learn a separation function that can accurately

discriminate the samples belonging to the cover or stego classes. Among the most

famous classifiers in the steganalysis field, we have the Ensemble Classifier (EC)

[Kodovský et al., 2012].

This classifier was proposed as an alternative to traditional classifier used for

steganalysis purposes such as support vector machines (SVMs) [Hearst, 1998].

Indeed, modern steganalysis relies on increasingly more complex features space

leading to a high training complexity, which makes SVM a non-adapted classifi-

cation tool for modern steganalysis.

The Ensemble Classifier consists of many simple base learners (many Fisher Lin-

ear Discriminant), where each base learner represents a simple classifier which is

independently trained. Thus, the training of the ensemble classifier consists of

the training of its sub classifiers (FLDs). Each sub-classifiers is trained, like an

ordinary classifier as seen in Section. 2.1, on randomly selected sub-spaces of the

original feature space. The dimensionality of the random sub-spaces can be cho-

sen to be much smaller than the full dimensionality m. This helps to significantly

decrease the training complexity, thus allowing the use of more complex feature

vectors.

Once all base learners are trained, we move to the next step, prediction. For a

given example from the testing set, each base learners returns a score (prediction).

Chapter 5. Steganalysis background 114

The final prediction is then obtained by aggregating these scores. Despite the fact

that the individual performance of base learners may be poor, the final accuracy

increases considerably once their results are merged and eventually stabilizes for a

sufficiently large number of base learners. This strategy is known in the machine

learning field as bootstrap aggregating or bagging [Breiman, 1996].

In the following, we provide a more formal description of the ensemble classifier

implementation.

Let D′
train = {z(i), y(i)}i∈[1,strain] be a training set, and D′

test = {z(i), y(i)}i∈[1,stest]

a testing set with z(i) ∈ R
m a feature vector that describes the i-th image, and

yi ∈ {0, 1} the class associated with it (0 for a cover image, and 1 for a stego

image). Let Bl, l ∈ [1, L], with L the number of base learners composing the EC.

The objective of the training phase is to train each base learner to correctly map

the samples z(i) from D′
train to their correct class {0, 1}. To this end, and in order

to reduce the computational complexity, the base learners’ training is performed

only on a msub-dimension feature subspace (with msub < m). In practice, before

the training phase, each base learner Bl pseudo-randomly chooses a subset of

features (msub features) from each feature vector z(i) ∈ R
m.

For the l-th FLD classifier, the used training set is given as follow:

D
′l
train = {z(i), y(i)}i∈[1,strain] (5.11)

with z(i) is ml
sub feature vector.

The prediction given by this classifier for a given sample z(i) ∈ D
′l
train is given as

follow:

Bl

(

z(i)
)

=















1 if ŷ(i) ≥ T

0 otherwise

(5.12)

Chapter 5. Steganalysis background 115

with T a learnable parameter represents the threshold, ŷ(i) the projection value

returned by the base learner Bl.

During training, the value of the threshold of each FLD classifier is adjusted to min-

imize the total detection error (PE) on the training data. In this spirit [Kodovský

et al., 2012] have proposed to compute the probability of detection error PE as

follows:

PE = min
PF A

PF A + PMD(PF A)

2
(5.13)

During the test phase, for a given sample z(i) ∈ D′
test, each FLD classifier returns

a binary decision indicating the class assigned to the i-th image associated to z(i)

feature vector. The final decision is the obtained by merging the results of the

different FLD classifiers (by majority voting) according to the following formula:

Bl

(

z(i)
)

=















1 if
∑L

l=1 Bl

(

z(i)
)

> L/2

0 otherwise

(5.14)

The use of ensemble classifiers was one of the main contributions in the steganal-

ysis field pending the last ten years, as it permitted the use of more complex

features that can capture many different dependencies without worrying about

the dimensional restriction.

5.5 Steganalysis using one-step learning approaches

Steganalysis is not the only research field that depends significantly on the feature

extraction step. In computer vision tasks, such as object detection, researchers

consider that feature extraction is the keystone to the development of a reliable

Chapter 5. Steganalysis background 116

object-detection framework. This implies that the used features should be robust

to the objects different orientations, including scales, viewing angles and occlu-

sions. However, it is almost impossible to design a handcrafted features vector

capable of covering such complexity; therefore, the performance of this framework

will remain far from optimal.

During the well-known image-net competition in 2012 [Russakovsky et al., 2015],

a new method which can learn features by mathematical optimization rather than

hand extraction was proposed by the winner of the competition. He proposed

the use of a convolutional neural network (discussed previously in Section. 2.2.6),

this network is known as ALexNet [Krizhevsky et al., 2012]. It has surprisingly

outperformed by far all conventional feature-based approaches proposed by other

teams. Since then, computer vision researches have shifted from the improvement

of the feature extraction algorithm to the design of self-learning feature methods.

In other words, the routine of making enormous efforts into manual feature ex-

traction has been replaced by designing well-adapted neural network architectures

that can automatically learn relevant features.

Deep learning, more specifically convolutional neural networks, is being embraced

into the field of steganalysis in an attempt to potentially learn more relevant and

effective features and thus improve performance. However, it is not surprising to

find that a random designed CNNs usually can not converge when it is trained

as a steganalyzer. Therefore, some customized designs specific to steganalysis are

required in order to incorporate the domain knowledge into the learning of CNN

based steganlyzer.

We illustrate in Figure. 5.6 the difference between the two-step learning approach

and the one-step learning approach.

One can notice that the principle remains the same whether it is a one-step or a

two-steps learning approach.

The first attempt to use a Deep Learning method for steganalysis dates back to

2014 [Tan and Li, 2014]. The authors used unsupervised learning with a stack of

Chapter 5. Steganalysis background 117

computing
residuals

building descriptors
(co-occurrence)

ensemble
classifier or SVM

convolution
block 1

convolution
block L

...

convolutional module

FC layers

softmax layer

classification module

convolutional
layer with HPF

pre-processing module

features
representationpre-processing classification

One-step

first step second step

two-step learning
approach

one-step learning
approach

Figure 5.6: The two-step learning approach versus one step learning approach
for steganalysis.

auto-encoders. One year later, Qian et al. [Qian et al., 2015] proposed to use, for

the first time, supervised learning with Convolutional Neural Networks. In the

pursuit of this research, Pibre has proposed another network architecture [Pibre

et al., 2016]. In 2016, the first results, close to those of the state-of-the-art, were

obtained with an Ensemble of CNNs [Xu et al., 2016b]. The Xu-Net [Xu et al.,

2016a] CNN is used as base learner of the Ensemble of CNNs.

Other networks have been proposed in 2017, this time for JPEG steganalysis. In

[Zeng et al., 2017a], the authors proposed a pre-processing inspired by the Rich

Models, and the use of a big learning database. The results were close to those of

the state-of-the-art in the frequency domain. In [Chen et al., 2017], the network is

built with a phase-split inspired by the JPEG compression process. An Ensemble

of CNNs was required to obtain results that were slightly better than those of

the state-of-the-art. In [Xu, 2017], a CNN inspired by ResNet [He et al., 2016]

with the "shortcut connection" trick and 20 layers also produced results that were

slightly better than those of the state-of-the-art.

By the end of 2017 and until the present time, the studies are strongly concentrated

on spatial steganalysis. Among the most important networks that have contributed

Chapter 5. Steganalysis background 118

to the current steganalysis revolution, we find Xu-Net [Xu et al., 2016a], Ye-Net

[Ye et al., 2017], Yedroudj-Net [Yedroudj et al., 2018b] (will be further reviewed in

the contribution chapter), ReST-Net [Li et al., 2018], SRNet [Boroumand et al.,

2019], and Zhu-Net [Zhang et al., 2019].

All Convolutional neural Networks designed for steganalysis purposes have more

or less the same structure. They are mainly built in three parts, which we will

call modules. Besides the two modules (convolution module, and the classification

module), discussed previously in Section. 2.2.6, CNN-based steganalyzer includes

another module called pre-processing module. This module is used as a pre-

liminary filtering step that is intended to increase the signal-to-noise ratio (SNR)

between the weak stego signal (if present) and the image signal, thereby allowing

the network to converge more quickly while achieving good performance [Qian

et al., 2015].

In the following, we will discuss the architecture of some of these networks, while

presenting the components of their three modules.

5.5.1 Xu-Net

In early 2016, Xu [Xu et al., 2016a] proposed one of the most important networks

in the field of steganalysis, which was then named Xu-Net. The importance of this

network lies in the fact that it was the first network to achieve results comparable to

those of the state-of-the-art based on the two-step learning approach (SRM+EC).

As an illustration, Figure. 5.7 schematizes the overall architecture of Xu-Net.

The network accepts as input grey-scales images of size 512 × 512, and outputs a

vector of two values called imprecisely "probabilities". Each value or probability

represents how likely the inputted image belongs to a cover or stego class. The

Xu-Net, like the most of other steganalysis CNN, is composed of a pre-processing

module that is followed by a convolutional module and ends with a classification

module.

Chapter 5. Steganalysis background 119

convolution

BNABS TanH

pooling

convolutional module
Block 1

convolution

BN TanH

pooling

convolutional module
Block 2

convolution

BN ReLU

pooling

convolutional module
Block 3

convolution

BN ReLU

pooling

convolutional module
Block 4

convolution

BN ReLU

pooling

convolutional module
Block 5

Fully connected layer

Fully connected layer

softmax

classification module

cover stego

c
o

n
v
o

lu
tio

n
 (H

P
F

)

pre-processing

module

Figure 5.7: Xu-Net overall architecture.

5.5.1.1 Xu-Net pre-processing module

The pre-processing module of Xu-Net, as illustrated in Figure. 5.7, consists of

one convolutional layer (the first layer of the network l = 1). The kernel of this

layer k[1] is initialized with a high pass filter kernel derived from SRM [Fridrich

and Kodovský, 2012] and given below:

k[1] =
1

12





























−1 +2 −2 +2 −1

+2 −6 +8 −6 +2

−2 +8 −12 +8 −2

+2 −6 +8 −6 +2

−1 +2 −2 +2 −1





























(5.15)

The parameters in this 5 × 5 kernel are fixed and not optimized during training.

With the help of Equation. 2.15, the input image x(i) = (x1, ..., xn) ∈ {0, ...255}n,

n = [512 × 512], is filtered using the k[1] filter, and transformed to noise residuals

F [1] (in the form of a feature map) in order to boost the SNR.

Chapter 5. Steganalysis background 120

The obtained feature map (filtered image) is then given to the convolution module

in order to transform it into a set of features (feature vector).

5.5.1.2 Xu-Net convolutional module

The convolutional module is composed of five blocks of layers; each block begins

with a convolutional layer that produces feature maps and ends with an average

pooling layer responsible for sub-sampling the processed feature maps. Between

these two layers, we find a batch normalization layer and an activation layer. We

provide, in Table. 5.1, the architecture, as well as the parameters utilized on each

layer of this module.

All blocks include a convolution layer with a stride = 1; however, the size of the

kernel changes from block to another. For example, the size of the 3D kernel used

for the first layer is 8 × 5 × 5, which corresponds to 8 kernels whose height and

width are equal to 5. In the last three blocks, the spatial size of kernels is limited

to 1 × 1 in order to limit statistical modelling.

As for the activation layer, first and second block are equipped with the hyperbolic

tangent (TanH) seen previously in Section. 2. For the three other blocks, the ReLU

is used instead. Exceptionally on block 1, an absolute activation layer (ABS) is

used to force the network to take into account the symmetry (sign) existing in the

noise residues. To reduce the risk of CNN training falling into poor local minimum,

batch normalization (BN) is included in all blocks, and it is performed before each

non-linear activation layer.

Average pooling layer, which is present in all four first blocks, reduces the size of

the feature-map by a factor of two as the stride parameter is set to 2. In the final

block, through global averaging, the pooling layer in Group 5 merges each spatial

map to a single element (128 maps of size 32 × 32 to 128-D features). In this way,

the whole CNN is prevented from grasping the location information of embedded

pixels from the training data. The obtained 128-D feature vector is then used by

the classification module to learn.

Chapter 5. Steganalysis background 121

Blocks Layers F-M input size F-M output size
Convolutional layer
size: 8 × 5 × 5 stride:1
Absolute value layer
Batch Normalization (BN)
Activation function : TanH

Block 1

Average pooling
size: 5 × 5 stride:2

1 × (512 × 512) 8 × (256 × 256)

Convolutional layer
size: 16 × 3 × 3 stride:1
Batch Normalization (BN)
Activation function : TanHBlock 2
Average pooling
size: 5 × 5 stride:2

8 × (256 × 256) 16 × (128 × 128)

Convolutional layer
size: 32 × 1 × 1 stride:1
Batch Normalization (BN)
Activation function : ReLUBlock 3
Average pooling
size: 5 × 5 stride:2

16 × (128 × 128) 32 × (64 × 64)

Convolutional layer
size: 64 × 1 × 1 stride:1
Batch Normalization (BN)
Activation function : ReLUBlock 4
Average pooling
size: 5 × 5 stride:2

32 × (64 × 64) 64 × (32 × 32)

Convolutional layer
size: 128 × 1 × 1 stride:1
Batch Normalization (BN)
Activation function : ReLUBlock 5
Global Average pooling
size 32 × 32 stride:1

64 × (32 × 32) 128 × (1 × 1)

Table 5.1: Xu-Net convolutional module.

5.5.1.3 Xu-Net classification module

The classification module is a shallow multi-layer Perceptrons for two-class clas-

sification problem (see Section. 2.2.3). This module is composed of a two fully-

connected (FC) layer which the number of neurons is 256 and 2, respectively. A

softmax activation function is used over the last fully connected layer. This is to

normalize the scores delivered by the network between [0; 1]. These two scores

Chapter 5. Steganalysis background 122

represent the probability of belonging to cover or stego classes. Final class label

is determined by choosing the class corresponding to the larger score.

To resume, the key elements of this network are:

• The use of an absolute layer (ABS) after the first convolutional layer to

facilitate and improve the statistical modelling taking into account the sign

symmetry existing in the noise residuals,

• the use of BN layer which reduces the chances of falling to poor local minima

while training the network,

• the use of the TanH activation function on the first two layers, thus limiting

the range of data values and preventing the deeper layer from modelling

larger values.

5.5.2 Ye-Net

By the end of 2017, the first network (as far as we know) that surpass the state-of-

the-art methods on the tiny BOSS database [Bas et al., 2011], principally related

to the old two-steps machine learning paradigm, was proposed by Ye under the

name of Ye-Net [Ye et al., 2017]. This network came with two versions, the non-

informed version and the side-channel-aware version. We give in Figure. 5.8 the

overall architecture of this network.

Like the Xu-Net, the non-informed Ye-Net is composed of a pre-processing module,

a convolutional module, and the classification module. However, while Xu-Net

works on grey-scale images of size 512 × 512, Ye-Net is designed to steganalyze

grey-scale images whose size is 256 × 256.

As illustrated in Figure. 5.8, the proposed CNN consists of 10 blocks and ends

with a fully-connected layer with a 2- way softmax, which produces the distribution

over 2 class labels. In the following, we give the overall architectures, and the used

layers parameters of this network.

Chapter 5. Steganalysis background 123

convolution

ReLU

pooling

convolutional module
Block 4

convolution

ReLU

pooling

convolutional module
Block 5

convolution

ReLU

pooling

convolutional module
Block 6

convolution

ReLU

convolutional module
Block 7

convolution

ReLU

convolutional module
Block 8

Fully connected layer

softmax

classification module

cover stego
c
o

n
v
o

lu
tio

n
 (H

P
F

)

pre-processing

module

convolution

TLU

convolutional module
Block 1

convolution

TLU

convolutional module
Block 2

convolution

ReLU

pooling

convolutional module
Block 3

Figure 5.8: Ye-Net overall architecture.

5.5.2.1 Ye-Net pre-processing module

The pre-processing module of Ye-Net is composed of one convolutional layer. Sim-

ilarly to Xu-Net, Ye-Net authors have decided to initialize the weights of the pre-

processing-convolutional layer (first layer) with high-pass filter kernels from the

SRM instead of random values. However, rather than using one filter of the SRM,

Ye proposed to incorporate all the 30 basic linear filters of the SRM, that is, the

spam filters and their rotated versions.

This choice was justified experimentally by the fact that CNN is converging faster,

and also by the network’s better performance. As far as we know, SRM residuals

help to improve the SNR (stego signal to the image content) and it is the diversity

Chapter 5. Steganalysis background 124

provided by the combination of several high-pass filters (HPF) that makes the

success of steganalysis-based rich models so successful. It was, therefore, logical

to adopt the use of all SRM bank of filters within a CNN-based steganalyzer.

Unlike the Xu-Net, the kernels of the pre-processing module used by the Ye-Net

are not fixed, but trainable. In other words, the kernels of the pre-processing layer

are only initialized with the values of the SRM kernels. The final values of these

kernels are to be learned during training. The filtered images outputted from this

module are then transmitted to the convolution module.

5.5.2.2 Ye-Net convolutional module

As illustrated in Tab. 5.8, the convolutional module CNN consists of 8 convolu-

tional blocks. All 8 blocks include, at least, a convolutional layer and an activation

layer. No Batch normalization is used. The pooling layer is suppressed from 1st

to 3th, 7th and 8th block. For the remaining blocks, pooling layers with a stride

equal to 2 are used.

Non-linear activation layer is included in each block and performed after the con-

volution layer. From the 3rd Block to the 8th Block the ReLU function is used for

activation function. For blocks 1 and 2, a truncation function (given in Equation.

5.7) is adopted and referred to as "TLU".

At the end of the convolutional module, the outputted feature-map size is 16×3×3.

It is then flattened to 144-D feature vector, and transmitted to the classification

module.

5.5.2.3 Ye-Net classification module

Different from Xu-Net and other conventional CNN architectures that employ two

(or more) fully-connected layers, the Ye-Net has only one fully connected layer

composed of two neurons, and a softmax function, which produces the distribution

Chapter 5. Steganalysis background 125

Blocks Layers F-M input size F-M output size
Convolutional layer
size: 30 × 3 × 3 stride:1

Block 1
Activation Function : TLU

30 × (252 × 252) 30 × (250 × 250)

Convolutional layer
size: 30 × 3 × 3 stride:1

Block 2
Activation Function : TLU

30 × (250 × 250) 30 × (248 × 248)

Convolutional layer
size: 30 × 3 × 3 stride:1
Activation Function : ReLU

Block 3
Average Poling
size: 2 × 2 stride:2

30 × (248 × 248) 30 × (123 × 123)

Convolutional layer
size: 32 × 5 × 5 stride:1
Activation Function : ReLU

Block 4
Average Poling
size: 3 × 3 stride:2

30 × (123 × 123) 32 × (59 × 59)

Convolutional layer
size: 32 × 5 × 5 stride:1
Activation Function : ReLU

Block 5
Average Poling
size 3 × 3 stride:2

32 × (59 × 59) 32 × (27 × 27)

Convolutional layer
size: 32 × 5 × 5 stride:1
Activation Function : ReLU

Block6
Average Poling
size 3 × 3 stride:2

32 × (27 × 27) 32 × (11 × 11)

Convolutional layer
size: 16 × 3 × 3 stride:1

Block 7
Activation Function : ReLU

16 × (11 × 11) 16 × (9 × 9)

Convolutional layer
size: 16 × 3 × 3 stride:1

Block 8
Activation Function : ReLU

16 × (9 × 9) 16 × (3 × 3)

Table 5.2: Ye-Net convolutional module.

over 2 class labels. This is because the fully-connected layer involves too many

parameters to be trained, hence take more time to learn.

5.5.2.4 Ye-Net with side-channel aware

The performance of SCA-Ye-Net is increased compared to the non-informed Ye-

Net, thanks to the incorporation of the channel selection knowledge (knowledge

Chapter 5. Steganalysis background 126

of the probability of change of each pixel). The idea is to feed the non-informed

Ye-Net, along with the image to be steganalyzed, the modification probability

map.

The modification probability map is first filtered using another a convolutional

layer equivalent to the one used on the pre-processing module of the non-informed

version; however, its kernels values are replaced by their absolute values. The

obtained filtered-modification probability map is then summed point-wise with

the corresponding feature-maps generated by the pre-processing modules.

By incorporating the side-channel knowledge, it is possible to deliver more infor-

mation about steganographic noise to the following convolutional layers and thus

improve the performance of CNN.

The Ye-Net network can be summarized in the following point:

• The use of a set of trainable high-pass filters in the calculation of residual

maps, whose values are initialized from the SRM filters,

• the use of a new activation function called TLU,

• the network is relatively deep compared to the already existing network

dedicated to steganalysis,

• no Batch normalization is used which makes the network sensitive to param-

eters initialization,

• a second version which incorporates the side channel aware is suggested.

5.5.3 ReST-Net

In early 2018, a new CNN-based steganalysis named ReST-Net was proposed

[Li et al., 2018]. Thanks to its special architectural design, this network has

been able to surpass not only two-step learning approaches but also other CNN-

based steganalysis methods (such as Ye-Net). As shown in the Figure. 5.9, the

Chapter 5. Steganalysis background 127

particularity of this network relies on its structure. It consists of three parallel

convolutional sub-networks and a fully connected classification module. The three

sub-networks act as base learners in comparison to the ensemble classifier presented

in Section. 5.4.3. Each sub-network accepts an input image of 512 × 512 and

produces a 256-D feature vector. The three feature vectors are then concatenated

and transmitted to the classification module to make the final decision. The

classification module works by applying a weighted sum of the features provided

by the different sub-networks.

Subnet 2

Fully connected layer

softmax

cover stego

Subnet 1 Subnet 3

Figure 5.9: ReST-Net overall architecture.

The structure of the three sub-nets is identical, except for their pre-processing

module. In the following, we give the overall architectures of the sub-network.

5.5.3.1 ReST-Net pre-processing module

As pointed before, the three sub-networks have the exact same architecture except

for the pre-processing module. This is because each sub-network is equipped with

a different set of high-pass filters.

Instead of using only linear filters from SRM like Ye-Net, ReST-Net also employs

the non-linear filters from SRM, together with Gabor filters [Song et al., 2015],

Chapter 5. Steganalysis background 128

convolution

BNABS TanH

pooling

convolutional module
Block 1

convolution

BN TanH

pooling

convolution

BN ReLU

pooling

convolution

BN ReLU

pooling

convolutional module
Block 3

Fully connected layer

Fully connected layer

softmax

classification module

cover stego

c
o

n
v
o

lu
tio

n
 (

H
P

F
)

pre-processing

module convolution

BN sigmoid

pooling

convolutional module
Block 2

concatination

convolution

BN TanH

pooling

convolution

BN ReLU

pooling

convolution

BN ReLU

pooling

convolutional module
Block 5convolution

BN sigmoid

pooling

convolutional module
Block 4

concatination

Subnet

Figure 5.10: the overall architecture of a Sub-network of ReST-Net.

where each of these banks of filters is respectively employed in one of the three

sub-networks as follow:

Sub-net 1 The pre-processing module of the first sub-network is equipped with

16 Gabor filters of 6 × 6 to analyze the image with a specific frequency in a

specific direction [Song et al., 2015].

Sub-net 2 The second sub-network pre-processes the input image using a set of

high-pass filters from the SRM [Fridrich and Kodovský, 2012]; the filters are

padded with zeros to obtain a unified size of 5 × 5.

Sub-net 3 The third sub-network also uses the SRM high-pass filters, however

in order to introduce non-linearity, the resultant residual images are non

linearly processed with "max" or "min" operation, as done in [Fridrich and

Kodovský, 2012].

Chapter 5. Steganalysis background 129

5.5.3.2 ReST-Net convolutional module

The convolutional module of the ReST-Net sub-networks is composed of five con-

volutional blocks inspired from the Xu-Net described in Section. 5.5.1. The one

major difference is the inclusion of what the authors call "Divers activation mod-

ules (DAMs) ". A DAM is formed by simultaneously using ReLU, Sigmoid and

TanH activation functions on the same block. Then the resulting feature maps are

concatenated and transmitted to the next convolutional block, as shown in Figure.

5.10. In Xu-CNN, TanH function is used over the first two convolutional blocks,

while ReLU is used over the last three blocks. In ReST-Net sub-networks, the

DAMS (displayed with coloured cells in Tab.) replaces the TanH in the second

block and the relu in the fourth block.

The authors justify the use of DAMs by the diversity that it offers. Indeed, the

used activation functions respond differently to the traces of incorporation. Such

diversity can, therefore, contribute to improving classification performance.

5.5.3.3 ReST-Net classification module

Same as Ye-Net and unlike the Xu-Net, the ReST-Net employs only one fully

connected layer over the classification module. This layer contains two neurons

and followed by a softmax function. The output of this module is the prediction

made by one sub-network (hence not the final decision). To this end, the ReST-Net

is actually trained in two phases:

first phase each sub-network is separately pre-arranged to accurately classify a

given image into its appropriate class (cover and stego). Once the pre-

training is finished, the sub-network parameters are frozen, and the classifi-

cation module is discarded,

second phase a new fully-connected layer involving 768 input neurons (256*3)

is fed with the concatenated output feature vectors of the final convolu-

tional blocks of the three sub-networks as shown in the Figure. 5.9. This

Chapter 5. Steganalysis background 130

Blocks Layers F-M input size F-M output size
Convolutional layer
size: 24 × 5 × 5 stride:1
Absolute value layer
Activation Function : TanH
Batch Normalization (BN)Block 1

Average Poling
size 5 × 5 stride:2

N × (512 × 512) 24 × (256 × 256)

Convolutional layer
size: 32 × 5 × 5 stride:1
Batch Normalization (BN)
Activation Function : TanH
Average Poling
size 5 × 5 stride:2

24 × (256 × 256)

Convolutional layer
size: 32 × 5 × 5 stride:1
Batch Normalization (BN)
Activation Function : ReLU
Average Poling
size: 5 × 5 stride:2

24 × (256 × 256)

Convolutional layer
size: 32 × 5 × 5 stride:1
Batch Normalization (BN)
Activation Function : Sigmoid

Block 2

Average Poling
size: 5 × 5 stride:2

24 × (256 × 256)

96 × (128 × 128)

Convolutional layer
size: 96 × 1 × 1 stride:1
Batch Normalization (BN)
Activation Function : ReLUBlock 3
Average Poling
size 3 × 3 stride:1

96 × (128 × 128) 64 × (64 × 64)

Convolutional layer
size: 64 × 3 × 3 stride:1
Batch Normalization (BN)
Activation Function : TanH
Average Poling
size 5 × 5 stride:2

64 × (64 × 64)

Convolutional layer
size: 64 × 3 × 3 stride:1
Batch Normalization (BN)
Activation Function : ReLU
Average Poling
size 5 × 5 stride:2

64 × (64 × 64)

Convolutional layer
size: 64 × 3 × 3 stride:1
Batch Normalization (BN)
Activation Function : Sigmoid

Block4

Average Poling
size 5 × 5 stride:2

64 × (64 × 64)

288 × (32 × 32)

Convolutional layer
size: 16 × 1 × 1 stride:1
Batch Normalization (BN)
Activation Function : ReLUBlock 5
Global Average Poling
size 32 × 32 stride:1

288 × (32 × 32) 256 × (1 × 1)

Table 5.3: ReST-Net convolutional module.

Chapter 5. Steganalysis background 131

fully connected layer, together with a Softmax function serves as the final

classification module.

The ReST-Net network can be summarized in the following point:

• a network composed of an ensemble of CNNs which that used as base learner,

• the use of two banks of non-trainable high-pass filters (Gabor, SRM)

• the use of a DAMs (different activation functions on the same block),

• a shallow network that is composed of three sub-networks (base-learners),

• the two-phase training which ensures stable and efficient convergence,

• the use of bootstrap aggregating or bagging but with an automatic and

efficient way thanks to the fully connected layer which learns the best weights

automatically.

5.5.4 SRNet

By the end of 2018, another network was proposed for steganalysis purposes. This

network, thanks to its good performance, has became in a short period one of the

most important CNN for steganalysis. It is named "Steganalysis Residual Network"

and refereed as SRNet [Boroumand et al., 2019]. Among the interesting features

of this network is the fact that it can be used for both spatial steganalysis and

JPEG steganalysis. Like Ye-Net [Ye et al., 2017], SRNet can adopt the informed

scenario (SCA) spatial steganalysis, however its philosophy is slightly different, as

it is composed of only two parts: the convolution module and the classification

module. Therefore, there is no pre-processing module. We give in Figure. 5.11

the overall architecture of this network.

As shown in the Figure. 5.11, SRNet consists of 12 convolutional blocks and ends

with a classification module, which itself consists of one fully connected layer that

is followed by a 2-way softmax, which produces the distribution on 2 class labels.

Chapter 5. Steganalysis background 132

... Fully connected layer

softmax

classification module

cover stego

convolution

BN ReLU

pooling

convolution

BN

convolutional module
Block 8

convolution BN

convolution

BN ReLU

convolution

BN

convolutional module
Block 7

convolution

BN ReLU

convolutional module
Block 1

convolution

BN ReLU

convolutional module
Block 2

...convolution

BN ReLU

convolution

BN

convolutional module
Block 3

convolution

BN ReLU

pooling

convolution

BN

convolutional module
Block 11

convolution BN

convolution

BN ReLU

global
pooling

convolution

BN

convolutional module
Block 12

Figure 5.11: SRNet overall architecture.

In the following, we give the overall architectures, and the used layers parameters

of this network.

5.5.4.1 SRNet pre-processing module

As already mentioned below, SRNet is not equipped with a pre-processing module.

The authors claim that initializing first layer weights with high-pass filter kernels

(preprocessing module) is not necessary for their network to converge, that is be-

cause SRNet can learn relevant filters used on the first layer. This may explain why

this network can only run on large databases, as more examples are now needed

to learn these filters, which are of great importance for network convergence.

Chapter 5. Steganalysis background 133

5.5.4.2 SRNet convolutional module

As shown in Figure. 5.11, SRNet convolutional module consists of 12 convolutional

blocks. The two first blocks are composed of three layers. One convolutional layer

followed by a batch normalization layer, and an activation layer (ReLU). Block 3

to Block 7 are slightly different, as they contain two convolutional layers and two

batch normalization layer. In addition to this, there is the incorporation of the

shortcut connections that heleps to propagate gradients to upper layers and avoid

the problem of vanishing gradien that often negatively affects the convergence and

performance of deep architectures.

As for Blocks 8 to 11, and on top of the 4 layers of Blocks 3 to 7, an average

pooling layer is included. This layer is used to reduce the size of the feature-map.

The shortcut connections of these blocks are also different, as they are provided by

a convolution layer and a batch normalization layer (see Figure. 5.11). At the end

of the 11− th convolutional block, the outputted feature-map size is 512×16×16.

The last block (Block 12), is composed of 5 layers, two convolutional layers and

two batch normalization layers and a global average pooling which reduces the

512 feature maps of dimension 16 × 16 to a 512-dimensional feature vector. The

obtained vector is then fed to the classification module.

5.5.4.3 SRNet classification module

Same as Ye-Net, the classification module of SRNet is composed of one fully con-

nected layer of two neurons, and a softmax function, which produces the distri-

bution over 2 class labels. This reduces drastically the number of the network

parameters, hence accelerating the network’s training.

5.5.4.4 SRNet with side-channel aware (SCA-SRNet)

The selection channel has been incorporated in SRNet in the same fashion as in Ye-

Net. They inject not only the image to be steganalyzed, but also the modification

Chapter 5. Steganalysis background 134

probability map. The authors have declared that the performance of SCA-SRNet

is increased compared to the non-informed SRNet, thanks to the incorporation of

the channel selection knowledge (knowledge of the probability of change of each

pixel).

The SRNet network can be summarized in the following point:

• A deep network that is composed of 12 convolutional blocks,

• no preprocessing module module, thus there is no initialization of the first

layer weights,

• the use of a one activation function in all blocks which is ReLU,

• no pooling in the first four layers,

• the use of the residual shortcuts,

• a second version which incorporates the side channel aware is proposed,

• a network that works for both spatial and JPEG domains.

5.6 Conclusion

In this chapter, we have presented a state of the art of the main concepts of

steganalysis. First, we defined the problem of detecting a hidden message, as well

as the different categories of steganalysis attacks. Then, we reviewed the different

class of steganalysis (Active, passive, malicious). We have then presented the

targeted steganalysis methods and blind steganalysis methods. Next, we presented

some possible steganalysis scenarios, which are defined according to the knowledge

of the steganalysis. Then we have seen how algorithms belonging to the two-step-

learning approach and one-step-learning approach operate. We ended this chapter

with some practical algorithm of the two-step-learning approach and others of the

one-step-learning approach.

Part II

Contributions

135

Chapter 6

YEDROUDJ-NET: An efficient

CNN for spatial steganalysis

Contents

6.1 Motivation . 137

6.2 Yedroudj-Net . 138

6.2.1 Difference between the 3 CNNs 141

6.3 Experiments . 143

6.3.1 Dataset and software platform 143

6.3.2 Training, Validation, Test 143

6.3.3 Hyper-parameters . 144

6.3.4 Results without using any tricks 145

6.3.5 Results with a Base augmentation 151

6.3.6 Results with an ensemble of CNN 153

6.4 Conclusion . 154

136

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 137

6.1 Motivation

As mentioned in Section. 5.1, the objective of steganalysis algorithms is to min-

imize the probability of error for the classification of covers and stegos images.

Until 2015, it was the era of two-step approaches. These approaches operate in

two phases, first feature extraction and second, a classifier training. However, since

the beginning of 2016, two-step approaches have been challenged by one-step ap-

proaches that rely on the use of deep learning, more specifically, convolutional

neural networks.

These results were very encouraging, but when considering the gain obtained in

other image processing tasks using Deep Learning [LeCun et al., 2015] methods,

the steganalysis results, which are not even "10% better" than conventional ap-

proaches (Ensemble Classifier [Kodovský et al., 2012] with a Rich Model [Fridrich

and Kodovský, 2012, Xia et al., 2017] or a Rich Model with a Selection-Channel

Awareness [Denemark et al., 2014, 2016a]), are still very behind. In 2017, the

main trends to improve CNN results were: using an ensemble of CNNs, modifying

the topology by mimicking the Rich Models extraction process or using ResNet.

In most of the cases, the design or the experimental effort is very high for a very

small improvement of the performance.

By looking back to the good practices in deep learning as well as the recent studies

in steganalysis (such as the use of a bank of filters, ABS layer, the batch normaliza-

tion layer, truncation activation function ...), we experimentally designed a CNN

for spatial steganalysis whose efficiency is naturally better than CNN appeared

before mid- 2018 (when this work was published) 1. This is performed without

resort to either a design specific to the nature of images (spatial, jpeg, ...) or a

CNN ensemble (which is known to improve the results). We focused on the design

of the CNN, avoiding the use of tricks known to improve the performances such

as transfer learning [Qian et al., 2016] or virtual augmentation of the database

[Ye et al., 2017], etc. Additionally, the proposed network is not sensitive to the

1In 2019, SRNet [Boroumand et al., 2019] and Deng-Net [Deng et al., 2019] are probably the
most efficient CNN for spatial steganalysis. Zhu-Net [Zhang et al., 2019], which is an update of
Yedroudj-Net, will be published at the end of 2019 beginning of 2020

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 138

initialization of hyper-parameters and thus easily converges, which will be later

discussed in the next Section. 6.2. We named this network the "Yedroudj-Net"

CNN. It is compared with Xu-Net from Section. 5.5.1, and Ye-Net from Section.

5.5.2, and also with the Ensemble Classifier fed with the Spatial-Rich-Models for

spatial steganalysis (previously presented in Section. 5.4.3 and Section. 5.4.1

respectively).

6.2 Yedroudj-Net

Figure. 6.1 illustrates the overall architecture of our CNN. The proposed network

follows the same stream of previous methods dedicated to steganalysis purposes.

It is composed of a pre-processing module, five convolutional blocks forming the

convolutional module, and a classification module made of three fully connected

layers followed by a softmax. The network produces a probability distribution over

the two class labels (cover, stego). The pre-processing modules filters the input

Figure 6.1: Yedroudj-Net CNN architecture.

cover/stego image with a high-pass filter in order to extract the noise component

residuals. The pre-processed image then feeds the rest of the network. Previous

studies [Qian et al., 2015, Pibre et al., 2016] observed that without this prelim-

inary high-pass filter the CNN converges more slowly. This is because the pre-

processing largely suppresses the image content, narrows the dynamic range, and

thus increases the signal-to-noise ratio between the weak stego signal (if present)

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 139

and the image signal. As a result, the CNN can learn on a more compact and

robust signal.

Inspired by the benefit of diversity [Fridrich and Kodovský, 2012], and similarly

to Ye-Net (presented previously in Section. 5.5.2), we use the 30-basic high-pass

filters from SRM [Fridrich and Kodovský, 2012], instead of using only one high

pass filter such as in [Qian et al., 2015, Pibre et al., 2016, Xu et al., 2016a], in

order to pre-process the input image. As a result, 30 outputs feature maps are

produced. Note that the filters kernel values of the preprocessing block, i.e. the

weights, are not optimized/learned during the training. This pre-processing has

been integrated into a lazy fashion, directly into the CNN, such that the size of

all kernels (weighting matrix) are set to 5×5. Their central part is initialized with

the weights of the SRM kernels, and the remaining elements are padded to zero.

No normalization of the kernels’ values is performed.

The rest of our CNN consists in a convolutional module, dedicated to features

representation, that transforms the input image into a feature vector, and a classi-

fication module, made of three fully-connected layers and a softmax layer, which

produces the classification decision (cover or stego).

Similarly to Xu-Net, the convolutional module has five blocks marked as ’Block

1’ through ’Block 5’. This convolutional module is intended to extract effective

features for cover and stego images discrimination; see Figure. 6.1. Each block is

made of the following succession:

1. a Convolution Layer. In the same spirit as Xu-Net, the size of the convolu-

tional kernels is set to 5×5 for Blocks 1 and 2, and reduced to 3×3 for the

Blocks 3 through 5. For all the convolution layers and similarly to Res-Net

[He et al., 2016] and Xu-Net [Xu et al., 2016a], no biases are used. Biases

terms are set to false on the convolution layer and moved to the Scale Layer.

2. an Absolute Value activation (ABS) layer. This ABS layer is only used in

Block 1, similarly to Xu-Net, to force the statistical modelling to consider

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 140

the sign symmetry of the noise residuals. The relevance of this layer was

observed in Xu-Net.

3. a Batch Normalization (BN). The BN normalizes the distribution of each fea-

ture to a zero-mean and a unit-variance, and eventually, scales and translates

the distribution. Practically, this normalization prevents small changes of

the parameters from amplifying the gradient, as the data propagates through

the network, and then spare the gradients from getting stuck in poor local

minima. Moreover, the use of a BN layer desensitizes the training to the pa-

rameters initialization [Ioffe and Szegedy, 2015b], allows the use of a larger

learning rate which speeds up the learning, and improves the detection ac-

curacy [Chen et al., 2017]. From the above, the use of a BN layer is quite

intuitive.

4- a Scale layer. Similarly to ResNet [He et al., 2016], and in contrast to Xu-

Net [Xu et al., 2016a], who uses the BN layer to learn γ and β parameter

in Equation. 2.22, we provide a BN layer with no ability of learning for

these two parameters. Instead, they are learned by the independent Scale

Layer. Our experiments, presented in the following Section. 6.3.4.2, showed

that separating the zero-mean and unit-variance process (BN layer), from

the shifting-mean and scaling-mean process (Scale layer) slightly increased

the accuracy of the network.

4. a non-linear Activation layer. For the Blocks 1 and 2, the Truncation func-

tion, which formula is given in Equation. 5.7, is used to limit the range of

data values and prevent the deeper layers from modelling large values. In-

deed, these values are sparse and not statistically significant. This outlier

suppression process can also be seen as the use of a robustness function. For

the Blocks, 3 through 5, the classical Rectified Linear Unit (ReLU) is used

because it yields good performances and its gradient computation is fast.

5. An Average pooling . The average pooling layer is exclusively used in Blocks

2 through 5. This layer allows to down-sample the feature maps, and thus

reduces the dimensionality (as already explained in Section. 2.2.6.4). For

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 141

the last block, a global average pooling is performed to generate a one by one

element for each corresponding feature map, thereby preventing the statis-

tical modelling from grasping the location information of embedded pixels

from the training data. There is no pooling in the first block to avoid infor-

mation loss at the beginning of the network. Note that the suppression of

the pooling layer (i.e. downsampling) from the firsts blocks allows preserving

the stego signal [Boroumand et al., 2019].

The convolutional module ends with that global average pooling. The obtained

(extracted) features are then fed to the classification module. The number of

neurons in the first and second layers is set to 256 and 1024 respectively, while the

last fully connected layer has only two neurons corresponding to the number of

classes of the network’s output. At the end of this module, a softmax activation

function is used to produce a distribution over the two class labels.

6.2.1 Difference between the 3 CNNs

In this section we will briefly discuss the differences between our CNN Yedroudj-

Net and the state-of-the-art CNNs for steganalysis in the spatial domain by the

beginning of 2018 (Xu-Net CNN and Ye-Net CNN). In our comparisons, the Xu-

Net has an architecture similar to the one of the original paper and demonstrated

in Section. 5.5.1. Though, the size of its input images is set to 256×256 instead of

512×512. For that, we suppressed the average pooling from the first Block, which

is a favourable measure since it avoids an early down-sampling. We also set a

ReLU activation function among the Fully connected layers. As for the Ye-Net,

we maintain the exact same architecture presented in Section. 5.5.2.

Figure. 6.3 shows the overall architectures of all CNNs. We summarize below the

major similarities and differences between our proposed CNN and the two other

CNNs:

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 142

Figure 6.2: Comparison of Yedroudj-Net, Xu-Net, and Ye-Net architectures.

• Both Yedroudj-Net and Xu-Net use 5 convolution layers. Yedroudj-Net has

nevertheless two times more features (256) at the input of the fully connected

section. Ye-Net has more convolution layers.

• Both Yedroudj-Net and Xu-Net use a Batch Normalization layer (discussed

in Section. 2.2.6.3); the Ye-Net does not.

• Both Yedroudj-Net and Xu-Net use the Absolute Value layer; the Ye-Net

does not.

• Both Yedroudj-Net and Ye-Net use a 30 filter bank for pre-processing; the

Xu-Net uses only one filter (the KV filter).

• Both Yedroudj-Net and Ye-Net Net use a Truncation activation function

in Block 1 and 2 (We have found "Experimentally" that using Truncation

activation function only in the Blocks 1 and 2 is the best choice in term

of detection accuracy, those experiments are given in the next section); the

Xu-Net does not.

• Yedroudj-Net has three (resp. Xu-Net two, and Ye-Net one) fully connected

layer.

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 143

6.3 Experiments

6.3.1 Dataset and software platform

We use S-UNIWARD [Holub et al., 2014], and WOW [Holub and Fridrich, 2012], -

two content-adaptive methods already presented in Section. 3.4- for the embedding

in the spatial domain. We use the Matlab implementations with the simulator for

the embedding and a random key for each embedding (online codes2). We thus

avoid any wrong use of the C++ codes, i.e. a fixed and unique embedding key, as

reported in [Pibre et al., 2016].

For comparative purposes, our steganalysis CNN, Yedroudj-Net, is put in compe-

tition with two of the state-of-the-art approaches in early 2018: Xu-Net CNN [Xu

et al., 2016a], Ye-Net CNN [Ye et al., 2017], and with the hand-crafted feature

set Spatial-Rich-Model [Fridrich and Kodovský, 2012] and the Ensemble Classifier

[Kodovský et al., 2012] SRM + EC. For a fair comparison, all the involved ste-

ganalysis methods are tested on the same subsampled images from the BOSSBase

database v.1.01 [Bas et al., 2011]. All CNNs experiments were performed with

the publicly available Caffe toolbox [Jia et al., 2014] with necessary modifications,

plus digits V5. All tests were run on an NVidia Titan X GPU card.

6.3.2 Training, Validation, Test

BOSSBase v1.01 is a widely known database that is used mainly in steganalysis.

It consists of 10 000 grey-level images of size 512 × 512 coming from 7 different

cameras.

Yet, due to our GPU computing platform and time limitation, we conduct all

the experiments on images of 256×256 pixels. To this end, we re-sampled all the

512×512 images to 256×256 images, using the imresize() Matlab function with

the default parameters. The 256×256 BOSSBase is then split into two sets, 50%

2http://dde.binghamton.edu/download/

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 144

(resp. the other 50%) of the cover/stego pairs are assigned to the testing (resp.

training) set. 4000 out of the 5000 training set pairs are randomly selected for

training; the remaining 1000 pairs are set aside for validation. The testing set is

left untouched during the training stage.

During the CNNs training, we fixed a maximum of 900 epochs. Nevertheless, most

of the time, we manually stopped the training when an over-fitting phenomenon

appeared (usually before the epoch 200 for WOW and 300 for S-UNIWARD), i.e.

when the Loss continues to decrease on the training set but starts to increase on the

validation set. In practice, observing the Loss curve computed on the validation

test leads us to keep two versions of the CNN: the CNN’s models with minimum

Loss (resp. maximum) on the validation set over the previous five epochs. Those

two CNN’s models are evaluated on the testing set, and we report the average

error probability of detection for these two CNN’s models.

For SRM + EC we use the SRM feature set of dimension=34 671 [Fridrich and

Kodovský, 2012], and the Ensemble Classifier [Kodovský et al., 2012]. We report

the minimum error probability under equals prior, averaged over 10 tests.

6.3.3 Hyper-parameters

We apply a mini-batch stochastic gradient descent (SGD) to train our CNN. The

momentum is fixed to 0.95 and the weight decay to 0.0001. No dropout is used.

The batch size in the training procedure is set to 16, due to GPU memory limi-

tation (8 cover/stego pairs). All layers are initialized using Xavier method: the

weights follow a Gaussian distribution and are chosen so that the variance for both

input and output among each layer remains the same [Glorot and Bengio, 2010].

During the training, we use the step policy of Caffe to adjust the learning rate

(initialized to 0.01). With this policy, each 10% of the total number of epochs,

our learning rate is decreased by a factor gamma equal to 0.1. The threshold T ,

for the Truncations functions (see Equation. 5.7) is set to 3 for the first layer and

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 145

1 for the second layer, and the 30-basic high-pass SRM filters are not normalized.

Note that the source codes and the materials files are available here 3.

6.3.4 Results without using any tricks

This section is divided into 2 subsections. In the first subsection we present a

comparison w.r.t. The detection accuracy of our CNN, the two other CNN’s (Xu-

Net, Ye-Net) and the hand-crafted SRM+EC. These tests were carried out on

BOSSbase v1.01, using two steganographic algorithms (WOW [Holub and Fridrich,

2012], S-UNIWARD [Holub et al., 2014]) with the embedding rates of 0.2 and 0.4

bpp.

In the second subsection, we present the experiment that is conducted to investi-

gate the importance of each element of our CNN, such as the importance of using

the 30 kernels of SRM, the scale layer effectiveness, the use of the Truncation

activation function, and the fully connected module size.

6.3.4.1 General performance comparisons

In Table. 6.1, we report the error probability obtained when steganalyzing WOW

and S-UNIWARD embedding algorithms at 0.2 bpp and 0.4 bpp. The steganalysis

methods are Yedroudj-Net, Xu-Net, Ye-Net, and SRM+EC [Kodovský et al., 2012,

Fridrich and Kodovský, 2012].

For WOW algorithm, Yedroudj-Net has an error probability 8% lower (resp. 11%)

at 0.2 bpp (resp. 0.4 bpp) compared to SRM+EC. The results are also favourable

for S-UNIWARD steganalysis with an equal error probability at 0.2 bpp and 2%

lower at 0.4 bpp.

Compared to the other CNN algorithms, our proposed CNN achieves far supe-

rior results. Yedroudj-Net is 2% to 6% better compared to Xu-Net for the two

embedding algorithms and the two payloads. The results are even better when

3https://mehdi-yedroudj.wixsite.com/home/post/steganalys

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 146

BOSS 256×256

WOW S-UNIWARD

Steganalysis Payload 0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp

SRM+EC 36.5 % 25.5 % 36.6 % 24.7 %

Yedroudj-Net 27.8 % 14.1 % 36.7 % 22.8 %

Xu-Net 32.4 % 20.7 % 39.1 % 27.2 %

Ye-Net 33.1 % 23.2 % 40.0 % 31.2 %

Table 6.1: Steganalysis error probability comparison of Yedroudj-Net, Xu-Net,
Ye-Net, and SRM+EC for two embedding algorithms WOW and S-UNIWARD

at 0.2 bpp and 0.4 bpp.

compared to Ye-Net, where Yedroudj-Net is 3% to 9% better. Let us note that

the two other CNNs are not always superior when compared to the SRM+EC. To

beat SRM+EC, those approaches require using an ensemble of CNN, as proposed

in [Xu et al., 2016b], or increasing the learning database, as proposed in [Zeng

et al., 2017a, Yedroudj et al., 2018a], and showed in section below.

Note that extreme caution must be taken for the initialization of the learning rate

of the Ye-Net and the management of its evolution through the epochs. Indeed,

a bad initialization prevents the network from converging. In Yedroudj-Net and

Xu-Net, the use of the Batch Normalization ensures less sensitivity to such a

parameter setting.

To conclude on these general comparisons, in a classical clairvoyant scenario with-

out any channel-awareness, and without using an ensemble, a larger database, a

virtual augmentation of the database, or a transfer learning, Yedroudj-Net has a

clear advantage over all the state-of-the-art methods (until 2018). For networks

from 2018 or later, Yedroudj-Net remains a good net. Compared to ReST-Net,

seen in 5.5.3, Yedroudj-Net is a smaller network that obtains close results (only

2-5% less efficient).

Compared to SRNet, Yedroudj-Net is only 1-7 % less accurate. However, it re-

quires a much shorter learning time -This makes it the best choice when it comes

to use in a GAN framework (see Section. 8.4.2)-. Moreover, Yedroudj-Net can

converge on a very tiny database which is not the case for SRNet.

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 147

Algorithms
Payload

(bpp)
Ye-Net [13] Yedroudj-Net [31] SRNet [39] Zhu-Net

WOW

0.1 0.348 0.330 0.286 0.233

0.2 0.230 0.206 0.190 0.131

0.3 0.201 0.189 0.143 0.084

0.4 0.177 0.158 0.099 0.065

S-UNIWARD

0.1 0.402 0.383 0.342 0.268

0.2 0.318 0.305 0.228 0.171

0.3 0.236 0.221 0.163 0.125

0.4 0.157 0.171 0.134 0.081

HILL

0.1 0.396 0.386 0.353 0.357
0.2 0.338 0.329 0.274 0.262

0.3 0.263 0.247 0.225 0.204

0.4 0.208 0.183 0.176 0.152

Figure 6.3: Steganalysis error probability comparison of Yedroudj-Net, Ye-
Net, SRNet and Zhu-Net for different embedding algorithms. Extracted from

[Zhang et al., 2019].

To our knowledge, best network in 2019 is Zh-Net. Note that Zhu-Net [Zhang

et al., 2019] is an extension of Yedroudj-Net that beats SRNet and other networks

from 2018 and later (including Yedroudj-Net).

6.3.4.2 Additional experiments

In order to better understand why the Yedroudj-Net CNN is better than the

other steganalysis methods, we conducted additional experiments to highlight the

impact of its main components.

A- SRM filter: As already mentioned, Yedroudj-Net pre-process each input

images with 30 high-pass filters extracted from SRM [Fridrich and Kodovský,

2012]. Note that analyzing an image by applying diverse filters is an idea that

is known to improve steganalysis performances when using Rich Models [Fridrich

and Kodovský, 2012].

Table. 6.2 confirms the benefit of using a set of high-pass kernels instead of using

only one HPF. We can observe that equipping our CNN with all SRM kernels

decreases the detection error by 3% on WOW at 0.2 bpp or 0.4 bpp.

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 148

WOW 0.2 bpp WOW 0.4 bpp

Yedroudj-Net 27.8 % 14.1 %

Use only Kv filter 30.9 % 17.6 %

Table 6.2: Evaluation of a filter-bank as a pre-processing. We report the error
probability obtained when steganalyzing WOW [Holub and Fridrich, 2012] at
0.2 bpp and 0.4 bpp with the steganalysis method Yedroudj-Net CNN with or
without the SRM filter-bank. When used without modification, the Yedroudj-

Net CNN use the SRM filter-bank. Otherwise, we only use the Kv filter.

B- Truncation function:

WOW 0.2 bpp WOW 0.4 bpp

Yedroudj-Net 27.8 % 14.1 %

Remove the second trunc (Tanh) 29.5 % 16.4 %

Remove both the trunc (Tanh) 29.9 % 16.1 %

Remove the second trunc (ReLU) 30.1 % 17.2 %

Remove both the trunc (ReLu) 36.7 % 21.4 %

Table 6.3: Evaluation of different activation functions for the first and second
blocks. We report the error probability obtained when steganalyzing WOW
[Holub and Fridrich, 2012] at 0.2 bpp and 0.4 bpp with the steganalysis method
Yedroudj-Net CNN with different activation functions. When used without
modifications, the Yedroudj-Net CNN use the truncation activation function.

We use in our CNN the Truncation activation function proposed in [Ye et al.,

2017]. To investigate its importance, we evaluate our CNN against WOW at 0.2

and 0.4 bpp with and without this activation function. The results are given in

Table. 6.3 where the Truncation function of the second Block and both the first

and second Blocks (see Figure. 6.1) is replaced by the ReLU or the Tanh activation

function.

One can observe that when using the Truncation function instead of ReLu or

Tanh, on both the first and second blocks, the decrease of the error probability,

for ReLU, is 8% (resp. 7%) for WOW at 0.2 bpp (resp. 0.4 bpp), and 2% for

Tanh whatever the payload. When using the Truncation function only on the first

block and substituting it with Tanh or ReLu on the second Block, the decrease is

around 2% to 3% whatever the substitution or the payload.

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 149

We guess that the Truncation function has the same role than as in Rich Models.

It avoids treating features of rare occurrences, and it thus has a robustness effect.

The ReLU is a drastic activation function because negative values are erased, but

it is known to facilitate the CNN convergences. Strictly speaking, the Tanh do not

"lose" any values, and at the same time introduce more robustness to outlier/rare

features because it reduces their numerical influences. It seems that Truncation

activation function is the most efficient trade-off between the ReLU and Tanh

activation functions.

Note that authors in paper [Lu et al., 2019] have demonstrated the importance

of the TRUNCATION activation function for both spatial and jpeg steganalysis.

However, we believe that the gain of using the Truncation activation function

depends on other factors (hyper-parameters) such us the gradient update or the

network topology. For example, the SRNet only use ReLU but can obtain good

results.

Fully connected module

WOW 0.2 bpp WOW 0.4 bpp

Yedroudj-Net 27.8 % 14.1 %

Remove a layer from FC module 29.9 % 15.6 %

Table 6.4: Evaluation of the Fully Connected Layers. We report the error
probability obtained when steganalizing WOW [Holub and Fridrich, 2012] at
0.2 bpp and 0.4 bpp with the steganalysis method Yedroudj-Net CNN with or
without a third layer. When used without modification, the Yedroudj-Net CNN

has three fully connected layer. Otherwise, there is two layers.

For the Yedroudj-Net CNN, we use three Fully connected Layers in contrast to

Xu-Net and Ye-Net (see Figure. 6.1). The results are reported in Table. 6.4

show how the probability of error is reduced (1%-2%) when augmenting the fully

connected part from two to three layers. Remark that previous papers already

have shown that this "classification" section of the CNNs is not the best, and for

example, it can be improved if we cut the network, and replace the classification

part with an SVM [Tang, 2013].

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 150

Scale Layer (learn γ and β)

WOW 0.2 bpp WOW 0.4 bpp

Yedroudj-Net 27.8 % 14.1 %

Remove the Scale Layer 28.6 % 15.0 %

Table 6.5: Impact of using the Scale Layer. We report the error probability
obtained when steganalyzing WOW [Holub and Fridrich, 2012] at 0.2 bpp and
0.4 bpp with the Yedroudj-Net CNN with or without the Scale Layer. Basically
the Yedroudj-Net CNN uses the separate Scale Layer. When no Scale Layer is
used, the shift and scale parameters are included in the Batch Normalization

layer.

Table. 6.5 shows the performance of our CNN with and without the scale layers

(see Figure. 6.1), applied on WOW at 0.2 and 0.4 bpp. Suppressing the scale

layers means that the Batch Normalization assumes responsibility for learning

both γ and β. There is about 0.8% improvement in terms of error probability by

using the Scale layer, which is a small improvement, but it is very easy to apply,

and this justifies splitting the Batch Normalization into 2 layers.

WOW 0.2 bpp WOW 0.4 bpp

3×3 convolution 27.8 % 14.1 %

1×1 Convolution 27.8 % 14.3 %

Table 6.6: Evaluation of the Size of the kernels filters in the last convolutions
(blocks 3 to 5). We report the error probability obtained when steganalizing
WOW [Holub and Fridrich, 2012] at 0.2 bpp and 0.4 bpp with the Yedroudj-
Net CNN steganalysis method with kernels whose size are 1×1 or 3×3 in the
last convolutions. When used without modification, the Yedroudj-Net CNN has

kernels of size 3×3 in blocks 3 to 5.

Size of the kernels filters in the last convolutions In our network, we use

kernels of size 3×3 in the last blocks (Blocks 3 to 5; see Figure. 6.1). In Table. 6.6,

we measure the impact of modifying the 1×1 kernels (same kernel size in Xu-Net)

by 3×3 kernels for WOW at 0.2 and 0.4 bpp. The differences are not significant

in term of error probability.

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 151

6.3.5 Results with a Base augmentation

Many tricks exist for improving the results of CNN (will be further discussed in

next chapter). Among these tricks, there is the base augmentation. This option

seems to be a very important measure to apply in order to better exploit the

capacity of Deep Learning approaches.

BOSS BOSS+BOWS2 BOSS+BOWS2+VA

Yedroudj-Net 27.8 % 23.7 % 20.8 %

Ye-Net 33.1 % 26.1 % 22.2 %

Xu-Net 32.4 % 30.3 % 30.5 %

Table 6.7: Base Augmentation influence: error probability comparison of
Yedroudj-Net, Xu-Net and Ye-Net on WOW at 0.2 bpp with a learning base

augmented with BOWS2, and Virtually Augmented (VA).

In machine learning, and this is also true for CNNs, it is important to use a training

base that is large enough to ensure a good generalization but also to avoid over-

training. Some authors are prone to use big databases [Qian et al., 2015, Zeng

et al., 2017a, Ye et al., 2017] in order to reach the state-of-the-art results. In

the above experiment, we attempt to investigate the improvement brought by

increasing the learning database size without modifying the testing set. It means

that the learning set does not only contain images of the same kind as in the

test set: e.g. the settings of cameras, the scenes of the learning set, can all be

different from those of the testing set. We show the effects of increasing the image

database on the error probability in Table. 6.7. To increase the size of our training

set, BOWS2 database was employed [Bas and Furon, 2008]. This Database that

was essentially created for a watermarking contest and consists of 10,000 8-bit

grayscale 512×512-sized images. To this end, two scenarios have been tested.

In the first scenario, noted BOSS+BOWS2, we embedded the payload in the

subsampled BOSSBase database v.1.01 [Bas et al., 2011]. We split this base into

two sets: 50% of the cover/stego pairs to the training set, the rest to the testing

set. Then, 10 000 additional pairs of cover/stego pair (obtained by subsampling

BOWS2Base [Bas and Furon, 2008]) were added to the training set. The learning

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 152

database now contains 15 000 pairs of cover/stego images minus 1000 pairs from

BOSS, set aside for validation.

In the second scenario, noted BOSS+BOWS2+VA, the database is virtually aug-

mented by performing the label-preserving flips and rotations on the BOSS+BOWS2

training set. The size of the BOSS+BOWS2 training set is thus increased by a

factor of 8, which virtually gives a final learning database made of 112 000 pairs

of cover/stego images plus 1000 pairs from BOSS used for validation.

Table. 6.7 shows the performance comparisons in terms of detection error proba-

bility for Yedroudj-Net, Xu-Net [Xu et al., 2016a], Ye-Net [Ye et al., 2017], against

the embedding algorithm WOW [Holub and Fridrich, 2012] at payload 0.2 bpp.

For all algorithms, better performances are achieved using BOSS+BOWS2 com-

pared to using only BOSSBase. The Yedroudj-Net obtains the best results and

decreases its detection error probability by 4%. Ye-Net and Xu-Net respectively

decrease their detection error probability by 7% and 2%.

When virtually augmenting the entire BOSS+BOWS2 learning set thanks to the

8 combinations of rotations and flips that do not introduce interpolation (i.e.

BOSS+BOWS2+VA), the performances are again increased. The Yedroudj-Net

keeps the best results and decreases its detection error probability by 7% (Ye-Net

decreases it by 11%, and Xu-Net by 2%) compared to the case of only using BOSS-

Base for the training. Comparing to SRM+EC [Kodovský et al., 2012, Fridrich

and Kodovský, 2012], whose error probability is 36.5% with a learning on the

BOSSBase, the Yedroudj-Net obtain an error probability of 20.8% which give an

improvement of 16%. The Ye-Net obtains an improvement of 14% and the Xu-Net

an improvement of 6%.

These tests reveal how important it is to have a large database when using CNN of

5-7 blocks. The number of parameters (without taking into account the BN and/or

scale) goes approximately from 50 thousand (Xu-Net) to 500 thousand (Yedroudj-

Net). Such a huge number of unknown requires bearing enough samples. The

experiments show that the CNNs still do not have enough learning samples. For a

steganalysis of BOSSBase with CNNs of 5-7 blocks, even 112 000 pairs of images

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 153

(BOSS+BOWS2 virtually augmented) is not enough. Consequently, using a bigger

base allows our CNN to achieve better performances even if the convergence time

increases.

For instance, with a GPU card of the previous generation (Nvidia TitanX) on an

Intel Core i7-5930K CPU 3.50GHz×12 with 32G of RAM, the convergence takes

less than one day for learning Yedroudj-Net CNN on BOSSBase, three days on

BOSS+BOWS2, and more than seven days on BOSS+BOWS2+VA.

At this point, it is clear that augmenting the training set improves the obtained re-

sults; however, it is not clear if the improvement is only due to a lack of data or also

because the additional images came from the same cameras. We have neverthe-

less conducted additional experiments, reported in the next chapter, and it seems

that in order to improve the performance, one must increase the database with

images coming from the same sources and with a development process respecting

the pixels resolutions and ratios.

6.3.6 Results with an ensemble of CNN

The other trick, which is widely used in deep learning to improve a neural network

model’s performance, is the usage of an ensemble of CNNs. Same as on ReST-Net

(seen in Section. 5.5.3, we use three parallel sub-networks. All sub-networks adopt

Yedroudj-Net’s architecture; thus, we named it Yedroudj-Netensemble.

To train Yedroudj-Netensemble, we first start by training, separately, each of the

three sub-networks on the exact same leaning set. The parameters of each network

are initialized differently (convolution weights). Once all sub-networks are trained,

we dispose of their fully connected parts and concatenate the output features of

their convolutional modules into one feature vector.

Next, on top of these three subnets, we add another fully connected module (as

shown in Figure. 5.9). It takes as input the feature vector and trained to minimize

classification error. We use the same learning set as the one used to train the three

subnets.

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 154

Once Yedroudj-Netensemble converges, we test it on the remaining part of the BOSS

base (the test set). The results are presented in Table. 6.8.

BOSS 256×256

WOW S-UNIWARD

Steganalysis Payload 0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp

Yedroudj-Net 27.8 % 14.1 % 36.7 % 22.8 %

Yedroudj-Netensemble 24,3 % 10.8 % 33.1 % 17.2 %

Table 6.8: Evaluation of the efficiency of the Yedroudj-Net ensemble version.
We report the error probability obtained when steganalizing WOW [Holub and

Fridrich, 2012], S-UNIWARD [Holub et al., 2014], at 0.2 bpp and 0.4 bpp.

Compared to the scenario where only one network is used (noted Yedroudj-Net),

the use of three networks gives better results. For WOW, we can notice that

an improvement of 3-4 % is obtained when using Yedroudj-Netensemble. As for

S-UNIWARD, Yedroudj-Netensemble is better 3-5% compared to Yedroudj-Net.

6.4 Conclusion

In this chapter, we have presented Yedroudj-Net CNN, which is essentially de-

signed for spatial steganalysis. This CNN gathers some recent design propositions

in order to build a simple but efficient approach that beats the state-of-the-art

approaches (until mid 2018) in a classical clairvoyant scenario without knowledge

of the selection channel.

The key to the steganalysis performance improvement is the combination of the

following elements: a bank of filters for the pre-processing step, a robust activation

function, and a normalization associated with a scale Layer.

Additional experiments were carried out to test whether Yedroudj-Net’s perfor-

mance can be further improved when using some tricks. First, we evaluated the

data augmentation and its impact on the Yedroudj-Net performance. Results have

shown that by adding BOWS2 and virtually augmenting the learning database,

the results become extremely satisfactory. An experiment on WOW at 0.2 bpp

led to an error probability decrease of 16% compared to the RM+EC.

Chapter 6. YEDROUDJ-NET: An efficient CNN for spatial steganalysis 155

The other trick we tested was the use of an ensemble of CNNs. For this purpose,

we have designed Yedroudj-Netensemble, the ensemble version of Yedroudj-Net, that

is composed of 3 CNNs. The results show a decrease in error probability detection

of nearly 4% for WOW (resp. 5% for S-UNIWARD) compared to the network

Yedroudj-Net.

Chapter 7

How to augment a small learning

set for improving the

performances of a CNN-based

steganalyze?

Contents

7.1 Motivation . 158

7.2 Experimental methodology 160

7.2.1 Objectives and Dataset baseline 160

7.2.2 Software platform . 161

7.2.3 Datasets . 161

7.2.4 Description of the different experimental setups 162

7.3 Results and discussions . 163

7.3.1 Setup 1: Classical enrichment 163

7.3.2 Setup 2: Enrichment with other cameras 164

7.3.3 Setup 3: Enrichment with strongly dissimilar sources and

unbalance proportions . 166

156

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 157

7.3.4 Setup 4: Enrichment with the same RAW images but with

a different development . 167

7.3.5 Setup 5: Enrichment with a re-processing of the learning set 170

7.4 Conclusion . 173

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 158

7.1 Motivation

Convolutional neural networks (CNN) became very popular to solve classification

problems in the last five years. Several authors have proposed to use CNNs to solve

steganalysis problems [Qian et al., 2015], [Pibre et al., 2016], [Xu et al., 2016a], [Ye

et al., 2017]. These methods yield encouraging results but remained comparable

to the state-of-the-art algorithms performances. Authors have explored many

approaches to obtain the best CNN-based steganalysis method, such as using a

phase split [Chen et al., 2017], an ensemble of CNN [Xu et al., 2016b], the transfer

learning [Qian et al., 2016] or the augmentation of the database [Ye et al., 2017],

[Zeng et al., 2017b].

Let us now put aside the quest of the best deep learning network architecture for

the steganalysis task. In this chapter, our objective is to look at a "real-world"

problem [Ker et al., 2013], which is to learn with a small size database a good

CNN model for steganalysis. This problem is also known as low regime learning.

It is well-known that supervised approaches based on the use of CNNs need a lot

of samples when used for steganalysis purposes. The number of images for the

learning has even reached five millions of samples in [Zeng et al., 2017b]. The

seminal propositions of Qian [Qian et al., 2015] and Pibre [Pibre et al., 2016] used

from 8 000 to 80 000 spatial images resized to 256×256 (BOSSBase [Bas et al.,

2011] or ImageNet [Krizhevsky et al., 2012]). In 2017 the authors mainly use

around 5 000 pairs of images [Xu et al., 2016a], [Ye et al., 2017], [Chen et al.,

2017], [Xu, 2017], which is probably insufficient. Moreover, in an operational and

realistic protocol, the number of available images for the learning task could be

much smaller than what is used in "laboratory".

Because all the CNN-based steganalysis algorithms are sensitive to the cover-

source mismatch phenomenon [Cancelli et al., 2008, Ker and Pevny, 2014, Kodovskỳ

et al., 2014], each time the source distribution is modified, the learning process

has to be restarted. The aim of the study, presented in this chapter, is thus to

look at the impact of artificial data-augmentation, which is probably more realist

than having access to a huge database of a given source distribution. In all cases,

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 159

using data-augmentation is an automatic process which requires less human time

consumption than searching for images of similar distributions.

Today, the classical scenario used to test an embedding algorithm efficiency is to

use the BOSSBase [Bas et al., 2011] for training and testing, assigning 5000 of the

10000 images to the learning database, while the rest used as testing database.

A classical way to artificially increase the learning database without changing the

labels is to flip and rotate the learning database without interpolation [Krizhevsky

et al., 2012].

Recently, Ye et al. [Ye et al., 2017] proposed to increase the size of the training

database, by adding to the initial 50% of BOSSBase, the whole BOWS2 [Bas and

Furon, 2008] database (this gives a total of 15000 pairs of images for the training

set), while the test set is unchanged and is made of the remaining 50% of BOSS-

Base. This process effectively improves the results in terms of error probability

of detection. However, it could be considered as a very lucky measure because

the improvement is essentially due to the fact that BOSSBase and BOWS2 share

some identical camera models, and a similar "development" process1.

The question is thus still open: how should we process in order to enrich a learning

database? Can we enrich even more the BOSS learning base in order to obtain a

huge learning base, and thus improve the steganalysis results? In this chapter, we

intend to experimentally explore efficient ways to increase the learning database

of a CNN based steganalyzer. In Section 7.2, we describe the experimental protocol

and briefly present all the setups. In Section 7.3, we experimentally explore the

different augmentation methods, and we draw conclusions on the practical question

of the learning database augmentation.

1The "development" stands for the numerical processes transforming a colour RAW image
to a 256×256 8-bit grey-levels image [Borghys et al., 2018]

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 160

7.2 Experimental methodology

In this chapter, the study on the data augmentation for spatial steganalysis is

conducted only on the Yedroudj-Net presented in Chapter 6.

7.2.1 Objectives and Dataset baseline

Our final objective is to increase the size of the learning database of a

CNN based steganalysis through data-augmentation in order to improve its per-

formances. Indeed, increasing the number of learning samples is often beneficial

for learning efficient features dedicated to a specific task. But, for steganalysis,

the samples have to be selected carefully. The "new" samples have to share a

"similar distribution" compared to the "original" samples. One thus tries to find

distribution-preserving transformations which, when applied on an input

cover or precover image, generate synthesized images that follow the same dis-

tribution. Those synthesized images could then be integrated into the learning

database as additional images in order to increase the CNN classifier efficiency.

In this chapter, first, we explore the factors that are influencing a cover distri-

bution such as the camera model, or the development, and second, we propose

distribution-preserving transformations that allow to enrich an initial database

and to improve the CNN efficiency.

Our baseline setup will thus be the same as the one presented in Section. 8.5.2,

where the BOSSBase split into two sets. We assign 50% of the cover/stego pairs

to the "original" training set, and the rest, to the testing set. Regardless of

the learning database enrichment, the test database will always contain

images from and only from BOSSBase. For a fair comparison, we will use

the same test base for all the experiments. To summarize, the learning set will

always contain at least 4000 pairs of BOSSBase images, and the validation set

will always contain 1000 pairs of BOSSBase images.

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 161

7.2.2 Software platform

Same as in chapter 6, we used S-UNIWARD [Holub et al., 2014], and WOW [Holub

and Fridrich, 2012] for the embedding in the spatial domain. All experiments were

performed with the publicly available Caffe toolbox [Jia et al., 2014] with necessary

modifications, plus digits V5. All tests were run on an NVidia Titan X GPU card.

7.2.3 Datasets

All the experiments are conducted on images of 256×256 pixels. We resampled

all the 512×512 images to 256×256 images, using the imresize() Matlab function

with the default parameters (bicubic interpolation with anti-aliasing).

For the various experimental setup, we are using the different databases listed

below, and convert them to 256 × 256 images:

• the BOSSBase v1.01 [Bas et al., 2011] consisting of 10 000 grey-level images

of size 512 × 512, never compressed, and coming from 7 different cameras,

• the BOWS2 [Bas and Furon, 2008] consisting of 10 000 grey-level images of

size 512 × 512, never compressed, and whose distribution is close to BOSS-

Base,

• the LIRMMBase [Pibre et al., 2016] consisting of 9 388 grey-level images of

size 512 × 512, never compressed, and coming from 7 different cameras. All

the used cameras are different from those used in BOSSBase.

• the PLACES2 [Zhou et al., 2017] containing more than one million of JPEG

images coming from unknown cameras. For the experiments, those images

are decompressed and then converted in grey-level and then resized.

For some experiments, we re-run a development process. For that, we use the

ImageMagick a free, open-source software.

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 162

During the CNNs training, we regularly observe the Loss and Accuracy curves,

computed on the validation test, to stop the training when an over-fitting phe-

nomenon appears manually. This over-fitting occurs when the Loss curve continues

to decrease in the training set but starts to increase on the validation set. For all

the experiments, we report the error probability evaluated on the testing set.

7.2.4 Description of the different experimental setups

Below, we briefly listed all the experimental setups with a small description ex-

plaining each choice:

• Setup 1: Classical enrichment. In this setup, the goal is to obtain

the performance baseline. The enrichment of the original learning database

(made of 4000 pairs) is obtained thanks to the virtual augmentation using the

label-preserving flipping and rotations [Ye et al., 2017], and the enrichment

with BOWS2 images. This experiment is presented in Section 7.3.1,

• Setup 2: Enrichment with other cameras. In this setup, the goal is

to evaluate the gain/loss of adding images from different cameras from the

ones used in the original learning set. This experiment is presented in Section

7.3.2,

• Setup 3: Enrichment with strongly dissimilar sources and unbal-

ance proportions. In this setup, the goal is to evaluate the gain/loss of

adding a huge number of images generated using cameras and a develop-

ment, totally different from those used in the original learning set. This

experiment is presented in Section 7.3.3,

• Setup 4: Enrichment with the same RAW images but with a dif-

ferent development. In this setup, the idea is to evaluate the gain/loss of

adding the same original RAW images whose development is different from

the one used for the original learning set. This experiment is presented in

Section 7.3.4,

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 163

• Setup 5: Enrichment with a re-processing of the learning set. In

this setup, we assume that we don’t have access to the RAW image. Thus,

the objective is to evaluate the gain/loss of adding the same original images

which are re-processed. This experiment is presented in Section 7.3.5,

7.3 Results and discussions

7.3.1 Setup 1: Classical enrichment

WOW 0.2 bpp S-UNIWARD 0.2 bpp

BOSS 27.8 % 36.6 %

BOSS+VA 24.2 % 34.8 %

BOSS+BOWS2 23.7 % 34.4%

BOSS+BOWS2+VA 20.8 % 31.1 %

Table 7.1: Base Augmentation influence: error probability of Yedroudj-Net,
on WOW and S-UNIWARD at 0.2 bpp with and without Data Augmentation..

In Table. 7.1, we report the results with no enrichment (noted BOSS), the

results with the Virtual Augmentation (VA) of the BOSS’s training set (noted

BOSS + VA; Virtual Augmentation consists in label-preserving flipping and

rotations), the results with BOWS2 enrichment (noted BOSS + BOWS2),

and the results with BOWS2 enrichment + the Virtual Augmentation (noted

BOSS+BOWS2+VA). Some of these results have already been given in chapter

6. Note that for BOSS+BOWS2, the training set is made of 14 000 pairs (without

counting the validation), 32 000 pairs for BOSS+VA (without counting the val-

idation), and for BOSS+BOWS2+VA, the training set is made of 112 000 pairs

(without counting the validation).

When the enrichment is obtained by only applying a virtual augmentation (BOSS+VA),

a significant improvement is observed. The decrease of the error probability de-

tection is 3% for WOW (resp. 2% for S-UNIWARD). This enrichment measure

was initially proposed in [Krizhevsky et al., 2012], and it is indeed very efficient.

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 164

The reader should understand that the VA is an easy and low-cost operation in

order to significantly improve the CNN performances.

One can also observe better performance when using BOSS+BOWS2 compared to

only using BOSSBase. The CNN decreases its detection error probability by 4% for

WOW (resp. 2% for S-UNIWARD). As stated in the introduction, BOSSBase and

BOWS2 share some identical camera models and a similar "development" process.

As also observed in Section 7.3.4, in a close setup, this enrichment setup ("similar

cameras" + "similar development") allows to increase the performances. We guess

that in that case, the added images increase the generalization capability of the

network.

When the enrichment is obtained with BOSS+BOWS2+VA, again a significant

improvement is observed. The decrease of the error probability detection is 7% for

WOW (resp. 5% for S-UNIWARD) compared to the no-enrichment setup. Note

that the results given in the current Section will be the reference performances for

the comparisons given in the next sections.

The observations given in this Section are confirming that if the database augmen-

tation ensures a good diversity of the database, the CNN can improve its detection

accuracy. The experiments described in the next sections are thus done in order

to understand better the properties that have to be kept when adding images to

the original database.

7.3.2 Setup 2: Enrichment with other cameras

In Table. 7.2, we report the results with no enrichment (noted BOSS), the results

with LIRMM enrichment (noted BOSS + LIRMM), the results with LIRMM

and BOWS2 enrichment (noted BOSS + LIRMM + BOWS2), and the results

with LIRMM and BOWS2 enrichment + the Virtual Augmentation (noted BOSS

+ LIRMM + BOWS2 + VA). Note that for BOSS+LIRMM, the training set is

made of 14 000 pairs, for BOSS+LIRMM+BOWS2, the training set is made of 23

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 165

WOW 0.2 bpp S-UNIWARD 0.2 bpp

BOSS 27.8 % 36.7 %

BOSS+LIRMM 29.9 % 38.6 %

BOSS+LIRMM+BOWS2 26.8 % 36.9 %

BOSS+LIRMM+BOWS2+VA 25.7 % 36.1 %

Table 7.2: Base Augmentation influence: error probability of Yedroudj-Net,
on WOW and S-UNIWARD at 0.2 bpp with a learning base augmented with

either LIRMM, LIRMM+BOWS2, or LIRMM+BOWS2+VA. .

388 pairs (without counting the validation), and for the BOSS+LIRMM+BOWS2,

the training set is made of 187 104 pairs (without counting the validation).

One can observe that results are worst when using BOSS+LIRMM, compared to

only using BOSSBase. There is 2% increase of the detection error probabilities for

both WOW and S-UNIWARD. For this setup, the enrichment of the learning set

is not strongly unbalanced (1 BOSS pair for 2 LIRMM pairs), done with images

acquired with different cameras but processed with the same development. It

seems that for a beneficial enrichment, the additional images have to

be acquired with the same cameras. Additional facts seem to confirm this

hypothesis in Section 7.3.3 and Section 7.3.4.

When enriching the BOSSBase with BOSS + LIRMM + BOWS2, the results are

as good (or a slightly better for WOW) as using the BOSSBase alone. Finally, the

results become better when BOSS+BOWS2+LIRMM2+VA is used, but the in-

crease in performance is only of 0.9% for S-UNIWARD (resp. 2% for WOW), while

using the BOSS+BOWS2 (see Table. 7.1) give 2% increasing for S-UNIWARD

(resp. 4% for WOW).

Those results confirm again that performance is increased if there is an enrichment

with images acquired with the same cameras and with the same development

(BOWS-2 share similar cameras and a similar development). This tendency seems

to contradict the idea that using millions of images, whose distribution is diverse,

would be the best solution for increasing the steganalysis results [Zeng et al.,

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 166

2017b]. Indeed, the added images have to share a very similar "distribution", and

images have probably to be acquired with the same cameras. In Section 7.3.3 we

explore a little bit more this hypothesis.

7.3.3 Setup 3: Enrichment with strongly dissimilar sources

and unbalance proportions

WOW 0.2 bpp S-UNIWARD 0.2 bpp

BOSS 27.8 % 36.7 %

BOSS+PLACES2 1% 34.2 % 41.6 %

BOSS+PLACES2 10% 40.0 % 43.9 %

BOSS+PLACES2 100% 44.6 % 45.3 %

Table 7.3: Base Augmentation influence: error probability of Yedroudj-Net,
on WOW and S-UNIWARD at 0.2 bpp with a learning base augmented with

different portions of PLACES2. .

In Table. 7.3, we report the results with no enrichment (noted BOSS), the results

with 1% of PLACES2 enrichment (noted BOSS + PLACES2 1%), the results

with 10% of PLACES2 enrichment (noted BOSS + PLACES2 10%), and 100%

of PLACES2 enrichment (noted BOSS + PLACES2 100%). Note that for

PLACES2 1%, the training set is made of 14 000 pairs (without counting the

validation), for PLACES2 10%, the training set is made of 104 000 pairs (without

counting the validation), and for the PLACES2 100%, the training set is made of

1 004 000 pairs (without counting the validation).

Whatever the enrichment and whatever the embedding algorithm, the results are

always worse than when using the BOSSBase alone. Respectively when 1%, 10%

and 100% of the images in the PLACES2 database are added to the learning, the

results get worse and worse, with respectively an increase of the detection error

for S-UNIWARD (resp. WOW) of 5% (resp. 6%), 7% (resp. 12%), and then 9%

(resp. 17%). Note that with an enrichment containing all images of PLACES2 (1

BOSS pair for 251 PLACES2 pairs), the detection is close to a random guessing.

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 167

Since the distribution of BOSS and PLACES2 are totally different (PLACES2

results from a JPEG dequantization, and a very diverse set of sources of cameras),

the BOSS distribution is lost, and since no re-balancing measures are used during

the learning, the BOSS distribution is considered as anecdotal and it is not really

taken into account during the learning. Practically, the total loss computed for

BOSS images is negligible compared to the total loss computed for PLACES2

images, and thus a minimization of the global loss will mainly concentrate on

minimizing the loss associated to the PLACES2 images. Coming back to our

previous statement, using millions of images is not sufficient [Zeng et al.,

2017b], the added images have to share a very similar "distribution",

and images have probably to be acquired with the same cameras.

7.3.4 Setup 4: Enrichment with the same RAW images

but with a different development

WOW 0.2 bpp S-UNIWARD 0.2 bpp

BOSS 27.8 % 36.7 %

BOSS+DEV:Res-Bicub 25.7 % 37.5 %

BOSS+DEV:Res-Spline 26 % 35.8 %

BOSS+DEV:Res-NoInt 25.6 % 36.2 %

BOSS+DEV:Crop 34.8 % 44.2 %

BOSS+DEV:Res-Crop 28.1 % 37.9 %

BOSS+BOSS-ALP 26.0 % 35.5%

Table 7.4: Base Augmentation influence: error probability of Yedroudj-Net,
on WOW and S-UNIWARD at 0.2 bpp with a learning base augmented with

different BOSSBase versions..

In Table. 7.3, we report the results with no enrichment (noted BOSS), and the

results with 6 different versions of the BOSSBase, each generated from the RAW

images. There are enrichment using a resizing performed respectively with a bicu-

bic interpolation (noted BOSS+DEV:Res-Bicub), a spline interpolation (noted

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 168

BOSS+DEV:Res-Spline), one without any interpolation (noted BOSS+DEV:Res-

NoInt), one without resizing but with a central crop (noted BOSS+DEV:Crop),

one with a resizing to a 768×768 images without any interpolation and then a

central crop (noted BOSS+DEV:Res+Crop), and finally an enrichment with

the use of Adobe Photoshop Lightroom 6 instead of ImageMagick, for generat-

ing the color images and then resizing to 256 × 256 the images while keeping the

width/length ratio (noted BOSS-APL).

From Table. 7.4, we can observe that the enrichment with a crop development

(BOSS+DEV:Crop) lead to very bad results. The increase of the detection error

of 7% for S-UNIWARD (resp. 7% for WOW). The enrichment with a resize to

768×768 followed by a crop (BOSS+DEV:Res+Crop), to a lesser extent, also give

bad results with an increase of the detection error of 1% for S-UNIWARD (resp.

0.3% for WOW). Those bad results suggest that a resolution change during the

development has a strong impact on the pixels distributions. When looking to the

extreme case of the crop development (BOSS+DEV:Crop), we easily understand

that the resulting images content change; there is almost no variations and no

edges. Thus, an enrichment with a BOSS version whose development

does not ensure the same final pixel resolution than BOSS Base will

not enrich favourably the learning data-base.

In counterpart, using the same resize procedure with a slight variation on the inter-

polation (spline, no-interpolation, bicubic), or with the Adobe Photoshop Lightroom

Process allows scrounging at most 1% for S-UNIWARD (resp. 2% for WOW). This

confirms that additional samples very close to the target BOSS distribution can

improve the learning capabilities. Looking back to the various experiment

done previously, one can observe that in order to enrich favourably

a target database, a useful "trick" is to use images acquired with the

same cameras than the target database, and to use a very close resizing

process than the one used for the target database.

In order to push the reflection a little bit more, we made an additional experi-

ment where we regrouped diverse versions of BOSSBase (BOSS+DEV:Res+Bicub,

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 169

WOW 0.2 bpp S-UNIWARD 0.2 bpp

BOSS 27.8 % 36.7 %

BOSS+all-DEV 23.0 % 33.2 %

BOSS+BOWS2 23.7 % 34.4%

Table 7.5: Base Augmentation influence: error probability of Yedroudj-Net,
on WOW and S-UNIWARD at 0.2 bpp with a learning base augmented with

different versions of BOSSBase..

BOSS+DEV:Res+Spline, BOSS+DEV:Res+NoInt, BOSS+DEV:Res+Crop) to the

exception of BOSS+DEV:Crop. In Table. 7.5, we report the results with this

gathering of various development (noted BOSS+all-DEV), and the results with

LIRMM and BOWS2 enrichment (noted LIRMM+BOWS2 and already re-

ported in Section 7.3.1). Note that for BOSS+all-DEV, the training set is made

of 44 000 pairs (without counting the validation), and for LIRMM+BOWS2 the

training set is made of 14 000 pairs (without counting the validation).

For those two enrichments, there is a real improvement with a decrease of the

error probability of detection of 2-3% for S-UNIWARD (and 4% for WOW). This

last result is very interesting and shows that in order to enrich a database, in a

practical scenario, there are at least those two options:

Given a target database:

• either Eve (the steganalyst) finds similar cameras (used for generating the

target database), capture new images, and reproduce the same development

than the target database, with a special caution to the resizing,

• either Eve has an access to the original RAW images and reproduces similar

developments than the target database with the similar resizing,

The reader should also remember that Virtual Augmentation is also a good cheap

processing measure.

Note that it is unclear which option would be better in a practical case. Addi-

tional experiments have to be done in the future. Anyway, those two enrichments

show that a very caution process has to be taken for really improving the results.

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 170

We believe that those enrichments reduce the over-fitting and also improve the

generalization of the learner.

7.3.5 Setup 5: Enrichment with a re-processing of the

learning set

In all previous setups, given a target database (never compressed 8-bits grey-level

256×256 images), we were presuming either a prior knowledge of the cameras

used for the images acquisitions or a direct access to the RAW versions of the

original images. In real-world cases, those knowledge are most of the time not

available. Moreover, retrieving the camera models is a very complicated task in a

real scenario due to the huge number of cameras.

WOW 0.2 bpp S-UNIWARD 0.2 bpp

BOSS 27.8 % 36.7 %

BOSS+DEV:Translation 34.7.0 % 47.8 %

BOSS+DEV:Up-Down-Sampling 31.2 % 42.6 %

BOSS+DEV:pixels-off (d=100) 25.1 % 35.6 %

Table 7.6: Base Augmentation influence: error probability of Yedroudj-Net,
on WOW and S-UNIWARD at 0.2 bpp with a learning base augmented with a

re-processing of BOSSBase..

In Table. 7.6, we report the results with no enrichment (noted BOSS), and the

results with 3 different reprocessed versions of the BOSSBase, each generated from

the original 256×256 8-bits grey-level BOSSBase images.

The first reprocessing (noted BOSS+DEV:Translation) consists in applying

a sub-pixel image translation, of 0.5 pixels, on the padded (symmetric padding)

images, and then applying a crop operation to re-obtain a 256×256 images.

The second reprocessing (noted BOSS+DEV:Up-Down-Sampling) consists in

applying a Lanczos3 filter for the up-sampling in order to obtain a 512×512 images,

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 171

and then down-sampling with the same interpolation Kernel to re-obtain images

of 256×256 size.

The third reprocessing (refereed as BOSS+DEV:pixels-off) consists of selecting

a random number d of the image pixels and setting them to 0. Different values

of the portions d are tested(d = 100, d = 200, d = 400 and d = 1024). Once the

database of images with off-pixels is generated, an embedding process is launched

to obtain the stego images.

For the two first reprocessing, the results are catastrophic, with an increase of the

error probability of 6% to 11% for S-UNIWARD and 4% to 7% for WOW. However,

as for "off-pixel" reprocessing great results are obtained. The error probability is

decreased by 1% to 2% for WOW and by more than 1% to % S-UNIWARD.

Since BOSS+DEV:pixels-off represents an easy development that obtains good

results, it was intuitive to investigate its true potential. To this end, we have made

some several extra experiments. Firstly, we try to use not only one reprocessed

base but two. Thus, we generate another redeveloped base and this time d is set to

200. Thus, the learning set is composed of 24000 pairs (cover/stego). This setup is

referred to as BOSS+DEV:pixels-off-1. Secondly, we make BOSS+DEV:pixels-off-

1 learning set even bigger by adding another processed base obtained by turning

off more pixel d = 400. This setup is named as BOSS+DEV:pixels-off-2. The last

setup is called as BOSS+DEV:pixels-off-3. In this setup, we take the learning set

of BOSS+DEV:pixels-off-2 setup and we add a third processed base. This latter

is obtained by setting d = 1024. The results are given below.

From Table. 7.7, we can observe that the enrichment with two reprocessed bases

(BOSS+DEV:pixels-off-1 (d=100, d=200)) improves even more the results com-

pared to the BOSS+DEV:pixels-off (d=100). The decrease of the detection error

is of 1% for S-UNIWARD (resp. almost 2% for WOW). The enrichment with three

processed bases (BOSS+DEV:pixels-off-2 (d=100, d=200, d=400)), to an extent,

also give good results with a decrease of the detection error of 1% for S-UNIWARD

(resp. 0.7% for WOW). When looking to the last setup (BOSS+DEV:pixels-off-3

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 172

WOW 0.2 bpp S-UNIWARD 0.2 bpp

BOSS 27.8 % 36.7 %

BOSS+DEV:pixels-off (d=100) 25.1 % 35.6 %

BOSS+DEV:pixels-off-1 (d=100, d=200) 24.6 % 34.5 %

BOSS+DEV:pixels-off-2 (d=100, d=200, d=400) 24.1 % 34.1 %

BOSS+DEV:pixels-off-3 (d=100, d=200, d=400, d=1024) 24.7 % 34.2 %

Table 7.7: Base Augmentation influence: error probability of Yedroudj-Net,
on WOW and S-UNIWARD at 0.2 bpp with a learning base augmented with

pixels-off re-development of BOSSBase ..

(d=100, d=200, d=400, d=1024), the results get worse, with respectively an in-

crease of the detection error for S-UNIWARD (resp. WOW) of 0.1% (resp. 0.6%).

We easily understand that this type of reprocessing the learning set (disabling some

pixels) is beneficial to improve detection accuracy, but disabling to many pixels can

have the contrary effect due to the change in data distribution ((BOSS+DEV:pixels-

off-3 (d=100, d=200, d=400, d=1024), thus the accuracy is decreased.

Those results show that we can directly use the original base to augment the

learning set; thus it may be pointless to spend much time looking for the RAW

images or to spend money buying the same cameras.

7.3.5.1 Extra: Different development using a totally different program

Although we have experimented different developments in the previous subsection,

we were using the same program for all developments. In order to exclude the

hypothesis that using the same program may influence the images distribution,

we decided to conduct an extra experiment by using a different program. For that

and in this subsection, we use Adobe Photoshop Lightroom 6.

With the help of this program, two versions of BossBase V1.01 have been created.

The first version is noted BossBase 2.0.1, and the second one BossBase 2.0.2.

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 173

• BossBase 2.0.1 version is similar to the original BossBase since we keep the

same configuration. Like the original BossBase v1.01, we use the original

RAW images to generate a colour image with a size of 256 by using a resize

function followed by a crop. The last step we use Matlab to obtain "PGM"

images.

• BossBase 2.0.2 is Generated the same way as BossBase 2.0.1 but with an

extra manipulation. We decreased the exposure in all image by shifting the

entire histogram to the left, to highlight more the shadows and the edges

and slightly change the images distribution.

WOW 0.2 bpp S-UNIWARD 0.2 bpp

BOSS 27.8 % 36.7 %

BOSS+BOSS 2.0.1 26.0 % 35.5%

BOSS+BOSS 2.0.2 27.43 % 37.0%

Table 7.8: Base Augmentation influence: error probability of Yedroudj-Net,
on WOW and S-UNIWARD at 0.2 bpp with a learning base augmented with

two different versions of BOSSBase. .

From Table. 7.8, we can observe that using another program does not have that

big influence on the learning set distribution, thus the obtained results over the

"BOSS+BOSS 2.0.1" setup are rather positive. A decrease of the prediction er-

ror of 1.8% (resp. 1.2%) for WOW (resp. S-UNIWARD) is achieved. As for

"BOSS+BOSS 2.0.2" we obtain the same results as on the no enrichment setup

(BOSS).

7.4 Conclusion

In this chapter, we have explored ways to enrich a learning database when steganal-

ysis is done with a CNN. The enrichment is a crucial task since, in the majority

of the today’s experiments, the required number of images have to be extremely

high due to the huge number of parameters to be learned. Using an insufficient

Chapter 7. How to augment a small learning set for improving the performances
of a CNN-based steganalyze 174

set of examples (images) leads to CNNs that have not "learned enough" and the

average efficiency is thus reduced.

After recalling the state-of-the-art of 2017 for the spatial CNN steganalysis, and

briefly recalling the state-of-the-art steganalysis approach named Yedroudj-Net, we

have presented various results. Additionally, to the classical data augmentation,

which consists of applying flips and rotations on the learning images [Krizhevsky

et al., 2012], we observed three other ways for favourably enriching the learning

database. The trend is that, in a clairvoyant scenario (knowledge of the embedding

algorithm, knowledge of the payload size, approximate knowledge of the of the

images distribution), for a given target (test) database, in order to augment its

learning database, the steganalyst (Eve) has three choices:

• Either she is able to guess the camera used for generating the target database.

She thus captures new images, and reproduce a similar development than

the target database, with a special caution to the resizing,

• Either she has access to the original RAW images and reproduces a similar

development than the target database with the similar resizing.

• Either she clones the database disable a very small percentage of images

pixels (pixels-off).

The two first ways to enrich the database are very restrictive. The last way is

preferred as its an easier way and more practice in a real-world situation. As

explained previously, some complementary solutions can be used such as transfer

learning [Qian et al., 2016], or the use of ensembles [Xu et al., 2016b], but the un-

derlying questions of generalizations / cover-source mismatch have to be explored

deeper in the future.

Chapter 8

Steganography using a 3 player

game

Contents

8.1 Introduction . 177

8.2 General concept . 178

8.3 Related work . 180

8.3.1 Generating Steganographic Images Via Adversarial Train-

ing (GSIVAT) . 180

8.3.2 HiDDeN: Hiding Data With Deep Network 181

8.3.3 Discussion . 183

8.4 Our steganographic system’s Architecture 185

8.4.1 The training process . 186

8.4.2 The proposed architecture of the Agent-Eve 187

8.4.3 First-Architecture . 187

8.4.4 Second-Architecture (noise power reduction) 189

8.4.5 Third-Architecture (source separation) 191

8.5 Experiments . 195

8.5.1 Dataset and software platform 195

175

Chapter 8. Steganography using a 3 player game 176

8.5.2 Training, Validation, Test 195

8.5.3 Results of the three architectures 197

8.6 Conclusion and perspectives 202

Chapter 8. Steganography using a 3 player game 177

8.1 Introduction

Image steganography aims to securely embed secret information into cover images.

Until now, adaptive embedding algorithms such as S-UNIWARD or Mi-POD, were

among the most secure and most used methods for image steganography. However,

these algorithms are considered as naive adaptive steganography. They are indeed

designed without any consideration of how the steganalyst (Eve) is evolving when

it is confronted to this embedding.

With the emergence of deep learning techniques and more specifically Adversar-

ial Generative Networks (GANs), the design of strategic adaptive steganography

models has become much easier, leading to the appearance of new steganographic

techniques. Among them, there is the 3-player game approach, where three net-

works compete against each other. Those networks are refereed as Agent-Alice for

the embedding network, Agent-Bob for the extracting network, and Agent-Eve the

steganalysis network. See Section. 4.4

In this chapter, we present our proposed steganographic system, which is based on

the 3-player game approach. Three different architectures are developed. The first

architecture is proposed as a rigorous alternative to two recent publications which

represent the state-of-the-art of the 3-player game approach [Hayes and Danezis,

2017, Zhu et al., 2018]. The second stands for an improvement of the first one

where the stego noise power is better handled. Finally, our third architecture

enriches the second one with a better interaction between the embedding and

extracting networks. Our method achieves better results compared to the existing

works and paves the way for future researches.

In this chapter, Section. 8.2 focuses on the steganography’s main concept with

3-player game. In Section. 8.3, we recall the propositions given in [Hayes and

Danezis, 2017] and [Zhu et al., 2018]. In Section. 8.4 we present three architectures

in order to resolve previous unsolved problems. In Section. 8.5 we give some

experimental results and their analysis. Finally, we conclude in Section. 8.6.

Chapter 8. Steganography using a 3 player game 178

8.2 General concept

Let x ∈ {0, ..., 255}w×h be a cover matrix composed of w×h pixels, and y ∈
{0, ..., 255}w×h be a stego matrix with a size of w×h pixels generated by the

steganographic system more precisely the Agent-Alice. We note m a secret

binary message vector of m bits that Agent-Alice wants to send to Agent-Bob,

and m’ the binary message extracted by Agent-Bob, where m’ has the same

length as m. Let k be the shared key between Agent-Alice and Agent-Bob,

where k is a k-sized binary vector. Let us further note i ∈ {0, ..., 255}w×h an image

with an unknown label. We use the notation y for the image label where y ∈ {0,1},

y=0 if i is a cover, and y =1 if i is a stego.

Bearing in mind that the objective of the steganographic system based 3-player

game, illustrated in Figure. 4.6, is to learn a model so that Agent-Alice can

generate a stego y by embedding the secret message m within the cover x, and

then secretly communicate it to Agent-Bob (as defined in Algorithm 1), a loss

function is given to each agent:

Agent-Eve’s loss: Agent-Eve is modelled by a function Agent-Eve: i → [0,

1], which takes the image i and returns a real score between 0 and 1, such that 0

corresponds to a cover and 1 corresponds to a stego.

Agent-Eve’s general loss consists then in minimizing the distance between the label

y and Agent-Eve’s prediction:

LEve = dist(y − Agent-Eve(i)). (8.1)

The distance used for Agent-Eve’s loss is usually the cross-entropy distance; thus

the loss of Equation. 8.1 is given as:

LEve = − y · log(Agent-Eve(i)) − (1 - l) · log(1 − Agent-Eve(i)). (8.2)

Chapter 8. Steganography using a 3 player game 179

Agent-Bob’s loss: Agent-Bob attempts to reconstruct the secret message m

from the received image y using the key k. The reconstructed message m’ should

be equal to m (m = m’). To this end, Agent-Bob’s loss consists in minimizing a

distance between m’ and m (usually a L2 distance):

LBob = dist(m, m’). (8.3)

Agent-Alice’s loss: Agent-Alice objectives are multiple. The first is to generate

a stego image y that is close enough to the cover x. The second is to allow Agent-

Bob to reconstruct the secret message m correctly from the stego image. The third

is that Agent-Eve accuracy should be not better than a random guess whether a

given image i is a cover or stego (50-50 chance of making the good guess). The

loss of Agent-Alice is then the weighted sum of three terms: Lbob, LEve, and

dist(x,y) the distance calculated between x and y, where the coefficients used for

the weighted sum, λA, λB, λE, belongs to [0,1] and their sum is equal to one in

order to adjust the contribution of each term to the loss of Agent-Alice:

LAlice = λA · dist(x,y) + λB · LBob − λE · LEve. (8.4)

Note that pixels values from x and y are all normalized by a division by 255. Each

of the three terms has thus, similar values ranges, which is a practical requirement

in an optimization process (see Figure. 8.6).

The training process of the steganographic system based 3-player games is de-

scribed in Algorithm 1.

Before proceeding with the presentation of our proposed 3-player steganographic

system, we start by presenting previous works that do belong to the same steganog-

raphy GAN family, (i.e. 3-player game family).

Chapter 8. Steganography using a 3 player game 180

8.3 Related work

In this subsection, we recall the architectures of GSIVAT [Hayes and Danezis,

2017] and HiDDen [Zhu et al., 2018]. These two architectures were proposed

basically for steganography purposes.

8.3.1 Generating Steganographic Images Via Adversarial

Training (GSIVAT)

In [Hayes and Danezis, 2017], the authors propose a steganographic system (GSI-

VAT) composed of three neural networks, each one representing one agent (Agent-

Alice, Agent-Bob, Agent-Eve). We sum up the GSIVAT architecture in Figure.

8.1.

2x2xw.8

m bits

Cover (x)
Cover 1d

m bits

Concat

w.8.4.4 4x4xw.8 8x8xw.4 16x16xw.2 32x32xw 32x32xc

w=32

h=w

w.h.c+m

4x4xw.48x8xw.216x16xw

4x4xw.48x8xw.216x16xw 2x2xw.8

{
Cover

Stego

Batch_Norm

Deconvolution
Stride= 2

Convolution
Stride= 2

Fully
connected

Relu-Act

leaky
Relu-Act

Sigmoid
-Act

Tanh-Act

Agent-Alice Agent-Bob

Agent-Eve

Concatination

Extracted
message

Secret message

w.h.c

message (m)

Stego (ỹ)
message (m')

Figure 8.1: GSIVAT [Hayes and Danezis, 2017] architecture.

Their system’s input are a cover image x, a 3D vector, whose size is w×h×c (where

c is the channel number) and a secret message m of m bits. x is flattened to a

1D vector and concatenated with m, the resulting vector size is w·h·c+m. This

vector is then fed to Agent-Alice.

Agent-Alice is composed of one fully connected layer (FC) and four deConv-BN-

Act blocks (see Figure. 8.1). Each block is the combination of a deconvolution

Chapter 8. Steganography using a 3 player game 181

(deConv), a batch normalization (BN) and one activation function (Act) layer

(ReLU, leaky-ReLU, sigmoid, tanh).

The number of neurons in the fully connected (FC) layer is the multiplication

result of w·8·4·4. The output of the FC is reshaped to w·8 of 4×4 sized features-

maps. Then, these feature-maps fed four deConv-BN-Act blocks. After each block,

the size of these features-maps is up-sampled by a factor of two, and the channel

number is reduced by a factor of two. In the end, an image of the same size as x

is obtained.

Agent-Alice outputs the stego image ỹ∈ R
w×h which is fed to both Agent-Bob and

Agent-Eve. The distance between x and ỹ (dist(x,y) in Equation. 8.4) is the L2

distance.

Agent-Bob’s architecture is depicted in Figure. 8.1. It consists of four Conv-

BN-Act blocks and one FC layer. Each block is made of a fractionally-strided

(stride=2) convolution layer (Conv), a batch normalization layer and an activation

function “Leaky ReLU” [Maas et al., 2013]. The FC layer is made of m neurons

followed by a tanh activation function.

Agent-Bob outputs the extracted message m’. The L2 distance is used to compute

the loss previously given in Equation. 8.3.

Agent-Eve takes as input image i, and outputs a score determining the label of

the input (cover/stego). The architectures of Agent-Eve and Agent-Bob are similar

except for the fully connected layer having only two neurons, and the activation

function replaced by a sigmoid. The sigmoid cross entropy loss is used for Eve’s

loss (see Equation. 8.2).

8.3.2 HiDDeN: Hiding Data With Deep Network

In [Zhu et al., 2018], the authors propose a model for image steganography, but

also for watermarking (called HiDDen). We will only discuss the architecture of

their steganographic system.

Chapter 8. Steganography using a 3 player game 182

Cover (x)

wxhxc
wxhx64

wxhx64+m

wxhxm

wxhx64

concat

wxhx64

wxhxc

Stego ỹ

m bits

Stego

Cover

Agent-Alice

Agent-Eve

64x1
Convolution
kernel-size= 1

Fully
connected

Concatination

Extracted
message

Secret message

Conv-BN-ReLU
kernel_size= 3
filters= 64

Conv-BN-ReLU
kernel_size= 1
filters=n

Global average
Pooling

Spatial
replication

wxhx64
wxhxm

Agent-Bob

nx1

m bits

Message (m)
Message (m')

Figure 8.2: HiDDeN architecture.

Their system takes as input a w×h×c-sized cover image x and a m-length secret

message m. As all 3-player game steganographic systems, their proposed system

is composed of three neural networks. The structure of these three networks is

generally composed of blocks called Conv-BN-ReLU which stands for the combi-

nation of Convolution, Batch Normalization and ReLU activation function (see

Figure. 8.2).

Agent-Alice is composed of five Conv-BN-ReLU blocks and one convolution layer

with a kernel size of 1×1. Firstly, the cover image x goes through four Conv-BN-

ReLU blocks to obtain an intermediate representation image x̃. On the other

hand, the message m is replicated so that the resulting size is w×h×m. Secondly,

x̃ is concatenated with the replicated message and fed to another Conv-BN-ReLU

block with 64 output filters. A final convolution layer with a 1×1 kernel is used

to generate the stego image ỹ∈ R
w×h. The loss of Agent-Alice is calculated using

the loss of Equation. 8.4.

Agent-Bob is composed of seven Conv-BN-ReLU blocks, followed by a global

spatial average pooling (to produce a vector with the same size as the message).

Then, a single, fully connected layer ends the architecture, as shown in Figure.

8.2. Agent-Bob receives the stego image ỹ, and produces the predicted message

m’. The distance used in Agent-Bob’s loss of Equation. 8.3 is the l2 distance.

Agent-Eve takes an image as input, and outputs a score indicating whether the

given image is a cover or stego one. Agent-Eve has an architecture similar to

Chapter 8. Steganography using a 3 player game 183

Agent-Bob, but only has three Conv-BN-ReLU blocks instead of seven. The last

layer is a FC layer with an output size of two units (see Figure. 8.2). The authors

adopt the use of the cross-entropy loss presented in Equation. 8.2 for Agent-Eve.

8.3.3 Discussion

Although GSIVAT [Hayes and Danezis, 2017], and HiDDen [Zhu et al., 2018]) offer

some interesting ideas, they both have serious flaws:

Firstly, neither of the two approaches use a shared secret key during the em-

bedding/extracting process. The authors of [Hayes and Danezis, 2017] and [Zhu

et al., 2018] suppose that the information about model weights, architecture, and

the set of images used for training is shared between Agent-Alice and Agent-Bob.

According to the authors, this shared information can be considered as the se-

cret key. Besides the fact that such a hypothesis is heavy in size (almost 70 Mb

need to be sent to Agent-Bob [Hayes and Danezis, 2017]), it is also the equivalent

of performing an embedding process with the same secret-key. Such embedding

process is highly not recommended in steganography as it leads to a very strong

detectability [Pibre et al., 2016].

Secondly, there is no discretization module for the generated images (Agent-Alice

provides ỹ instead of y). In a real-world situation [Ker et al., 2013], Bob receives

an image whose values are defined in {1,..., 255}, and has to extract the secret

message. In [Hayes and Danezis, 2017] and [Zhu et al., 2018], Agent-Alice generates

real-valued images i.e. not discrete-values images, and these images are fed to

Agent-Bob. This makes both Agent-Alice and Agent-Bob useless in practice. Alice

needs to provide Bob with images that are not suspicious, meaning images with

discrete values. Indeed, images have to be formatted in pgm, or any lossless

compressed images format. Note that if Alice decides to round the real-values

images (generated by the Agent-Alice) in order to discretize them in {1,..., 255},

Chapter 8. Steganography using a 3 player game 184

Bob, when using Agent-Bob algorithm, will not extract correctly the message since

Agent-Bob has been built for real-values images1.

Thirdly, the computation load is a serious issue that must be taken into account

when working with deep learning. GSIVAT authors [Hayes and Danezis, 2017]

have worked on 32×32-sized images while Hidden authors [Zhu et al., 2018] have

used 16×16-sized patches. This limitation for the size of the images is due to

the use of the FC layers, which induce expensive memory and computation costs.

The authors justify that working on large images could be completed by treating

bigger images with a separate treatment for each part of the image. This is indeed

a bad idea since statistical traces may be found at the block boundaries and would

lead to an easily detectable embedding scheme (See for example the discussion in

Section.4.2 of [Fridrich, 2009], or the dependencies preservation between blocks in

JPEG steganography [Taburet et al., 2019]).

Finally, note that in these two papers, the experimental steganalysis is performed

with the algorithm ATS [Lerch-Hostalot and Megìas, 2016] proposed in 2015. This

algorithm is basically proposed to handle the cover-source mismatch problem (seen

in Section. 5.3.3), which is definitely not the appropriate scenario to evaluate the

empirical security of an embedding algorithm (especially when it is a strategic

embedding algorithm). Indeed, ATS is based on the assumption of constant noise

direction in the embedding space, which may not be true for a strategic adaptive

algorithms. The empirical security is probably undervalued when compared to

an Ensemble Classifier/Rich Model (EC+RM) [Kodovský et al., 2012, Fridrich

and Kodovský, 2012], Yedroudj- Net [Yedroudj et al., 2018b], ReST-Net [Li et al.,

2018], or SRNet [Boroumand et al., 2019]. In addition, these four steganalysis

algorithms represent the state-of-the-art of steganalysis, so their use makes more

sense.

Considering the errors made in previous works based 3-player game, we proposed

a new system which, on the one hand, corrects the errors of previous work and,

1We observed this phenomenon during our experiments.

Chapter 8. Steganography using a 3 player game 185

on the other hand, offers a good level of security and correctly carry out the

embedding/extraction processes.

8.4 Our steganographic system’s Architecture

In this section, we present our new strategic adaptive steganography system based

on the 3-player game concept. We are obtaining an embedding algorithm (Agent-

Alice) and an extracting algorithm (Agent-Bob) functional in practice. We there-

fore:

1. Integrate a stego-key for the input of Agent-Alice and Agent-Bob. With

two different stego-keys, Agent-Alice will generate two different stego im-

ages. Alice knows that she must change its stego-key very often if she does

not want to be caught [Pibre et al., 2016]. By extension, knowing that it

is easier to break a system that always uses the same key, it is important

to integrate a stego key in the input of Agent-Alice and Agent-Bob in order

to avoid the counter-productivity that a unique key could have on the con-

vergence of Agent-Alice and Agent-Bob facing Agent-Eve. This argument is

not considered at all in [Hayes and Danezis, 2017] and [Zhu et al., 2018] and

can be a major flaw in their performances;

2. handle the problem of discretization in order for Alice to be able to send

to Bob, through e-mail, memory card, cloud storage, an image in a non-

suspicious standard format. [Hayes and Danezis, 2017] and [Zhu et al., 2018]

do not deal with this fundamental issue;

3. guarantee a scalable (in memory and in computation) solution thanks to

an architecture that consists in only convolutions. Thus, it can deal with

image dimensions usually used in deep-learning and steganalysis by deep-

learning in the academic experiments (255 × 255 or 512 × 512) [Chaumont,

2020]. The convolutional architectures also allow deeper networks to deal

with harder problems modelization. GSIVAT [Hayes and Danezis, 2017]

Chapter 8. Steganography using a 3 player game 186

works with 32×32 images and HiDDeN [Zhu et al., 2018] works with 16×16

images and they both use very small networks.

Additionally, our proposed method offers two interesting properties. First, it is

"bit-rate adaptive". Indeed, there is no need to re-train the system each time we

change the bit rate, i.e. each time the message size is different (this is not the case

for [Hayes and Danezis, 2017] and [Zhu et al., 2018]). Secondly, we adopt a strong

steganalyst for Agent-Eve, which at the most ensures better security, and at less

is an up-to-date steganalysis.

We propose three different architectures for our steganographic system. These

architectures illustrate three different solutions going from the basic one to the

more adapted solution. On these three architectures, Agent-Eve’s architecture

remains the same, while Agent-Alice’s and Agent-Bob’s architecture change their

designs. The first architecture is presented to illustrate the use of a secret shared

key during the embedding. The second architecture intends to reduce the power of

noise introduced by embedding the hidden message into the cover image. Finally,

the third architecture tries to improve the performances of message extraction

while linking Agent-Alice and Agent-Bob’s behaviour.

8.4.1 The training process

Over the three proposed architecture, the training procedure of the system remains

the same. We alternate the training between the three agents Agent-Alice, Agent-

Bob and Agent-Eve, where Agent-Alice and Agent-Bob are jointly trained as a

single network, and Agent-Eve is trained separately.

First, Agent-Bob and Agent-Alice are trained on a fixed number of mini-batch

using the two models of Agent-Alice and Agent-Bob saved previously. See Algo-

rithm. 1. This training process is repeated for several loops until all losses tend to

be constant.

Chapter 8. Steganography using a 3 player game 187

8.4.2 The proposed architecture of the Agent-Eve

Agent-Eve tries to guide both Agent-Alice and Agent-Bob through the process of

learning a strategic adaptive embedding algorithm. If Agent-Eve is weak, the 3-

agent system falls down because Agent-Alice and Agent-Bob will no longer search

for better solutions as Agent-Eve cannot cope with their evolution. To this end,

it is essential to adopt a strong steganalyzer.

In 2018, the best spatial steganalyst was, Yedroudj-Net [Yedroudj et al., 2018b,a]

(see Section. 6.2), ResT-Net [Li et al., 2018] (see Section. 5.5.3) and very recently

SRNet [Boroumand et al., 2019] (published in September 2018). Among these

networks, Yedroudj-Net is the shallowest network with six convolution layers com-

pared to 25 layers for SRNet, and 30 layers for ReST-Net (3 sub-networks each

containing 10 layers). Besides its affordable size, Yedroudj-Net training does not

require the use of any tricks that could increase the computational time. This net-

work is therefore well adapted to Agent-Eve, especially knowing that the 3-player

approach takes a lot of time before it converges to a good solution. Additionally,

Yedroudj-Net can easily be improved in the future if required [Zhang et al., 2019].

Hence, Agent-Eve architecture is the same as the Yedroudj-Net presented in Fig-

ure. 6.1. It is composed of 7 blocks: a pre-processing block, five convolutional

blocks, and a fully connected block made of three fully connected layers followed

by a softmax. Agent-Eve’s network is trained by minimizing the loss given in

Equation. 8.2.

8.4.3 First-Architecture

The first architecture is similar in spirit to the previous approaches that exist in

the literature.

Agent-Alice’s network receives a m-length secret message m, a key k of k bits, and

a cover x. In order to concatenate the cover x with the message m, both should

have the same size. We therefore use the key k to spread out the secret message

Chapter 8. Steganography using a 3 player game 188

m in a matrix noted as s(m)∈{0, 1}w×h that is initialized with zeros and has the

same size than our cover image.

The spreading of m in s(m) is obtained by using a pseudo random number generator

(PRNG) seeded by the key k. The PRNG sequentially pick a bit of m and fills a

non-used position in the s(m) matrix. The filled positions define the binary mask

Ω∈{0, 1}w×h. Ω thus contains exactly m ones.

Note that with the knowledge of k, and the index of a bit mi in our message m

with i∈{1, ..., m}, we can deduce the position (u, v)∈{0, ..w} × {0, ..h} where this

bit is stored in s(m), and inversely from a position (u, v)∈{0, ..w} × {0, ..h}, we can

deduce the bit mi with i∈{1, ..., m} of the message m.

100000001
101000000
100001010
110010101
100000111

1010110

1000101010100010

SRM-F

SRM-F

1000101010100010

100000001
101000000
100001010
110010101
100000111

1010110

Message(m)

Message (m')

Key(k)

Key(k)

Concat

Stego(y)

Stego(y)

Cover(x)

s(m)

s(m')

Agent-Bob

Agent-Alice

conv_Stack0

conv_Stack2conv_Stack1

3*3 3*3

4*4 4*4 4*4

5*5 5*5 5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

3*3

wxhx1

3*3

4*4 4*4

5*5 5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

3*3

wxhx30 wxhx150

4*4

5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

3*3

w

h

w

h

wxhx1

3*3 Convolution layer + relu (kernel=3,stride= 1)

4*4 Convolution layer + relu (kernel=4,stride= 1)

Convolution layer + relu (kernel=5,stride= 1)

1*1 Convolution layer (kernel=1,stride= 1)

1*1

5*5 Convolution layer + relu (kernel=5,stride= 1)

wxhx30

4*4

5*5

3*3

4*4

5*5

3*3

Figure 8.3: Agent-Alice and Agent-Bob with the first architecture.

The cover image x is fed to a convolution layer called SRM-F. Its weights are

initialized with the 30-basic high-pass filters of SRM [Fridrich and Kodovský,

2012], similarly to Yedroudj-Net [Yedroudj et al., 2018b]. The output is then

concatenated with s(m) and fed to conv_Stack0 which is composed of a set of

convolution layers. The output is a w × h image which represents the stego image

y (see Figure. 8.3).

Agent-Bob uses the stego y and the key k to output the predicted message m’,

a vector of m bits. First, the stego image passes through a convolution layer

similar to SRM-F. Next, the obtained feature-maps from SRM-F goes through

Chapter 8. Steganography using a 3 player game 189

another set of convolutions in two conv_Stack1, conv_Stack2. Note that conv_-

Stack2 share the same construction with conv_Stack0, but not the same number

of features-maps for each layer. The extracted message m’ is then obtained (see

Figure. 8.3).

The back-propagation is done by minimizing both losses of Agent-Alice and Agent-

Bob’s. For Agent-Bob’s loss (see Equation. 8.3), the Mean Square Error (MSE)

distance between m and m’ is used. It is then written as:

LBob =
(

∑m

i=1
(mi−m′

i)
2
)

/m , (8.5)

which is equivalent to:

LBob = ((s(m) − s(m′)) ⊙ Ω)2/m , (8.6)

with ⊙ the point-wise operation.

Agent-Alice uses the loss presented in Equation. 8.4 with dist(x,y) calculated as:

dist(x, y) =
(

∑w

i=1

∑h

j=1
(xij−yij)

2
)

/w.h , (8.7)

and thus Agent-Alice’s loss is:

LAlice = λA · dist(x, y) + λB · LBob − λE · LEve (8.8)

where λA, λB, λE ∈ belongs to [0,1] and sum to one in order to adjust the contribu-

tion of each term to the loss. In this architecture, the magnitude of modifications

is not restricted and therefore, the stego noise power is too strong. To impose a

stego noise power restriction, we propose a second architecture.

8.4.4 Second-Architecture (noise power reduction)

The second architecture improves the first one by imposing a stronger restriction

on the magnitude of modification of the stego noise. We force Agent-Alice to

Chapter 8. Steganography using a 3 player game 190

Cover

100000001
101000000
100001010
110010101
100000111

1010110

1000101010100010

SRM-F

1000101010100010

100000001
101000000
100001010
110010101
100000111

1010110

Message (m)

Message (m')

Key (k)

Key (k)

10-101010
1000-1111
1-10-1001
10101-110
110-10101

+

Concat

Stego (y)

Stego (y)

Agent-Alice

Agent-Bob

map (n)
Modification

 conv_Stack3

3*3 3*3

4*4 4*4 4*4

5*5 5*5 5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

3*3

wxhx1w

h

w

h

wxhx30 wxhx150

wxhx1

 conv_Stack2conv_Stack1

3*3 3*3

4*4 4*4

5*5 5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

4*44*4

5*55*5

3*3 Convolution layer + relu (kernel=3,stride= 1)

4*4 Convolution layer + relu (kernel=4,stride= 1)

Convolution layer + relu (kernel=5,stride= 1)

1*1 Convolution layer (kernel=1,stride= 1)

1*1

5*5 Convolution layer + relu (kernel=5,stride= 1) TanH activation function

3*3 3*3

4*4 4*4 4*4

5*5 5*5 5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

3*33*3 3*33*3 3*33*3

4*44*4

3*33*3

5*55*5

4*44*4 4*44*4 4*44*44*4

5*55*55*55*55*55*55*5

3*3

wxhx30

S(m')

S(m)

SRM-F

Figure 8.4: Agent-Alice and Agent-Bob with the second architecture.

make the least changes to the cover while Agent-Bob is still able to retrieve the

secret message correctly. Within this architecture, see Figure. 8.4, Agent-Bob’s

design remains the same as in the previous architecture. However, the architecture

of Agent-Alice is changed. Instead of letting the network decide the intensity

of modification for each pixel in the cover image, it is restricted to a ternary

modification; thus the stego noise values are {-1, 0, 1}. More precisely, during the

first iterations, values are in the range [−1, 1] and belong to R. But at the end of

iterations, a discretization is done in order to have only three discrete values {-1,

0, 1}.

Said differently, Agent-Alice generates a modification map n∈{-1, 0, 1} which is

then added to the cover image x to generate the stego y directly (see Figure. 8.4).

The generation of n is performed using the resulting feature maps of SRM-F, and

the spread message s(m). These are concatenated and fed to conv_Stack3 ; the

output of the latter is n whose values, thanks to a TanH activation function, are

in the range [−1, 1]. Once the discretization is activated, n values are one of the

three discrete values {-1, 0, 1}.

Agent-Bob’s network loss remains the same as in Equation. 8.5. For Agent-

Alice’s loss, we calculate the mean of the absolute values of the modification maps

n (which is equivalent to the MSE) for the distance between the cover image x

Chapter 8. Steganography using a 3 player game 191

and the stego y.

dist(x, y) =
(

∑w

i=1

∑h

j=1
(|nij|)

)

/w.h , (8.9)

One can notice that minimizing the loss using this distance forces Agent-Alice to

output only zeros over the map of modifications. Agent-Bob is then no longer

capable of retrieving the secret message. To reduce this constraint, we introduce a

constant β in Agent-Alice’s loss. This β value is related to the change rate notion.

The loss thus becomes:

LAlice = λA · (dist(x,y) − β) + λB · LBob − λE · LEve, (8.10)

where λA, λB, λE∈[0, 1]. Note that β controls the discretion of the embedding

network, i.e how many pixels Agent-Alice is allowed to alter from the cover image

x.

8.4.5 Third-Architecture (source separation)

The architecture presented in Figure. 8.5 is proposed as an improvement to the

second architecture. The embedding part of the second architecture was changed

to make as few changes as possible. The extracting part, on the other hand, was

kept as it is from the first architecture. Nevertheless, constraining the amplitude

of modifications directly impacts the extracting part. When we limit the number

of pixels that can be modified, more errors occur during message extraction. In

other words, altering fewer pixels means less detectability, but more errors during

message-extraction, while changing more pixels means fewer errors when retriev-

ing the message, but more detectability. How can Agent-Bob extract the secret

message correctly when Agent-Alice carries out the minimal required modification?

In embedding algorithms such as S-UNIWARD [Holub et al., 2014], WOW [Holub

and Fridrich, 2012], etc, the message coding requires, in practice, the use of a

Syndrome-Trellis-Codes STC (described in ection. 3.3.2.2. The extractor (Bob)

Chapter 8. Steganography using a 3 player game 192

Concat

3

10-101010
1000-1111
1-10-1001
10101-110
110-10101

+

-

10-101010
1000-1111
1-10-1001
10101-110
110-10101

U-Net

S
ou

rc
e

se
p

10-101010
1000-1111
1-10-1001
10101-110
110-10101

1
1000101010100010

100000001
101000000
100001010
110010101

1010110

100000111

Message extracted s(m)

Key

SRM

F

Concat

100000001
101000000
100001010
110010101
100000111

1010110

1000101010100010

Message

Key

SRM

F

Message
X'

n

n'

Message spread s(m)

≈

Modification map n

Stego y

Cover x

Reconstructed cove x'Stego y

f

f'

Source separation

≈

g

g'

Figure 8.5: Agent-Alice and Agent-Bob with the third architecture.

has access to the parity-check matrix h∈{0, 1}w×h used by Alice during the em-

bedding process. This matrix h is then shared between Alice and Bob, so Bob can

easily retrieve the message from y by calculating the matrix product as:

m= h · lsb(y),

with lsb (.) the function extracting the LSB plane.

In our proposed method, no parity-check matrix is shared between Agent-Alice

and Agent-Bob, nor any related information. If Agent-Bob has to mimic an STC

to perform the message extraction in the 3-player game, it should learn a matrix in

conjunction with Agent-Alice in order to retrieve the message correctly. Without

any topological or mathematical construction, this can be difficult, especially when

the system used has many loss terms to minimize (Nash equilibrium issue).

A solution for that problem could be to inject a coding/decoding block inside

Agent-Alice and Agent-Bob. Nevertheless, this is not an easy task, and before

Chapter 8. Steganography using a 3 player game 193

trying this solution, we preferred exploring the impact of increasing the link be-

tween the two agents. The integration of a coding and decoding block is postponed

for future work.

We continue in the path of increasing the link between the Agent-Alice and Agent-

Bob by forcing their topology to be more anti-symmetric. Referring to Figure. 8.5,

we draw two blue rectangles to show where this anti-symmetry has been injected.

On one of the rectangle, we noted on the figure, g, the point-wise summation block,

and g’, the sources separation block. g and g’ can be seen as inverse functions such

that:

g : {−1, 0, +1}w×h × R
w×h → R

w×h

g(n, x) = n + x = y

g′ : Rw×h → {−1, 0, +1}w×h × R
w×h

g′(y) = (n′, x′)

For a given cover, x, and a stego noise, n, g′((g(n, x)) gives an estimated cover,

x’, and a estimated stego noise, n’. During the learning, we then minimize the

distance between x and x’ (which is equivalent to minimize the distance between

n and n’); See Equation. 8.11.

The sources separation block act as a denoiser. The well-known U-Net [Ron-

neberger et al., 2015] has thus been used and integrated into Agent-Bob’s archi-

tecture (see Figure. 8.5). The goal of the U-Net is to reconstruct the cover image x

from the stego y image. The modification map n is resulting from the subtraction

of the reconstructed cover x’ from the stego image y.

Referring to Figure. 8.5, on the other rectangle, we noted on the figure, f, the

conv_Stack3 block, and f’, the conv_Stack1 blocks. f and f’ can be seen as inverse

functions from the point view of the spread message s(m) and the modification map

Chapter 8. Steganography using a 3 player game 194

n :

f : Rw×h×30 × {0, 1}w×h → {−1, 0, +1}w×h

fr(s
(m)) = n

f ′ : Rw×h×30 × {−1, 0, +1}w×h → {0, 1}w×h

f ′

r′(n′) = s′(m′)

with r and r’ the 30 residual images obtained by SRM-F filtering.

For a given spread message s(m), and residual images r and r’, f ′
r′((fr(s

(m))) gives

an estimated spread message s′(m′). During the learning, we then minimize the

distance between m and m’ (which is equivalent to minimize the distance between

s(m) and s′(m′); see Equation. 8.6); See Equation. 8.12. Note that conv_Stack1

and conv_Stack3 are the same than in the second architecture.

Agent-Bob’s loss is thus composed of two loss terms:

• the cover reconstruction loss:

Lcover_recons = MSE(x’, x) (8.11)

• the message extraction loss:

Lmessage_extract = MSE(m, m’) (8.12)

The Agent-Bob loss is thus given by:

LBob = 1/2(Lcover_recons + Lmessage_extract) (8.13)

Chapter 8. Steganography using a 3 player game 195

8.5 Experiments

8.5.1 Dataset and software platform

The experiments are carried out on two image sources. The first is the BOSSBase

database 1.01 [Bas et al., 2011]. Images of this database offer different texture

characteristics, which explains why it is widely used in steganalysis. BOWS2 [Bas

and Furon, 2008] is our second database.

Due to our GPU computing platform, time limitation and the 3-player game na-

ture, which takes a lot of time to train due to the two-phase learning, we conduct

all the experiments on images of 256×256 pixels. To this end, we resampled all

images from the two databases from 512×512 pixels to 256×256 pixels, using the

imresize() Matlab function with default parameters.

We implemented the proposed architectures presented in Section. 8.4 using Ten-

sorFlow V 1.6. As for comparison, we use S-UNIWARD [Holub et al., 2014], and

WOW [Holub and Fridrich, 2012], two content-adaptive methods for spatial do-

main embedding. All our experiments were conducted on NVIDIA Titan X GPU

platform.

8.5.2 Training, Validation, Test

We start the training phase by preparing a pre-trained model of Agent-Eve. For

this, we use the S-Uniward algorithm to generate 10,000 stegos from the BOSS-

Base. 10,000 cover/stego pairs are then obtained. We use 4,000 pairs to train a

Yedroudj-Net network. After several epochs of training, we obtain a learned model

of Yedroudj-Net, which we transfer to Agent-Eve; thus, Agent-Eve does not learn

from scratch.

Once Agent-Eve is pre-trained, we start the learning phase of the 3-players (Agent-

Alice, Agent-Bob and Agent-Eve). We use BOSSBase as the image source. The

Chapter 8. Steganography using a 3 player game 196

messages are generated using a PRNG 2 with a chosen payload. We use Adam, an

adaptive optimizer, to train our system of three networks where the mini-batch

size is set to 4. The values of λA, λB, λE are set to 0.2, 0.4, and 0,4 respectively.

These values are chosen empirically; they thus may not be optimum.

During training, we set the maximum number of iterations max-iter to 1 million

iterations. The training is alternated between Agent-Alice and Agent-Bob from

one side, and Agent-Eve from another side. We set it1 to 50 iterations, and it2

to 1 iteration (see Algorithm. 1, so Agent-Alice and Agent-Bob are trained for 50

iterations, compared to 1 iteration for Agent-Eve).

When the losses of the three networks tend to be stable, we freeze their training,

and we integrate the discretization module into Agent-Alice (see Figure. 4.6).

Then, we resume the training for several iterations (more or less 50,000 iterations),

so the system learns how to generate stego images with discrete pixel values.

Figure 8.6: Generic loss evolution of Agent-Alice, Agent-Bob and Agent-Eve
after 300000 iterations (first architecture).

We should note that activating the discretization module at the beginning of the

training phase prevents the system from converging (as the round function is not

differentiable). We, therefore, let the system converge towards a solution, then

we force it to work on images with discrete pixel values. Once our system is well

trained (losses curves are stable, as shown in Figure. 8.6), we stop the training

phase.

To evaluate the performance of our method, we measure the security and the

transmission error. The security is measured with the probability of error (Pe) of

2PRNG: Pseudo-Random Number Generator. The PRNG generates a binary vector m whose
values 0 and 1 are uniformly distributed.

Chapter 8. Steganography using a 3 player game 197

a given steganalyzer, where Pe is computed as the average of the false alarm rate

and the missed detection rate. For the transmission error, we use the Bit Error

Rate (BER). This represents the number of erroneous bits received by Bob. Note

that the BER should not be used in a standard steganographic scenario since no

channel error should be considered during the transmission of the stego image.

Unfortunately, none of the architecture of existing literature for the 3-player game

are able to embed a message that could be retrieved without errors. In practical

use, one should consider a preliminary coding of the message by a correcting code

in order to ensure a correct extraction from Bob’s side. We will not integrate such

a coding but will discuss it. Indeed, this work is primarily on the 3-player concept

definition and the proposition of three architectures.

Therefore for the testing phase, Agent-Alice starts generating 10,000 Stego images

from BOWS2, where a random message is embedded in a cover image using a

random key. The generated images are used to evaluate the accuracy of Bob’s

message retrieval on the one hand, and the security of our steganographic system

against the steganalyzer Yedroudj-Net on the other. Please note that the steganal-

ysis with Yedroudj-Net (learning and testing) is done on BOWS2Base, as for the

training of the 3-players (Agent-Alice, Agent-Bob, and Agent-Eve) it is carried

out using the different and disjointed BOSSBase. The results are presented in the

following subsection.

8.5.3 Results of the three architectures

First architecture:

In Table. 8.1, we report the Bit Error Rate (BER) and the Probability of error

(Pe) obtained using the first architecture. These tests are carried on BOWS2

database at different payloads 0.2 bpp, 0.4 bpp and 1 bpp. The steganalyzer used

is Yedroudj-Net. Regardless of the payload, Bob, who uses the Agent-Bob, can

correctly recover the secret message with a BER equal to zero. We can observe

Chapter 8. Steganography using a 3 player game 198

Payload Bit Error Rate Probality of error (Pe)
0.2 0 3.7%
0.4 0 3.3%
1 0 2.5%

Table 8.1: First architecture BER and Pe for different payloads.

that this architecture is not at all secure since the detection accuracy obtained

using Yedroudj-Net is between 96% and almost 98%.

The first architecture offers a good embedding capacity, where we can perfectly

recover the secret message even when the payload is significant, although the low

security given by this architecture does not make it interesting for steganography

purposes.

Note that this architecture is the closest form of architecture to GSIVAT or HiD-

DeN since the main principle is to spread the message in the spirit of a spread

spectrum watermarking approach. This first architecture, GSIVAT, and HiDDeN

are definitively unsecure approaches since the stego noise power is too strong. We

investigated in the second architecture a way to constrain pixels modifications to

-1 or +1.

Second architecture:

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45

BER Pe

Figure 8.7: BER and Pe for the second architecture for a payload size of 0,4
bpp in function of change rate β.

Chapter 8. Steganography using a 3 player game 199

In the second architecture, we manage to control the noise power introduced by

Agent-Alice during the embedding process. For this purpose, we have conducted

several experiments with different values of the change rate β of the Equation.

8.10. In Figure. 8.7, we present the Bit Error Rate (BER) and the Probability of

error (Pe) of the second architecture, when different β values are used, for a fixed

payload of 0.4 bpp. The used steganalyzer is Yedroudj-Net. We can see that, for β

equal to 0.4, Eve, the steganalyzer (Yedroudj-net) gets a probability of error (Pe)

close to 6% when Bob makes 5% of Bit Error Rate (BER). When β is set to 0.2,

the security of our system improves with a Pe equal to 9%, although the message

extraction becomes more difficult for Bob with 12% of Bit Error Rate.

For a β value equal to or less than 0.05, the generated images are more secure.

Nevertheless, the BER increases considerably. The BER is 32% and 40%, and

the Pe is 15% and 30% for β equals 0,05 and 0 respectively. Those BER values

are very high and would be difficult to correct with a correcting code without

strongly reducing to the real payload size. The best β value is those that in the

same time, maximize the detection error value (Pe), and minimize the size of the

coded message; the message has thus to be encoded such that a correct extraction

is ensured. Since those considerations are a little bit out of topic, we propose a

rapid analysis by choosing a particular point where there is a sudden variation

of BER (i.e. the inflection point). For this architecture and for a payload size

0.4 bpp, the value of β corresponding to a sudden variation of BER is around

β = 0.1. At β = 0.1, the BER=12%. Using the [7,4,3] Hamming Error Correcting

Code (ECC) ensures to correct at most a BER of 14%, so we would, on average,

correct all the errors. With this ECC the real payload size is thus 0.23 bpp, and

we measure for that point a probability of error of 10.2%. It is clear that this

architecture gives better results compared to the first one, where for a payload of

0.2 bpp the Pe is 3%. Nevertheless, those results are still not convincing, and as

explained before, the problem of the second architecture is the weak relationship

between Agent-Alice and Agent-Bob. The third architecture aims to counter this

weakness.

Chapter 8. Steganography using a 3 player game 200

Figure 8.8: (Left) The BOSSBase cover image. (Middle) the corresponding
stego images with 0.4 bpp and β = 0.1 using the second architecture. (right)
the modification maps between the cover image and the corresponding stego

where black=0, white=+/- 1.

In Figure. 8.8 we can observe that this architecture can learn to concentrate

the embedding on textured regions, which are more difficult for a steganalyzer to

detect. This architecture has the capacity to learn and find interesting zones to

implement steganography.

Third architecture:

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45

BER Pe

Figure 8.9: BER and Pe for the third architecture for a payload size of 0.4
bpp in function of change rate β.

As mentioned above, the third architecture has been proposed to improve the

extraction part of the second architecture. However, this requires more time to

converge, but the bright side is that it offers a better message retrieval accuracy.

In Figure. 8.9, we present the bit error rate (BER) and the probability of error

Chapter 8. Steganography using a 3 player game 201

(Pe) of the third architecture as a function of β the change rate, for a fixed payload

0.4 bpp.

Compared to the second architecture, the error of Bob (BER) is smaller regardless

of the value of β, even though the detection accuracy remains almost the same for

both architectures. The BER obtained with the third architecture and compared

to the second architecture is 2% lower when β = 0.4, 6% lower when we set β = 0.2,

and 5% lower when β = 0.1. By observing these results, we see that Agent-Alice

and Agent-Bob have nevertheless benefited from the third architecture. More

joint learning between Agent-Alice and Agent-Bob seems to be the right research

direction.

Looking at Figure. 8.9, similarly to the second architecture, the inflection point

is around β = 0.1. At this point, the BER value is 0.06. The errors can be

corrected with a Hamming code [15,11,3]. In this case the real payload size is

(0, 4 · 11)/15 = 0.293bpp ≈ 0.3 bpp. Using this payload we get a Pe of about 11%.

To give a comparison, we run a steganalysis with Yedroudj-Net against two stegano-

graphic algorithms S-UNIWARD and WOW at a payload size of 0.3 bpp using the

database BOWS2. The probability of error (Pe) is 27.3% (resp. 22.4%) for S-

UNIWARD (resp. WOW). There is undoubtedly a security gap with the actual

embedding schemes, but again, the objective is to define the 3-player game con-

cept, and to analysis, its potential compare to modern embedding scheme and

steganalysis scheme. In that, the third architecture shows that there is a real

potential, and these experiments pave the way to many research.

Figure. 8.10 shows the modifications zone using the third architecture. We can

observe some adaptivity, as the embedding is more dense in textured zones.

The results show that this architecture can implement adaptive embedding. It also

indicates that the link between Agent-Alice and Agent-Bob should be reinforced in

the future to reduce the BER and eventually reduce the change rate and increase

the security level. These results should not deter from the 3-player concepts, even

if the security level at the moment is lower compared to the traditional adaptive

Chapter 8. Steganography using a 3 player game 202

Figure 8.10: (Left) The BOSSBase cover image. (Middle) The stego images
with payload size 0.4 bpp and β = 0.1 using the third architecture. (right) the
modification maps between the cover image and the corresponding stego where

black=0, white=+/- 1.

embedding algorithms such as S-UNIWARD, WOW. Indeed, our proposed method

shows real improvements compared to GSIVAT and HiDDEeN.

8.6 Conclusion and perspectives

In this chapter, we have first recalled the 3-player game approach and defined the

general concept and how to correctly use it for steganography. Three architectures

based on the 3-player game approach have been proposed. The first architecture

came to fix the flaws made in GSIVAT and HiDDEeN. Nevertheless, the first

architectures behave similarly to GSIVAT and HiDDEeN. It is not adapted for

steganography purposes due to its extreme detectability. With the second archi-

tecture, we suggested a new way to embed a message in the cover image. Instead of

directly modifying the cover image, which implies a significant noise power signal,

we proposed to generate a modification map with values belonging to {-1,0,1}.

The stego is then generated by adding the modification map to the cover. This

architecture is much more secure than the first one, but it generates more er-

rors during message extraction. Finally, the third architecture imposes more joint

learning between Agent-Alice and Agent-Bob in order to reduce the errors during

the message extraction. This third architecture takes more time to converge but

achieves better results.

Chapter 8. Steganography using a 3 player game 203

The third architecture, with a real payload size of 0,3 bpp, can perfectly retrieve

an embedded message (with the help of error-correcting code), for a security level

Pe = 10,8%. Even if the obtained results do not surpass current state-of-the-

art embedding algorithms, these results show the extent of the potential of such

method. The major contribution is thus to propose a formalization of the 3-player

game concept, and an end-to-end method using neural networks that can learn to

simulate algorithms using human-based rules (steganography and steganalysis).

We expect this work to lead to fruitful avenues for further research. In future

work, we can study the possibility of synchronizing more Agent-Alice and Agent-

Bob, and thus improving the general performances. We can also try using a more

subtle loss function. This can help the networks to converge to a better solution.

Furthermore, finding a theoretical way to compute the change rate β can help

to accelerate the learning process. The values of λA, λB, λE could also be more

extensively studied.

Chapter 9

Conclusions and Perspectives

Contents

9.1 Conclusions . 205

9.1.1 Steganalysis . 205

9.1.2 Steganography . 206

204

Chapter 9. Conclusios and Perspectives 205

9.1 Conclusions

In the last few years, both steganalysis and steganography have witnessed a rapid

evolution as a result of the progress made in coding/learning of machine learning

methods. This thesis contributes to this quick field development.

9.1.1 Steganalysis

With regard to steganalysis, we have presented a new method for the spatial

domain steganalysis. This method is a deep learning-based approach, more specif-

ically a CNN-based steganalysis. The architecture of this proposed CNN is consid-

ered as a shallow one. It is composed of a pre-processing module, five convolutional

blocks and a classification module made of three fully connected layers. This net-

work is referred to as "Yedroudj-Net" CNN. In terms of performance, Yedroudj-Net

achieves superior results to those of the other steganalyzers existing in mid-2018,

thereby making it state-of-the-art of this period. In an effort to achieve even better

results, we used Yedroudj-Net with two well-known complements that generally

improve the performances of the deep learning model. The first complement is

data augmentation. To that end, different ways of data augmentation have been

tested in order to find the best practical way to do it in the context of steganalysis.

Data augmentation made it possible to reduce the Yedroudj-Net error significantly.

The second tested add-on is the use of a set of CNNs. If the use of a single net-

work yields good results, the use of a set of networks gives even better results

(bootstrap or aggregation). This has been experimentally proven where we were

able to obtain 3 to 6% reduction of the detection error with an ensemble made of

three Yedroudj-Nets.

Steganalysis using CNN’s is a novel framework that offers several promising di-

rections for future research. For short-term research, updating Yedroudj-Net to

Yedroudj-Net-V2.0 may be a possible path to explore. Among the many improve-

ments that can be introduced to our network, we mention the reduction of the

size of the classification module while increasing the number of the convolutional

Chapter 9. Conclusios and Perspectives 206

layer. In this context, it may also be beneficial to change the simple convolutions

layers by depth-wise and residual convolutional layer. This helps to minimize the

complexity of the Yedroudj-Net network and thus makes it even faster to train.

Another improvement is to make Yedroudj-Net-V2.0 works on both spatial and

the frequency domain (JPEG steganalysis). Last but not least, we could evaluate

the transfer learning technique. This last can be used to handle stegos with a

small payload. As for long-term research, one possible direction is what we can

names as limitless learning set scenario. This scenario consists of using the power

of GAN models to generate new examples "that look like" "real" examples, more

precisely, examples that have a close distribution to the one of the learning set

images. With such a solution, the "real world situation" is no longer a problem

since, even with a low learning regime, we would be able to generate as many

images as required to obtain satisfactory results by the steganalyst model. This

path raises another important question. If the scenario limitless learning set does

not require any learning set to begin with (as it is automatically generated from

the test set), thus, both learning and test sets have a similar distribution. So can

this scenario provide the ultimate solution to the cover source mismatch?

9.1.2 Steganography

As for steganography, and with the objective of shifting from adaptive steganogra-

phy to strategic adaptive steganography, we have defined a new way for embedding

which is based on the use of a generative adversarial network (GAN) and the 3-

player concept. Our contribution has therefore been to develop a strategic adaptive

approach for embedding secret data, which makes it possible to take into account

not only the distribution of the current cover image but also the evolution of the

steganalyzer (attacker).

Our proposition is mainly based on the use of three networks (embedding network,

extracting network and steganalysis network) that competes against each other to

learn an embedding model. For that, we have proposed three different architec-

tures, all based on the 3-player-game concept. The first architecture was proposed

Chapter 9. Conclusios and Perspectives 207

as a rigorous alternative to other existing methods. However, this architecture is

not adapted for steganography purposes due to its extreme detectability. As for

the other architecture, we suggested a new way to embed a message in the cover

image. Instead of directly modifying the cover image, which implies a significant

noise power signal, we proposed to generate a modification map with values be-

longing to {-1,0,1}. The stego is then generated by adding the modification map to

the cover. This architecture is much more secure than the first one, but it produces

more errors at message extraction. The third architecture enriches the second one

with better interaction between the embedding and extracting networks.

Although the obtained results are no better than the most recent embedding al-

gorithms, our proposal demonstrates the potential for this method. The main

contributions are therefore to offer a formalization of the 3-player game concept

and an end-to-end approach based on the use of neural networks, which make it

possible to learn how to simulate algorithms based on human rules (steganography

and steganalysis).

Following this brief synthesis of the work presented in this manuscript, it seems

reasonable to question the different possibilities for improving this work. To this

end, several potential paths could be explored.

As pointed in section. 8.6, approaches of the 3-player game suffer from the lack

of synchronization between Agent-Alice and Agent-Bob. More specifically, Agent-

Bob, whose task is to extract the secret message, has access to the same infor-

mation as Agent-Eve (except the key), although the Agent-Eve’s task is much

easier. This explains the difficulties encountered by Agent-Bob when extracting

the embedded message.

To overcome this problem, two possible solutions are to be investigated. The first

is to synchronize more Agent-Alice and Agent-Bob by using more constraints on

the training of their networks. The second is to inject a coding/decoding block

inside Agent-Alice and Agent-Bob. In order for them to simulate the process of

an STC.

Chapter 9. Conclusios and Perspectives 208

Another possible direction for future research is to explore the possibility of com-

bining two (or more) steganography with GAN approaches to forge a new one.

Take, for example, the approach with probability map generation. This approach

can benefit from the use of adversarial embedding iterated ideas when it comes to

generating the change probability map.

Bibliography

M. Abadi and D. G. Andersen. Learning to Protect Communications with Ad-

versarial Neural Cryptography. In ArXiv; Rejected from the 5th International

Conference on Learning Representations, ICLR’2017., volume abs/1610.06918,

2016. URL http://arxiv.org/abs/1610.06918.

R. J. Anderson and F. A. P. Petitcolas. On the limits of steganography. IEEE

Journal on Selected Areas in Communications, 16(4):474–481, 1998.

P. Bas and T. Furon. BOWS-2 Contest (Break Our Watermarking System),

2008. Organized between the 17th of July 2007 and the 17th of April 2008.

http://bows2.ec-lille.fr/.

P. Bas, T. Filler, and T. Pevný. ’Break Our Steganographic System’: The Ins and

Outs of Organizing BOSS. In Proceedings of the 13th International Conference

on Information Hiding, IH’2011, volume 6958 of Lecture Notes in Computer

Science, pages 59–70, Prague, Czech Republic, May 2011. Springer.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine

Learning, 2(1):1–127, 2009.

D. Borghys, P. Bas, and H. Bruyninckx. Facing the cover-source mismatch on

jphide using training-set design. In Proceedings of the 6th ACM Workshop on

Information Hiding and Multimedia Security, IH&MMSec ’18, pages 17–22, New

York, NY, USA, 2018. ACM. ISBN 978-1-4503-5625-1.

M. Boroumand and J. Fridrich. Nonlinear feature normalization in steganalysis. In

Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia

209

Bibliography 210

Security, IH&MMSec ’17, pages 45–54, New York, NY, USA, 2017. ACM. ISBN

978-1-4503-5061-7.

M. Boroumand, M. Chen, and J. J. Fridrich. Deep residual network for steganalysis

of digital images. IEEE Trans. Information Forensics and Security, 14(5):1181–

1193, 2019.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

C. Cachin. An information-theoretic model for steganography. In Information

Hiding, Second International Workshop, Portland, Oregon, USA, April 14-17,

1998, Proceedings, pages 306–318, 1998.

G. Cancelli, G. J. Doërr, M. Barni, and I. J. Cox. A comparative study of ±1

steganalyzers. 2008 IEEE 10th Workshop on Multimedia Signal Processing,

pages 791–796, 2008.

M. Chaumont. Deep Learning in steganography and steganalysis from 2015 to

2018. In M. Hassaballah, editor, Digital Media Steganography: Principles,

Algorithms, Advances, volume abs/1904.01444, page 39. Elsevier, 2020. URL

http://arxiv.org/abs/1904.01444. This chapter will appear in 2020.

M. Chen, V. Sedighi, M. Boroumand, and J. Fridrich. JPEG-Phase-Aware Con-

volutional Neural Network for Steganalysis of JPEG Images. In Proceedings

of the 5th ACM Workshop on Information Hiding and Multimedia Security,

IH&MMSec’17, page 10, Drexel University in Philadelphia, PA, June 2017.

M. Chen, M. Boroumand, and J. J. Fridrich. Reference channels for steganalysis

of images with convolutional neural networks. In Proceedings of the 3rd ACM

Workshop on Information Hiding and Multimedia Security, IH&MMSec 2015,

Paris, France, July 3 - 5, 2019, 2019.

R. Cogranne, V. Sedighi, J. Fridrich, and T. Pevný. Is ensemble classifier needed

for steganalysis in high-dimensional feature spaces? In 2015 IEEE International

Workshop on Information Forensics and Security (WIFS), pages 1–6, Nov 2015.

doi: 10.1109/WIFS.2015.7368597.

Bibliography 211

I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and T. Kalker. Digital Water-

marking and Steganography (Second Edition). Morgan kaufmann, 2007.

R. Crandall. Some notes on steganography. Posted on steganography mailing list,

pages 1–6, 1998.

S. Craver. On public-key steganography in the presence of an active warden. In

Information Hiding, 1998.

T. Denemark, V. Sedighi, V. Holub, R. Cogranne, and J. Fridrich. Selection-

channel-aware rich model for steganalysis of digital images. In Proceed-

ings of IEEE International Workshop on Information Forensics and Security,

WIFS’2014, pages 48–53, Atlanta, Georgia, USA, Dec. 2014.

T. Denemark, M. Boroumand, and J. Fridrich. Steganalysis features for content-

adaptive jpeg steganography. IEEE Transactions on Information Forensics and

Security, 11(8):1736–1746, Aug. 2016a.

T. Denemark, J. J. Fridrich, and P. C. Alfaro. Improving selection-channel-aware

steganalysis features. In Media Watermarking, Security, and Forensics 2016,

San Francisco, California, USA, February 14-18, 2016, pages 1–8, 2016b.

T. Denemark, P. Bas, and J. J. Fridrich. Natural steganography in jpeg compressed

images. In Media Watermarking, Security, and Forensics, 2018.

X. Deng, B. Chen, W. Luo, and D. Luo. Fast and effective global covariance

pooling network for image steganalysis. In Proceedings of the ACM Workshop

on Information Hiding and Multimedia Security, IH&MMSec’19, pages 230–234,

New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6821-6.

J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research,

12:2121–2159, 2011.

M. Ettinger. Steganalysis and game equilibria. In Information Hiding, Second In-

ternational Workshop, Portland, Oregon, USA, April 14-17, 1998, Proceedings,

pages 319–328, 1998.

Bibliography 212

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,

T. Kohno, and D. Song. Robust physical-world attacks on deep learning vi-

sual classification. In 2018 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages

1625–1634, 2018.

T. Filler and J. J. Fridrich. Gibbs construction in steganography. IEEE Trans.

Information Forensics and Security, 5(4):705–720, 2010.

T. Filler, J. Judas, and J. J. Fridrich. Minimizing embedding impact in steganog-

raphy using trellis-coded quantization. In Media Forensics and Security II, part

of the IS&T-SPIE Electronic Imaging Symposium, San Jose, CA, USA, January

18-20, 2010, Proceedings, page 754105, 2010.

T. Filler, J. Judas, and J. J. Fridrich. Minimizing additive distortion in steganog-

raphy using syndrome-trellis codes. IEEE Trans. Information Forensics and

Security, 6(3-2):920–935, 2011.

J. Fridrich. Steganography in Digital Media. Cambridge University Press, 2009.

ISBN 9781139192903. Cambridge Books Online.

J. Fridrich and J. Kodovský. Rich Models for Steganalysis of Digital Images. IEEE

Transactions on Information Forensics and Security, TIFS, 7(3):868–882, June

2012.

J. Fridrich and J. Kodovský. Steganalysis of lsb replacement using parity-aware

features. In Proceedings of the 14th International Conference on Information

Hiding, IH’12, pages 31–45, 2013. ISBN 978-3-642-36372-6.

J. Fridrich, M. Goljan, and D. Hogea. Attacking the outguess, 2002.

J. J. Fridrich. Feature-based steganalysis for JPEG images and its implications for

future design of steganographic schemes. In Information Hiding, 6th Interna-

tional Workshop, IH 2004, Toronto, Canada, May 23-25, 2004, Revised Selected

Papers, pages 67–81, 2004.

Bibliography 213

J. J. Fridrich and T. Filler. Practical methods for minimizing embedding impact

in steganography. In Security, Steganography, and Watermarking of Multimedia

Contents IX, San Jose, CA, USA, January 28, 2007, page 650502, 2007.

J. J. Fridrich, M. Goljan, P. Lisonek, and D. Soukal. Writing on wet paper. In

Security, Steganography, and Watermarking of Multimedia Contents VII, San

Jose, California, USA, January 17-20, 2005, Proceedings, pages 328–340, 2005.

J. J. Fridrich, J. Kodovský, V. Holub, and M. Goljan. Breaking HUGO - the

process discovery. In Information Hiding - 13th International Conference, IH

2011, Prague, Czech Republic, May 18-20, 2011, Revised Selected Papers, pages

85–101, 2011.

K. Fukushima. "cognitron: A self-organizing multilayered neural network". "Bi-

ological Cybernetics", 20(3):121–136, Sep 1975. ISSN 1432-0770. doi: 10.1007/

BF00342633. URL https://doi.org/10.1007/BF00342633.

S. Ghannay. Etude sur les representations continues de mots appliquees a la de-

tection automatique des erreurs de reconnaissance de la parole. PhD thesis,

2017. URL http://www.theses.fr/2017LEMA1019. Thèse de doctorat dirigée

par Estève, Yannick et Camelin, Nathalie Informatique Le Mans 2017.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, AISTATS’2010, volume 9 of Proceedings

of Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia,

Italy, May 2010.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

I. J. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. CoRR,

abs/1701.00160, 2017.

Bibliography 214

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial

examples. In 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. C. Courville, and Y. Bengio. Generative adversarial nets. In Advances

in Neural Information Processing Systems 27: Annual Conference on Neural

Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,

Canada, pages 2672–2680, 2014.

K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classi-

fication with sets of image features. In 10th IEEE International Conference

on Computer Vision (ICCV 2005), 17-20 October 2005, Beijing, China, pages

1458–1465, 2005.

P. Guillot. La cryptologie: l’art des codes secret: L’art des codes secrets. EDP

sciences, 2013.

J. Hayes and G. Danezis. Generating Steganographic Images Via Adversarial

Training. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Proceedings ofAdvances in Neural

Information Processing Systems 30: Annual Conference on Neural Information

Processing Systems, NIPS’2017, pages 1951–1960, Dec. 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional

networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell., 37

(9):1904–1916, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-

nition. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, CVPR’2016, pages 770–778, Las Vegas, Nevada, June 2016.

M. A. Hearst. Support vector machines. IEEE Intelligent Systems, 13(4):18–28,

July 1998. ISSN 1541-1672.

Bibliography 215

G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep

belief nets. Neural Computation, 18(7):1527–1554, 2006.

V. Holub and J. Fridrich. Designing Steganographic Distortion Using Directional

Filters. In Proceedings of the IEEE International Workshop on Information

Forensics and Security, WIFS’2012, pages 234–239, Tenerife, Spain, Dec. 2012.

V. Holub, J. J. Fridrich, and T. Denemark. Random projections of residuals as an

alternative to co-occurrences in steganalysis. In Media Watermarking, Security,

and Forensics 2013, Burlingame, CA, USA, February 5-7, 2013, Proceedings,

page 86650L, 2013.

V. Holub, J. Fridrich, and T. Denemark. Universal Distortion Function for

Steganography in an Arbitrary Domain. EURASIP Journal on Information

Security, JIS, 2014(1):1, Jan. 2014.

J. J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences, 79

(8):2554–2558, 1982. ISSN 0027-8424. doi: 10.1073/pnas.79.8.2554.

J. J. Hopfield. Neurons with graded response have collective computational prop-

erties like those of two-state neurons. Proceedings of the National Academy of

Sciences, 81(10):3088–3092, 1984. doi: 10.1073/pnas.81.10.3088.

D. Hu, L. Wang, W. Jiang, S. Zheng, and B. Li. A novel image steganography

method via deep convolutional generative adversarial networks. IEEE Access,

6:38303–38314, 2018.

G. A. F. III and T. S. Gomez. Steganography obliterator: an attack on the least

significant bits. In Proceedings of the 3rd Annual Conference on Information

Security Curriculum Development, InfoSecCD 2006, Kennesaw, Georgia, USA,

September 22-23, 2006, pages 85–91, 2006.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In Proceedings of the 32nd International

Bibliography 216

Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,

pages 448–456, 2015a.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In Proceedings of the 32nd International

Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,

pages 448–456, 2015b.

M. Iranpour and R. Safabakhsh. Reducing the embedding impact in steganography

using hamiltonian paths and writing on wet paper. Multimedia Tools Appl., 74

(17):6657–6670, 2015.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-

stage architecture for object recognition? In IEEE 12th International Confer-

ence on Computer Vision, ICCV 2009, Kyoto, Japan, September 27 - October

4, 2009, pages 2146–2153, 2009.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, and T. Darrell. Caffe: Convolutional architecture for fast feature embed-

ding. In Proceedings of the 22nd ACM international conference on Multimedia,

pages 675–678, Orlando, Florida, USA, Nov. 2014. ACM.

B. L. Kalman and S. C. Kwasny. Why tanh: choosing a sigmoidal function. In

[Proceedings 1992] IJCNN International Joint Conference on Neural Networks,

volume 4, pages 578–581 vol.4, June 1992. doi: 10.1109/IJCNN.1992.227257.

A. D. Ker and T. Pevny. A Mishmash of Methods for Mitigating the Model

Mismatch Mess. In Media Watermarking, Security, and Forensics, Part of

IS&T/SPIE 24th Annual Symposium on Electronic Imaging, SPIE’2014, vol-

ume 9028, San Francisco, California, USA, 2014.

A. D. Ker, P. Bas, R. Böhme, R. Cogranne, S. Craver, T. Filler, J. J. Fridrich,

and T. Pevný. Moving steganography and steganalysis from the laboratory into

the real world. In ACM Information Hiding and Multimedia Security Workshop,

IH&MMSec ’13, Montpellier, France, June 17-19, 2013, pages 45–58, 2013.

Bibliography 217

A. Kerckhoffs. La Cryptographie Militaire. Journal des Sciences Militaires, IX,

pp. 5-38 Jan. 1883, pp. 161-191, Feb. 1883.

G. Kipper. Investigator’s guide to steganography. Auerbach publications, 2003.

J. Kodovský and J. J. Fridrich. On completeness of feature spaces in blind steganal-

ysis. In Proceedings of the 10th workshop on Multimedia & Security, MM&Sec

2008, Oxford, UK, September 22-23, 2008, pages 123–132, 2008.

J. Kodovský and J. J. Fridrich. Steganalysis of JPEG images using rich models.

In Media Watermarking, Security, and Forensics 2012, Burlingame, CA, USA,

January 22, 2012, Proceedings, page 83030A, 2012.

J. Kodovsky, J. Fridrich, and V. Holub. On Dangers of Overtraining Steganog-

raphy to Incomplete Cover Model. In Proceedings of the Thirteenth ACM

Multimedia Workshop on Multimedia and Security, MM&MMSec’2011, pages

69–76, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0806-9. doi:

10.1145/2037252.2037266.

J. Kodovský, J. Fridrich, and V. Holub. Ensemble Classifiers for Steganalysis

of Digital Media. IEEE Transactions on Information Forensics and Security,

TIFS, 7(2):432–444, 2012.

J. Kodovskỳ, V. Sedighi, and J. J. Fridrich. Study of cover source mismatch in

steganalysis and ways to mitigate its impact. In Media Watermarking, Security,

and Forensics, page 90280J, 2014.

S. Kouider. Adaptive Steganography : application to digital images in spatial do-

main. Theses, Université Montpellier II - Sciences et Techniques du Languedoc,

Dec. 2013. URL https://tel.archives-ouvertes.fr/tel-01020745.

S. Kouider, M. Chaumont, and W. Puech. Technical points about adaptive

steganography by oracle (ASO). In Proceedings of the 20th European Signal

Processing Conference, EUSIPCO 2012, Bucharest, Romania, August 27-31,

2012, pages 1703–1707, 2012.

Bibliography 218

S. Kouider, M. Chaumont, and W. Puech. Adaptive Steganography by Oracle

(ASO). In Proceedings of the IEEE International Conference on Multimedia and

Expo, ICME’2013, pages 1–6, July 2013. doi: 10.1109/ICME.2013.6607427.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR 2006),

17-22 June 2006, New York, NY, USA, pages 2169–2178, 2006.

Y. Lecun. A theoretical framework for back-propagation. 1988.

Y. Lecun. Generalization and network design strategies. Elsevier, 1989.

Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard,

and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.

Neural Computation, 1(4):541–551, 1989.

Y. Lecun, L. Jackel, L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon,

U. Muller, E. Sackinger, P. Simard, and V. Vapnik. Learning algorithms for

classification: A comparison on handwritten digit recognition, pages 261–276.

World Scientific, 1995.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

ISSN 0018-9219. doi: 10.1109/5.726791.

Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and appli-

cations in vision. In International Symposium on Circuits and Systems (ISCAS

2010), May 30 - June 2, 2010, Paris, France, pages 253–256, 2010.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,

May 2015.

Bibliography 219

D. Lerch-Hostalot and D. Megìas. Unsupervised Steganalysis Based on Artificial

Training Sets. Engineering Applications of Artificial Intelligence, 50:45 – 59,

2016. ISSN 0952-1976. doi: https://doi.org/10.1016/j.engappai.2015.12.013.

B. Li, M. Wang, J. Huang, and X. Li. A new cost function for spatial image

steganography. In 2014 IEEE International Conference on Image Processing,

ICIP 2014, Paris, France, October 27-30, 2014, pages 4206–4210, 2014.

B. Li, W. Wei, A. Ferreira, and S. Tan. ReST-Net: Diverse Activation Modules

and Parallel Subnets-Based CNN for Spatial Image Steganalysis. IEEE Signal

Processing Letters, 25(5):650–654, May 2018. ISSN 1070-9908. doi: 10.1109/

LSP.2018.2816569.

M. Lin, Q. Chen, and S. Yan. Network in network. In International Conference

on Learning Representations, ICLR 2014, page 10, Banff, Canada, Apr. 2014.

Y. Y. Lu, Z. L. O. Yang, L. Zheng, and Y. Zhang. Importance of truncation

activation in pre-processing for spatial and jpeg image steganalysis. In 2019

IEEE International Conference on Image Processing (ICIP), pages 689–693,

Sep. 2019.

I. Lubenko and A. D. Ker. Steganalysis with mismatched covers: do simple clas-

sifiers help? In Multimedia and Security Workshop, MM&Sec 2012, Coventry,

United Kingdom, September 6-7, 2012, pages 11–18, 2012a.

I. Lubenko and A. D. Ker. Going from small to large data in steganalysis. In Media

Watermarking, Security, and Forensics 2012, Burlingame, CA, USA, January

22, 2012, Proceedings, page 83030M, 2012b.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier Nonlinearities Improve Neural

Network Acoustic Models. In Proceedings of ICML Workshop on Deep Learning

for Audio, Speech and Language Processing, 2013.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec 1943. ISSN

1522-9602.

Bibliography 220

P. D. McDaniel, N. Papernot, and Z. B. Celik. Machine learning in adversarial

settings. IEEE Security & Privacy, 14(3):68–72, 2016.

M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann ma-

chines. In Proceedings of the 27th International Conference on Machine Learning

(ICML-10), June 21-24, 2010, Haifa, Israel, pages 807–814, 2010.

R. M. Neal. Connectionist learning of belief networks. Artif. Intell., 56(1):71–113,

1992.

A. R. Pach. Introduction to coding theory [book review]. IEEE Communications

Magazine, 45(2):18, 2007.

J. Pasquet, S. Bringay, and M. Chaumont. Steganalysis with cover-source mis-

match and a small learning database. In 22nd European Signal Processing Con-

ference, EUSIPCO 2014, Lisbon, Portugal, September 1-5, 2014, pages 2425–

2429, 2014.

T. Pevný, P. Bas, and J. J. Fridrich. Steganalysis by subtractive pixel adjacency

matrix. IEEE Trans. Information Forensics and Security, 5(2):215–224, 2010a.

T. Pevný, T. Filler, and P. Bas. Using high-dimensional image models to perform

highly undetectable steganography. In Information Hiding - 12th International

Conference, IH 2010, Calgary, AB, Canada, June 28-30, 2010, Revised Selected

Papers, pages 161–177, 2010b.

B. Pfitzmann. Information hiding terminology - results of an informal plenary

meeting and additional proposals. In Information Hiding, First International

Workshop, Cambridge, UK, May 30 - June 1, 1996, Proceedings, pages 347–350,

1996.

L. Pibre, J. Pasquet, D. Ienco, and M. Chaumont. Deep Learning is a Good

Steganalysis Tool When Embedding Key is Reused for Different Images, Even

if There is a Cover Source-Mismatch. In Proceedings of Media Watermarking,

Security, and Forensics, MWSF’2016, Part of I&ST International Symposium

Bibliography 221

on Electronic Imaging, EI’2016, pages 1–11, San Francisco, California, USA,

Feb. 2016.

N. Provos and P. Honeyman. Detecting steganographic content on the internet. In

Proceedings of the Network and Distributed System Security Symposium, NDSS

2002, San Diego, California, USA, 2002.

Y. Qian, J. Dong, W. Wang, and T. Tan. Deep Learning for Steganalysis via

Convolutional Neural Networks. In Proceedings of Media Watermarking, Secu-

rity, and Forensics 2015, MWSF’2015, Part of IS&T/SPIE Annual Symposium

on Electronic Imaging, SPIE’2015, volume 9409, pages 94090J–94090J–10, San

Francisco, California, USA, Feb. 2015.

Y. Qian, J. Dong, W. Wang, and T. Tan. Learning and transferring representations

for image steganalysis using convolutional neural network. In Proceedings of

IEEE International Conference on Image Processing, ICIP’2016, pages 2752–

2756, Phoenix, Arizona, Sept. 2016.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with

deep convolutional generative adversarial networks. In 4th International Con-

ference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May

2-4, 2016, Conference Track Proceedings, 2016.

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for

Biomedical Image Segmentation. In Medical Image Computing and Computer-

Assisted Intervention, MICCAI’2015, volume 9351 of LNCS, pages 234–241.

Springer, 2015.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, pages 65–386, 1958.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed processing:

Explorations in the microstructure of cognition, vol. 1. chapter Learning Internal

Representations by Error Propagation, pages 318–362. MIT Press, Cambridge,

MA, USA, 1986. ISBN 0-262-68053-X.

Bibliography 222

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Founda-

tions of research. chapter Learning Representations by Back-propagating Errors,

pages 696–699. MIT Press, Cambridge, MA, USA, 1988. ISBN 0-262-01097-6.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet

Large Scale Visual Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

P. Sallee. Model-based steganography. In IWDW, 2003.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 3(3):210–229, 1959.

D. Scherer, A. C. Müller, and S. Behnke. Evaluation of pooling operations in

convolutional architectures for object recognition. In Artificial Neural Networks

- ICANN 2010 - 20th International Conference, Thessaloniki, Greece, September

15-18, 2010, Proceedings, Part III, pages 92–101, 2010.

P. Schöttle and R. Böhme. A Game-theoretic Approach to Content-adaptive

Steganography. In M. Kirchner and D. Ghosal, editors, Proceedings of the 14th

International Conference on Information Hiding, IH’12, pages 125–141. Springer

Berlin Heidelberg, 2012. ISBN 978-3-642-36372-6.

P. Schöttle and R. Böhme. Game theory and adaptive steganography. IEEE

Transactions on Information Forensics and Security, 11(4):760–773, April 2016.

V. Sedighi, J. J. Fridrich, and R. Cogranne. Content-adaptive pentary steganog-

raphy using the multivariate generalized gaussian cover model. In Media Wa-

termarking, Security, and Forensics 2015, San Francisco, CA, USA, February

9-11, 2015, Proceedings, page 94090H, 2015.

V. Sedighi, R. Cogranne, and J. J. Fridrich. Content-adaptive steganography by

minimizing statistical detectability. IEEE Trans. Information Forensics and

Security, 11(2):221–234, 2016a.

Bibliography 223

V. Sedighi, J. J. Fridrich, and R. Cogranne. Toss that bossbase, alice! In Media

Watermarking, Security, and Forensics 2016, San Francisco, California, USA,

February 14-18, 2016, pages 1–9, 2016b.

T. Sharp. An implementation of key-based digital signal steganography. In Infor-

mation Hiding, 4th International Workshop, IHW 2001, Pittsburgh, PA, USA,

April 25-27, 2001, Proceedings, pages 13–26, 2001.

H. Shi, J. Dong, W. Wang, Y. Qian, and X. Zhang. SSGAN: secure steganog-

raphy based on generative adversarial networks. In Advances in Multimedia

Information Processing - PCM 2017 - 18th Pacific-Rim Conference on Multi-

media, Harbin, China, September 28-29, 2017, Revised Selected Papers, Part I,

pages 534–544, 2017.

Y. Q. Shi, C. Chen, and W. Chen. A markov process based approach to effec-

tive attacking JPEG steganography. In Information Hiding, 8th International

Workshop, IH 2006, Alexandria, VA, USA, July 10-12, 2006. Revised Selcted

Papers, pages 249–264, 2006.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,

D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach,

K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with

deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

G. J. Simmons. The prisoners’ problem and the subliminal channel. In Advances

in Cryptology, pages 51–67. Springer, 1984.

X. Song, F. Liu, C. Yang, X. Luo, and Y. Zhang. Steganalysis of adaptive jpeg

steganography using 2d gabor filters. In Proceedings of the 3rd ACM Workshop

on Information Hiding and Multimedia Security, IH&MMSec ’15, pages 15–23,

New York, NY, USA, 2015. ACM.

Bibliography 224

G. Stemmer, S. Steidl, E. Nöth, H. Niemann, and A. Batliner. Comparison and

combination of confidence measures. In Text, Speech and Dialogue, 5th Inter-

national Conference, TSD 2002, Brno, Czech Republic September 9-12, 2002,

Proceedings, pages 181–188, 2002.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow,

and R. Fergus. Intriguing properties of neural networks. In 2nd International

Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April

14-16, 2014, Conference Track Proceedings.

T. Taburet, P. Bas, J. Fridrich, and W. Sawaya. Computing Dependencies between

DCT Coefficients for Natural Steganography in JPEG Domain. In Proceedings

of the 7th ACM Workshop on Information Hiding and Multimedia Security,

IH&MMSec’2019, pages 57–62, Paris, France, July 2019. ACM. doi: 10.1145/

3335203.3335715.

S. Tan and B. Li. Stacked convolutional auto-encoders for steganalysis of digital

images. In Proceedings of Signal and Information Processing Association Annual

Summit and Conference, APSIPA’2014, pages 1–4, Siem Reap, Cambodia, Dec.

2014.

W. Tang, H. Li, W. Luo, and J. Huang. Adaptive steganalysis against WOW

embedding algorithm. In ACM Information Hiding and Multimedia Security

Workshop, IH&MMSec ’14, Salzburg, Austria, June 11-13, 2014, pages 91–96,

2014.

W. Tang, S. Tan, B. Li, and J. Huang. Automatic Steganographic Distortion

Learning Using a Generative Adversarial Network. IEEE Signal Processing Let-

ters, 24(10):1547–1551, Oct 2017. ISSN 1070-9908. doi: 10.1109/LSP.2017.

2745572.

W. Tang, B. Li, S. Tan, M. Barni, and J. Huang. CNN-based Adversarial Embed-

ding for Image Steganography. IEEE Transactions on Information Forensics and

Security, pages 1–1, 2019. ISSN 1556-6013. doi: 10.1109/TIFS.2019.2891237.

Y. Tang. Deep learning using linear support vector machines. In In ICML, 2013.

Bibliography 225

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked

denoising autoencoders: Learning useful representations in a deep network with

a local denoising criterion. J. Mach. Learn. Res., 11:3371–3408, Dec. 2010. ISSN

1532-4435.

P. Wayner. Mimic functions. Cryptologia, 16(3):193–214, 1992.

P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. PhD thesis, Harvard University, 1974.

A. Westfeld. F5—a steganographic algorithm: High capacity despite better ste-

ganalysis. In 4th International Workshop on Information Hiding, pages 289–302.

Springer-Verlag, 2001.

A. Westfeld and A. Pfitzmann. Attacks on steganographic systems. In Information

Hiding, Third International Workshop, IH’99, Dresden, Germany, September 29

- October 1, 1999, Proceedings, pages 61–76, 1999.

C. Xia, Q. Guan, X. Zhao, Z. Xu, and Y. Ma. Improving GFR Steganalysis

Features by Using Gabor Symmetry and Weighted Histograms. In Proceedings

of the 5th ACM Workshop on Information Hiding and Multimedia Security,

IH&MMSec’17, page 11, Drexel University in Philadelphia, PA, June 2017.

G. Xu. Deep Convolutional Neural Network to Detect J-UNIWARD. In Proceed-

ings of the 5th ACM Workshop on Information Hiding and Multimedia Security,

IH&MMSec’17, page 6, Drexel University in Philadelphia, PA, June 2017.

G. Xu, H. Z. Wu, and Y. Q. Shi. Structural Design of Convolutional Neural

Networks for Steganalysis. IEEE Signal Processing Letters, 23(5):708–712, May

2016a.

G. Xu, H.-Z. Wu, and Y. Q. Shi. Ensemble of CNNs for Steganalysis: An Empirical

Study. In Proceedings of the 4th ACM Workshop on Information Hiding and

Multimedia Security, IH&MMSec’16, page 5, Vigo, Galicia, Spain, June 2016b.

ISBN 978-1-4503-4290-2.

Bibliography 226

J. Yang, D. Ruan, J. Huang, X. Kang, and Y. Shi. An embedding cost learn-

ing framework using gan. IEEE Transactions on Information Forensics and

Security, pages 1–1, 2019.

J. Yang, D. Ruan, X. Kang, and Y. Shi. Towards automatic embedding cost

learning for JPEG steganography. In Proceedings of the ACM Workshop on

Information Hiding and Multimedia Security, IH&MMSec 2019, Paris, France,

July 3-5, 2019., pages 37–46, 2019.

J. Ye, J. Ni, and Y. Yi. Deep learning hierarchical representations for image

steganalysis. IEEE Transactions on Information Forensics and Security, TIFS,

12(11):2545–2557, Nov. 2017.

M. Yedroudj, M. Chaumont, and F. Comby. How to Augment a Small Learning Set

for Improving the Performances of a CNN-based Steganalyzer? In Proceedings

of Media Watermarking, Security, and Forensics, MWSF’2018, Part of I&ST

International Symposium on Electronic Imaging, EI’2018, Jan. 2018a.

M. Yedroudj, F. Comby, and M. Chaumont. Yedroudj-Net: An Efficient CNN

for Spatial Steganalysis. In Proceedings of IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP’2018, Calgary, AB, Canada,

April 15-20, 2018, pages 2092–2096, 2018b. doi: 10.1109/ICASSP.2018.8461438.

M. Yedroudj, F. Comby, and M. Chaumont. Steganography using a 3 player game.

CoRR, abs/1907.06956, 2019. URL http://arxiv.org/abs/1907.06956.

M. D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,

abs/1212.5701, 2012. URL http://arxiv.org/abs/1212.5701.

J. Zeng, S. Tan, B. Li, and J. Huang. Pre-training via fitting deep neural network

to rich-model features extraction procedure and its effect on deep learning for

steganalysis. In Proceedings of Media Watermarking, Security, and Forensics

2017, MWSF’2017, Part of IS&T Symposium on Electronic Imaging, EI’2017,

page 6, Burlingame, California, USA, Jan. 2017a.

Bibliography 227

J. Zeng, S. Tan, B. Li, and J. Huang. Large-scale jpeg image steganalysis using

hybrid deep-learning framework. IEEE Transactions on Information Forensics

and Security, PP(99):1–1, Dec. 2017b. ISSN 1556-6013.

R. Zhang, F. Zhu, J. Liu, and G. Liu. Depth-Wise Separable Convolutions and

Multi-Level Pooling for an Efficient Spatial CNN-based Steganalysis (previously

named "efficient feature learning and multi-size image steganalysis based on cnn"

on ArXiv). IEEE Transactions on Information Forensics and Security, TIFS,

2019. Under Submission.

B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10 million

image database for scene recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2017.

J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei. HiDDeN: Hiding Data With Deep

Networks. In V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, editors,

Proceedings of the 15th European Conference on Computer Vision, ECCV’2018,

volume 11219 of Lecture Notes in Computer Science, pages 682–697. Springer,

Sept. 2018.

Résumé

La stéganographie d’image est l’art de la communication secrète dans le but

d’échanger un message de manière furtive. La stéganalyse d’image a elle pour

objectif de détecter la présence d’un message caché en recherchant les artefacts

present dans l’image. Pendant une dizaine d’années, l’approche classique en sté-

ganalyse a été d’utiliser un ensemble classifieur alimenté par des caractéristiques

extraites "à la main". Au cours des dernières années, plusieurs études ont montré

que les réseaux de neurones convolutionnels peuvent atteindre des performances

supérieures à celles des approches conventionnelles d’apprentissage machine.

Le sujet de cette thèse traite des techniques d’apprentissage profond utilisées pour

la stéganographie d’images et la stéganalyse dans le domaine spatial. La première

contribution est un réseau de neurones convolutionnel rapide et efficace pour la sté-

ganalyse, nommé Yedroudj-Net. Comparé aux méthodes modernes de steganalyse

basées sur l’apprentissage profond, Yedroudj-Net permet d’obtenir des résultats

de détection performants, mais prend également moins de temps à converger, ce

qui permet l’utilisation des bases d’apprentissage de grandes dimmensions. De

plus, Yedroudj-Net peut facilement être amélioré en ajoutant des compélements

ou des modules bien connus. Parmi les amélioration possibles, nous avons evalué

l’augmentation de la base de données d’entraînement, et l’utilisation d’un en-

semble de CNN. Les deux modules complémentaires permettent d’améliorer les

performances de notre réseau.

La deuxième contribution est l’application des techniques d’apprentissage pro-

fond à des fins stéganographiques i.e pour l’insertion. Parmi les techniques ex-

istantes, nous nous concentrons sur l’approche du "jeu-à-3-joueurs". Nous pro-

posons un algorithme d’insertion qui apprend automatiquement à insérer un mes-

sage secrètement. Le système de stéganographie que nous proposons est basé

sur l’utilisation de réseaux adverses génératifs. L’entraînement de ce système

stéganographique se fait à l’aide de trois réseaux de neurones qui se font concur-

rence : le stéganographeur, l’extracteur et le stéganalyseur. Pour le stéganalyseur

nous utilisons Yedroudj-Net, pour sa petite taille, et le faite que son entraînement

ne nécessite pas l’utilisation d’astuces qui pourrait augmenter le temps de calcul.

Cette deuxième contribution donne des premiers éléments de réflexion tout en don-

nant des résultats prometteurs, et pose ainssi les bases pour de futurs recherches.

Mots clés: Stéganographie, Stéganalyse, Apprentissage en profondeur, Réseaux

de neurones convolutif, Réseaux antagonistes génératifs, Insertion strategique.

ABSTRACT

Image steganography is the art of secret communication in order to exchange

a secret message. On the other hand, image steganalysis attempts to detect the

presence of a hidden message by searching artefacts within an image. For about ten

years, the classic approach for steganalysis was to use an Ensemble Classifier fed

by hand-crafted features. In recent years, studies have shown that well-designed

convolutional neural networks (CNNs) can achieve superior performance compared

to conventional machine-learning approaches.

The subject of this thesis deals with the use of deep learning techniques for image

steganography and steganalysis in the spatial domain. The first contribution is

a fast and very effective convolutional neural network for steganalysis, named

Yedroudj-Net. Compared to modern deep learning-based steganalysis methods,

Yedroudj-Net can achieve state-of-the-art detection results, but also takes less

time to converge, allowing the use of a large training set. Moreover, Yedroudj-Net

can easily be improved by using well-known add-ons. Among these add-ons, we

have evaluated the data augmentation and the use of an ensemble of CNN; Both

increase our CNN performances.

The second contribution is the application of deep learning techniques for steganog-

raphy, i.e. the embedding. Among the existing techniques, we focus on the 3-player

game approach. We propose an embedding algorithm that automatically learns

how to hide a message secretly. Our proposed steganography system is based on

the use of generative adversarial networks. The training of this steganographic

system is conducted using three neural networks that compete against each other:

the embedder, the extractor, and the steganalyzer. For the steganalyzer, we use

Yedroudj-Net, this for its affordable size, and for the fact that its training does

not require the use of any tricks that could increase the computational time. This

second contribution defines a research direction by giving first reflection elements

while giving promising first results.

Keywords: Steganography, Steganalysis, Deep Learning, Convolutional Neural

Networks, Generative Adversarial Networks (GAN), Strategic embedding.

