D. Luart, O. Bals, A. Khelfa, R. Luque, and C. Len, Metal-Free Reduction of Nitrobenzene to Aniline in Subcritical Water, Ce travail de thèse a conduit à plusieurs communications scientifiques: ? Publications scientifiques: -Sarra Tadrent, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02148551

?. Communications, . Tadrent-s, . Khelfa-a, O. Bals, D. Luart et al., Bio-based activated carbon as a green and efficient catalyst for aniline production in subcritical water, ISGC International Symposium on Green Chemistry, vol.7, 2017.

. Tadrent-s, . Khelfa-a, O. Bals, D. Luart, ). Len-c-;-france et al., Toward the synthesis of 6-hydroxyquinoline starting from glycerol via improved microwaveassisted modified Skraup reaction, Colloque recherche de la fédération Gay-Lussac, 2016.

?. Communications-par-affiche:--tadrent-s, . Khelfa-a, O. Bals, D. Luart, and . Len-c, Réduction de composés nitroaromatiques en condition subcritique, journée scientifique TIMR, Février, 2018.

. Tadrent-s, D. Luart, O. Bals, . Khelfa-a, and . Len-c, Bio-based activated carbon as a green and efficient catalyst for aniline production in subcritical wáter

. Bibliographie,

R. Meredith, Engineers' Handbook of Industrial Microwave Heating. The Institution of Electrical Engineers, 1998.

S. Gautmer and I. Kullmer, Chemical safety in a valuerable word an international challenge, Angew. chem.Int engle, vol.43, pp.44-56, 2004.

P. Anastas and W. J. , Green Chemistry: Theory and Practice, 1998.

D. Prat and J. Hayler, A survey of solvent selection guides, Green Chem, vol.16, pp.4546-4551, 2014.

P. Nun and E. Colacino, Chimie sans solvant' dans le livre 'Vers une chimie verte: une chimie pour un développement durable -Techniques pour l'ingénieur, vol.11, 2008.

A. Zlotorzynski, The application of microwave radiation to analytical and environmental chemistry, Crit. Rev. Anal. Chem, vol.25, pp.43-76, 1995.

K. R. Seddon, Ionic Liquids for clean technology, J.chem.Technol.biotechnol, vol.68, pp.351-356, 1997.

, Les liquides ioniques, leur utilisation et leur role comme solvants de réaction catalytique Thibaut Gutel C2P2 -Laboratoire de Chimie, Catalyse, Polymères et Procédés, p.5265

A. O. Diallo and L. C. , Developing dedicated methods and tools for safe use and processing, Sep. Purif. Technol, vol.97, pp.228-234, 2012.
URL : https://hal.archives-ouvertes.fr/ineris-00976239

C. W. Peng and J. , A state-of-the-art review of biomass torrefaction, densification and applications, Renew. Sust. Energ. Rev, vol.44, pp.847-866, 2015.

J. J. Chew and V. Doshi, Recent advances in biomass pretreatment -torrefaction fundamentals and technology, Renew. Sust. Energ. Rev, vol.15, pp.4212-4222, 2011.

B. Kamm and M. Kamm, Principles of biorefineries, Appl. Microbiol. Biotechnol, vol.64, pp.137-145, 2004.

S. Octave and T. D. Biorefinery, Toward an industrial metabolism, Biochimie, vol.91, pp.659-664, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00389168

H. S. Kambo and A. Dutta, A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications, Renew. Sust. Energ. Rev, vol.45, pp.359-378, 0197.

A. J. Ragauskas and M. Nagy, From wood to fuels: integrating biofuels and pulp production, Ind. Biotechnol, vol.2, pp.55-65, 2006.

C. Len and D. Luart, Réduction de composés nitrés aromatiques en conditions subcritiques, pp.2016042260-2016042261, 2016.

S. S. Toor, L. Rosendahl, and R. A. , Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy, vol.36, pp.2328-2342, 2011.

L. Gamiz-gracia, D. Castro, and M. , Continuous subcritical water extraction of medicinal plant essential oil: comparison with conventional techniques, Talanta, vol.51, pp.1179-85, 2000.

F. Jin, Z. Zhou, and H. Enomoto, Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid-base catalytic effect of subcritical water, journal.csj.j, vol.33, issue.2, pp.126-127, 2004.

B. Steven and C. Hawthorne, Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix, Journal of Chromatography, vol.892, pp.421-433, 2000.

H. Hori and Y. Nagaoka, Efficient decomposition of environmentally prestent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical Water, Environ Sci Technol, vol.40, pp.1049-54, 2006.

D. J. Miller and B. Steven, Hawthorne Subcritical water Chromatography with flam ionization detection, Anal. Chem, vol.69, pp.623-627, 1997.

F. Salak-asghari and H. Yoshida, Acid-Catalyzed Production of 5-Hydroxymethyl Furfural from D-Fructose in Subcritical Water, Eng. Chem. Res, vol.45, pp.2163-2173, 2006.

H. Saggadi and D. Luart, the synthesis of 6-hydroxyquinoline starting from glycerol via. improved microwave-assisted modified Skraup reaction, Catal. Commun, vol.44, pp.15-18, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02409886

K. Bougrin and A. Loupy, Microwave-assisted solvent-free heterocyclic synthesis, Journal of Photochimistry and Photobiology C: Photochemistry Reviews, pp.139-167, 2005.

M. Nuchter and U. Mueller, Microwave-assisted Chemical Reactions, chemical engineering and technology, vol.26, pp.1207-1216, 2003.

G. Roussy, J. Rochas, and . Diélectrique, Principes et spécificités" techniques de l'ingénieur. Génie électrique, vol.12, p.5940, 2003.

A. Loupy, Microwaves inorganic synthesis, Org. Proc. Res. Dev, vol.8, pp.298-298, 2004.

I. Polaert, Procédés catalytiques et intensification par microondes : vers un génie des procédés plus écologique, Habilitation à diriger des Recherches de l'université de Rouen, 2013.

B. Legras, Adsorptions et desorptions competitives sous irradiation micro-ondes, doctorat de l'Institut National des, Sciences Appliquées de Rouen, 2011.

V. K. Tyagi and S. Lo, Microwave irradiation: A sustainable way for sludge treatment and resource recovery, Renewable and Sustainable Energy Review, vol.18, pp.288-305, 2013.

X. Xiao and D. Liu, Preparation of activated carbon from Xinjiang region coal by microwave activation and its application in naphtalen, and pyrene adsorption, Journal of the Taiwan institute of chemical Engineers, vol.53, pp.160-167, 2015.

M. Gracia-vaquero and G. Rajauria, Polysaccharides from macroalgae : Recent advances, Innovative technologies and challenges in extraction and purification, Food resarch international, vol.99, pp.1011-1020, 2017.

F. Mangin and E. Banaszak-léonard, One-step Barton decarboxylation by micellar catalysis-application tp the synthesis of maleimide der, RSC Adv, vol.5, pp.69616-69620, 2015.

L. Gomez-g and . Sonochimie,

J. Newman, K. E. Thomas-aleya, and E. Systems, , p.647, 2004.

W. A. and C. , A membrane-free, continuously feeding, single chamber upflow biocatalyzed electrolysis reactor for nitrobenzene reduction.journal of hardous materials, pp.401-409, 0200.

J. Verhoeven, Glossary of terms used in photochemistry, Pure & Appl. Chem, vol.68, pp.2223-2286, 1996.

D. Cuhadaroglu and O. A. Uygun, Production and characterization of activated carbon from a bituminous coal by chemical activation, Afr J Biotechnol, vol.7, pp.3703-3710, 2008.

J. D. Lelyveld and T. , Microwave heating applications in environmental engineering, a review Resour Conserv Recyl, vol.34, pp.75-90, 2002.

W. Li and L. Zhang, Preparation of high surface area activated carbons from tobacco stems with K 2 CO 3 activation using microwave radiation, Ind Crop Prod, vol.27, pp.341-347, 2008.

Q. S. Liu and T. Zheng, Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation, vol.31, pp.233-238, 2010.

W. T. and T. S. , Preparation and characterization of activated carbon from wood via microwave-induced ZnCl 2 activation, vol.47, pp.1880-1883, 2009.

K. Y. Foo and B. H. Hameed, Coconut husk derived activated carbon via microwave induced activation: effects of activation agents, preparation parameters and adsorption performance, Chemical Engineering Journal, vol.184, pp.57-65, 2012.

J. A. Menéndez and E. Menéndez, Modification of the surface chemistry of active carbons by means of microwave-induced treatments, Carbon, vol.37, pp.1115-1121, 1999.

E. Yagmur, M. Ozmak, and Z. A. Aktas, Novel method for production of activated carbon from waste tea by chemical activation with microwave energy, Fuel, vol.87, pp.3278-3285, 2008.

L. H. Huang and Y. Sun, Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC), Chem Eng J, vol.171, pp.1446-1453, 2011.

J. Favennec, Géopolitique de l'énergie-Besoins, ressources, échanges mondiaux, IFP Publication, 2007.

Y. P. Li and H. Cao, Electrochemical reduction of nitrobenzene at carbon nanotube electrode, Journal of Hazardous Materials, vol.148, pp.158-163, 2007.

G. Almeida and J. Brito, Effect of thermal treatment on wood/water relationships, as defined on minute samples, vol.63, pp.80-88, 2009.

G. Almeida and J. Brito, Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator, Bioresource Technology, vol.101, pp.9778-9784, 2010.

M. Pan, flat grapheme enhaced electron transfer involved in redox reactions, Environ.Sci.Technol, vol.51, pp.8597-8605, 2017.

G. Brodeur, E. Yau, and S. Ramakrishnan, Chemical and physicochemical of lignocellulosic biomass, Enzyme Res, pp.17-35, 2011.

H. Yalgin and D. Luart, First Examples of Doebner-Miller Reaction in Flow: Efficient Production of 2-Methylquinoline Derivatives in Water, J. Flow Chem, vol.6, pp.80-85, 2016.

N. Sotto and C. Cazorla, Selective pinacol-coupling reaction using a continous flow system, J. Org. Chem, vol.81, pp.11065-11071, 2016.

D. Cantillo and M. M. Moghaddam, Hydrazine-mediated reduction of nitro and azide functionalities catalyzed by highly active and reusable magnetic iron oxide nanocrystals, J. Org. Chem, vol.78, pp.4530-4542, 2013.

A. Strätz, Catalysis of organic reactions, Chem. Ind. (Dekker), vol.18, p.335, 1984.

R. S. Downing and P. Kunkeler, Catalytic syntheses of aromatic amines, Catal, vol.37, p.121, 1997.

H. U. Blaser, U. Siegrist, and H. , Fine chemicals through heterogeneous catalysis, vol.389, 0200.

K. Xu and Y. Zhang, Synthesis of tert-butyl peresters from aldehydes by Bu 4 NIcatalyzed metal-free oxidation and its combination with the Kharasch-Sosnovsky reaction, Adv. Synth. Catal, vol.353, pp.1260-1264, 2011.

M. L. Kantam and T. Bandyopadhyay, J. Mol. Catal. A : Chem, vol.133, pp.293-295, 1998.

Y. Du and H. Chen, Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts, Appl. Catal. A: Gen, vol.277, pp.259-264, 2004.

F. Chang and H. Kim, Terahedron Lett, vol.51, pp.4250-4252, 2010.

U. Siegrist and P. Baumeister, The selective hydrogenation of functionalized nitroarenes: new catalytic systems, Chem. Ind. (Dekker), vol.75, p.207, 1998.

A. Onopchenko and E. Sabourin, Synthesis of (3-aminophenyl)acetylene via hydrogenation of (3-nitrophenyl)acetylene over cobalt polysulfide and ruthenium sulfide catalysts Org, Chem, p.1233, 1979.

. T-wei1, Study on the removal effect and influencing factors of nitrobenzene reduction by iron carbonate precipitates, Environmental Science and Pollution Research, vol.25, pp.27112-27121, 2018.

Q. Liu and H. Q. Zhao, Effect of surface modification on carbon nanotubes (CNTs) catalyzed nitrobenzene reduction by sulfide, Journal of Hazardous, vol.357, pp.235-243, 2018.

V. Haridas and S. Sugunan, One-pot Low-Temperature Green Synthesis of Magnetic Graphene Nanocomposite for the Selective Reduction of Nitrobenzene, Journal of Solid State Chemistry, vol.262, pp.287-293, 2018.

Y. Chen, L. Li, and L. Zhang, situ formation of ultrafine Pt nanoparticles on surfaces of polyaniline nanofibers as efficient heterogeneous catalysts for the hydrogenation reduction of nitrobenzene, Colloid and Polymer Science, vol.296, pp.567-574, 2018.

K. Iwase and . Fujinami, Cooperative Electrocatalytic Reduction of Nitrobenzene to Aniline in Aqueous Solution by Copper Modified Covalent Triazine Framework, Chemistry Letters, vol.47, pp.304-307, 2017.

W. Shuchang, Reduction of nitrobenzene catalyzed by carbon materials, Chinese Journal of Catalysis. Chinese Journal of Catalysis, vol.35, pp.914-921, 2014.

S. Nishimura, Handbook of Heterogeneous Hydrogenation of Organic Synthesis Wiley, p.350, 2001.

S. Manivannan and J. Jeong, One step Synthesis of AuAg Alloy Nanodots and its Electrochemical Studies towards Nitrobenzene Reduction and Sensing, Electroanalysis. Electroanalysis, vol.30, p.201, 2018.

A. J. Pardey, The reduction of nitrobenzene as catalyzed by poly(4-vinylpyridine)-immobilized [Rh(COD)(amine) 2 ](PF 6 ) complexes under WGSR condition, Journal of Molecular Catalysis A : Chemical, vol.164, p.225, 2000.

A. J. Pardey, Watergas shift reaction and nitrobenzene reduction catalysis by tetracarbonyldi-u-chlorodirhodium(I) complex immobilized on poly (4-vinylpyridine) Inorganica Chimica Acta, vol.329, pp.22-30, 2002.

F. Ragaini, Reduction of nitrobenzene to aniline by CO/H 2 O, catalysed by Ru 3 (CO) 12 / chelating diimines, Journal of Molecular Catalysis A : Chemical, vol.174, p.51, 2001.

D. Blasio, A. Musmeci, and M. T. , The effect of 3-aminobenzamide.inhibitor of ply (ADP-ribose) polymerase, on human osteosarcoma cells, pp.1521-1528, 2003.

B. Milos, Collection of Czechoslovak Chemical Communications, vol.56, pp.368-85, 1991.

C. E. Hughes, Classic NMR: an In-Situ NMR Strategy for Mapping the time Evolution of crystallization processes by combined liquid state and solid-state measurements A journal of the cesellschaft deutscher chemiker, vol.53, pp.8939-8943, 2014.

J. I. Hedges and G. L. Cowie, Degradation of carbohydrates and lignins in buried woods, Geochimica et cosmochimica Acta, vol.49, pp.701-711, 1985.

. Joseleau, Les hemicellulose. Les polymères végétaux, pp.87-121, 1980.

P. Maki-arvela and T. Salmi, Syntheses of Sugars by Hydrolysis of hemicelluloses, chem.Rev, vol.111, pp.5638-66, 2011.

. Fengel and D. Wegener, Wood-chemistry, ultrastructure, reactions, p.613, 1984.

A. Ebringerova, Structural diversity and application potential of hemicelluloses, Macromol, symp, vol.232, pp.1-12, 2005.

D. R. Hazenkamp and M. , Modern tools for reaction monitoring hard and soft modelling of 'non-ideal', on-line acquired spectra, J. Chemom, vol.14, p.737, 2000.

F. Haber and Z. Elektrochem, On electrolytically precipitated iron, Phys. Chem. 1898, p.506

N. Metropolis and S. Ulam, The monte carlo method, Journal of the American statistical association, vol.44, pp.335-341, 1949.

N. Metropolis, The beginning of the Monte Carlo method, Los Alamos Science, vol.15, 1987.

A. E. Atabani and A. Silitonga, A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renewable and Sustainable Energy Reviews, vol.16, pp.2070-2093, 2012.

M. Kumar and U. Sharma, Catalyst-free water mediated reduction of nitroarenes using glucose as a hydrogen source, RSCAdvances, issue.3, p.4894, 2013.

K. Babel and K. Jurwicz, KOH activated carbon fabrics as supercapacitor material, Journal of Physics and Chemistry of Solids, vol.65, pp.275-280, 2004.

E. Mora and C. Blanco, Chemical activation of carbon mesophase pitches, Journal of Colloid and Interface Science, vol.298, pp.341-347, 2006.

V. Fierro and V. Torne-fernandez, Adsorption Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous and Mesoporous Material, vol.101, pp.419-431, 2007.

Y. K. Ryu and K. K. , Ind. Eng. Chem, vol.39, pp.2510-2518, 2000.

J. H. Tay and C. X. , Optimising the preparation of activated carbon from digested sewage sludge and coconut husk, Chemosphere, vol.44, pp.45-51, 2001.

F. J. Gimblett and F. G. , Studies of activated charcoal cloth. IV. Influence of phosphate impregnants on the rate of activation in carbon dioxide gas Carbon, vol.26, pp.7-11, 1988.

M. Jagtoyen and M. Thwaites, Adsorbent carbon synthesis from coals by phosphoric acid activation, Carbon. 1992, vol.30, pp.1089-1096

E. Raymundo-pinero, P. Azais, and T. Cacciaguerra, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization, vol.43, pp.786-95, 2005.

Y. B. Sudaryantos and . Hartonow, High surface area activated carbon prepared from cassava peel by chemical activation. Biossources Technologie, vol.97, pp.734-739, 2006.

M. Molina-sabio and M. Gonzalez, Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon, vol.34, pp.505-509, 1996.

D. Cazorola-amoros, C. Salinas-martinez, and . Carbon, , vol.36, pp.309-312, 1998.

J. Alcaniz-monge and J. Cazorla-amoros, Carbon, vol.33, pp.1085-1090, 1995.

A. Zabaniotou and P. Madau, Journal of Analytical and Applied Pyrolysis, vol.72, pp.289-297, 2004.

J. K. Mbadcam and H. Ngomo, Méthodes de contrôle et d'évaluation des charbons actifs. Revue francophone d'écologie industrielle, vol.4, p.203, 2004.

P. N. Cheremisinoff and R. Ellbruch, Carbon Adsorption Handbook edited. Sciences Publishers, pp.241-279, 1978.

. Kannierczak, Chem.Soc, vol.7, p.3557, 1991.

V. A. Garlen, D. E. Weiss, and . Rev, Pure and Applied Chef chem, vol.7, p.69, 1957.

P. N. Cheremisinoff and R. Elleburch, , pp.281-329, 1978.

A. Loupy, Microwaves in organic synthesis, 2002.

H. Steiner and M. Studer, Selective Catalytic Hydrogenation of Functionalized Nitroarenes, An Update.Chem cat chem, vol.10, p.1002, 2009.

T. Severin, J. Loske, D. Scheel, U. Von-nitroaromaten-mit-natriumborhydrid, V. et al., , vol.102, pp.3909-3914, 1969.

F. A. Anet and J. M. Muchowski, Lithium aluminum hydride reduction of sterically hindered aromatic nitro compounds, Can.J.Chem, vol.38, pp.2526-2528, 1960.

F. A. Ramirez and A. J. Burger, Am.chem.Soc, vol.72, pp.2781-2782, 1950.

B. T. Ho and W. Mclsaac, Biological activities of some 5-substituted N,Ndimethyltryptamines, ?-methyltryptamines, and gramines, Med.Chem, vol.13, pp.26-30, 1970.

A. J. Béchamp, Ann. Chim.Phys, vol.1854, pp.186-196

S. Chandrappa and . Vinaya, An Efficient Method for Aryl Nitro Reduction and Cleavage of Azo Compounds Using Iron Powder/Calcium Chloride, pp.3019-3022, 1920.

G. W. Kabalka and R. S. Verma, Comprehensive Organic Synthesis Trost, B. M, vol.8, pp.363-379, 1991.

R. C. Larck, Comprehensive Organic Transformations: a guide of functional group preparation, vol.199, pp.821-828

S. L. Schilling and . Kirk, Othmer Encyclopedia of Chemical Technology John Wiley and Sons, vol.2, pp.482-503, 1991.

S. Saka and J. J. Inst, , vol.88, p.363, 2009.

A. A. Peterson and F. Vogel, Thermochemical biofuel production in hydrothermal media: A review of sub-and supercritical water technologies, Energy Environ.sci, vol.1, pp.32-65, 2008.

J. Schanche, Microwave synthesis solutions from Personal Chemistry, Mol.Divers, vol.7, pp.293-300, 2003.