|. Eau, Organisation Mondiale de la Santé

D. Sur,

«. Home and |. Jmp-»,

D. Sur,

, Organisation mondiale de la Santé et UNICEF, « Progrès en matière d'eau, d'assainissement et d'hygiène: Mise à jour 2017 et évaluation des ODD -Points essentiels, 2008.

J. O. and «. , Directive 98/83/CE du Conseil du 3 novembre 1998 relative à la qualité des eaux destinées à la consommation humaine, pp.5-1998

. «-l'alimentation-en-eau-potable-|-eau-france,

D. Sur,

, « La qualité de l'eau et assainissement en France (annexes) | Sénat »

D. Sur,

«. Afnor and . Nf, EN 197-1 Ciment -Partie 1 : Composition, spécifications et critères de conformité des ciments courants, 2012.

«. Afnor and . Nf-en-545-tuyaux, raccords et accessoires en fonte ductile et leurs assemblages pour canalisations d'eau », 2010.

C. Gourier-fréry, Quels risques pour la santé ? Synthèse des études épidémiologiques. Volet épidémiologique de l'expertise collective InVS-Afssa-Afssaps, 2003.

A. P. Black and D. G. Willems, « Electrophoretic Studies of Coagulation for Removal of Organic Color, J. Am. Water Works Assoc, vol.53, issue.5, pp.589-604, 1961.

D. R. Crapper-mclachlan, « Aluminum and alzheimer's disease », Neurobiol. Aging, vol.7, issue.6, pp.90102-90110, 1986.

S. Maya, T. Prakash, K. D. Madhu, and D. Goli, « Multifaceted effects of aluminium in neurodegenerative diseases: A review, Biomed. Pharmacother, vol.83, pp.746-754, 2016.

V. Rondeau, D. Commenges, H. Jacqmin-gadda, and E. Dartigues, « Relation between Aluminum Concentrations in Drinking Water and Alzheimer's Disease: An 8-year Follow-up Study », Am. J. Epidemiol, vol.152, issue.1, pp.59-66, 2000.

Z. Wang, « Chronic exposure to aluminum and risk of Alzheimer's disease: A metaanalysis », Neurosci. Lett, vol.610, pp.200-206, 2016.

A. Mirza, A. King, C. Troakes, and C. Exley, « Aluminium in brain tissue in familial Alzheimer's disease, J. Trace Elem. Med. Biol, vol.40, pp.30-36, 2017.

, Organisation Mondiale de la Santé, « Directives de qualité pour l'eau de boisson: Quatrième édition, 2017.

H. F. Taylor, Cement Chemistry, 1997.

G. Escadeillas and H. Hornain, « La durabilité des bétons vis-a-vis des environnements chimiquement agressifs, La durabilité des bétons, Presses de l'École nationale des ponts et chaussées, pp.613-705, 2008.

A. Cheng, R. Huang, J. Wu, and C. Chen, « Influence of GGBS on durability and corrosion behavior of reinforced concrete », Mater. Chem. Phys, vol.93, issue.2-3, pp.404-411, 2005.

J. M. Ortega, A. Albaladejo, J. L. Pastor, I. Sánchez, and M. A. Climent, « Influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles, Constr. Build. Mater, vol.38, pp.84-93

G. J. Osborne, « Durability of Portland blast-furnace slag cement concrete, Cem. Concr. Compos, vol.21, issue.1, pp.11-21, 1999.

M. Moranville-regourd, « Cements Made From Blastfurnace Slag », in Lea's Chemistry of Cement and Concrete, P. C. Hewlett, Éd. Oxford: Butterworth-Heinemann, pp.637-678, 1998.

A. Darquennes, B. Espion, and E. S. Staquet, « How to assess the hydration of slag cement concretes?, Constr. Build. Mater, vol.40, pp.1012-1020, 2013.

P. C. Hewlett, Lea's Chemistry of Cement and Concrete, 1998.

G. Van-rompaey, « Etude de la réactivité des ciments riches en laitier, à basse température et à temps court, sans ajout chloruré, 2006.

A. Bourchy, « Relation chaleur d'hydratation du ciment : montée en température et contraintes générées au jeune âge du béton, 2018.

G. Li and X. Zhao, Properties of concrete incorporating fly ash and ground granulated blastfurnace slag, Cem. Concr. Compos, vol.25, issue.3, pp.58-64, 2003.

J. P. Ollivier and J. M. Torrenti, La durabilité des bétons bases scientifiques pour la formulation de bétons durables dans leur environnement, Presses de l'École nationale des ponts et chaussées, pp.51-133, 2008.

R. Luo, Y. Cai, C. Wang, and X. Huang, « Study of chloride binding and diffusion in GGBS concrete, Cem. Concr. Res, vol.33, issue.1, pp.1-7, 2003.

A. Bouikni, R. N. Swamy, and A. Bali, « Durability properties of concrete containing 50% and 65% slag, Constr. Build. Mater, vol.23, issue.8, pp.2836-2845, 2009.

K. Sisomphon and L. Franke, « Carbonation rates of concretes containing high volume of pozzolanic materials, Cem. Concr. Res, vol.37, pp.1647-1653, 2007.

V. Shah and S. Bishnoi, « Carbonation resistance of cements containing supplementary cementitious materials and its relation to various parameters of concrete, Constr. Build. Mater, vol.178, pp.219-232, 2018.

P. D. Tennis and H. M. Jennings, « A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes, Cem. Concr. Res, vol.30, issue.6, pp.855-863, 2000.

T. Merzouki, M. Bouasker, N. E. Houda-khalifa, and E. P. Mounanga, « Contribution to the modeling of hydration and chemical shrinkage of slag-blended cement at early age, Constr. Build. Mater, vol.44, pp.368-380, 2013.

B. Lothenbach and A. Nonat, « Calcium silicate hydrates: Solid and liquid phase composition, Cem. Concr. Res, vol.78, pp.57-70

B. Lothenbach, K. Scrivener, and R. D. Hooton, Supplementary cementitious materials, vol.41, pp.1244-1256

O. R. Ogirigbo and L. Black, « Influence of slag composition and temperature on the hydration and microstructure of slag blended cements, Constr. Build. Mater, vol.126, pp.496-507, 2016.

K. L. Scrivener and A. Nonat, « Hydration of cementitious materials, present and future, Cem. Concr. Res, vol.41, issue.7, pp.651-665, 2011.

B. Kolani, L. Buffo-lacarrière, A. Sellier, G. Escadeillas, L. Boutillon et al., « Hydration of slag-blended cements, Cem. Concr. Compos, vol.34, issue.9, pp.1009-1018, 2012.

M. Whittaker, M. Zajac, M. Ben-haha, F. Bullerjahn, and L. Black, « The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends, Cem. Concr. Res, vol.66, pp.91-101

S. Gauffinet, E. Finot, E. Lesniewska, and A. Nonat, « Observation directe de la croissance d'hydrosilicate de calcium sur des surfaces d'alite et de silice par microscopie à force atomique, CR Académie Sci, vol.327, issue.4, pp.231-236, 1998.

A. Nonat and «. , hydratation des ciments, La durabilité des bétons, Presses de l'École nationale des ponts et chaussées, pp.25-50, 2008.

P. Faucon, « Durabilité du béton : Physico-chimie de l'altération par l'eau, 1997.

G. Renaudin, J. Russias, F. Leroux, C. Cau-dit-coumes, F. Frizon-;-of et al., Local environment investigated by spectroscopic analyses, Structural characterization, vol.182, pp.3320-3329

G. Kova?evi?, B. Persson, L. Nicoleau, A. Nonat, and V. Veryazov, Atomistic modeling of crystal structure of Ca1, Cem. Concr. Res, vol.67, pp.197-203, 2015.

S. A. Hamid, The cristal structure of the 11A natural tobermorite Ca2.25, vol.154, pp.189-198, 1981.

J. Haas, Etude expérimentale et modélisation thermodynamique du système CaO-SiO2-(Al2O3)-H2O », 2012.

X. Pardal, I. Pochard, and A. Nonat, « Experimental study of Si-Al substitution in calcium-silicatehydrate (C-S-H) prepared under equilibrium conditions, Cem. Concr. Res, vol.39, issue.8, pp.637-643, 2009.

M. D. Andersen, H. J. Jakobsen, and J. Skibsted, « Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy, Cem. Concr. Res, vol.34, issue.5, pp.857-868, 2004.

R. Taylor, I. G. Richardson, and R. M. Brydson, « Composition and microstructure of 20-year-old ordinary Portland cement-ground granulated blast-furnace slag blends containing 0 to 100% slag, Cem. Concr. Res, vol.40, issue.7, pp.971-983

G. K. Sun, J. F. Young, and R. J. Kirkpatrick, The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples, vol.36, pp.18-29, 2006.

E. Hôpital, B. Lothenbach, G. L. Saout, D. Kulik, and K. Scrivener, « Incorporation of aluminium in calcium-silicate-hydrates, Cem. Concr. Res, vol.75, pp.91-103, 2015.

J. Haas, A. Nonat, and C. From, Experimental study and thermodynamic modelling, vol.68, pp.124-138, 2015.
URL : https://hal.archives-ouvertes.fr/tel-00845956

M. D. Andersen, H. J. Jakobsen, and J. Skibsted, « A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy, Cem. Concr. Res, vol.36, issue.1, pp.3-17, 2006.

X. Pardal, F. Brunet, T. Charpentier, I. Pochard, and A. Nonat, « 27Al and 29Si Solid-State NMR Characterization of Calcium-Aluminosilicate-Hydrate », Inorg. Chem, vol.51, issue.3, pp.1827-1836

M. D. Andersen, H. J. Jakobsen, and J. Skibsted-;-c?s?h, « Incorporation of Aluminum in the Calcium Silicate Hydrate, Hydrated Portland Cements: A High-Field 27Al and 29Si MAS NMR Investigation », vol.42, pp.2280-2287, 2003.

Q. Zhou and F. P. Glasser, « Thermal stability and decomposition mechanisms of ettringite at <120°C », Cem. Concr. Res, vol.31, issue.9, pp.558-558, 2001.

T. Matschei, B. Lothenbach, and F. P. Glasser, « The AFm phase in Portland cement, Cem. Concr. Res, vol.37, issue.2, pp.118-130, 2007.

S. Stephant, « Étude de l'influence de l'hydratation des laitiers sur les propriétés de transfert gazeux dans les matériaux cimentaires, 2015.

Z. Yang, R. Polder, J. M. Mol, and C. Andrade, « The effect of two types of modified Mg-Al hydrotalcites on reinforcement corrosion in cement mortar, Cem. Concr. Res, vol.100, pp.186-202, 2017.

A. Machner, M. Zajac, M. Ben-haha, K. O. Kjellsen, M. R. Geiker et al., « Chloridebinding capacity of hydrotalcite in cement pastes containing dolomite and metakaolin, Cem. Concr. Res, vol.107, pp.163-181, 2018.

F. Adenot, Durabilité du béton : caractérisation et modélisation des processus physiques et chimiques de dégradation du ciment, 1992.

F. Adenot and P. Faucon, Modélisation du comportement à long terme des bétons utilisés dans le stockage des déchets radioactifs, 1996.

P. Faucon, F. Adenot, M. Jorda, and R. Cabrillac, « Behaviour of crystallised phases of Portland cement upon water attack, Mater. Struct, vol.30, issue.8, pp.480-485, 1997.

N. Neuville, Etude et modélisation de l'altération physico-chimique de matériaux de cimentation des puits pétroliers, 2008.

D. Planel, « Les effets couplés de la précipitation d'espèces secondaire sur le comportement mécaniques et la dégradation chimique des bétons, 2002.

K. Haga, S. Sutou, M. Hironaga, S. Tanaka, and E. S. Nagasaki, « Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste, Cem. Concr. Res, vol.35, issue.9, pp.1764-1775, 2005.

F. Han, R. Liu, and E. P. Yan, « Effect of fresh water leaching on the microstructure of hardened composite binder pastes, Constr. Build. Mater, vol.68, pp.630-636, 2014.

K. Wan, Y. Li, and E. W. Sun, Experimental and modelling research of the accelerated calcium leaching of cement paste in ammonium nitrate solution, Constr. Build. Mater, vol.40, pp.832-846, 2013.

A. Vollpracht and W. Brameshuber, Binding and leaching of trace elements in Portland cement pastes, Cem. Concr. Compos, vol.79, pp.76-92, 2016.

E. Moudilou, Cinétiques et mécanismes de relargage des métaux lourds présents en traces dans les matrices cimentaires, 2000.

J. Duchesne and A. Bertron, « Leaching of cementitious materials by pure water and strong acids (HCl and HNO3) », in Performance of cement-based materials in aggressive aqueous environments, pp.91-112, 2013.

W. Müllauer, R. E. Beddoe, and E. D. Heinz, « Leaching behaviour of major and trace elements from concrete: Effect of fly ash and GGBS », Cem. Concr. Compos, vol.58, pp.129-139, 2015.

S. Kamali, M. Moranville, and E. S. Leclercq, « Material and environmental parameter effects on the leaching of cement pastes: Experiments and modelling, Cem. Concr. Res, vol.38, issue.4, pp.575-585, 2008.

R. B. Kogbara and A. Al-tabbaa, Mechanical and leaching behaviour of slag-cement and limeactivated slag stabilised/solidified contaminated soil, Sci. Total Environ, vol.409, issue.11, pp.2325-2335, 2011.

M. O&apos;connell, C. Mcnally, and M. G. Richardson, « Performance of concrete incorporating GGBS in aggressive wastewater environments, Constr. Build. Mater, vol.27, issue.1, pp.368-374

E. Rozière and A. Loukili, « Performance-based assessment of concrete resistance to leaching, Cem. Concr. Compos, vol.33, issue.4, pp.451-456, 2011.

H. Yi?iter, H. Yaz?c?, and E. S. Ayd?n, « Effects of cement type, water/cement ratio and cement content on sea water resistance of concrete, Build. Environ, vol.42, issue.4, pp.1770-1776, 2007.

A. Bertron, G. Escadeillas, and J. Duchesne, « Cement pastes alteration by liquid manure organic acids: chemical and mineralogical characterization, Cem. Concr. Res, vol.34, issue.10, pp.1823-1835, 2004.

P. ?ukowski and A. Salih, « Durability of Mortars Containing Ground Granulated Blast-furnace Slag in Acid and Sulphate Environment, Procedia Eng, vol.108, pp.47-54, 2015.

K. Y. Yeau and E. K. Kim, « An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag, Cem. Concr. Res, vol.35, issue.7, pp.1391-1399, 2005.

O. R. Ogirigbo and L. Black, « Chloride binding and diffusion in slag blends: Influence of slag composition and temperature, Constr. Build. Mater, vol.149, pp.816-825, 2017.

E. , Aluminium and alkali uptake in calcium silicate hydrates, 2014.

A. Bertron, J. Duchesne, and G. Escadeillas, « Attack of cement pastes exposed to organic acids in manure, Cem. Concr. Compos, vol.27, pp.898-909, 2005.

P. Hartwich and A. Vollpracht, « Influence of leachate composition on the leaching behaviour of concrete, Cem. Concr. Res, vol.100, pp.423-434, 2017.

L. De-windt and P. Devillers, « Modeling the degradation of Portland cement pastes by biogenic organic acids, Cem. Concr. Res, vol.40, issue.8, pp.1165-1174, 2010.

E. Revertegat, C. Richet, and P. Gégout, « Effect of pH on the durability of cement pastes, Cem. Concr. Res, vol.22, issue.2-3, pp.259-272, 1992.

S. Kamali, B. Gérard, and M. Moranville, « Modelling the leaching kinetics of cement-based materials--influence of materials and environment, Cem. Concr. Compos, vol.25, issue.5, pp.451-458, 2003.

A. Bertron, J. Duchesne, and G. Escadeillas, « Accelerated tests of hardened cement pastes alteration by organic acids: analysis of the pH effect, Cem. Concr. Res, vol.35, issue.1, pp.155-166, 2005.

D. Damidot and F. P. Glasser, Thermodynamic investigation of the CaO-Al2O3-CaSO4-H2O system at 50°C and 85°C », vol.22, p.90047, 1992.

D. Damidot and F. P. Glasser, Thermodynamic investigation of the CaO-Al2O3-CaSO4-H2O system at 25°C and the influence of Na2O, Cem. Concr. Res, vol.23, issue.1, pp.221-238, 1993.

X. Zhang, F. P. Glasser, and K. L. Scrivener, Reaction kinetics of dolomite and portlandite, vol.66, pp.11-18

R. J. Myers, E. Hôpital, J. L. Provis, and B. Lothenbach, « Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions, Cem. Concr. Res, vol.68, pp.83-93, 2015.

T. De-larrard, F. Benboudjema, J. B. Colliat, J. M. Torrenti, and F. Deleruyelle, « Concrete calcium leaching at variable temperature: Experimental data and numerical model inverse identification, Comput. Mater. Sci, vol.49, issue.1, pp.35-45, 2010.

C. Tognazzi, « Couplage fissuration -degradation chimique dans les materiaux cimentaires : caracterisation et modelisation », INSA Toulouse, 1998.

E. Guillon, Durabilité des matériaux cimentaires -Modélisation de l'influence des équilibre physico-chimiques sur la microstructure et les propriétés mécaniques résiduelles, 2004.

B. G. Salvoldi, H. Beushausen, and M. G. Alexander, « Oxygen permeability of concrete and its relation to carbonation, Constr. Build. Mater, vol.85, pp.30-37, 2015.

T. Van-gerven, D. Van-baelen, V. Dutré, and C. Vandecasteele, « Influence of carbonation and carbonation methods on leaching of metals from mortars, Cem. Concr. Res, vol.34, issue.1, pp.149-156, 2004.

V. T. Ngala and C. L. Page, « Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes, Cem. Concr. Res, vol.27, issue.7, pp.102-108, 1997.

F. P. Glasser, J. Marchand, and E. E. Samson, « Durability of concrete -Degradation phenomena involving detrimental chemical reactions, Cem. Concr. Res, vol.38, issue.2, pp.226-246, 2008.

A. Morandeau, M. Thiéry, and P. Dangla, « Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties, Cem. Concr. Res, vol.56, pp.153-170, 2014.

«. Afnor and . Nf, EN 196-3 Méthodes d'essais des ciments -Partie 3 : Détermination du temps de prise et de la stabilité, 2006.

I. G. Richardson and G. W. Groves, « Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag, J. Mater. Sci, vol.27, pp.6204-6212, 1992.

D. L. Parkhurst and C. A. Appelo, « User's guide to PHREEQC (Version 2) : A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Water-Resources Investigations Report, pp.99-4259, 1999.

«. Dynamita and . Manual, , 2019.

P. Faucon, « Leaching of cement: Study of the surface layer, Cem. Concr. Res, vol.26, issue.11, pp.1707-1715, 1996.

P. Faucon, F. Adenot, J. F. Jacquinot, J. C. Petit, R. Cabrillac et al., « Long-term behaviour of cement pastes used for nuclear waste disposal: review of physico-chemical mechanisms of water degradation, Cem. Concr. Res, vol.28, issue.6, pp.53-55, 1998.

M. Moranville, S. Kamali, and E. E. Guillon, « Physicochemical equilibria of cement-based materials in aggressive environments-experiment and modeling, Cem. Concr. Res, vol.34, issue.9, pp.1569-1578, 2004.

S. C. Myneni, S. J. Traina, and T. J. Logan, « Ettringite solubility and geochemistry of the Ca(OH)2-Al2(SO4)3-H2O system at 1 atm pressure and 298 K », Chem. Geol, vol.148, issue.1, pp.1-19, 1998.

X. L. Huang, Etude de l'évolution de la morphologie et des propriétés électriques du polytétrafluoroéthylène (PTFE) pour des applications aéronautiques en hautes températures (250 -400 °C), 2014.

A. Atta and H. Ali, Structural and Thermal Properties of PTFE Films by Argon and Oxygen Plasma, vol.46, pp.106-114, 2013.

P. R. Hondred, S. Yoon, N. Bowler, and M. R. Kessler, « Degradation kinetics of polytetrafluoroethylene and poly(ethylene-alt-tetrafluoroethylene), High Perform. Polym, vol.25, issue.5, pp.535-542, 2013.

T. S. Light, L. Fitzpatrick, and J. Phaneuf, Thermogravimetric Analysis of Silica-Filled Polytetrafluoroethylene », vol.37, pp.79-82, 1965.

C. Lors and D. Damidot, « Long term leaching experiments of OPC mortars at constant pH in acidic conditions, Proceedings of the 14th International Congress on the Chemistry of cement, 2015.

C. Lors, E. D. Hondjuila-miokono, and E. D. Damidot, « Interactions between Halothiobacillus neapolitanus and mortars: Comparison of the biodeterioration between Portland cement and calcium aluminate cement, Int. Biodeterior. Biodegrad, vol.121, pp.19-25, 2017.

Y. Tang, X. Zuo, S. He, O. Ayinde, and G. Yin, « Influence of slag content and water-binder ratio on leaching behavior of cement pastes, Constr. Build. Mater, vol.129, pp.61-69

N. Schiopu, « Caractérisation des émissions dans l'eau des produits de construction pendant leur vie en oeuvre », INSA Lyon, 2007.

, « prCEN/TS 14429 Caractérisation des déchets. Influence du pH sur l'émission de constituants inorganiques par les déchets, avec addition de quantités prédéfinies d'acide -base destinées à des états stationnaires, 2002.

M. Lupsea, L. Tiruta-barna, and E. N. Schiopu, Leaching of hazardous substances from a composite construction product -An experimental and modelling approach for fibre-cement sheets, J. Hazard. Mater, vol.264, pp.236-245, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02631650

A. Keulen, A. Van-zomeren, and J. J. Dijkstra, « Leaching of monolithic and granular alkali activated slag-fly ash materials, as a function of the mixture design, Waste Manag, vol.78, pp.497-508, 2018.

C. J. Engelsen, H. A. Van-der-sloot, G. Wibetoe, G. Petkovic, E. Stoltenberg-hansson et al., « Release of major elements from recycled concrete aggregates and geochemical modelling, Cem. Concr. Res, vol.39, issue.5, pp.446-459, 2009.

H. A. Van-der and . Sloot, Comparison of the characteristic leaching behavior of cements using standard (EN 196-1) cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling, Cem. Concr. Res, vol.30, issue.7, pp.1079-1096, 2000.

B. Lothenbach, A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials, Cem. Concr. Res, vol.115, pp.472-506

«. Phreeqc and |. Thermoddem,

D. Sur,

T. T. Bach, « Evolution physico-chimique des liants bas PH hydratés : influence de la température et mécanisme de rétention des alcalins, 2010.

E. Revertegat, « Theoretical and experimental study of degradation mechanisms of cement in the repository environment, 1997.

C. Roosz, Propriétés thermodynamiques des phases cimentaires hydratées, 2016.

D. Damidot, S. J. Barnett, F. P. Glasser, and D. E. Macphee, « Investigation of the CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O system at 25°C by thermodynamic calculation, Adv. Cem. Res, vol.16, issue.2, pp.69-76, 2004.

D. Nied, K. Enemark-rasmussen, E. Hopital, J. Skibsted, and B. Lothenbach-;-m-s-h)-», Properties of magnesium silicate hydrates, vol.79, pp.323-332, 2016.

R. Snellings, Solution-Controlled Dissolution of Supplementary Cementitious Material Glasses at pH 13: The Effect of Solution Composition on Glass Dissolution Rates, J. Am. Ceram. Soc, vol.96, issue.8, pp.2467-2475, 2013.

C. Yu, W. Sun, and K. Scrivener, « Degradation mechanism of slag blended mortars immersed in sodium sulfate solution, Cem. Concr. Res, vol.72, pp.37-47, 2015.

R. Taylor, I. G. Richardson, and R. M. Brydson, « Composition and microstructure of 20-year-old ordinary Portland cement-ground granulated blast-furnace slag blends containing 0 to 100% slag, Cem. Concr. Res, vol.40, issue.7, pp.971-983

J. I. Escalante-garc??a and J. H. Sharp, « The microstructure and mechanical properties of blended cements hydrated at various temperatures, Cem. Concr. Res, vol.31, issue.5, pp.695-702, 2001.

M. Bohá? and M. Gregerová, The influence of blast-furnace slag hydration products on microcracking of concrete, Mater. Charact, vol.60, issue.7, pp.729-734, 2009.

L. Rieger and É. , Guidelines for using activated sludge models, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02606152

A. Dauzeres, G. Achiedo, D. Nied, E. Bernard, S. Alahrache et al., « Magnesium perturbation in low-pH concretes placed in clayey environment-solid characterizations and modeling, Cem. Concr. Res, vol.79, pp.137-150, 2016.

J. Olmeda, P. Henocq, E. Giffaut, and M. Grivé, « Modelling of chemical degradation of blended cement-based materials by leaching cycles with Callovo-Oxfordian porewater, Phys. Chem. Earth Parts ABC, vol.99, pp.110-120, 2017.

D. Jacques, L. Wang, E. Martens, and E. D. Mallants, « Modelling chemical degradation of concrete during leaching with rain and soil water types, Cem. Concr. Res, vol.40, issue.8, pp.1306-1313, 2010.

L. Tiruta-barna, Using PHREEQC for modelling and simulation of dynamic leaching tests and scenarios, J. Hazard. Mater, vol.157, issue.2, pp.525-533, 2008.

Y. Yu and Y. X. Zhang, « Coupling of chemical kinetics and thermodynamics for simulations of leaching of cement paste in ammonium nitrate solution, Cem. Concr. Res, vol.95, pp.95-107, 2017.

Y. Yu, Y. X. Zhang, and E. A. Khennane, « Numerical modelling of degradation of cement-based materials under leaching and external sulfate attack, Comput. Struct, vol.158, pp.1-14, 2015.

P. Rivard, M. A. Bérubé, J. P. Ollivier, and G. Ballivy, « Decrease of pore solution alkalinity in concrete tested for alkali-silica reaction, Mater. Struct, vol.40, issue.9, pp.909-921, 2007.

P. Rivard, M. Bérubé, J. Ollivier, and G. Ballivy, « Alkali mass balance during the accelerated concrete prism test for alkali-aggregate reactivity, Cem. Concr. Res, vol.33, issue.8, pp.1147-1153, 2003.

J. Lindgård, « Alkali-silica reaction (ASR)-performance testing: Influence of specimen pretreatment, exposure conditions and prism size on alkali leaching and prism expansion, Cem. Concr. Res, vol.53, pp.68-90, 2013.

S. Hong and F. P. Glasser, Alkali binding in cement pastes: Part I. The C-S-H phase, Cem. Concr. Res, vol.29, pp.1893-1903

I. Lognot, I. Klur, A. Nonat, «. Nmr, I. Spectroscopies-of-c-s-h et al., Nuclear Magnetic Resonance Spectroscopy of Cement-Based Materials, pp.189-196, 1998.

T. T. Bach, « Retention of alkali ions by hydrated low-pH cements: Mechanism and Na+/K+ selectivity, Cem. Concr. Res, vol.51, pp.14-21, 2013.

E. Hôpital, B. Lothenbach, K. Scrivener, and D. A. Kulik, « Alkali uptake in calcium alumina silicate hydrate, Cem. Concr. Res, vol.85, pp.122-136, 2016.

V. Shah, K. Scrivener, B. Bhattacharjee, and E. S. Bishnoi, « Changes in microstructure characteristics of cement paste on carbonation, Cem. Concr. Res, vol.109, pp.184-197, 2018.

O. Oueslati and J. Duchesne, « Resistance of blended cement pastes subjected to organic acids: Quantification of anhydrous and hydrated phases, Cem. Concr. Compos, vol.45, pp.89-101, 2014.

M. Rosenqvist, A. Bertron, K. Fridh, and M. Hassanzadeh, « Concrete alteration due to 55years of exposure to river water: Chemical and mineralogical characterisation, Cem. Concr. Res, vol.92, pp.110-120, 2017.

M. Santhanam, M. D. Cohen, and J. Olek, « Mechanism of sulfate attack: A fresh look: Part 1: Summary of experimental results, Cem. Concr. Res, vol.32, issue.6, pp.915-921, 2002.

A. Dauzères, « On the physico-chemical evolution of low-pH and CEM I cement pastes interacting with Callovo-Oxfordian pore water under its in situ CO2 partial pressure, Cem. Concr. Res, vol.58, pp.76-88, 2014.

B. Lagerblad, Leaching performance of concrete based on studies of samples from old concrete constructions », Swedish Nuclear Fuel and Waste Management Co, 2001.

E. Bernard, B. Lothenbach, C. Cau-dit-coumes, C. Chlique, A. Dauzères et al., « Magnesium and calcium silicate hydrates, Part I: Investigation of the possible magnesium incorporation in calcium silicate hydrate (C-S-H) and of the calcium in magnesium silicate hydrate, Appl. Geochem, vol.89, pp.229-242, 2018.

E. Bernard, A. Dauzères, and B. Lothenbach, « Magnesium and calcium silicate hydrates, Part II: Mg-exchange at the interface "low-pH" cement and magnesium environment studied in a C-S-H and M-S-H model system, Appl. Geochem, vol.89, pp.210-218, 2018.

C. Roosz, Crystal structure of magnesium silicate hydrates, vol.73, pp.228-237, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01356812

B. Lothenbach, D. Nied, E. Hôpital, G. Achiedo, and A. Dauzères, « Magnesium and calcium silicate hydrates, Cem. Concr. Res, vol.77, pp.60-68, 2015.

E. Bernard, B. Lothenbach, D. Rentsch, I. Pochard, A. Dauzères et al., Formation of magnesium silicate hydrates, vol.99, pp.142-157, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02066520

D. Bonen and M. D. Cohen, « Magnesium sulfate attack on portland cement paste-I. Microstructural analysis, Cem. Concr. Res, vol.22, issue.1, pp.169-180, 1992.

, Direction des Affaires économique et internationales, « Cahier des clauses techniques générales, vol.71, 2003.

Z. Shi, « Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution, Cem. Concr. Compos, vol.78, pp.73-83, 2017.

Y. Yue, J. J. Wang, P. A. Basheer, and Y. Bai, « Raman spectroscopic investigation of Friedel's salt », Cem. Concr. Compos, vol.86, pp.306-314, 2018.

T. Chappex and K. L. Scrivener, « The Effect of Aluminum in Solution on the Dissolution of Amorphous Silica and its Relation to Cementitious Systems, J. Am. Ceram. Soc, vol.96, issue.2, pp.592-597, 2013.

T. Chappex and K. L. Scrivener, The influence of aluminium on the dissolution of amorphous silica and its relation to alkali silica reaction, Cem. Concr. Res, vol.42, pp.1645-1649

B. R. Bickmore, K. L. Nagy, A. K. Gray, and A. R. Brinkerhoff, The effect of Al(OH)4? on the dissolution rate of quartz, vol.70, pp.290-305, 2006.

C. Lors, E. D. Hondjuila-miokono, and E. D. Damidot, « Interactions between Halothiobacillus neapolitanus and mortars: Comparison of the biodeterioration between Portland cement and calcium aluminate cement, Int. Biodeterior. Biodegrad, vol.121, pp.19-25, 2017.

S. Goñi, M. S. Hernádez, A. Guerrero, and M. P. Lorenzo, « Effect of temperature on the leaching performance of a simulated cement-based immobilization system. Calcium and hydroxyl behaviour, Constr. Build. Mater, vol.10, issue.3, pp.82-90, 1996.

C. Alonso, M. Castellote, I. Llorente, and C. Andrade, « Ground water leaching resistance of high and ultra high performance concretes in relation to the testing convection regime, Cem. Concr. Res, vol.36, issue.9, pp.1583-1594, 2006.

D. Panias, P. Asimidis, and E. I. Paspaliaris, Solubility of boehmite in concentrated sodium hydroxide solutions: model development and assessment, vol.59, pp.15-29, 2001.

|. «-fabrication, P. Saint-gobain, and . France,

D. Sur,

E. Menéndez, T. Matschei, and F. P. Glasser, « Sulfate Attack of Concrete », in Performance of Cement-Based Materials in, Aggressive Aqueous Environments, vol.10, pp.7-74, 2013.

D. Bonen and M. D. Cohen, « Magnesium sulfate attack on portland cement paste -II. Chemical and mineralogical analyses, Cem. Concr. Res, vol.22, issue.4, pp.707-718, 1992.

M. P. Lavigne, « Innovative approach to simulating the biodeterioration of industrial cementitious products in sewer environment, Part II: Validation on CAC and BFSC linings, vol.79, pp.409-418, 2016.

K. Olivier, Étude expérimentale et modélisation de l'auto-cicatrisation des matériaux cimentaires avec additions minérales, 2016.

H. Huang, G. Ye, and D. Damidot, « Effect of blast furnace slag on self-healing of microcracks in cementitious materials, Cem. Concr. Res, vol.60, pp.68-82, 2014.

M. Wu, B. Johannesson, and M. Geiker, « A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material, Constr. Build. Mater, vol.28, issue.1, pp.571-583, 2012.

A. Samson, « La dureté des eaux de la région Centre (utilisations -traitements) », 74 SGN 260 AME, déc, 1974.

Y. Tang, X. Zuo, G. Yin, S. He, and O. Ayinde, « Influence of slag on leaching behavior of cement mortar lined in ductile iron pipe under a flowing solution, Mater. Des, vol.114, pp.612-622, 2017.

C. J. Engelsen, H. A. Van-der-sloot, and E. G. Petkovic, « Long-term leaching from recycled concrete aggregates applied as sub-base material in road construction, Sci. Total Environ, pp.94-101, 2017.

M. Schwotzer, T. Scherer, and E. A. Gerdes, « Protective or damage promoting effect of calcium carbonate layers on the surface of cement based materials in aqueous environments, Cem. Concr. Res, vol.40, issue.9, pp.1410-1418