M. L. Filograno, Real-Time Monitoring of Railway Traffic Using Fiber Bragg Grating Sensors, IEEE Sens. J, vol.12, issue.1, pp.85-92, 2012.

S. Rizzolo, Radiation Characterization of Optical Frequency Domain Reflectometry Fiber-Based Distributed Sensors, IEEE Trans. Nucl. Sci, vol.63, issue.3, pp.1688-1693, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02093063

D. D. Francesca, G. L. Vecchi, Y. Kadi, M. Brugger, S. Girard et al., Implementation of Optical Fiber based Dosimetry at CERN, 26th International Conference on Optical Fiber Sensors, vol.1, p.1, 2018.
URL : https://hal.archives-ouvertes.fr/ujm-01964668

C. Sabatier, 6-MeV Electron Exposure Effects on OFDR-Based Distributed Fiber-Based Sensors, IEEE Trans. Nucl. Sci, vol.65, issue.8, pp.1598-1603, 2018.
URL : https://hal.archives-ouvertes.fr/ujm-01926003

D. D. Francesca, Distributed Optical Fiber Radiation Sensing in the Proton Synchrotron Booster at CERN, IEEE Trans. Nucl. Sci, vol.65, issue.8, pp.1639-1644, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01909234

S. Delepine-lesoille, France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes, Sensors, vol.17, issue.6, p.1377, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01621117

R. and D. Sante, Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications, Sensors, vol.15, issue.8, pp.18666-18713, 2015.

O. J. Ohanian, OFDR on Photonic Circuits: Fiber Optic Sensing Infrastructure and Applications, 26th International Conference on Optical Fiber Sensors, p.1, 2018.

L. Schenato, Distributed Sensing in Geotechnical and Hydrological Applications, 26th International Conference on Optical Fiber Sensors, p.1, 2018.

F. Ravet, S. Chin, and E. Rochat, Field Experience with DTSS based Geotechnical Monitoring: Lessons Learnt and Guidelines, 26th International Conference on Optical Fiber Sensors, p.2, 2018.

R. Fiorin, A. P. Franco, P. F. Nascimento, M. A. Souza, H. J. Kalinowski et al., The use of fiber Bragg gratings in the detection of the rhythmic masticatory muscle activity during bruxism episodes, 26th International Conference on Optical Fiber Sensors, vol.1, p.1, 2018.

, Optical Communication and Networking Market worth 24.12 Billion USD by 2023

, Optical Sensors Market Size, Share -Industry Forecast Report 2024, p.20, 2019.

, Les Etats-Unis trustent le marché mondial des capteurs à fibre optique

J. S. Selker, Distributed fiber-optic temperature sensing for hydrologic systems, Water Resour. Res, vol.42, issue.12, 2006.

T. Horiguchi, T. Kurashima, and M. Tateda, A technique to measure distributed strain in optical fibers, IEEE Photonics Technol. Lett, vol.2, issue.5, pp.352-354, 1990.

G. B. Hocker, Fiber-optic sensing of pressure and temperature, Appl. Opt, vol.18, issue.9, pp.1445-1448, 1979.

Z. Ding, Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review, Sensors, vol.18, issue.4, p.1072, 2018.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, Fiber-Optic Distributed Strain and Temperature Sensing With Very High Measurand Resolution Over Long Range Using Coherent OTDR, J. Light. Technol, vol.27, issue.9, pp.1142-1146, 2009.

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, Industrial Applications of the BOTDR Optical Fiber Strain Sensor, Opt. Fiber Technol, vol.7, issue.1, pp.45-64, 2001.

Z. Amira, M. Bouyahi, and T. Ezzedine, Measurement of Temperature through Raman Scattering, Procedia Comput. Sci, vol.73, pp.350-357, 2015.

S. Rizzolo, Advantages and Limitation of Distributed OFDR Optical Fiber-based sensors in Harsh Environments, 2016.

M. K. Barnoski and S. M. Jensen, Fiber waveguides: a novel technique for investigating attenuation characteristics, Appl. Opt, vol.15, issue.9, pp.2112-2115, 1976.

T. Kurashima, T. Horiguchi, and M. Tateda, Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers, Opt. Lett, vol.15, issue.18, pp.1038-1040, 1990.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector, Electron. Lett, vol.21, issue.13, p.569, 1985.

M. B. Hausner, F. Suárez, K. E. Glander, N. Van-de-giesen, J. S. Selker et al., Calibrating Single-Ended Fiber-Optic Raman Spectra Distributed Temperature Sensing Data, Sensors, vol.11, issue.11, pp.10859-10879, 2011.

W. Eickhoff and R. Ulrich, Optical frequency domain reflectometry in single-mode fiber, Appl. Phys. Lett, vol.39, issue.9, pp.693-695, 1981.

D. Garus, K. Krebber, F. Schliep, and T. Gogolla, Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis, Opt. Lett, vol.21, issue.17, pp.1402-1404, 1996.

M. A. Farahani and T. Gogolla, Spontaneous Raman Scattering in Optical Fibers with Modulated Probe Light for Distributed Temperature Raman Remote Sensing, J. Light. Technol, vol.17, issue.8, p.1379, 1999.

Y. S. Muanenda, Advanced Coding Techniques for Long-Range Raman/BOTDA Distributed Strain and Temperature Measurements, J. Light. Technol, vol.34, issue.2, pp.342-350, 2016.

D. Hwang, D. Yoon, I. Kwon, D. Seo, and Y. Chung, Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering, Opt. Express, vol.18, issue.10, pp.9747-9754, 2010.

A. Morana, Gamma-rays and neutrons effects on optical fibers and Bragg gratings for temperature sensors, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01064993

S. Girard, Recent advances in radiation-hardened fiber-based technologies for space applications, J. Opt, vol.20, issue.9, p.93001, 2018.
URL : https://hal.archives-ouvertes.fr/ujm-01964646

A. F. Fernandez, Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures, IEEE Trans. Nucl. Sci, vol.52, issue.6, pp.2689-2694, 2005.

L. Schenato, A Review of Distributed Fibre Optic Sensors for Geo-Hydrological Applications, Appl. Sci, vol.7, issue.9, p.896, 2017.

S. Sakaguchi, S. Todoroki, and T. Murata, Rayleigh scattering in silica glass with heat treatment, J. Non-Cryst. Solids, vol.220, issue.2, pp.178-186, 1997.

Y. Li, F. Zhang, and T. Yoshino, Wide temperature-range Brillouin and Rayleigh optical-time-domain reflectometry in a dispersion-shifted fiber, Appl. Opt, vol.42, issue.19, pp.3772-3775, 2003.

I. Toccafondo, Distributed Optical Fiber Radiation and Temperature Sensing at High Energy Accelerators and Experiments, Scuola Superiore Sant, 2015.

R. G. Duncan, OFDR-Based Distributed Sensing and Fault Detection for Singleand Multi-Mode Avionics Fiber-Optics, p.6

C. Sabatier, Potential of Optical Frequency Domain Reflectometry fibre-based sensors for distributed temperature measurements during vacuum thermal cycling of satellites, p.11

M. Froggatt and J. Moore, High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter, Appl. Opt, vol.37, issue.10, pp.1735-1740, 1998.

, OSA | High Resolution Distributed Strain or Temperature Measurements in Single-and Multi-mode Fiber Using Swept-Wavelength Interferometry, p.28, 2019.

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes, Struct. Control Health Monit, vol.23, issue.2, pp.303-314, 2016.

T. Guo, A. Li, Y. Song, B. Zhang, Y. Liu et al., Experimental study on strain and deformation monitoring of reinforced concrete structures using PPP-BOTDA, Sci. China Ser. E Technol. Sci, vol.52, issue.10, pp.2859-2868, 2009.

C. Cangialosi, Performances of Raman and Brillouin fiber-based sensing of temperature and strain in harsh environments, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01825112

V. Lanticq, Mesure répartie de température et de déformations par diffusion Brillouin: de la fibre optique au capteur pour le génie civil, 2009.

M. Nikles, La diffusion Brillouin dans les fibres optiques: Etudes et application aux capteurs distribués, 1997.

R. W. Boyd, Nonlinear Optics, 2013.

X. Bao and L. Chen, Recent Progress in Distributed Fiber Optic Sensors, Sensors, vol.12, issue.7, pp.8601-8639, 2012.

Y. S. Mamdem, Capteurs à fibres optiques répartis par effet Brillouin: séparation de la dépendance à température et à la déformation, 2014.

C. Sabatier, Influence of the core dopants on the Brillouin signature of specialty optical fibers, 5th Workshop on Specialty Optical Fibers and their Applications, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01622097

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, Brillouin optical-fiber time domain reflectometry, IEICE Trans. Commun, vol.76, issue.4, pp.382-390, 1993.

X. Bao, D. J. Webb, and D. A. Jackson, 32-km distributed temperature sensor based on Brillouin loss in an optical fiber, Opt. Lett, vol.18, issue.18, pp.1561-1563, 1993.

M. Niklès, L. Thévenaz, and P. A. Robert, Simple distributed fiber sensor based on Brillouin gain spectrum analysis, Opt. Lett, vol.21, issue.10, pp.758-760, 1996.

R. Bautz, L. Thevenaz, and M. Nikles, Procédé de mesure de la diffusion Brillouin dans une fibre optique et dispositif de mise en Óoeuvre de ce procédé, 1995.

G. Failleau, A metrological comparison of Raman-distributed temperature sensors, Measurement, vol.116, pp.18-24, 2018.

S. Delepine-lesoille, I. Planes, M. Landolt, G. Hermand, and O. Perrochon, Compared performances of Rayleigh Raman and Brillouin distributed temperature measurements during concrete container fire test, 2017 25th Optical Fiber Sensors Conference, pp.1-4, 2017.

D. Inaudi and B. Glisic, Long-Range Pipeline Monitoring by Distributed Fiber Optic Sensing | Journal of Pressure Vessel Technology | ASME DC, J Press. Vessel Technol, vol.132, pp.11701-11710, 2009.

K. Hotate and T. Hasegawa, Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber Using a Correlation-Based Technique -Proposal, Experiment and Simulation, 2000.

Z. Li, Z. Yang, L. Yan, M. A. Soto, and L. Thévenaz, Hybrid Golay-coded Brillouin optical time-domain analysis based on differential pulses, Opt. Lett, vol.43, issue.19, pp.4574-4577, 2018.

Y. Dong, H. Zhang, L. Chen, and X. Bao, A 2-cm-spatial-resolution and 2-km-range Brillouin optical fiber sensor using a transient differential pulse pair, Appl. Opt, vol.51, issue.9, pp.1229-1235, 2012.

Y. Dong, L. Chen, and X. Bao, Extending the Sensing Range of Brillouin Optical Time-Domain Analysis Combining Frequency-Division Multiplexing and In-Line EDFAs, J. Light. Technol, vol.30, issue.8, pp.1161-1167, 2012.

H. Li, D. Li, and G. Song, Recent applications of fiber optic sensors to health monitoring in civil engineering, Eng. Struct, vol.26, issue.11, p.18, 2004.

, Neubrex Co., Ltd

, systeme -FEBUS-OPTICS

D. Zhou, W. Li, L. Chen, and X. Bao, Distributed Temperature and Strain Discrimination with Stimulated Brillouin Scattering and Rayleigh Backscatter in an Optical Fiber, Sensors, vol.13, issue.2, pp.1836-1845, 2013.

Y. Li, L. Zhang, H. Fan, and H. Li, A performance enhanced Rayleigh Brillouin optical time domain analysis sensing system, Optoelectron. Lett, vol.14, issue.2, pp.84-87, 2018.

C. Sabatier, Distributed Optical Fiber Sensor Allowing Temperature and Strain Discrimination in Radiation Environments
URL : https://hal.archives-ouvertes.fr/ujm-01964758

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering, Opt. Lett, vol.30, issue.11, pp.1276-1278, 2005.

X. Bao, Q. Yu, and L. Chen, Simultaneous strain and temperature measurements with polarization-maintaining fibers and their error analysis by use of a distributed Brillouin loss system, Opt. Lett, vol.29, issue.12, pp.1342-1344, 2004.

F. Zhang and J. W. Lit, Temperature and strain sensitivity measurements of highbirefringent polarization-maintaining fibers, Appl. Opt, vol.32, issue.13, pp.2213-2218, 1993.

Y. Dong, L. Chen, and X. Bao, High-Spatial-Resolution Time-Domain Simultaneous Strain and Temperature Sensor Using Brillouin Scattering and Birefringence in a Polarization-Maintaining Fiber, IEEE Photonics Technol. Lett, vol.22, issue.18, pp.1364-1366, 2010.

, LEAF® Optical Fiber | Long-haul and Metro Network Solution | Corning, p.26, 2019.

M. Alahbabi, Y. T. Cho, and T. P. Newson, Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors, Opt. Lett, vol.29, issue.1, pp.26-28, 2004.

X. Liu and X. Bao, Brillouin Spectrum in LEAF and Simultaneous Temperature and Strain Measurement, J. Light. Technol, vol.30, issue.8, pp.1053-1059, 2012.

L. Zou, X. Bao, and L. Chen, Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber, Opt. Lett, vol.29, issue.13, pp.1485-1487, 2004.

, Polarization-Maintaining Photonic Crystal Fibers

V. Shahraam-afshar, K. V. , B. Xiaoyi, and C. Liang, Simultaneous distributed strain and temperature measurement, Opt. Lett, vol.30, issue.20, pp.2685-2687, 2005.

A. Ladaci, Rare Earth Doped Optical Fibers and Amplifiers for Space Applications, 2017.
URL : https://hal.archives-ouvertes.fr/tel-02109151

L. Tartara, C. Codemard, J. Maran, R. Cherif, and M. Zghal, Full modal analysis of the Brillouin gain spectrum of an optical fiber, Opt. Commun, vol.282, issue.12, pp.2431-2436, 2009.

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, Simulating and designing Brillouin gain spectrum in single-mode fibers, J. Light. Technol, vol.22, issue.2, pp.631-639, 2004.

, Corning SMF-28 Ultra Fibre optique

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell et al., Acoustic Characterization of Silica Glasses, J. Am. Ceram. Soc, vol.76, issue.3, pp.712-716, 1993.

Y. S. Mamdem, Capteurs à fibres optiques répartis par effet Brillouin : séparation de la dépendance à température et à la déformation, 2012.

A. Kobyakov, Design concept for optical fibers with enhanced SBS threshold, Opt. Express, vol.13, issue.14, pp.5338-5346, 2005.

P. Law, Y. Liu, A. Croteau, and P. D. Dragic, Acoustic coefficients of P 2 O 5 -doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient, Opt. Mater. Express, vol.1, issue.4, pp.686-699, 2011.

L. G. Hwa and W. C. Chao, Velocity of sound and elastic properties of lanthanum gallo-germanate glasses, Mater. Chem. Phys, vol.94, issue.1, pp.37-41, 2005.

P. D. Dragic, Simplified model for effect of Ge doping on silica fibre acoustic properties, Electron. Lett, vol.45, issue.5, pp.256-257, 2009.

A. V. Anan'ev, Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2, J. Non-Cryst. Solids, vol.354, issue.26, pp.3049-3058, 2008.

J. Smith, A. Brown, M. Demerchant, and B. Xiaoyi, Enhancement of stimulated Brillouin scattering of higher-order acoustic modes in single-mode optical fiber, Appl. Opt, vol.38, issue.25, pp.5372-5377, 1999.

P. D. Dragic, Proposed model for the effect of Ge-doping on the acoustic properties of silica fibers, 2009 Conference on Optical Fiber Communication -incudes post deadline papers, pp.1-3, 2009.

E. T. Lee, Development and characterisation of phosphate glasses for athermalisation, 2004.

M. Cavillon, P. D. Dragic, and J. Ballato, Additivity of the coefficient of thermal expansion in silicate optical fibers, Opt. Lett, vol.42, issue.18, pp.3650-3653, 2017.

P. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins et al., Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients, Int. J. Appl. Glass Sci, vol.9, issue.3, pp.307-318, 2018.

P. D. Dragic, Brillouin Gain Reduction Via B2O3 Doping, J. Light. Technol, vol.29, issue.7, pp.967-973, 2011.

M. Cavillon, Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber, J. Light. Technol, vol.34, issue.6, pp.1435-1441, 2016.

J. W. Fleming, Dispersion in GeO 2 -SiO 2 glasses, Appl. Opt, vol.23, issue.24, pp.4486-4493, 1984.

M. Lin, Anomalous Temperature Dependence of Ultrasonic Velocity in Potassium Silicate Glasses, Chin. J. Phys, vol.23, issue.4, pp.235-244, 1985.

S. Spinner, Temperature Dependence of Elastic Constants of Vitreous Silica, J. Am. Ceram. Soc, vol.45, issue.8, pp.394-397, 1962.

M. Dossou, Acoustic modes in photonic crystal fibres for distributed optical fibres sensors applications, Theses, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00614250

R. Hooke, Lectures de potentia restitutiva, or, Of spring : explaining the power of springing bodies : to which are added some collections. London : Printed for J. Martyn, p.1678

L. Solomon, Elasticité linéaire. Masson et Cie Editeurs, 1968.

J. Charmet, Mecanique du solide et des materiaux Elasticite-Plasticite-Rupture

F. D. Murnaghan, Finite Deformation of an Elastic Solid, 1951.

D. S. Hughes and J. L. Kelly, Second-Order Elastic Deformation of Solids, Phys. Rev, vol.92, issue.5, pp.1145-1149, 1953.

S. Chaki and G. Bourse, Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands, Ultrasonics, vol.49, issue.2, pp.162-171, 2009.

G. W. Scherer, Stress-induced index profile distortion in optical waveguides, Appl. Opt, vol.19, issue.12, 1980.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, Dependence of Brillouin Frequency Shift in Optical Fibers on Draw-Induced Residual Elastic and Inelastic Strains, IEEE Photonics Technol. Lett, vol.19, issue.18, pp.1389-1391, 2007.

I. H. Malitson, Interspecimen Comparison of the Refractive Index of Fused Silica, JOSA, vol.55, issue.10, pp.1205-1209, 1965.

C. Sabatier, Influence of the core dopants on the Brillouin signature of specialty optical fibers, 5th Workshop on Specialty Optical Fibers and their Applications, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01622097

, Interfiber Analysis Home Site

R. Davidi, U. Ben-simon, S. Shoham, I. Kressel, N. Gorbatov et al., The importance of Fiber Coating and Bonding Process in Accurate High Spatial Resolution Strain Measurements

Q. Li, G. Li, and G. Wang, Effect of the plastic coating on strain measurment of concrete by fiber optic sensor, vol.34, pp.215-227, 2003.

G. Zhou, H. Li, L. Ren, and D. Li, Influencing parameters analysis of strain transfer in optic fiber Bragg grating sensors, Advanced Sensor Technologies for Nondestructive Evaluation and Structural Health Monitoring II, vol.6179, p.61790, 2006.

M. Alahbabi, Y. T. Cho, and T. P. Newson, Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors, Opt. Lett, vol.29, issue.1, pp.26-28, 2004.

E. Burov, A. Pastouret, and L. De-montmorillon, Temperature and strain sensing optical fiber and temperature and strain sensor, vol.9835502, 2017.

D. B. Wittry, Electron probe microanalyzer, 1959.

C. Sabatier, Combined experimental and simulation study of the fiber composition effects on its Brillouin scattering signature
URL : https://hal.archives-ouvertes.fr/ujm-01964691

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering, Opt. Lett, vol.30, issue.11, pp.1276-1278, 2005.

D. Zhou, W. Li, L. Chen, and X. Bao, Distributed Temperature and Strain Discrimination with Stimulated Brillouin Scattering and Rayleigh Backscatter in an Optical Fiber, Sensors, vol.13, issue.2, pp.1836-1845, 2013.

B. G. Gorshkov and M. A. Taranov, Simultaneous optical fibre strain and temperature measurements in a hybrid distributed sensor based on Rayleigh and Raman scattering, Quantum Electron, vol.48, issue.2, p.184, 2018.

M. Alahbabi, Y. T. Cho, and T. P. Newson, Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors, Opt. Lett, vol.29, issue.1, pp.26-28, 2004.

, Corning® SMF-28® Ultra Optical Fiber

, Corning® LEAF® Optical Fiber

S. R. Nagel, J. B. Macchesney, and K. L. Walker, An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance, IEE Trans. Microw. Theory Tech, issue.4, pp.305-322, 1982.

M. Vivona, Radiation Hardening of Rare-Earth Doped Fiber Amplifier, 2013.

T. Kitoh, N. Takato, M. Yasu, and M. Kawachi, Bending loss reduction in silicabased waveguides by using lateral offsets, J. Light. Technol, vol.13, issue.4, pp.555-562, 1995.

Y. Tsuchida, K. Saitoh, and M. Koshiba, Design and characterization of single-mode holey fibers with low bending losses, Opt. Express, vol.13, issue.12, pp.4770-4779, 2005.

, Fiber Optic Distributed Strain and Temperature Sensors (DSTS)

H. Xiao, A numerical analysis of GeO 2 -doped multi-step index single-mode fiber for stimulated Brillouin scattering, J. Opt, vol.20, issue.6, p.65701, 2018.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, The simultaneous measurement of strain and temperature distributions from Brillouin backscatter, pp.1-1, 1997.

, Evaluation of measurement data -Guide to the expression of uncertainty in measurment, 2008.

C. Xing, Distributed multi-parameter sensing utilizing Brillouin frequency shifts contributed by multiple acoustic modes in SSMF, Opt. Express, vol.26, issue.22, pp.28793-28807, 2018.

, LEAF® Optical Fibre

C. C. Lee, P. W. Chiang, and S. Chi, Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift, IEEE Photonics Technol. Lett, vol.13, issue.10, pp.1094-1096, 2001.

, Home, p.10, 2019.

A. F. Fernandez, Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures, IEEE Trans. Nucl. Sci, vol.52, issue.6, pp.2689-2694, 2005.

S. Rizzolo, Radiation effects on optical frequency domain reflectometry fiberbased sensor, Opt. Lett, vol.40, issue.20, p.4571, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01211197

C. Sabatier, 6 MeV Electron Exposure Effects on OFDR-based Distributed Fiber-based Sensors, IEEE Trans. Nucl. Sci, pp.1-1, 2018.
URL : https://hal.archives-ouvertes.fr/ujm-01926003

C. Cangialosi, Development of a Temperature Distributed Monitoring System Based On Raman Scattering in Harsh Environment, IEEE Trans. Nucl. Sci, vol.61, issue.6, pp.3315-3322, 2014.
URL : https://hal.archives-ouvertes.fr/ujm-01185932

C. Cangialosi, Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors, 23rd International Conference on Optical Fibre Sensors, vol.9157, p.91576, 2014.
URL : https://hal.archives-ouvertes.fr/ujm-01011624

X. Phéron, J. Bertrand, S. Girard, Y. Ouerdane, S. Delepine-lesoille et al., Brillouin scattering based sensor in high gamma dose environment: design and optimization of optical fiber for long-term distributed measurement, OFS2012 22nd International Conference on Optical Fiber Sensors, vol.8421, pp.8421-8425, 2012.

X. Phéron, High ?-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors, Opt. Express, vol.20, issue.24, pp.26978-26985, 2012.

S. Girard, Recent advances in radiation-hardened fiber-based technologies for space applications, J. Opt, vol.20, issue.9, p.93001, 2018.
URL : https://hal.archives-ouvertes.fr/ujm-01964646

P. C. Wait and T. P. Newson, Landau Placzek ratio applied to distributed fibre sensing, Opt. Commun, vol.122, issue.4, pp.141-146, 1996.

K. D. Souza, P. C. Wait, and T. P. Newson, Characterisation of strain dependence of the Landau-Placzek ratio for distributed sensing, Electron. Lett, vol.33, issue.7, pp.615-616, 1997.

G. Melin, Radiation Characterization of Optical Frequency Domain Reflectometry Fiber-Based Distributed Sensors, IEEE Trans. Nucl. Sci. List of Publications -IEEE, vol.63, issue.3, pp.1688-1693, 2016.

C. Sabatier, 6 MeV Electron Exposure Effects on OFDR-based Distributed Fiberbased Sensors, IEEE Trans. Nucl. Sci, vol.65, issue.8, pp.1598-1603, 2018.
URL : https://hal.archives-ouvertes.fr/ujm-01926003

C. Sabatier, Distributed Optical Fiber Sensor Allowing Temperature and Strain Discrimination in Radiation Environments, IEEE Trans. Nucl. Sci
URL : https://hal.archives-ouvertes.fr/ujm-01964758

T. Blanchet, A. Morana, T. Allanche, C. Sabatier, I. Reghioua et al.,

P. Ouerdane, M. Paillet, O. Gaillardin, C. Duhamel, M. Marcandella et al.,

D. Auriel, G. Aubert, S. Laffont, and . Girard, X-ray, Proton and Electron Radiation Effects on Type I Fiber Bragg Gratings, IEEE Trans. Nucl. Sci, vol.65, issue.8, pp.1632-1638, 2018.
URL : https://hal.archives-ouvertes.fr/ujm-01925993

C. Sabatier, Combined Experimental and Simulation Study of the Fiber Composition Effects on Its Brillouin Scattering signature
URL : https://hal.archives-ouvertes.fr/ujm-01964691

A. Alessi, A. Guttilla, S. Agnello, C. Sabatier, T. Robin et al., Coupled temperature and g-radiation effect on silica-based optical fiber strain sensors based on Rayleigh and Brillouin scatterings

, OFS, 2018.

?. C. Sabatier, Combined Experimental and Simulation Study of the Fiber Composition Effects on Its Brillouin Scattering signature, 2018.
URL : https://hal.archives-ouvertes.fr/ujm-01964691

?. C. Sabatier, Potential of Optical Frequency Domain Reflectometry fibrebased sensors for distributed temperature measurements during vacuum thermal cycling of satellites, 2018.

?. C. Sabatier, Distributed Optical Fiber Sensor Allowing Temperature and Strain Discrimination in Radiation Environments
URL : https://hal.archives-ouvertes.fr/ujm-01964758