, Annexe 2 : Références

M. Dionzou, A. Morère, C. Roux, B. Lonetti, J. Marty et al., Comparison of Methods for the Fabrication and the Characterization of Polymer Self-Assemblies: What Are the Important Parameters?, Soft Matter, vol.12, issue.7, pp.2166-2176, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01314955


L. Gibot, A. Lemelle, U. Till, B. Moukarzel, A. Mingotaud et al., Polymeric Micelles Encapsulating Photosensitizer: Structure/Photodynamic Therapy Efficiency Relation, Biomacromolecules, vol.15, issue.4, pp.1443-1455, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02195729

U. Till, OncoPol Vers le developpement critique de vecteurs polymeres pour l oncologie, 2016.

C. Montis, U. Till, P. Vicendo, C. Roux, A. Mingotaud et al., Extended Photo-Induced Endosome-like Structures in Giant Vesicles Promoted by Block-Copolymer Nanocarriers, Nanoscale, vol.10, issue.33, pp.15442-15446, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02171159

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre et al., Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA: A Cancer Journal for Clinicians, vol.68, issue.6, pp.394-424, 2018.

A. Biela, N. N. Nasief, M. Betz, A. Heine, D. Hangauer et al., Dissecting the Hydrophobic Effect on the Molecular Level: The Role of Water, Enthalpy, and Entropy in Ligand Binding to Thermolysin, Angewandte Chemie International Edition, vol.52, issue.6, pp.1822-1828, 2013.

J. S. Wright, G. J. Lyon, E. A. George, T. W. Muir, and R. P. Novick, Hydrophobic Interactions Drive Ligand-Receptor Recognition for Activation and Inhibition of Staphylococcal Quorum Sensing, Proceedings of the National Academy of Sciences, vol.101, issue.46, pp.16168-16173, 2004.

T. Loftsson and M. E. Brewster, Pharmaceutical Applications of Cyclodextrins: Basic Science and Product Development: Pharmaceutical Applications of Cyclodextrins, Journal of Pharmacy and Pharmacology, vol.62, issue.11, pp.1607-1621, 2010.

D. T. Manallack, The PK(a) Distribution of Drugs: Application to Drug Discovery, Perspect Medicin Chem, vol.1, pp.25-38, 2007.


H. D. Williams, N. L. Trevaskis, S. A. Charman, R. M. Shanker, W. N. Charman et al., Strategies to Address Low Drug Solubility in Discovery and Development, Pharmacological Reviews, vol.65, issue.1, pp.315-499, 2013.

C. Taniguchi, Y. Kawabata, K. Wada, S. Yamada, and S. Onoue, Microenvironmental PH-Modification to Improve Dissolution Behavior and Oral Absorption for Drugs with PH-Dependent Solubility, Expert Opinion on Drug Delivery, vol.11, issue.4, pp.505-516, 2014.

B. M. Rayaprolu, J. J. Strawser, and G. Anyarambhatla, Excipients in Parenteral Formulations: Selection Considerations and Effective Utilization with, Small Molecules and Biologics. Drug Development and Industrial Pharmacy, vol.44, issue.10, pp.1565-1571, 2018.

R. Censi and P. Di-martino, Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs, Molecules, vol.20, issue.10, pp.18759-18776, 2015.


T. Fri??i? and W. Jones, Benefits of Cocrystallisation in Pharmaceutical Materials Science: An Update: Cocrystallisation, Journal of Pharmacy and Pharmacology, vol.62, issue.11, pp.1547-1559, 2010.

M. J. Lawrence, Surfactant Systems: Their Use in Drug Delivery, Chemical Society Reviews, vol.23, issue.6, p.417, 1994.

P. Tablets, Side Effects, Interactions, Warning, Dosage & Uses, 2019.

. Taxotere, Docetaxel for Injection, Side Effects, Interactions, Warning, Dosage & Uses, 2019.

J. Sudimack and R. J. Lee, Targeted Drug Delivery via the Folate Receptor, Advanced Drug Delivery Reviews, vol.41, issue.2, pp.62-71, 2000.

H. Maeda, Vascular Permeability in Cancer and Infection as Related to Macromolecular Drug Delivery, with Emphasis on the EPR Effect for Tumor-Selective Drug Targeting, Proceedings of the Japan Academy, Series B, vol.2012, issue.3, pp.53-71

Y. Matsumura and H. Maeda, A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs, Cancer Res, vol.46, issue.12, pp.6387-6392, 1986.

V. Torchilin, Tumor Delivery of Macromolecular Drugs Based on the EPR Effect, vol.63, pp.131-135, 2011.


S. Li and L. Huang, Pharmacokinetics and Biodistribution of Nanoparticles, Molecular Pharmaceutics, vol.5, issue.4, pp.496-504, 2008.

C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism, Nature, vol.359, issue.6397, pp.710-712, 1992.

L. Meseguer-olmo, M. Ros-nicolás, V. Vicente-ortega, M. Alcaraz-baños, M. Clavel-sainz et al., A Bioactive Sol-Gel Glass Implant for in Vivo Gentamicin Release. Experimental Model in Rabbit, Journal of Orthopaedic Research, vol.24, issue.3, pp.454-460, 2006.


S. Areva, V. Ääritalo, S. Tuusa, M. Jokinen, M. Lindén et al., Sol-Gel-Derived TiO2-SiO2 Implant Coatings for Direct Tissue Attachment. Part II: Evaluation of Cell Response, Journal of Materials Science: Materials in Medicine, vol.18, issue.8, pp.1633-1642, 2007.

M. Vallet-regi, A. Rámila, R. P. Del-real, and J. Pérez-pariente, A New Property of MCM-41: Drug Delivery System, Chemistry of Materials, vol.13, issue.2, pp.308-311, 2001.

I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff et al., Ceramic-Based Nanoparticles Entrapping Water-Insoluble Photosensitizing Anticancer Drugs: A Novel Drug?Carrier System for Photodynamic Therapy, Journal of the American Chemical Society, vol.125, issue.26, pp.7860-7865, 2003.

I. Slowing, J. Viveroescoto, C. Wu, and V. Lin, Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Advanced Drug Delivery Reviews, vol.60, pp.1278-1288, 2008.


M. Vallet-regí, M. Colilla, I. Izquierdo-barba, and M. Manzano, Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights, Molecules, vol.2017, issue.1, p.47

M. Bardhan, A. Majumdar, S. Jana, T. Ghosh, U. Pal et al., Mesoporous Silica for Drug Delivery: Interactions with Model Fluorescent Lipid Vesicles and Live Cells, Journal of Photochemistry and Photobiology B: Biology, vol.178, pp.19-26, 2018.

I. Freestone, N. Meeks, M. Sax, and C. Higgitt, The Lycurgus Cup -A Roman Nanotechnology, Gold Bulletin, vol.40, issue.4, pp.270-277, 2007.


M. Faraday, The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light, Philosophical Transactions of the Royal Society of London, vol.1857, pp.145-181

J. Turkevich, P. C. Stevenson, and J. Hillier, A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold, Discussions of the Faraday Society, vol.11, 1951.

G. Frens, Particle Size and Sol Stability in Metal Colloids. Kolloid-Zeitschrift und Zeitschrift für Polymere, vol.250, pp.736-741, 1972.

P. Ghosh, G. Han, M. De, C. Kim, and V. Rotello, Gold Nanoparticles in Delivery Applications, Advanced Drug Delivery Reviews, vol.60, issue.11, pp.1307-1315, 2008.

P. García-calavia, G. Bruce, L. Pérez-garcía, and D. A. Russell, Photosensitiser-Gold Nanoparticle Conjugates for Photodynamic Therapy of Cancer, Photochemical & Photobiological Sciences, issue.11, pp.1534-1552, 2018.


K. Sztandera, M. Gorzkiewicz, and B. Klajnert-maculewicz, Gold Nanoparticles in Cancer Treatment, Molecular Pharmaceutics, vol.16, issue.1, pp.1-23, 2019.


M. Bañobre-lópez, A. Teijeiro, and J. Rivas, Magnetic Nanoparticle-Based Hyperthermia for Cancer Treatment. Reports of Practical Oncology & Radiotherapy, vol.18, pp.397-400, 2013.

Y. Yang, Q. Guo, J. Peng, J. Su, X. Lu et al., Doxorubicin-Conjugated Heparin-Coated Superparamagnetic Iron Oxide Nanoparticles for Combined Anticancer Drug Delivery and Magnetic Resonance Imaging, Journal of Biomedical Nanotechnology, vol.12, issue.11, pp.1963-1974, 2016.

Y. Huang, K. Mao, B. Zhang, and Y. Zhao, Superparamagnetic Iron Oxide Nanoparticles Conjugated with Folic Acid for Dual Target-Specific Drug Delivery and MRI in Cancer Theranostics, Materials Science, vol.70, pp.763-771, 2017.

A. J. Wagstaff, S. D. Brown, M. R. Holden, G. E. Craig, J. A. Plumb et al., Cisplatin Drug Delivery Using Gold-Coated Iron Oxide Nanoparticles for Enhanced Tumour Targeting with External Magnetic Fields, Inorganica Chimica Acta, vol.393, pp.328-333, 2012.


H. W. Kroto, J. R. Heath, S. C. O'brien, R. F. Curl, R. E. Smalley et al., Nature, vol.318, issue.6042, pp.162-163, 1985.


M. Mohajeri, B. Behnam, and A. Sahebkar, Biomedical Applications of Carbon Nanomaterials: Drug and Gene Delivery Potentials, Journal of Cellular Physiology, vol.234, issue.1, pp.298-319, 2019.

P. Chaudhuri, A. Paraskar, S. Soni, R. A. Mashelkar, and S. Sengupta, Fullerenol?Cytotoxic Conjugates for Cancer Chemotherapy, ACS Nano, vol.3, issue.9, pp.2505-2514, 2009.

A. D. Bangham, M. M. Standish, and J. C. Watkins, Diffusion of Univalent Ions across the Lamellae of Swollen Phospholipids, Journal of Molecular Biology, vol.13, issue.1, pp.80093-80099, 1965.

A. Bernkop-schnürch and S. Dünnhaupt, Chitosan-Based Drug Delivery Systems, European Journal of Pharmaceutics and Biopharmaceutics, vol.81, issue.3, pp.463-469, 2012.

J. Varshosaz, Dextran Conjugates in Drug Delivery, Expert Opinion on Drug Delivery, vol.2012, issue.5, pp.509-523

M. M. Abeer, M. C. Mohd-amin, and C. Martin, A Review of Bacterial Cellulose-Based Drug Delivery Systems: Their Biochemistry, Current Approaches and Future Prospects: Review of BC-Based Drug Delivery Systems, Journal of Pharmacy and Pharmacology, pp.1047-1061, 2014.

N. Lomis, S. Westfall, L. Farahdel, M. Malhotra, D. Shum-tim et al., Human Serum Albumin Nanoparticles for Use in Cancer Drug Delivery: Process Optimization and In Vitro Characterization, Nanomaterials, vol.2016, issue.6, p.116

W. Tang, H. Xu, E. J. Park, M. A. Philbert, and R. Kopelman, Encapsulation of Methylene Blue in Polyacrylamide Nanoparticle Platforms Protects Its Photodynamic Effectiveness. Biochemical and Biophysical Research Communications, vol.369, pp.579-583, 2008.

J. Devissaguet and F. Puisieux, Process for the Preparation of Dispersible Colloidal Systems of a Substance in the Form of Nanoparticles, 5118528.

F. Rancan, D. Papakostas, S. Hadam, S. Hackbarth, T. Delair et al., Investigation of Polylactic Acid (PLA) Nanoparticles as Drug Delivery Systems for Local Dermatotherapy, Pharmaceutical Research, vol.26, issue.8, pp.2027-2036, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00423727

U. Boas and P. M. Heegaard, Dendrimers in Drug Research. Chemical Society Reviews, vol.33, issue.1, p.43, 2004.

J. N. Israelachvili, Intermolecular and Surface Forces, 2011.

A. Blanazs, S. P. Armes, and A. J. Ryan, Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and Their Biological Applications. Macromolecular Rapid Communications, vol.30, pp.267-277, 2009.

N. S. Cameron, M. K. Corbierre, and A. E. Eisenberg, Steacie Award Lecture Asymmetric Amphiphilic Block Copolymers in Solution: A Morphological Wonderland, vol.77, p.16, 1998.

A. Ianiro, J. Patterson, Á. González-garcía, M. M. Van-rijt, M. M. Hendrix et al., A Roadmap for Poly(Ethylene Oxide)-Block-Poly-?-Caprolactone Self-Assembly in Water: Prediction, Synthesis, and Characterization, Journal of Polymer Science Part B: Polymer Physics, vol.56, issue.4, pp.330-339, 2018.

R. C. Hayward and D. J. Pochan, Tailored Assemblies of Block Copolymers in Solution: It Is All about the Process, Macromolecules, vol.2010, issue.8, pp.3577-3584

A. Wurtz, Mémoire Sur l'oxyde d'éthylène et Les Alcools Polyéthyléniques, vol.69, pp.317-355

A. Abuchowski, J. R. Mccoy, N. C. Palczuk, T. Van-es, and F. F. Davis, Effect of Covalent Attachment of Polyethylene Glycol on Immunogenicity and Circulating Life of Bovine Liver Catalase, Journal of Biological Chemistry, vol.252, issue.11, pp.3582-3586, 1977.

A. E. Green and P. G. Rose, Pegylated Liposomal Doxorubicin in Ovarian Cancer, Int J Nanomedicine, vol.1, issue.3, pp.229-239, 2006.

E. J. Frazza and E. E. Schmitt, A New Absorbable Suture, Journal of Biomedical Materials Research, vol.5, issue.2, pp.43-58, 1971.

R. K. Kulkarni, E. G. Moore, A. F. Hegyeli, and F. Leonard, Biodegradable Poly(Lactic Acid) Polymers, Journal of Biomedical Materials Research, vol.5, issue.3, pp.169-181, 1971.

A. M. Reed and D. K. Gilding, Biodegradable Polymers for Use in Surgery -Poly(Glycolic)/Poly(Lactic Acid) Homo and Copolymers: 2, In Vitro Degradation. Polymer, vol.22, pp.494-498, 1981.

M. Mir, N. Ahmed, A. Rehman, and . Ur, Recent Applications of PLGA Based Nanostructures in Drug Delivery, Colloids and Surfaces B: Biointerfaces, vol.159, pp.217-231, 2017.

Z. Zeng, Recent Advances in PEG-PLA Block Copolymer Nanoparticles, International Journal of Nanomedicine, p.1057, 2010.

A. C. Wauters, I. A. Pijpers, A. F. Mason, D. S. Williams, J. Tel et al., Development of Morphologically Discrete PEG-PDLLA Nanotubes for Precision Nanomedicine, Biomacromolecules, vol.2019, issue.1, pp.177-183

T. Sim, J. E. Kim, N. H. Hoang, J. K. Kang, C. Lim et al., Development of a Docetaxel Micellar Formulation Using Poly(Ethylene Glycol)-Polylactide-Poly(Ethylene Glycol) (PEG-PLA-PEG) with Successful Reconstitution for Tumor Targeted Drug Delivery, Drug Delivery, vol.25, issue.1, pp.1362-1371, 2018.

P. Grossen, D. Witzigmann, S. Sieber, and J. Huwyler, PEG-PCL-Based Nanomedicines: A Biodegradable Drug Delivery System and Its Application, Journal of Controlled Release, vol.260, pp.46-60, 2017.

P. Wilson, P. C. Ke, T. P. Davis, K. Kempe, and . Poly, -Oxazoline)-Based Micro-and Nanoparticles: A Review, European Polymer Journal, vol.88, issue.2, pp.486-515, 2017.

F. Su, P. Yun, C. Li, R. Li, L. Xi et al., Novel Self-Assembled Micelles of Amphiphilic Poly(2-Ethyl-2-Oxazoline) -Poly(L-Lactide) Diblock Copolymers for Sustained Drug Delivery, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.566, pp.120-127, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02127452

D. Zheng, H. Ye, C. Luo, H. Xu, and L. Meng, The Efficient Apoptotic Induction of Paclitaxel-Loaded Poly(N-Vinylpyrrolidone)-Block-Poly(?-Caprolactone) Nanoparticles in the In Vitro Study of Lung Cancer Cell Lines, Journal of Nanomaterials, pp.1-8, 2015.

K. Mitra, S. K. Hira, S. Singh, N. K. Vishwakarma, S. Vishwakarma et al., In Vitro Anticancer Drug Delivery Using Amphiphilic Poly(N-Vinylpyrrolidone)-b-Polyketal-b-Poly(N-Vinylpyrrolidone) Block Copolymer as Micellar Nanocarrier, ChemistrySelect, vol.2018, issue.31, pp.8833-8843


K. Ramesh, S. Singh, K. Mitra, D. Chattopadhyay, N. Misra et al., Self-Assembly of Novel Poly(d,l-Lactide-Co-Glycolide)-b-Poly

C. Amphiphilic-diblock, Colloid and Polymer Science, vol.294, pp.399-407, 2016.

J. P. Patterson, M. P. Robin, C. Chassenieux, O. Colombani, and R. K. O'reilly, The Analysis of Solution Self-Assembled Polymeric Nanomaterials, Chemical Society Reviews, vol.43, issue.8, p.2412, 2014.

J. Giddings, F. Yang, and M. Myers, Flow-Field-Flow Fractionation: A Versatile New Separation Method, Science, vol.193, issue.4259, pp.1244-1245, 1976.


, Field-Flow Fractionation in Biopolymer Analysis

S. K. Williams and K. Caldwell, , 2012.

J. F. Cauvin, Des bienfaits de l'insolation, Faculté de Médecine de Paris, p.1815

A. Grzybowski and K. Pietrzak, From Patient to Discoverer-Niels Ryberg Finsen (1860-1904)-the Founder of Phototherapy in Dermatology, Clinics in Dermatology, vol.2012, issue.4, pp.451-455

R. J. Cremer, P. W. Perryman, D. H. Richards, . Influence, . Light-on et al., The Lancet, vol.271, issue.7030, pp.1094-1097, 1958.

T. B. Fitzpatrick, M. A. Pathak, and I. V. Part, Basic Considerations of the Psoralens: Historical Aspects of Methoxsalen and Other Furocoumarins11From the Division of Dermatology, Journal of Investigative Dermatology, vol.32, issue.2, pp.229-231, 1959.

M. D. Daniell, J. S. Hill, . History, and . Photodynamic-therapy, ANZ Journal of Surgery, vol.61, issue.5, pp.340-348, 1991.

B. Valeur and M. N. Berberan-santos, Molecular Fluorescence: Principles and Applications, 2012.

T. Debele, S. Peng, and H. Tsai, Drug Carrier for Photodynamic Cancer Therapy, International Journal of Molecular Sciences, vol.16, issue.9, pp.22094-22136, 2015.

M. J. Davies, Singlet Oxygen-Mediated Damage to Proteins and Its Consequences, Biochemical and Biophysical Research Communications, vol.305, issue.3, pp.817-826, 2003.

L. F. Agnez-lima, J. T. Melo, A. E. Silva, A. H. Oliveira, A. R. Timoteo et al., DNA Damage by Singlet Oxygen and Cellular Protective Mechanisms, Mutation Research/Reviews in Mutation Research, vol.2012, issue.1, pp.15-28


I. Mfouo-tynga and H. Abrahamse, Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy, International Journal of Molecular Sciences, issue.12, pp.10228-10241, 2015.

W. M. Sharman, C. M. Allen, and J. E. Van-lier, Photodynamic Therapeutics: Basic Principles and Clinical Applications. Drug Discovery Today, vol.4, pp.1412-1421, 1999.

D. E. Dolmans, D. Fukumura, and R. K. Jain, Photodynamic Therapy for Cancer, Nature Reviews Cancer, vol.3, p.380, 2003.

J. M. Gaullier, K. Berg, Q. Peng, H. Anholt, P. K. Selbo et al., Use of 5-Aminolevulinic Acid Esters to Improve Photodynamic Therapy on Cells in Culture, Cancer Res, vol.57, issue.8, pp.1481-1486, 1997.

S. Battah, S. Balaratnam, A. Casas, S. O'neill, C. Edwards et al., Macromolecular Delivery of 5-Aminolaevulinic Acid for Photodynamic Therapy Using Dendrimer Conjugates, Molecular Cancer Therapeutics, vol.6, issue.3, pp.876-885, 2007.

C. E. Stilts, M. I. Nelen, D. G. Hilmey, S. R. Davies, S. O. Gollnick et al., Water-Soluble, Core-Modified Porphyrins as Novel, Longer-Wavelength-Absorbing Sensitizers for Photodynamic Therapy, Journal of Medicinal Chemistry, vol.43, issue.12, pp.2403-2410, 2000.

M. P. Copper, I. B. Tan, H. Oppelaar, M. C. Ruevekamp, F. A. Stewart et al., Hydroxyphenyl)Chlorin Photodynamic Therapy in Early-Stage Squamous Cell Carcinoma of the Head and Neck. Archives of Otolaryngology-Head & Neck Surgery, vol.129, 2003.

N. Kashef, Y. Huang, and M. R. Hamblin, Advances in Antimicrobial Photodynamic Inactivation at the Nanoscale, Nanophotonics, vol.2017, issue.5, pp.853-879

N. Brasseur, H. Ali, R. Langlois, J. R. Wagner, J. Rousseau et al., Biological Activities Of Phthalocyanines-V. Photodynamic Therapy Of Emt-6 Mammary Tumors In Mice With Sulfonated Phthalocyanines, Photochemistry and Photobiology, vol.45, issue.5, pp.581-586, 1987.

C. M. Allen, R. Langlois, W. M. Sharman, C. La-madeleine, and J. E. Lier, Photodynamic Properties of Amphiphilic Derivatives of Aluminum Tetrasulfophthalocyanine, Photochemistry and Photobiology, vol.76, issue.2, pp.208-216, 2002.


J. P. Tardivo, A. Del-giglio, C. S. De-oliveira, D. S. Gabrielli, H. C. Junqueira et al., Blue in Photodynamic Therapy: From Basic Mechanisms to Clinical Applications. Photodiagnosis and Photodynamic Therapy, vol.2, pp.97-106, 2005.

N. A. Samy, M. M. Salah, M. F. Ali, and A. M. Sadek, Effect of Methylene Blue-Mediated Photodynamic Therapy for Treatment of Basal Cell Carcinoma. Lasers in Medical Science, vol.30, pp.109-115, 2015.

W. Alexander, Annual Meeting and Rose Bengal: From a Wool Dye to a Cancer Therapy, P T, vol.35, issue.8, pp.469-478, 2010.

K. V. Sharma and L. M. Davids, Hypericin-PDT-Induced Rapid Necrotic Death in Human Squamous Cell Carcinoma Cultures after Multiple Treatment, Cell Biology International, vol.2012, issue.12, pp.1261-1266

P. Mroz, A. Pawlak, M. Satti, H. Lee, T. Wharton et al., Functionalized Fullerenes Mediate Photodynamic Killing of Cancer Cells: Type I versus Type II Photochemical Mechanism. Free Radical Biology and Medicine, vol.43, pp.711-719, 2007.

L. Bourré, F. Giuntini, I. M. Eggleston, M. Wilson, and A. J. Macrobert, 5-Aminolaevulinic Acid Peptide Prodrugs Enhance Photosensitization for Photodynamic Therapy, Molecular Cancer Therapeutics, vol.7, issue.6, pp.1720-1729, 2008.

V. Sol, V. Chaleix, Y. Champavier, R. Granet, Y. Huang et al., Glycosyl Bis-Porphyrin Conjugates: Synthesis and Potential Application in PDT, Bioorganic & Medicinal Chemistry, vol.14, issue.23, pp.7745-7760, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00684103


M. Luciano;-christian and . Brückner, Modifications of Porphyrins and Hydroporphyrins for Their Solubilization in Aqueous Media, Molecules, vol.2017, issue.6, p.980

J. Zhang, C. Jiang, J. P. Longo, R. B. Azevedo, H. Zhang et al., An Updated Overview on the Development of New Photosensitizers for Anticancer Photodynamic Therapy, Acta Pharmaceutica Sinica, vol.8, issue.2, pp.137-146, 2018.

M. J. Bovis, J. H. Woodhams, M. Loizidou, D. Scheglmann, S. G. Bown et al., Improved in Vivo Delivery of M-THPC via Pegylated Liposomes for Use in Photodynamic Therapy, Journal of Controlled Release, vol.2012, issue.2, pp.196-205

P. Skupin-mrugalska, J. Piskorz, T. Goslinski, J. Mielcarek, K. Konopka et al., Current Status of Liposomal Porphyrinoid Photosensitizers. Drug Discovery Today, vol.18, pp.776-784, 2013.

V. Reshetov, H. Lassalle, A. François, D. Dumas, S. Hupont et al., Photodynamic Therapy with Conventional and PEGylated Liposomal Formulations of MTHPC (Temoporfin): Comparison of Treatment Efficacy and Distribution Characteristics in Vivo, International Journal of Nanomedicine, vol.3817, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875936

N. Düzgüne?, J. Piskorz, P. Skupin-mrugalska, T. Goslinski, J. Mielcarek et al., Photodynamic Therapy of Cancer with Liposomal Photosensitizers, Therapeutic Delivery, vol.2018, issue.11, pp.823-832

H. Tu, Y. Lin, H. Lin, Y. Hung, L. Lo et al., In Vitro Studies of Functionalized Mesoporous Silica Nanoparticles for Photodynamic Therapy, Advanced Materials, vol.21, issue.2, pp.172-177, 2009.


P. Couleaud, V. Morosini, and J. Durand, Silica-Based Nanoparticles for Photodynamic Therapy Applications, p.15, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00518365

M. Rizzi, S. Tonello, B. M. Estevão, E. Gianotti, L. Marchese et al., Verteporfin Based Silica Nanoparticle for in Vitro Selective Inhibition of Human Highly Invasive Melanoma Cell Proliferation, Journal of Photochemistry and Photobiology B: Biology, vol.167, pp.1-6, 2017.

F. Yuan, J. Li, H. Cheng, X. Zeng, and X. Zhang, A Redox-Responsive Mesoporous Silica Based Nanoplatform for in Vitro Tumor-Specific Fluorescence Imaging and Enhanced Photodynamic Therapy, Biomaterials Science, vol.6, issue.1, pp.96-100, 2018.

B. Singh, S. V. Kim, J. Park, H. Khang, G. Lee et al., Novel Chemi-Dynamic Nanoparticles as a Light-Free Photodynamic Therapeutic System for Cancer Treatment, Macromol. Res, vol.2017, issue.7, pp.749-755

M. Chu, H. Li, Q. Wu, F. Wo, and D. Shi, Pluronic-Encapsulated Natural Chlorophyll Nanocomposites for in Vivo Cancer Imaging and Photothermal/Photodynamic Therapies, Biomaterials, vol.35, issue.29, pp.8357-8373, 2014.


I. Gjuroski, J. Furrer, and M. Vermathen, How Does the Encapsulation of Porphyrinic Photosensitizers into Polymer Matrices Affect Their Self-Association and Dynamic Properties? ChemPhysChem, vol.19, pp.1089-1102, 2018.


M. C. Montanha, L. L. Silva, F. B. Pangoni, G. B. Cesar, R. S. Gonçalves et al., Response Surface Method Optimization of a Novel Hypericin Formulation in P123 Micelles for Colorectal Cancer and Antimicrobial Photodynamic Therapy, Journal of Photochemistry and Photobiology B: Biology, vol.170, pp.247-255, 2017.


B. H. Vilsinski, A. P. Gerola, J. A. Enumo, K. Campanholi, S. S. Da et al., Formulation of Aluminum Chloride Phthalocyanine in Pluronic TM P-123 and F-127 Block Copolymer Micelles: Photophysical Properties and Photodynamic Inactivation of Microorganisms, Photochemistry and Photobiology, vol.91, issue.3, pp.518-525, 2015.


T. M. Zhiyentayev, U. T. Boltaev, A. B. Solov'eva, N. A. Aksenova, N. N. Glagolev et al., Complexes of Chlorin E6 with Pluronics and Polyvinylpyrrolidone: Structure and Photodynamic Activity in Cell Culture, Photochemistry and Photobiology, vol.90, issue.1, pp.171-182, 2014.


Y. Han, Z. Chen, H. Zhao, Z. Zha, W. Ke et al., Oxygen-Independent Combined Photothermal/Photodynamic Therapy Delivered by Tumor Acidity-Responsive Polymeric Micelles, Journal of Controlled Release, vol.284, pp.15-25, 2018.

C. Jing, R. Wang, H. Ou, A. Li, Y. An et al., Axial Modification Inhibited H-Aggregation of Phthalocyanines in Polymeric Micelles for Enhanced PDT Efficacy, Chem. Commun, vol.54, issue.32, pp.3985-3988, 2018.

?. Lamch, W. Tylus, M. Jewgi?ski, R. Latajka, and K. A. Wilk, Location of Varying Hydrophobicity Zinc(II) Phthalocyanine-Type Photosensitizers in Methoxy Poly(Ethylene Oxide) and Poly(l-Lactide) Block Copolymer Micelles Using 1H NMR and XPS Techniques, J. Phys. Chem. B, issue.49, pp.12768-12780, 2016.

J. Li, S. Yao, K. Wang, Z. Lu, X. Su et al., Hypocrellin B-Loaded, Folate-Conjugated Polymeric Micelle for Intraperitoneal Targeting of Ovarian Cancer in Vitro and in Vivo, Cancer Science, vol.109, issue.6, pp.1958-1969, 2018.

J. W. Wennink, Y. Liu, P. I. Mäkinen, F. Setaro, A. De-la-escosura et al., Macrophage Selective Photodynamic Therapy by Meta-Tetra(Hydroxyphenyl)Chlorin Loaded Polymeric Micelles: A Possible Treatment for Cardiovascular Diseases, European Journal of Pharmaceutical Sciences, vol.107, pp.112-125, 2017.

T. Yang, L. Liu, Y. Deng, Z. Guo, G. Zhang et al., Ultrastable Near-Infrared Conjugated-Polymer Nanoparticles for Dually Photoactive Tumor Inhibition, Advanced Materials, vol.29, issue.31, p.1700487, 2017.

P. Grossen, D. Witzigmann, S. Sieber, and J. Huwyler, PEG-PCL-Based Nanomedicines: A Biodegradable Drug Delivery System and Its Application, Journal of Controlled Release, vol.260, pp.46-60, 2017.

W. Yu, M. Ye, J. Zhu, Y. Wang, C. Liang et al., Zinc Phthalocyanine Encapsulated in Polymer Micelles as a Potent Photosensitizer for the Photodynamic Therapy of Osteosarcoma, Nanomedicine: Nanotechnology, Biology and Medicine, vol.14, issue.4, pp.1099-1110, 2018.

Y. Huang, D. Ma, S. Pan, P. Lin, Y. Lin et al., Comparative Study of Aluminum Phthalocyanine Incorporating into Two Types of Block Copolymer: Photo-Physical Property, Size, and in Vitro Photodynamic Therapy Efficacy, J Nanopart Res, vol.17, issue.1, p.41, 2015.

W. Jang, N. Nishiyama, G. Zhang, A. Harada, D. Jiang et al., Supramolecular Nanocarrier of Anionic Dendrimer Porphyrins with Cationic Block Copolymers Modified with Polyethylene Glycol to Enhance Intracellular Photodynamic Efficacy, Angewandte Chemie International Edition, vol.44, issue.3, pp.419-423, 2005.


H. Chen, L. Xiao, Y. Anraku, P. Mi, X. Liu et al., Polyion Complex Vesicles for Photoinduced Intracellular Delivery of Amphiphilic Photosensitizer, J. Am. Chem. Soc, vol.136, issue.1, pp.157-163, 2014.

G. Zhang, A. Harada, N. Nishiyama, D. Jiang, H. Koyama et al., Polyion Complex Micelles Entrapping Cationic Dendrimer Porphyrin: Effective Photosensitizer for Photodynamic Therapy of Cancer, Journal of Controlled Release, vol.93, issue.2, pp.141-150, 2003.

L. Zhao, R. Ma, J. Li, Y. Li, Y. An et al., 20-Tetrakis-(4-Sulfonatophenyl)-Porphyrin and Interconversion in PEG-b-P4VP Micelles, Biomacromolecules, vol.5, issue.10, pp.2601-2608, 2008.

R. Zheng, Z. Wu, Y. Yan, J. Wang, and J. Huang, Suppressing Singlet Oxygen Formation from 5,10,15,20-Tetrakis(4-Sulfonatophenyl)Porphyrin Using Polyion Complex Micelles, RSC Adv, vol.2015, issue.22, pp.17253-17256

M. A. Castriciano, R. Zagami, M. P. Casaletto, B. Martel, M. Trapani et al., Carboxylic Acid)-Cyclodextrin/Anionic Porphyrin Finished Fabrics as Photosensitizer Releasers for

, Antimicrobial Photodynamic Therapy. Biomacromolecules, vol.2017, issue.4, pp.1134-1144

C. Conte, A. Scala, G. Siracusano, G. Sortino, R. Pennisi et al., Nanoassemblies Based on Non-Ionic Amphiphilic Cyclodextrin Hosting Zn(II)-Phthalocyanine and Docetaxel: Design, Physicochemical Properties and Intracellular Effects, Colloids and Surfaces B: Biointerfaces, vol.146, pp.590-597, 2016.

H. Xiong, D. Zhou, X. Zheng, Y. Qi, Y. Wang et al., Stable Amphiphilic Supramolecular Self-Assembly Based on Cyclodextrin and Carborane for the Efficient Photodynamic Therapy, Chem. Commun, vol.2017, issue.24, pp.3422-3425

L. Shen, Y. Huang, D. Chen, F. Qiu, C. Ma et al., PH-Responsive Aerobic Nanoparticles for Effective Photodynamic Therapy, Theranostics, vol.2017, issue.18, pp.4537-4550

Y. Xue, J. Tian, L. Xu, Z. Liu, Y. Shen et al., Ultrasensitive Redox-Responsive Porphyrin-Based Polymeric Nanoparticles for Enhanced Photodynamic Therapy, European Polymer Journal, vol.110, pp.344-354, 2019.


J. Tian, L. Xu, Y. Xue, X. Jiang, and W. Zhang, Enhancing Photochemical Internalization of DOX through a Porphyrin-Based Amphiphilic Block Copolymer, Biomacromolecules, vol.2017, issue.12, pp.3992-4001

H. F. Lodish and . Freeman-macmillan-learning, Molecular Cell Biology, 2016.

R. Edmondson, J. J. Broglie, A. F. Adcock, and L. Yang, Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. ASSAY and Drug Development Technologies, vol.12, pp.207-218, 2014.


R. Lin and H. Chang, Recent Advances in Three-Dimensional Multicellular Spheroid Culture for Biomedical Research, Biotechnology Journal, vol.3, issue.9, pp.1172-1184, 2008.

M. J. Barthel, A. C. Rinkenauer, M. Wagner, U. Mansfeld, S. Hoeppener et al., Small but Powerful: Co-Assembly of Polyether-Based Triblock Terpolymers into Sub-30 Nm Micelles and Synergistic Effects on Cellular Interactions, Biomacromolecules, vol.15, issue.7, pp.2426-2439, 2014.

D. W. Malcolm, M. A. Freeberg, Y. Wang, K. R. Sims, H. A. Awad et al., Diblock Copolymer Hydrophobicity Facilitates Efficient Gene Silencing and Cytocompatible Nanoparticle-Mediated SiRNA Delivery to Musculoskeletal Cell Types, Biomacromolecules, vol.2017, issue.11, pp.3753-3765


S. Nawaz, M. Redhead, G. Mantovani, C. Alexander, C. Bosquillon et al., Interactions of PEO-PPO-PEO Block Copolymers with Lipid Membranes: A Computational and Experimental Study Linking Membrane Lysis with Polymer Structure, Soft Matter, vol.8, issue.25, p.6744, 2012.

N. Mebarek, A. Aubert-pouëssel, C. Gérardin, R. Vicente, J. Devoisselle et al., Polymeric Micelles Based on Poly(Methacrylic Acid) Block-Containing Copolymers with Different Membrane Destabilizing Properties for Cellular Drug Delivery, International Journal of Pharmaceutics, vol.454, issue.2, pp.611-620, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881053


I. Sandez-macho, M. Casas, E. V. Lage, M. I. Rial-hermida, A. Concheiro et al., Interaction of Poloxamine Block Copolymers with Lipid Membranes: Role of Copolymer Structure and Membrane Cholesterol Content, Colloids and Surfaces B: Biointerfaces, vol.133, pp.270-277, 2015.

F. Zhao, Y. Zhao, Y. Liu, X. Chang, C. Chen et al., Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials, Small, vol.7, issue.10, pp.1322-1337, 2011.

L. Cheng, X. Jiang, J. Wang, C. Chen, R. Liu et al., Interaction of Nanomaterials with Cells. Nanoscale, vol.5, issue.9, pp.3547-3569, 2013.


R. Kerdous, F. Sureau, A. Bour, and S. Bonneau, Release Kinetics of an Amphiphilic Photosensitizer by Block-Polymer Nanoparticles, International Journal of Pharmaceutics, vol.495, issue.2, pp.750-760, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01244555


U. Till, L. Gibot, A. Mingotaud, J. Ehrhart, L. Wasungu et al., Drug Release by Direct Jump from Poly(Ethylene-Glycol-b-?-Caprolactone) Nano-Vector to Cell Membrane, Molecules, vol.2016, issue.12, p.21
URL : https://hal.archives-ouvertes.fr/hal-01594383

J. Wan, L. Sun, P. Wu, F. Wang, J. Guo et al., Synthesis of Indocyanine Green Functionalized Comblike Poly(Aspartic Acid) Derivatives for Enhanced Cancer Cell Ablation by Targeting the Endoplasmic Reticulum, Polym. Chem, vol.2018, issue.10, pp.1206-1215

J. P. Reeves and R. M. Dowben, Formation and Properties of Thin-Walled Phospholipid Vesicles, Journal of Cellular Physiology, vol.73, issue.1, pp.49-60, 1969.


N. Rodriguez, F. Pincet, and S. Cribier, Giant Vesicles Formed by Gentle Hydration and Electroformation: A Comparison by Fluorescence Microscopy, Colloids and Surfaces B: Biointerfaces, vol.42, issue.2, pp.125-130, 2005.

M. I. Angelova, D. S. Dimitrov, and . Liposome-electroformation, Faraday Discussions of the Chemical Society, vol.81, p.303, 1986.

L. R. Arriaga, S. S. Datta, S. Kim, E. Amstad, T. E. Kodger et al., Ultrathin Shell Double Emulsion Templated Giant Unilamellar Lipid Vesicles with Controlled Microdomain Formation, Small, vol.10, issue.5, pp.950-956, 2014.

H. Stein, S. Spindler, N. Bonakdar, C. Wang, and V. Sandoghdar, Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations, Frontiers in Physiology, 2017.

I. R. Peterson and . Langmuir-blodgett-films, Journal of Physics D: Applied Physics, vol.23, issue.4, pp.379-395, 1990.

M. Mingeot-leclercq, M. Deleu, R. Brasseur, and Y. F. Dufrêne, Atomic Force Microscopy of Supported Lipid Bilayers, Nature Protocols, vol.3, issue.10, pp.1654-1659, 2008.

A. Dols-perez, L. Fumagalli, A. C. Simonsen, and G. Gomila, Ultrathin Spin-Coated Dioleoylphosphatidylcholine Lipid Layers in Dry Conditions: A Combined Atomic Force Microscopy and Nanomechanical Study, Langmuir, vol.27, issue.21, pp.13165-13172, 2011.

A. O. Hohner, M. P. David, and J. O. Rädler, Controlled Solvent-Exchange Deposition of Phospholipid Membranes onto Solid Surfaces, Biointerphases, vol.2010, issue.1, pp.1-8

S. Sekula-neuner, J. Maier, E. Oppong, A. C. Cato, M. Hirtz et al., Allergen Arrays for Antibody Screening and Immune Cell Activation Profiling Generated by Parallel Lipid Dip-Pen Nanolithography, Small, vol.2012, issue.4, pp.585-591

I. Y. Hasan and A. Mechler, Viscoelastic Changes Measured in Partially Suspended Single Bilayer Membranes, Soft Matter, vol.11, issue.27, pp.5571-5579, 2015.


R. Kügler and W. Knoll, Polyelectrolyte-Supported Lipid Membranes, Bioelectrochemistry, vol.56, issue.1-2, pp.31-33, 2002.

C. A. Naumann, O. Prucker, T. Lehmann, J. Rühe, W. Knoll et al., The Polymer-Supported Phospholipid Bilayer: Tethering as a New Approach to Substrate?Membrane Stabilization, Biomacromolecules, vol.3, issue.1, pp.27-35, 2002.

L. Becucci, R. J. Faragher, and A. Schwan, The Effect of the Hydrophilic Spacer Length on the Functionality of a Mercury-Supported Tethered Bilayer Lipid Membrane, Bioelectrochemistry, vol.101, pp.92-96, 2015.


M. Chadli, S. Rebaud, O. Maniti, B. Tillier, S. Cortès et al., New Tethered Phospholipid Bilayers Integrating Functional G-Protein-Coupled Receptor Membrane Proteins, Langmuir, vol.2017, issue.39, pp.10385-10401


J. Andersson, M. A. Fuller, K. Wood, S. A. Holt, and I. Köper, A Tethered Bilayer Lipid Membrane That Mimics Microbial Membranes, Physical Chemistry Chemical Physics, vol.20, issue.18, pp.12958-12969, 2018.

M. Winterhalter, . Black-lipid, and . Membranes, Current Opinion in Colloid & Interface Science, vol.5, issue.3-4, pp.63-70, 2000.

S. P. Rajapaksha, X. Wang, and H. P. Lu, Suspended Lipid Bilayer for Optical and Electrical Measurements of Single Ion Channel Proteins, Analytical Chemistry, vol.85, issue.19, pp.8951-8955, 2013.

D. Tadaki, D. Yamaura, S. Araki, M. Yoshida, K. Arata et al., Mechanically Stable Solvent-Free Lipid Bilayers in Nanoand Micro-Tapered Apertures for Reconstitution of Cell-Free Synthesized HERG Channels, Scientific Reports, vol.7, issue.1, 2017.

M. E. Dugger and C. A. Baker, Automated Formation of Black Lipid Membranes within a Microfluidic Device via Confocal Fluorescence Feedback-Controlled Hydrostatic Pressure Manipulations, Analytical and Bioanalytical Chemistry, vol.2019, issue.19, pp.4605-4614

T. Okuno and T. Yokomizo, Basic Techniques for Lipid Extraction from Tissues and Cells, Bioactive Lipid Mediators, pp.331-336, 2015.

A. Bittame, J. Lopez, G. Effantin, N. Blanchard, M. Cesbron-delauw et al., Lipid Extraction from HeLa Cells, Quantification of Lipids, Formation of Large Unilamellar Vesicles (LUVs) by Extrusion and in Vitro Protein-Lipid Binding Assays, Analysis of the Incubation Product by Transmission Electron Microscopy (TEM) and by Flotation across a, Discontinuous Sucrose Gradient. BIO-PROTOCOL, vol.2016, issue.20

S. Goennenwein, M. Tanaka, B. Hu, L. Moroder, and E. Sackmann, Functional Incorporation of Integrins into Solid Supported Membranes on Ultrathin Films of Cellulose: Impact on Adhesion, Biophysical Journal, vol.85, issue.1, pp.646-655, 2003.

S. Cohen, H. Ushiro, C. Stoscheck, and M. Chinkers, A Native 170,000 Epidermal Growth Factor Receptor-Kinase Complex from Shed Plasma Membrane Vesicles, J. Biol. Chem, vol.257, issue.3, pp.1523-1531, 1982.

N. Del-piccolo, J. Placone, L. He, S. C. Agudelo, and K. Hristova, Production of Plasma Membrane Vesicles with Chloride Salts and Their Utility as a Cell Membrane Mimetic for Biophysical Characterization of Membrane Protein Interactions, Analytical Chemistry, vol.84, issue.20, pp.8650-8655, 2012.

P. Chiang, K. Tanady, L. Huang, and L. Chao, Rupturing Giant Plasma Membrane Vesicles to Form Micron-Sized Supported Cell Plasma Membranes with Native Transmembrane Proteins, Scientific Reports, vol.7, issue.1, 2017.


S. Lyu, J. Wang, and L. Chao, Constructing Supported Cell Membranes with Controllable Orientation, Scientific Reports, vol.2019, issue.1


J. Lärmer, S. W. Schneider, T. Danker, A. Schwab, and H. Oberleithner, Imaging Excised Apical Plasma Membrane Patches of MDCK Cells in Physiological Conditions with Atomic Force Microscopy, Pflügers Archiv European Journal of Physiology, vol.434, issue.3, pp.254-260, 1997.

J. Perez, K. L. Martinez, J. Segura, and H. Vogel, Supported Cell-Membrane Sheets for Functional Fluorescence Imaging of Membrane Proteins, Advanced Functional Materials, vol.16, issue.2, pp.306-312, 2006.

D. Lombardo, P. Calandra, S. Magazù, U. Wanderlingh, D. Barreca et al., Soft Nanoparticles Charge Expression within Lipid Membranes: The Case of Amino Terminated Dendrimers in Bilayers Vesicles, Colloids and Surfaces B: Biointerfaces, vol.170, pp.609-616, 2018.

N. Wilkosz, D. Jamróz, W. Kope?, K. Nakai, S. Yusa et al., Effect of Polycation Structure on Interaction with Lipid Membranes, The Journal of Physical Chemistry B, vol.2017, issue.30, pp.7318-7326

L. S. Pereira, S. A. Camacho, A. A. Malfatti-gasperini, K. Jochelavicius, T. M. Nobre et al., Evidence of Photoinduced Lipid Hydroperoxidation in Langmuir Monolayers Containing Eosin Y, Colloids and Surfaces B: Biointerfaces, vol.171, pp.682-689, 2018.

N. N. Novikova, S. N. Yakunin, V. N. Morozov, E. A. Shlyapnikova, I. L. Kanev et al., Studying the Molecular Mechanisms of Interaction of Nanoaerosol Particles with a Model Membrane, Crystallography Reports, vol.63, issue.2, pp.228-233, 2018.


S. Henry, N. B. Bercu, C. Bobo, C. Cullin, M. Molinari et al., Interaction of A? 1-42 Peptide or Their Variant with Model Membrane of Different Composition Probed by Infrared Nanospectroscopy, Nanoscale, vol.10, issue.3, pp.936-940, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02534777

O. Mertins, I. O. Bacellar, F. Thalmann, C. M. Marques, M. S. Baptista et al., Physical Damage on Giant Vesicles Membrane as a Result of Methylene Blue Photoirradiation, Biophysical Journal, vol.106, issue.1, pp.162-171, 2014.


R. Kerdous, J. Heuvingh, and S. Bonneau, Photo-Dynamic Induction of Oxidative Stress within Cholesterol-Containing Membranes: Shape Transitions and Permeabilization, Biochimica et Biophysica Acta (BBA) -Biomembranes, issue.12, pp.2965-2972, 2011.

E. Jamasbi, M. A. Hossain, M. Tan, F. Separovic, and G. D. Ciccotosto, Fluorescence Imaging of the Interaction of Amyloid Beta 40 Peptides with Live Cells and Model Membrane, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1860, issue.9, pp.1609-1615, 2018.

R. Chelladurai, K. Debnath, N. R. Jana, and J. K. Basu, Nanoscale Heterogeneities Drive Enhanced Binding and Anomalous Diffusion of Nanoparticles in Model Biomembranes, Langmuir, vol.2018, issue.4, pp.1691-1699

A. Vy?niauskas, M. Qurashi, and M. K. Kuimova, A Molecular Rotor That Measures Dynamic Changes of Lipid Bilayer Viscosity Caused by Oxidative Stress, Chemistry -A European Journal, vol.22, issue.37, pp.13210-13217, 2016.


S. Lee, J. Heo, H. C. Woo, J. Lee, Y. H. Seo et al., Fluorescent Molecular Rotors for Viscosity Sensors, Chemistry -A European Journal, vol.24, issue.52, pp.13706-13718, 2018.

C. K. Haluska, A. P. Schröder, P. Didier, D. Heissler, G. Duportail et al., Combining Fluorescence Lifetime and Polarization Microscopy to Discriminate Phase Separated Domains in Giant Unilamellar Vesicles, Biophysical Journal, vol.95, issue.12, pp.5737-5747, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00347769

A. A. Yaroslavov, T. A. Sitnikova, A. A. Rakhnyanskaya, E. G. Yaroslavova, A. V. Sybachin et al., Variable and Low-Toxic Polyampholytes: Complexation with Biological Membranes. Colloid and Polymer Science, vol.295, pp.1405-1417, 2017.

J. Massiot, A. Makky, F. Di-meo, D. Chapron, P. Trouillas et al., Impact of Lipid Composition and Photosensitizer Hydrophobicity on the Efficiency of Light-Triggered Liposomal Release, Physical Chemistry Chemical Physics, vol.19, issue.18, pp.11460-11473, 2017.

H. Kettiger, G. Québatte, B. Perrone, and J. Huwyler, Interactions between Silica Nanoparticles and Phospholipid Membranes, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1858, issue.9, pp.2163-2170, 2016.


C. Gomes-da-silva, R. L. Oliveira-da-silva, H. F. Da-silva, L. H. Gasparotto, and L. Caseli, How the Interaction of PVP-Stabilized Ag Nanoparticles with Models of Cellular Membranes at the Air-Water Interface Is Modulated by the Monolayer Composition, Journal of Colloid and Interface Science, vol.512, pp.792-800, 2018.


J. Heuvingh and S. Bonneau, Asymmetric Oxidation of Giant Vesicles Triggers Curvature-Associated Shape Transition and Permeabilization, Biophysical Journal, vol.97, issue.11, pp.2904-2912, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02021176

G. Weber, T. Charitat, M. S. Baptista, A. F. Uchoa, C. Pavani et al., Lipid Oxidation Induces Structural Changes in Biomimetic Membranes, Soft Matter, vol.10, issue.24, p.4241, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02333891

I. O. Bacellar, M. C. Oliveira, L. S. Dantas, E. B. Costa, H. C. Junqueira et al., Photosensitized Membrane Permeabilization Requires Contact-Dependent Reactions between Photosensitizer and Lipids, Journal of the American Chemical Society, vol.140, issue.30, pp.9606-9615, 2018.

A. H. Thomas, Á. Catalá, and M. Vignoni, Soybean Phosphatidylcholine Liposomes as Model Membranes to Study Lipid Peroxidation Photoinduced by Pterin, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.2016, issue.1, pp.139-145

N. Mebarek, A. Aubert-pouëssel, C. Gérardin, R. Vicente, J. Devoisselle et al., Polymeric Micelles Based on Poly(Methacrylic Acid) Block-Containing Copolymers with Different Membrane Destabilizing Properties for Cellular Drug Delivery, International Journal of Pharmaceutics, vol.454, issue.2, pp.611-620, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881053


P. P. Brisebois, A. A. Arnold, Y. M. Chabre, R. Roy, and I. Marcotte, Comparative Study of the Interaction of Fullerenol Nanoparticles with Eukaryotic and Bacterial Model Membranes Using Solid-State NMR and FTIR Spectroscopy, European Biophysics Journal, vol.2012, issue.6, pp.535-544

S. Nawaz, M. Redhead, G. Mantovani, C. Alexander, C. Bosquillon et al., Interactions of PEO-PPO-PEO Block Copolymers with Lipid Membranes: A Computational and Experimental Study Linking Membrane Lysis with Polymer Structure, Soft Matter, vol.8, issue.25, p.6744, 2012.

C. Su, H. Merlitz, H. Rabbel, and J. Sommer, Nanoparticles of Various Degrees of Hydrophobicity Interacting with Lipid Membranes, The Journal of Physical Chemistry Letters, vol.2017, issue.17, pp.4069-4076

P. E. Smith, J. R. Brender, U. H. Dürr, J. Xu, D. G. Mullen et al., Solid-State NMR Reveals the Hydrophobic-Core Location of Poly(Amidoamine) Dendrimers in Biomembranes, Journal of the American Chemical Society, vol.132, issue.23, pp.8087-8097, 2010.

D. E. Warschawski, A. A. Arnold, M. Beaugrand, A. Gravel, É. Chartrand et al., Choosing Membrane Mimetics for NMR Structural Studies of Transmembrane Proteins, Biochimica et Biophysica Acta (BBA) -Biomembranes, issue.8, pp.1957-1974, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02567622

P. Vandoolaeghe, A. R. Rennie, R. A. Campbell, and T. Nylander, Neutron Reflectivity Studies of the Interaction of Cubic-Phase Nanoparticles with Phospholipid Bilayers of Different Coverage ?, Langmuir, vol.25, issue.7, pp.4009-4020, 2009.


D. Choi, J. H. Moon, H. Kim, B. J. Sung, M. W. Kim et al., Insertion Mechanism of Cell-Penetrating Peptides into Supported Phospholipid Membranes Revealed by X-Ray and Neutron Reflection, Soft Matter, vol.8, issue.32, 2012.

J. P. Michel, Y. X. Wang, I. Kiesel, Y. Gerelli, and V. Rosilio, Disruption of Asymmetric Lipid Bilayer Models Mimicking the Outer Membrane of Gram-Negative Bacteria by an Active Plasticin, Langmuir, vol.2017, issue.41, pp.11028-11039


A. M. Zaki and P. Carbone, How the Incorporation of Pluronic Block Copolymers Modulates the Response of Lipid Membranes to Mechanical Stress, Langmuir, vol.2017, issue.46, pp.13284-13294

E. M. Houang, K. J. Haman, M. Kim, W. Zhang, D. A. Lowe et al., Chemical End Group Modified Diblock Copolymers Elucidate Anchor and Chain Mechanism of Membrane Stabilization, Molecular Pharmaceutics, vol.14, issue.7, pp.2333-2339, 2017.


A. S. Raman, J. Pajak, and Y. C. Chiew, Interaction of PCL Based Self-Assembled Nano-Polymeric Micelles with Model Lipid Bilayers Using Coarse-Grained Molecular Dynamics Simulations, Chemical Physics Letters, vol.712, pp.1-6, 2018.


Z. Guan, L. Wang, and J. Lin, Interaction Pathways between Plasma Membrane and Block Copolymer Micelles, Biomacromolecules, vol.2017, issue.3, pp.797-807


C. Schwieger, J. Blaffert, Z. Li, J. Kressler, and A. Blume, Perfluorinated Moieties Increase the Interaction of Amphiphilic Block Copolymers with Lipid Monolayers, Langmuir, vol.2016, issue.32, pp.8102-8115

S. Ramadurai, A. Kohut, N. K. Sarangi, O. Zholobko, V. A. Baulin et al., Macromolecular Inversion-Driven Polymer Insertion into Model Lipid Bilayer Membranes, Journal of Colloid and Interface Science, vol.542, pp.483-494, 2019.

M. A. Palominos, D. Vilches, E. Bossel, and M. A. Soto-arriaza, Interaction between Amphipathic Triblock Copolymers and L-?-Dipalmitoyl Phosphatidylcholine Large Unilamellar Vesicles, Colloids and Surfaces B: Biointerfaces, vol.148, pp.30-40, 2016.

W. Zhang, K. J. Haman, J. M. Metzger, B. J. Hackel, F. S. Bates et al., Quantifying Binding of Ethylene Oxide-Propylene Oxide Block Copolymers with Lipid Bilayers, Langmuir, vol.2017, issue.44, pp.12624-12634


B. Roeder, . Hackbarth, . St, O. Korth, R. Herter et al., Photophysical Properties of Pheophorbide-a in Different Carrier-Systems, pp.179-186, 1996.

I. Eichwurzel, H. Stiel, and B. Röder, Photophysical Studies of the Pheophorbide a Dimer, Journal of Photochemistry and Photobiology B: Biology, vol.54, issue.2-3, pp.16-22, 2000.

K. Kuzelova and D. Brault, Kinetic and Equilibrium Studies of Porphyrin Interactions with Unilamellar Lipidic Vesicles, Biochemistry, vol.33, issue.32, pp.9447-9459, 1994.

S. Tristram-nagle, H. I. Petrache, and J. F. Nagle, Structure and Interactions of Fully Hydrated Dioleoylphosphatidylcholine Bilayers, Biophysical Journal, vol.75, issue.2, pp.917-925, 1998.

A. H. Hinna, S. Hupfeld, J. Kuntsche, A. Bauer-brandl, and M. Brandl, Mechanism and Kinetics of the Loss of Poorly Soluble Drugs from Liposomal Carriers Studied by a Novel Flow Field-Flow Fractionation-Based Drug Release ?/Transfer-Assay, Journal of Controlled Release, vol.232, pp.228-237, 2016.


U. Till, L. Gibot, C. Mingotaud, P. Vicendo, M. Rols et al., Self-Assembled Polymeric Vectors Mixtures: Characterization of the Polymorphism and Existence of Synergistic Effects in Photodynamic Therapy, Nanotechnology, vol.2016, issue.31, p.315102
URL : https://hal.archives-ouvertes.fr/hal-02194982

J. N. Weinstein, R. Blumenthal, and R. D. Klausner, 38] Carboxyfluorescein Leakage Assay for Lipoprotein-Liposome Interaction, In Methods in Enzymology, vol.128, pp.657-668, 1986.

S. Massou, R. Albigot, M. Prats, . Carboxyfluorescein-fluorescence, and . Experiments, Biochemical Education, vol.28, issue.3, pp.171-173, 2000.

M. K. Kuimova, G. Yahioglu, and P. R. Ogilby, Singlet Oxygen in a Cell: Spatially Dependent Lifetimes and Quenching Rate Constants, Journal of the American Chemical Society, vol.131, issue.1, pp.332-340, 2009.

G. Nardi, I. Manet, S. Monti, M. A. Miranda, and V. Lhiaubet-vallet, Scope and Limitations of the TEMPO/EPR Method for Singlet Oxygen Detection: The Misleading Role of Electron Transfer. Free Radical Biology and Medicine, vol.77, pp.64-70, 2014.

Y. You, Chemical Tools for the Generation and Detection of Singlet Oxygen, Organic & Biomolecular Chemistry, vol.16, issue.22, pp.4044-4060, 2018.


B. A. Lindig, M. A. Rodgers, and A. P. Schaap, Determination of the Lifetime of Singlet Oxygen in Water-D2 Using 9,10-Anthracenedipropionic Acid, a Water-Soluble Probe, Journal of the American Chemical Society, vol.102, issue.17, pp.5590-5593, 1980.

R. W. Redmond and I. E. Kochevar, Spatially Resolved Cellular Responses to Singlet Oxygen, Photochemistry and Photobiology, vol.82, issue.5, p.1178, 2006.

S. Egorov, . Yu, V. F. Kamalov, N. I. Koroteev, A. A. Krasnovsky et al., Rise and Decay Kinetics of Photosensitized Singlet Oxygen Luminescence in Water. Measurements with Nanosecond Time-Correlated Single Photon Counting Technique, Chemical Physics Letters, vol.163, issue.4-5, pp.421-424, 1989.

, , pp.85161-85170

B. Maherani, E. Arab-tehrany, A. Kheirolomoom, D. Geny, and M. Linder, Calcein Release Behavior from Liposomal Bilayer
URL : https://hal.archives-ouvertes.fr/hal-01272766

, Physicochemical/Mechanical/Structural Properties of Lipids, vol.95, pp.2018-2033, 2013.

E. G. Bligh and W. J. Dyer, A Rapid Method of Total Lipid Extraction and Purification, Canadian Journal of Biochemistry and Physiology, vol.37, issue.8, pp.911-917, 1959.

I. O. Bacellar, M. S. Baptista, H. C. Junqueira, M. Wainwright, F. Thalmann et al., Permeability of DOPC Bilayers under Photoinduced Oxidation: Sensitivity to Photosensitizer, Biochimica et Biophysica Acta (BBA) -Biomembranes, issue.11, pp.2366-2373, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02126589


K. A. Runas and N. Malmstadt, Low Levels of Lipid Oxidation Radically Increase the Passive Permeability of Lipid Bilayers, Soft Matter, vol.11, issue.3, pp.499-505, 2015.

P. Boonnoy, V. Jarerattanachat, M. Karttunen, and J. Wong-ekkabut, Bilayer Deformation, Pores, and Micellation Induced by Oxidized Lipids, The Journal of Physical Chemistry Letters, vol.6, issue.24, pp.4884-4888, 2015.


M. Lis, A. Wizert, M. Przybylo, M. Langner, J. Swiatek et al., The Effect of Lipid Oxidation on the Water Permeability of Phospholipids Bilayers, Physical Chemistry Chemical Physics, vol.13, issue.39, p.17555, 2011.

T. M. Tsubone, H. C. Junqueira, M. S. Baptista, and R. Itri, Contrasting Roles of Oxidized Lipids in Modulating Membrane Microdomains, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.2019, issue.3, pp.660-669


C. Su, H. Merlitz, F. Thalmann, C. Marques, and J. Sommer, Coarse-Grained Model of Oxidized Membranes and Their Interactions with Nanoparticles of Various Degrees of Hydrophobicity, The Journal of Physical Chemistry C, vol.2019, issue.11, pp.6839-6848
URL : https://hal.archives-ouvertes.fr/hal-02126592

R. Itri, H. C. Junqueira, O. Mertins, and M. S. Baptista, Membrane Changes under Oxidative Stress: The Impact of Oxidized Lipids, Biophysical Reviews, vol.6, issue.1, pp.47-61, 2014.

S. Buwalda, A. Samad, A. El-jundi, A. Bethry, Y. Bakkour et al., Stabilization of Poly(Ethylene Glycol)-Poly(?-Caprolactone) Star Block Copolymer Micelles via Aromatic Groups for Improved Drug Delivery Properties, Journal of Colloid and Interface Science, vol.514, pp.468-478, 2018.

D. Bochicchio, E. Panizon, L. Monticelli, and G. Rossi, Interaction of Hydrophobic Polymers with Model Lipid Bilayers, Scientific Reports, vol.7, issue.1, 2017.


M. Werner, T. Auth, P. A. Beales, J. B. Fleury, F. Höök et al., Nanomaterial Interactions with Biomembranes: Bridging the Gap between Soft Matter Models and Biological Context. Biointerphases, vol.13, issue.2, p.28501, 2018.

D. Essaid, V. Rosilio, K. Daghildjian, A. Solgadi, J. Vergnaud et al., Artificial Plasma Membrane Models Based on Lipidomic Profiling, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.2016, issue.11, pp.2725-2736

D. Essaid, A. Tfayli, P. Maillard, C. Sandt, V. Rosilio et al., Retinoblastoma Membrane Models and Their Interactions with Porphyrin Photosensitisers: An Infrared Microspectroscopy Study, Chemistry and Physics of Lipids, vol.215, pp.34-45, 2018.