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Résumé 

L'aquaculture s'est développée rapidement ces dernières années et est devenue 

l'un des principaux contributeurs à l'approvisionnement alimentaire dans le monde. En 

effet, l’immense pression de pêche exercée sur les populations sauvages et d’élevage 

entraîne progressivement l’épuisement des stocks. Le nombre limité de larves fournies 

pour l'aquaculture et des stratégies d'alimentation non optimales (par exemple un 

apport élevé en aliments artificiels) entravent le développement d’une industrie 

aquacole efficace. Une gestion plus durable de l'aquaculture nécessite maintenant une 

amélioration de la gestion des pêches, de la reproduction artificielle et des stratégies 

d'alimentation. 

Dans cette thèse, nous nous sommes intéressés à trois questions principales : (1) 

quelle est la dynamique de population et l’écologie de la reproduction des écrevisse de 

Louisiane en bassins articifiels? (2) Quelles sont les temperatures optimales pour 

permettre une reproduction artificielle et un développement embryonnaire optimal 

chez cette espèce? (3) Quelle est la quantité et la composition alimentation optimale 

en bassin pour assurer une bonne croissance des juvéniles en générant un minimum de 

déchets? 

Cette thèse repose sur plusieurs étapes et approches expérimentales. Pour la 

question (1) nous avons étudié la dynamique de population et lareproduction de 

l'écrevisse de Louisiane (Procambarus clarkii) en évaluant la croissance, les taux de 

mortalité et le taux d'exploitation de populations cultivées en bassins commerciaux, 

ainsi que différents indices reproducteurs (GSI, HSI, développement ovarien et 

fécondité). Les résultats montrent quela ponte de P. clarkii se déroule en Chine de 

septembre à novembre, avec une fécondité moyenne de 429 ± 9 œufs par femelle, 

avec deux recrutements par an. Il y avait cinq cohortes de croissance at les résultats 

montrent que les mâles P. clarkii étaient surexploités. Nous suggérons donc de réduire 

l'intensité de la pêche sur les écrevisses immatures et d'éviter la sélection des mâles en 

période de reproduction afin d'améliorer la durabilité globale des populations 

commerciales de P. clarkii. 
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Pour la question (2), nous avons testé les effets de la température de l'eau sur les 

performances de reproduction et de développement embryonnaire de P. clarkii. Les 

résultats montrent que la manipulation de la température de l'eau est un moyen 

efficace d'induire le frai chez les femelles et d'optimiser le développement 

embryonnaire pour améliorer la production larvaire, avec des  températures 

optimales de 21 — 25℃ et 25℃, respectivement. Nous avons élaboré un modèle de 

développement dépendant de la température pour P. clarkii, exprimé en D (durée du 

développement, jours) = 3140837 (T-2.03) -3.76. 

Enfin, pour la question (3), nous avons testé les effets de la réduction des niveaux 

d’alimentation et des niveaux de protéines sur les performances de croissance et la 

composition musculaire de P. clarkii juvéniles ayant accès à des aliments naturels tels 

que les macrophytres Hydrilla verticillata dans des mares commerciales Les résultats 

montrent que la réduction des quantités de nourriture artificielle à 60% de satiété ou à 

26% de protéines n'affectait pas de manière significative les performances de 

croissance et la composition musculaire des écrevisses. En effet, une analyse des 

isotopes stables suggère que les écrevisses compensent la réduction de nourriture 

artificielle ou de protéines en consommant plus de macrophytes naturels H. 

verticillata facilement disponibles. 

Cette thèse propose donc de nouvelles alternatives à la reproduction artificielle 

traditionnelle en ajustant le prélèvement d’adultes, en manipulant la température de 

culture et en affinant les stratégies d'alimentation, afin de réduire les coûts de 

production tout en améliorant la productivité et la durabilité de l'aquaculture 

d'écrevisses. 

Mot-clé: Procambarus clarkii; Gestion de l'aquaculture; La reproduction; Les 

dynamiques de population; La température de l'eau; Développement embryonnaire; 

Niveau d'alimentation; Niveaux de protéines alimentaires; Performance de croissance; 

Analyse de la composition musculaire 
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Abstract 

Aquaculture has developed rapidly in recent years and has become one of the 

primary contributors to food supply worldwide. However, the immense fishing 

pressure on wild and commercial-farmed populations has caused population depletion. 

Furthermore, limited juvenile crayfish production for aquaculture and suboptimal 

feeding strategies (such as high inputs of artificial diets) has hindered the 

development of sustainable aquaculture industry. Improving fisheries management is 

now necessary, based on a better scientific knowledge of population dynamics, 

reproductive ecology, and optimal feeding strategies, in particular by determining 

optimal environmental parameters for reproduction and refining artificial diets inputs. 

In this thesis, we focused on three main questions. First (1) what is the population 

and reproduction dynamics of adult crayfish living in commercial ponds and how 

should we adjust the aquaculture management? Second (2) what are the optimal 

temperatures for artificial reproduction and embryonic development? And third (3) 

what are the optimal levels of feeding and protein composition of artificial food for 

crayfish growth?  

For the first question (1), we studied the population dynamics and reproductive 

pattern of red swamp crayfish (Procambarus clarkii) by estimating growth, mortality 

rates, and exploitation rate of a commercial population, as well their reproductive 

parameters (GSI, HSI, ovarian development, and fecundity). Results showed that 

spawning activities took place from September to November, with a mean fecundity 

of 429 ± 9 eggs per female, and two recruitments yearly. There were five growth 

cohorts and male P. clarkii were overexploited. We thus suggest reducing fishing 

intensity on immature crayfish and avoid sex selection during the reproductive period 

to improve the overall sustainability of commercial P. clarkii populations. 

For the second question (2), we experimentally tested the effects of water 

temperature to improve reproductive outputs and embryonic development. Results 

showed that manipulating water temperature was an effective way to induce spawning 

in females and optimize embryonic development to improve juvenile production, with 
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optimal temperatures of 21 — 25℃ and 25℃, respectively. We also built a 

temperature-dependent developmental model for P. clarkii, D (developmental time, 

days) = 3140837(T-2.03)-3.76. 

Finally, for the third question (3), we experimentally tested the effects of five 

different feeding levels and reduced dietary protein levels (2 experiments) on growth 

performance and muscle composition of juvenile P. clarkii with natural food Hydrilla 

verticillata. Results showed that reducing the amounts of an artificial diet to 60% 

satiation and/or reducing the dietary protein level of the artificial diet to a level of 26% 

did not significantly affect the growth performance and muscle composition of P. 

clarkii. Stable isotope analysis suggested that crayfish switched diets to easily 

available H. verticillata when feeding levels or dietary protein levels decreased. 

This thesis thus explored new alternatives to traditional crayfish aquaculture by 

adjusting fishing effort and season, manipulating crayfish culture temperature, and 

refining feeding strategies to reduce production costs while improving the 

productivity and sustainability of crayfish aquaculture.  

Keywords: Procambarus clarkii; Aquaculture management; Reproduction; 

Population dynamics; Water temperature; Embryonic development; Feeding levels; 

Dietary protein levels; Growth performance; Muscle composition analysis 
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Aquaculture has undergone rapid development in recent years and has become 

one of the primary contributors to the nutrition supply for human demands. Its annual 

production was 73.8 million tons in 2014, which represented 44% of the total fishery 

production, and would reach 52% in 2025 (FAO, 2017). As the largest producer in the 

world, China has supplied more than one-third of global fish production, due to the 

fast developing aquaculture industry (Cao et al., 2015). In particular, freshwater 

aquaculture has played a dominant role and has accounted for more than 50% of the 

global total aquaculture production (Wang et al., 2015). However, despite the 

optimistic scenario of its contribution to world fish food supplies, the development of 

the aquaculture sector has raised many issues and concerns in recent years. First, the 

growing demand of market intensifies the immense fishing pressure on commercially 

farmed populations, which can result in population depletion and slow recovery rates 

(Naylor et al., 2000; Tidwell and Allan, 2001). Especially for crustacean industry, the 

commercial fisheries have declined worldwide for a long time, due to increasing 

fishing pressure and decreasing catch sizes (Nagaraju, 2011). Second, for many 

farmed species, larvae are obtained from spontaneous reproduction in the wild which 

are limited by seasonal availability and lack of scientific knowledge on the 

reproductive ecology of farmed species. These problems heavily hinder the 

development of sustainable aquaculture (Smith et al., 2002). Third, aquaculture relies 

highly on the input of artificial diets, which have accounted for more than 50% of the 

total aquaculture costs (Craig et al., 2017). The high diets inputs in culture systems 

can lead to depletion of natural resouces, water pollution, and low dissolved oxygen 

levels which can have negative effects on foraging and immunity of cultured species. 

Suboptimal feeding strategies can thus result in fish or crayfish disease or death and 

cause huge economic loss (Chávez-Crooker and Obreque-Contreras, 2010; Craig et al., 

2017; Henry and Fountoulaki, 2014; Martinez-Cordova et al., 2003; Velazco‐Vargas 

et al., 2014). Exploring new feeding strategies that are efficient and less costly for 

farmers and for the environment is thus urgently needed. In addition, assuring a 

continuous and sustainable supply of larvae is now a big challenge for the whole 

culture industry. Therefore, there is a need to improve fisheries management, by 
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adjusting reproductive outputs and feeding strategies based on reliable scientific 

knowledge population and reproduction dynamics of cultured species, and on 

environmental parameters for optimal reproduction and diet (Fatemi et al., 2009; 

Hasan, 2000; He et al., 2011; Nentwig, 2009). 

1.1 Sustainable fisheries management and population dynamics 

Global total capture fisheries production was up to 90.9 million tones in 2016 

(FAO, 2018). However, the proportion of fish stocks which were with sustainable 

levels decreased from 90% in 1974 to 66.9% in 2015 (FAO, 2018). Due to high 

market demands, many fish or crayfish fishing activities continued to have significant 

overcapacity (Coleman and Williams, 2002; Jackson et al., 2001). In 2015, it was 

estimated that 43% of the main fish stocks (e.g. Thunnus alalunga, Thunnus obesus) 

were exploited at unsustainable levels (FAO, 2018). Overfishing not only resulted in 

fish or crayfish stocks depletion, but also had subsequently negative effects on 

ecosystems (Coleman and Williams, 2002; Jackson et al., 2001). Considering the fact 

of overfishing and overcapacity of fishery resources, there is, thus, an urgent need for 

scientists and farmers to develop effective measures to restore the overexploited fish 

or crayfish stocks while maintaining global foods supplies. In this case, aquaculture 

has been considered as an effective solution. In 2016, global aquaculture production 

was 110.2 million tons and the production had been expected to continue to increase 

in the future (FAO, 2018). However, as the fastest growing food sector, aquaculture 

has gained growing concerns among scientists and farmers in fisheries management. 

For example, what technological and fishing solutions should be taken to develop 

sustainable aquaculture? What is the maximum yield of a specific fish or crayfish 

stock and how to adjust fishing activities to catch individuals at sustainable levels 

(Wilson et al., 2003)? The main challenges in achieving these goals include limited 

information on fish or crayfish reproductive biology, and lack of research on 

population dynamics and scientific fishing regulation rules (Russell et al., 2012). If 

accurate knowledge on spawning seasons is available to us, sustainable fishing 

policies such as optimal periods for fishing or fishery closures and fishing sizes 

limitation can be applied to improve the overall sustainability of fish or crayfish 
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stocks. In this situation, reducing fishing pressure on target species and during certain 

times (e.g. reproductive seasons) would improve the sustainability of fisheries (Zhou 

et al., 2010) while protecting biodiversity. Up to now, efforts towards sustainable 

exploitation have focused on gear restrictions, size limits, closed areas and seasons 

(van Overzee and Rijnsdorp, 2015). The gear restrictions and size limits provide 

protection for juveniles, which is important for population growth and sustainability. 

Fishery closures during reproductive seasons is also an effective way to reduce the 

fishing mortality of the larger spawners and limits adverse effects on spawning 

habitats (van Overzee and Rijnsdorp, 2015). Furthermore, it allows female crayfish 

spawning and ensures sufficient juveniles supply for exploited populations. 

To address these challenges, the reproductive ecology of cultured species should 

be studied more in details, because reproduction is one of the most important 

life-history parameters and better insights into the mechanisms determining the 

reproductive process in natural and controlled environments are needed. Actually, 

species often displayed considerable plasticity and variability in their reproductive 

seasons in various environmental conditions. For instance, P. clarkii spawns once 

(confined to autumn) in some locations such as Germany (Chucholl, 2011), Italy 

(Dörr et al., 2006), and UK (Richter, 2000) while there are two or more spawning 

periods yearly for P. clarkii in Kenya (Oluoch, 1990), Portugal (Sousa et al., 2013), 

Italy (Scalici and Gherardi, 2007), and Spain (Gutierrez-Yurrita and Montes, 1999; 

Gutierrez-Yurrita et al., 1999). In China, it spawns once yearly in Poyang lake (Xiao 

et al., 2011), Huangjin Lake (Gong et al., 2008; Lv, 2006), and Xuyi (Xu et al., 2014) 

while twice a year in Wuhan (Dai et al., 2008). Therefore, accurate scientific studies 

on the reproduction status of species in a given location and environment are needed 

to improve fishery management in a specific area.  

Previous studies on spawning activities of many species have focused on limited 

areas and seasons, such as in shrimp Aristeus antennatus (Sardà and Castellón, 2003), 

crab Chionoecetes bairdi (Stevens, 2003), and reef fish (De Mitcheson et al., 2008). 

These studies showed that high fishing pressure during the reproductive season could 

have negative effects on reproductive potentials, and then influence long-term stock 



11 
 

productivity (Van Overzee & Rijnsdorp, 2015). Furthermore, fishing may also cause 

the death of offspring. Thus, restricting fishing pressure on spawning crayfish is an 

effective measure to enhance reproductive output and promote population 

productivity. In addition, specific catching of one sex could have detrimental effects. 

For some species such as crabs and crayfish, due to the low catch rates or 

reproductive activities of females, more male crayfish are selectively harvested during 

the reproductive periods. This males-directed selectivity may also impose adverse 

effects on reproductive output since it causes difficulty in females finding mates 

(Gray & Powell, 1966; Smith & Jamieson, 1991). Such sex selection could also 

change the sex ratio and population sizes (Rowe and Hutchings, 2003). A better way 

is to selectively catch the older and low growing ones. This would also offer more 

access to environmental resources (e.g., food availability) for juveniles and then may 

increase growth rates. However, no scientific studies tested this hypothesis. Thus, 

more efforts to assess the reproduction and population growth dynamics is now 

crucial to implement better fishery management (Fatemi et al., 2009; He et al., 2011). 

In population dynamics studies, population parameters such as growth (growth 

coefficient K, growth parameter index Ø’), and mortalities (total mortality rate Z, 

natural mortality rate M, and fishing mortality rate F) have important implications for 

population assessment (Rochet et al., 2000). Estimates of these parameters provide 

fundamental information for predicting population growth and developing sustainable 

exploitation strategies (Nurul AminZafar & Halim, 2008; Ochwada‐Doyle et al., 

2014). Usually, parameters such as K and Ø’ are used for evaluation of growth 

performance under a variety of environmental stresses such as under aquaculture 

conditions (Pauly, 1991; ŽivkovTrichkova & Raikova-Petrova, 1999). Quantitative 

assessment of mortality is a significant step to improve our understanding of 

population dynamics. M was defined as the mortality caused by all possible causes 

except fishing and it could be obtained from the values of Z minus F (Pauly, 1980). M, 

Z, and F are thus crucial parameters that are commonly used in fisheries assessment 

and management, but they are poorly known for most commercial species, including 

P. clarkii populations (Kenchington, 2014; Nadon et al., 2015; Williams et al., 2015). 
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Moreover, for successful fisheries management, it is necessary to further examine the 

exploitation states for different populations. The previous studies suggest that a value 

of 0.5 for E represents the optimum exploitation condition while a value of E > 0.5 

points toward over-fishing (Gulland, 1971; Clasing et al., 1994). There is thus an 

urgent need to evaluate these population dynamics parameters and optimal 

reproductive seasons to develop effective and sustainable management strategies of 

commercial populations. 

1.2 Crayfish culture 

1.2.1 Crayfish culture practices in China 

In China, many water bodies such as rivers, lakes, and ponds are used for crayfish 

aquaculture. Among these, pond culture is the main aquaculture practice in China 

(Fisheries Department of Ministry of Agriculture, 2017). Ponds surface has expanded 

quickly in recent years due to the large dem and of commercial markets. In many 

cases of pond culture, farmers use polyculture for crayfish and other fish species such 

as Siniperca chuatsi. The polyculture systems are based on the fact that these speices 

have different food preferences and habitat uses, which can ensure the optimal use of 

the food resources and spaces in the ponds. This case can also be found in crab culture. 

With this culture practice, farmers earn more profits while limiting production costs. 

Rice-crayfish culture in ponds is also a common culture practice in the south of China. 

For this practice, after the rice is harvested between September and October, ponds 

are drained and then used for crayfish culture (Wang et al., 2015). For ponds only 

devoted to culture crayfish, the annual farming practices involve pond preparation, 

macrophyte transplanting, eradication of other aquatic organisms before stocking, 

crayfish stocking, and feeding (Figure 1.1).  
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Figure 1.1. Picture of the pond that is used for culturing crayfish. 

 

The first step before crayfish stocking is pond preparation. The ponds are drained 

and fully exposed to the sunlight for two weeks. Generally, during this period, 

quicklime at 15-22.5 grams / m2 is used to prevent diseases. After preparation, 

submerged macrophyte Hydrilla verticillata is planted for providing supplementary 

foods, refuges for crayfish and maintaining water quality. One week before cultivation, 

the ponds are filled with water to a depth of approximately 30 cm. Normally, H. 

verticillata is planted evenly in the ponds at an interval of 0.5 m. Based on their 

growth, water depth is changed before stocking crayfish. Then, eradication of other 

aquatic organisms is generally carried out before stocking. The common methods 

used for eradication (such as silver carp, rice field eel, gold fish, and loach) are the 

quicklime or chlorine dioxide, and the amounts varied with water depth. The time for 

stocking is normally from March to April, with individual sizes ranged from 2-5g. 

The stocking density is 10-30 individuals / m2. For feeding management, commercial 

diets are the main food source for crayfish. In addition, H. verticillata also serves as 

supplementary foods for crayfish. From March to May, in order to reach commercial 

sizes in a short period, artificial diets with high protein levels (normally 30% level of 

protein) will be used. The feeding rates normally differ from time, but in general 

about 3% of the biomass in the pond. However, most of these practices are not based 

on scientific studies, and many management techniques, such as feeding rates and 
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protein levels could be adjusted to improve the productivity and sustainability of 

crayfish pond culture. There is thus a need for experipmental studies comparing the 

effects of different environmental factors and feeding levels on crayfish growth to 

improve crayfish yields and limit production costs and environmental impacts. 

1.2.2 Environmental factors affecting crayfish growth 

1.2.2.1 Temperature, photoperiod and salinity 

One of the main environmental factors affecting crayfish growth and reproduction 

is temperature. It influences crayfish molting, maturation, growth, and distribution 

(Westhoff and Rosenberger, 2016). Temperature plays important roles in metabolic 

processes, which can result in animal death if the temperature is out of the optimal 

ranges, while within a defined temperature range, crayfish growth rates increase with 

temperature (Bermudes and Ritar, 1999; Camus and Koutsikopoulos, 1984). 

Knowledge of crayfish thermal requirements is crucial to optimize their culture 

conditions and predict their distribution. Previous studies have demonstrated that the 

optimal growth temperatures were 23 — 26℃ for P. clarkii (Huner and Barr, 1984), 

24 — 28℃ for Orconectes nais (Hellman, 1992), 26 — 28℃ for Orconectes rusticus 

(Mundahl and Benton, 1990), 20 — 25℃ for Cherax destructor and 25 — 28℃ for 

Cherax quadricarinatus (Verhoef et al., 1998), 16℃ for Paranephrops zealandicus 

(Hammond et al., 2006), 23 — 25℃ for Astacus leptodactulus (Hesni et al., 2009), 20 

— 26℃ Pacifastacus leniusculus and 20 — 26℃ for Orconectes limosus (Simčič et 

al., 2014). However, basic knowledge of how reproductive performance and 

embryonic development of crayfish repond to water temperature changes still remains 

unknown. 

Besides temperature, photoperiod is also an important environmental factor that 

affects aquatic animals growth, cannibalism, and reproduction (Harlıoğlu and Farhadi, 

2017). It has direct influences on animals growth rates, for instance in prawn Penaeus 

merguiensis (Hoang et al., 2003), and fish Oplegnathus fasciatus (Biswas et al., 2008). 

Cannibalism behaviors can be found in many crustacean species and have strong 

impacts on crayfish survival especially during molting periods. Higher or shorter light 

periods could exacerbate the cannibalism among crabs such as Ranina ranina 
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(Minagawa, 1994). Silmilar cases could also be found in the zoea stage of Australian 

giant crab Pseudocarcinus gigas. However, longer light periods improved the survival 

of spiny lobster Panulirus japonics (Matsuda et al., 2012), early phyllosoma of 

Sagmariasus verreauxi (Fitzgibbon and Battaglene, 2012), and blue swimmer crab P. 

pelegicus (Andrés et al., 2010). Some species require more light during reproductive 

seasons for ovarian maturation and spawning such as P. clarkii (optimal light-dark of 

14:10h) (Daniels et al., 1994) while some species need a decrease in light such as 

Astacus leptodactylus. It’s reproductive performance has been proved to be highest at 

constant darkness (Harlıoğlu and Barım, 2004). Similarly, fast ovarian maturation and 

higher spawning rates were also observed in Procambarus llamasi at complete 

darkness (Carmona-Osalde et al., 2002). 

Salinity is also an important environmental factor determining survival, 

distribution, and reproduction of aquatic animals. Many crayfish are highly tolerant of 

the various environment, while they are limited in distribution because of the less 

tolerance to salinity. Most crayfish can survive in saline water for a short period, 

while long time exposure to high salinity will have adverse effects on growth. For 

instance, juveniles P. clarkii growth and reproduction were proved to be significantly 

affected when salinity was above 5 g/L (Meineri et al., 2014). Spinycheek crayfish 

Orconectes limosus failed to successfully reproduce and grow when salinity is above 

7 ppt (Jaszczołt and Szaniawska, 2011). Similarly, for signal crayfish Pacifastacus 

leniusculus and narrow-clawed crayfish Astacus leptodactylus, eggs could not survive 

at salinity higher 14 ppt (Holdich et al., 1997). 

1.2.2.2 Feed and nutrition 

For crayfish intensive aquaculture, the production relies heavily on the input of 

artificial diets, which have accounted for more than 50% of total aquaculture costs 

(Keckeis and Schiemer, 1992; Wong et al., 2016). In addition, an excessive amount of 

artificial diet results in wastes that can induce pollution. Indeed, most aquaculture 

wastes were ultimately from dietary inputs, especially from high protein levels diets, 

containing nutrients and numerous organic compounds (e.g. ammonium, phosphorus, 

dissolved organic carbon, and organic matter) (Cho and Bureau, 2001; Crab et al., 
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2007). This high organic and nutrient loadings result in pathogenic microorganisms 

occurrence, and in fish or crayfish hypoxia or even death (Chávez-Crooker and 

Obreque-Contreras, 2010), but can also lead to water pollution and economic loss 

(Chávez-Crooker and Obreque-Contreras, 2010; Craig et al., 2017; Henry and 

Fountoulaki, 2014; Martinez-Cordova et al., 2003; Velazco‐Vargas et al., 2014). 

Optimal dietary protein requirements were relatively well investigated for 

juvenile P. clarkii under laboratory-controlled conditions, which confirmed that 

optimal dietary protein levels were 24%-30% (Hai and Jie, 2012; Jover et al., 1999; 

Ling et al., 2012; Wu et al., 2007; Xu et al., 2013; Zhang et al., 2012) but the results 

from these studies could not be fully applied to pond culture conditions since many 

cultured organisms also derive a substantial part of nutrition from natural foods. This 

is particularly true for P. clarkii, which is capable of feeding various natural foods 

(e.g. macrophytes, detritus, periphyton, benthos, plankton, and microbially enriched 

detritus) (Alcorlo et al., 2004; Correia, 2003; Gutierrez-Yurrita et al., 1998) while 

little information exists concerning their dietary protein requirements under practical 

pond farmimg conditions where natural foods also contribute to crayfish growth. 

Therefore, efficiently managing the input of artificial diets and natural foods in ponds 

is crucial for sustainable aquaculture (Bostock et al., 2010; Bureau and Hua, 2010). 

This could also help to minimize feed and production costs while maintaining 

aquaculture production and environmental capacity to a sustainable level (Cho and 

Bureau, 2001). 

1.3 Study species: red swamp crayfish 

Among commercially farmed species, the red swamp crayfish Procambarus 

clarkii (Girard, 1852), was the second most produced species accounting for 12 % of 

the total crustaceans aquaculture production (FAO Yearbook, 2018). P. clarkii, 

originating from northeastern Mexico and the south-central United States, has been 

introduced into Nanjing, China from Japan since the late 1930s (Henttonen and Huner, 

1999; Hobbs et al., 1989; Shu and Ye, 1989). It displays numerous biological traits 

that make it suitable for aquaculture such as short life cycles and rapid growth, and 

high tolerance to poor environment conditions (Cruz and Rebelo, 2007), which makes 
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it popular among farmers. Now it has been cultured in most provinces of China 

(Fisheries Department of the Chinese Ministry of Agriculture, 2017). With the fast 

expansion of culture areas, juveniles provided by spontaneous reproduction do not 

match the growing demanding of the whole aquaculture industry. Thus, it’s urgent to 

explore effective artificial reproduction techniques to provide mass production of high 

quality juveniles to support sustainable aquaculture. It is thus a prerequisite to have a 

better understanding of the reproductive biology and growth of this species, to 

recommend new innovative techniques for sustainable fishery management. 

The crayfish life cycle started from embryonic development and completed when 

crayfish spawned. Their life cycle involved three stages: (1) embryonic development; 

(2) grow-out of juvenile crayfish; (3) maturation and spawning of crayfish. 

1.3.1 Embryonic development 

After spawning, the embryos are attached to the female's pleopods and the 

embryonic development occurrs. However, for embryonic developmental stages, 

authors have different calssifications and results. For instance, it is devided into six 

stages: fertilized egg, cleavage and blastrula, gastrula, egg nauplius, eye pigment 

forming, and preparation for hatching (Dai et al., 2009). However, more specific 

staging scheme for P. clarkii were described by a previous study, dividing the 

embryonic development into 19 stages according to numerous morpgological 

characteristics such as cleavage, semi furrow, thoracic-abdominal processes, tail 

shapes,entennules, optix fossae, appendages, walking legs, heart, and eyes (Harper 

and Reiber, 2006). In China, several scholars devided the development into 9 stages: 

fertilized eggs, cleavage stage, blastula stage, gastrula stage, egg-nauplius stage, 

egg-matanauplius stage, eye pigment stage, prehatching stage and hatching stage 

(Feng et al., 2007) while others devided the embryonic development into twelve 

stages: fertilized eggs, cleavage stage, blastula stage, pregastrula stage, semi furrow 

stage, later gastrula stage, prenauplius stage, later nauplius stage, prezoea stage, zoea 

stage, and later zoea stage (Jianlin et al., 2006; Xiaoqing et al., 2009).  

In this study, we synchronized the previous studies and divided embryonic 

development into 9 stages which was shown in Fig 1.2: Ⅰ, zygote; Ⅱ, cleavage; Ⅲ, 
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blastula; Ⅳ, semicircular furrow; Ⅴ, circular furrow; Ⅵ, gastrula; Ⅶ, nauplius; Ⅷ, 

zoea; and Ⅸ, hatching. Within a few hours after spawing, the fertilized eggs were full 

of yolk and looked round in shapes. Then superficial cleavage occurred and embryos 

developed into the blastrula stage. The cleavage continued and blastrula invaginated 

into semi furrow and the furrow became circular in shape latter. Then embryos 

developed into the grastrula stage, the sign of this stage is the visible round hole due 

to invagination. We can also see the transparent area in this stage. Next, the 

transparent area expanded and antennae and the mandible developed, which means 

the embryos developed into nauplius stage. The development progressed with heart 

and eyes starting to develop in the zoea stage. Before hatching, the cephalothorax and 

abdomen were distinguished and the appendages gradually developed. After hatching, 

the basic shapes of crayfish were visible and the cephalothorax and abdomen were 

distinguishable. Although hatching from eggs, embryos still attached to females 

abdomen (Fig. 1.2). 

 

Figure 1.2. Morphological development of Procambarus clarkii embryos, being 

classified into nine stages. I, zygote with full of yolk (Y); Ⅱ, cleavage; Ⅲ, blastula; Ⅳ, 

semicircular furrow; V, circular furrow; Ⅵ, gastrula with dent visible (D); Ⅶ, 

nauplius with appearance of appendages (A); Ⅷ, zoea showing the heart region (H), 

a pair of round eyes (E), appendages (A) and enlarged transparent area; Ⅸ, hatching. 
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1.3.2 Grow-out of juvenile crayfish 

The juvenile crayfish growth has been devided into 13 stages. After hatching, 

juvenile P. clarkii left from the abdomen of females. For stage I, most of the body is 

transparent and two round eyes are visible. The cephalothorax has a black dorsal 

hump and has naked telson setae without uropods. For stage II, eyes have dark 

pigment and red dots cover the entire body. In the two stages, juveniles still remain 

attached to the abdomen of females. For stage III, telson and uropods are separated 

with bristles. For stage IV, pigmentation expands over the entire body. In stage V, 

embryos eyes are fully developed and the body is greenish. For stages VI to IX, body 

color darked and most juveniles can move independently. Juveniles in stages X start 

to show sexual dimorphism. The first and second pleopodes of male crayfish modified 

to gonopodes while females have similar five pleopodes. Suficient understanding of P. 

clarkii life cycles will allow us to optimize culture conditions ensuring better their 

growth and promising organisms in aquaculture. 

1.3.3 Maturation and spawning of crayfish 

1.3.3.1 Reproductive system of P. clarkii 

Numerous studies have been conducted on the reproductive system of female P. 

clarkii, such as morphology, ovarian development, and vitellogenesis (Ando and 

Makioka, 1998; Carmona-Osalde et al., 2004; Daniels et al., 1994). The female 

reproductive system is composed of the ovary and oviducts (Ando and Makioka, 

1998). The ovary is Y-shaped, consisting of a pair of anterior ovarian sacs with a 

single median posterior ovarian sac located in the cephalothorax, on the dorsal side of 

the stomach. The ovary of young crayfish contains several white oocytes 

(previtellogenic and early vitellogenic, normally less than 1 mm in diameter) while 

adult crayfish ovary contains yellow to dark orange oocytes, which are from 1 to 1.4 

mm in diameter. Before oviposition, the ovary contains several hundred matured eggs, 

which are dark and 1.8 mm in diameter. According to morphological characteristics, 

the ovarian development of P. clarkii was classified into 7 stages: stage Ⅰ (oogonial), 

stage Ⅱ (immature), stage Ⅲ (avitellogenic), stage Ⅳ (early vitellogenic), stage Ⅴ 

(midvitellogenic), stage Ⅵ (late vitellogenic) , and stage Ⅶ (postvitellogenic and 
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resorptive) (Kulkarni et al., 1991). For stage Ⅰ, oogonia are close to the ventral wall of 

the ovary. They are spherical and cytoplasm is narrow and weakly basophilic. For 

stage Ⅱ, the oocyte membrane is not well defined  and the oocytes are often 

surrounded by ovarian stromatal tissue. The nucleus is centrally located with a 

well-defined nuclear membrane. There are no follicle cells around the oocytes. Most 

oocytes in stage Ⅲ are round, while only several oocytes are elliptical. The nucleus is 

usually central-located and oocytes often have a well-defined membrane while no 

yolk granules are observed. In this stage, chromatin is apparent in the nucleus and one 

nucleolus is next to the nuclear membrane. The follicle cells occur around the oocyte 

membrane. For stage Ⅳ, few yolk granules occur in oocytes and it has a centrally 

located nucleus. Generally, two or three nucleoli can be seen next to the nuclear 

membrane. Oocytes in stage Ⅴ contain a large amount of yolk. There are three or four 

chromatin in the nucleus and nucleoli are next to the nuclear membrane. Most oocytes 

lose their round shape and appear squarish in stage Ⅵ. The nucleus is not always in 

the center. In stage Ⅶ, oocytes and nuclei appear degenerative. Follicle cells are less 

tightly bound to each other. Most yolk granules disappear while follicle cells are still 

present, decreasing in sizes. 

The male P. clarkii reproductive system includes paired testes and sperm ducts. 

The process of spermiogenesis is divided into six stages: stage Ⅰ (early spermatid), 

stage Ⅱ (acrosomal granule), stage Ⅲ (acrosomal cap), stage Ⅳ (biconcave nucleus), 

stage Ⅴ (immature sperm), and stage Ⅵ (mature sperm) (Moses, 1961). For stage Ⅰ, 

the nucleus, sausage-shaped, makes up of one-third of the cell. The most striking 

characteristics of this stage is the blebbing of the nuclear surface. For stage Ⅱ, the 

nucleus shrinks and increases in density. The blebs are replaced by sheets of 

membrane closely associated with the nuclear surface and a large vesicle including an 

acrosomal granule is set off. The stage Ⅲ is characterized by further elaboration of 

membrane sheets around the nucleus and redistribution of the material in the 

acrosomal granule to form a cap. Furthermore, exclusion of the remaining 

cytoplasmic material and delineation of a new cell periphery are observed. For stage 

Ⅳ, the nucleus is a biconcave disc and the membrane elaborations have consolidated 
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into larger sheets which are clearly extensions of the entire nuclear envelope. Slender 

filaments extend into the acrosomal vesicle from the dense acrosomal cap, which has 

begun to invaginate. The shape of the spermatid at this stage has changed slightly 

from the preceding one: whereas the Stage III cells tended to be a flattened sphere, 

with elliptical profile perpendicular to the equator, the Stage IV cells are almost 

circular in profile in both equatorial and polar planes. In stage V, the entire cells are 

surrounded by a complex, membranous integument and the nucleus has begun to 

extend itself radially in four directions to initiate the long processes that characterize 

the mature sperm and the organization of the nuclear contents has changed markedly. 

The invaginated acrosomal complex has undergone further structural differentiation. 

The nucleus is still essentially biconcave. Its contours are highly irregular, largely 

owing to the fact that the continuity of the nuclear envelope and the membrane sheets 

have become very pronounced. In stage Ⅵ, sperm is mature and most sperm appears 

in the testis and ducts. However, for commercially cultured crayfish, we still have 

limited knowledge of how their gonads develop and when they reproduce, especially 

in China. 

1.3.3.2 Mating behavior and spawning activity 

Normally, prior to mating, male and female crayfish occupy shelters for a period 

of time. During the mating phrase, when female crayfish approaches, their chelae 

contact and males arches the abdomen underneath and then turns over backward 

pushed by the female (Sammy, 1988). Then they kept this posture for several minutes. 

During this period, male P. clarkii deposits spermatophore into females’ seminal 

receptacle. The mating behavior is ended by females disengaging while the male rolls 

over to keep an upright position (Barki and Karplus, 1999; Corotto et al., 1999).  

Spawning occurs several days to months after mating. Even if female crayfish are 

mature, spawning cannot occur immediately until all the environmental conditions 

(e.g. temperature and nutrition) are optimal, which is possible because they can 

conserve male spermatophore for several months (Carmona-Osalde et al., 2004; 

Gutierrez-Yurrita and Montes, 1999). In China, the spawning activities peak from 

July to August (Xiao et al., 2011, Lv, 2006; Gong et al., 2008, Xu et al., 2014). In 



22 
 

other countries, some authors reported that the most spawning events of P. clarkii 

confined to autumn such as USA (Oluoch, 1990), Germany (Chucholl, 2011), and 

Italy (Dörr et al., 2006). While others argued that there existed two or more spawning 

periods yearly for P. clarkii in Portugal (Sousa et al., 2013), Italy (Scalici & Gherardi, 

2007), Kenya and Spain (Gutierrez-Yurrita et al., 1999; Gutierrez-Yurrita & Montes, 

1999). Thus, more data are needed on population and reproduction dynamics across 

years in Chinese commercial ponds to optimize catching seasons and environmental 

factors to induce synchronous spawning activities of female P. clarkii. 

1.4 Current artificial reproduction techniques of crayfish 

Commercial production of cultured species depends largely on larvae production, 

especially in crustaceans. Currently, most larvae in aquaculture are obtained from 

spontaneous reproduction in the wild which are limited by seasonal availability. This 

hinders the development of crustacean industry, especially crayfish (Smith et al., 

2002). To maintain stable populations while obtaining reliable supplies of larvae for 

aquaculture, we need to develop innovative and sustainable artificial reproduction 

techniques. This would be a crucial step to meet the demands of commercial 

production and improve the sustainability of crayfish culture (Liu et al., 2013). One of 

the main obstacles for effective artificial reproduction is the difficulty or impossibility 

of hatching and feeding larvae, such as in the aquaculture of eel, yellowtail, and 

halibut (Gjerde, 1986), but also in crustaceans including crayfish. 

1.4.1 Factors regulating crustacean reproduction 

Normally, gonad maturation of crustacean species is regulated by two 

antagonistic neuropeptides: gonad inhibiting hormones (GIH) and gonad stimulating 

factor (GSF). GIH is secreted from the X-organ–sinus gland (XO–SG) located in the 

eyestalk while GSF is produced by the brain and thoracic ganglion (Eastman-Reks 

and Fingerman, 1984). GIH was responsible for inhibiting secondary vitellogenesis 

and it targeted at ovaries (LaFont, 2000). They also proposed that GIH may be a 

central modulator of the production or release of hormones involved in molting as 

well as reproduction. In crabs, GSF contents vary among different reproductive stages 

but there are still lacking sufficiency studies in how it affects metabolic functions in 
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crustacean species (Eastman-Reks and Fingerman, 1984). Crustacean hyperglycemic 

hormone (CHH) from the eyestalk and molt inhibiting hormone (MIH) was also 

proved to affect the ovarian maturation in shrimp Penaeus semisulcatus and 

Metapenaeus ensis (Fanjul-Moles, 2006; Gu et al., 2002). In addition to these 

hormones, steroids have also been proved to influence the vitellogenesis of crustacean 

species such as Scylla serrata, Penaeus monodon, and penaeid shrimp (Quinitio et al., 

1994; Warrier et al., 2001; Yano et al., 2000). The progesterone, 

17α-hydroxyprogesterone, 20α-hydroxyprogesterone, 6β-hydroxyprogesterone, 

17β-estradiol, estrone and testosterone are the main steroids regulating the 

reproductive process. Mammalian hormones such as human chorionic gonadotrophin 

(HCG) and 5-HT hormones also influenced crustacean species reproduction (Nagaraju, 

2011). As a consequence, hormonal manipulation has been widely used to induce 

spawning in fish and crustaceans. Furthermore, environmental factors could also 

affect crustacean reproduction. 

Environmental factors such as temperature, salinity, photoperiod, and nutrition 

could theoretically also affect the reproductive process of crustacean species. 

Temperature plays a particulary central role. For instance, previous studies found that 

temperatures of 16 – 18 ℃ could significantly induce spawning of other species such 

as Penaeus semisulcatus (Aktaş et al., 2003), Cherax quadricarinatus (Tropea et al., 

2010), Astacus astacus (Huner and Lindqvist, 1985), Panulirus japonicus (Matsuda et 

al., 2002), Procambarus llamasi (Carmona-Osalde et al., 2004) and Penaeus 

stylirostris (Robertson et al., 1991). For female P. clarkii, studies also showed that 

low temperature of 16-22 ℃ could also significantly induce spawning activities (Liu 

et al., 2013a), but very few experipmental studies are available on temperature effects 

in crayfish and more data are now needed.  

1.4.2 Current artificial reproduction techniques 

The techniques for crustacean artificial reproduction have been studied for a long 

time. The reproduction of crustaceans is controlled by GIH and GSF. A major source 

of GIH is from the XO-SG, which is located in the eyestalk. So the traditional 

technique in artificial reproduction to accelerate spawning activities in crustaceans is 
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eyestalk ablation, which has been extensively used worldwide (Aktaş and Kumlu, 

1999; Browdy, 1992; Browdy and Samocha, 1985; Lumare, 1979; Muthu and 

Laxminarayana, 1977; Wen et al., 2015). However, this technique often leads to the 

death and permanent damage of females as well as the decline of larval quality 

(Makinouchi and Honculada-Primavera, 1987). The other method is injecting with 

various hormones to induce females to reproduce spontaneously under proper 

conditions. Lots of studies have conducted on hormonal control of reproduction in 

crustacean species such as crayfish, shrimp, and crab (Nagaraju, 2011). The 

commonly used steroids for crayfish artificial reproduction are 17 

α-hydroxyprogesterone and progesterone. Other hormones used to induce spermiation 

and ovulation are serotonin (5-hydroxytryptamine) human chorionic gonadotropin 

(HCG), and domperidone (Wongprasert et al., 2006; Yano, 1985). However, this 

technique often causes high labor costs and endocrine problems, and potentially 

ethical problems and animals suffering. Numerous studies have demonstrated that 

hormones injection and eyestalk ablation compromised survival (from 15.56% to 

51.11%). Such cases could also be found in other crustaceans, such as Penaeus 

monodon, Penaeus vannamei, and Macrobrachium rosenbergii (Vaca and Alfaro, 

2000; Wei and Zhao, 1992; Wen et al., 2009). There is thus now an urgent need to 

find new techniques to massively produce high quality larvae in optimal artificial 

conditions while ensuring animal welfare. 

Environmental factors such as water temperature, salinity, and nutrition play vital 

roles in regulating species reproductive processes such as ovarian development, 

mating, spawning, embryogenesis, and hatching. In particular, the temperature is the 

main central factor regulating these processes (Pankhurst and Munday, 2011; Planas 

et al., 2012). Thus, optimizing temperature in culture conditions to trigger 

reproduction and ensure optimal embryonic development would be an alternative to 

traditional artificial reproduction techniques. For other crustacean species such as 

Penaeus semisulcatus (Aktaş et al., 2003), Cherax quadricarinatus (Tropea et al., 

2010), Astacus astacus (Huner and Lindqvist, 1985), Panulirus japonicus (Matsuda et 

al., 2002), Procambarus llamasi (Carmona-Osalde et al., 2004) and Penaeus 

http://www.youdao.com/w/Hydroxyprogesterone/#keyfrom=E2Ctranslation�
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stylirostris (Robertson et al., 1991), previous studies reported that temperatures of 16 

– 18 ℃ could significantly induce their reproduction. However, thermal effects on the 

reproduction of P. clarkii still remain to be determined. Such studies would be an 

important prerequisite for the development of effective artificial reproduction 

techniques for P. clarkii. 

1.5 Questions and objectives of the thesis 

There is an urgent need for better management practices to reach sustainable 

exploitation of P. clarkii commercial populations, but the information concerning 

reproduction and population dynamics of this species, as well as the environmental 

factors (especially temperature and feeding rates) affecting reproduction and adult and 

larvae growth is still limited. Indeed, one of the biggest challenges for crayfish 

aquaculture is the supply of juveniles for the P. clarkii aquaculture sectors. Therefore, 

it is necessary to optimize artificial reproduction techniques and explore more 

efficient feeding strategies for P. clarkii aquaculture. To address these questiones, we 

conducted a survey to determine the reproduction pattern and population dynamics for 

sustainable fishery management; and three experiments to  (1) optimize culture 

conditions (water temperature) to improve reproductive performance and embryonic 

development; (2) evaluate optimal feeding levels for juvenile crayfish culture by 

maximizing the contribution of natural foods; (3) explore scientific dietary protein 

levels for juvenile crayfish culture by reducing the amounts and high protein inputs of 

artificial diet (Figure 1.3). 
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Figure 1.3. The framework of red swamp crayfish life cycle and questions of the 

thesis. For this thesis, I first conducted a survey on crayfish reproductive pattern and 

population dynamics in a commercial pond. Then based on this knowledge, I try to 

optimize culture conditions to induce the spawning activities of female crayfish and 

improve embryonic development. Next, I conducted two feeding experiments on 

juveniles and aimed at reducing production costs. 
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2.1 Study area or culture conditions 

2.1.1 Reproductive pattern and population growth dynamics 

The sampling activities are carried out in the Selection and Reproduction Center 

of Crayfish (30.41 °N, 112.75 °E), Qianjiang, which is recognized as the land of red 

swamp crayfish in China by the Ministry of Agriculture of the People’s Republic of 

China. This region extends over 200 ha and encloses many artificial ponds. The 

studied area has a surface area of 33,350 m2, which is under good management and is 

referred as the model of crayfish culture. In this area was planted Hydrilla verticillata, 

preferred by P. clarkii and tolerant to high water temperatures in summer. During the 

sampling period, the annual mean water temperature was 19.75 ℃, ranging from 8.65 ℃ 

in January to 31.25 ℃ in August. The water depth was 1–1.5 m. Other water 

physical-chemical parameters during the sampling periods were: pH 8.61–9.30；

ammonia nitrogen 0.14–0.43 mg / L; nitrite 0.15–0.25 mg / L; total nitrogen 1.06 ± 

1.67 mg / L; total phosphorus 0.0445 ± 0.17 mg / L; chemical oxygen demand (to 

quantify the amount of oxidizable pollutants in ponds) 5.83–8.80 mg / L; 

chlorophyll-a 14.55–31.67 μg / L. 

2.1.2 Reproductive performance and embryonic development 

This study was conducted in State Key Laboratory of Freshwater Ecology and 

Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 

430072, China. Adult crayfish (weight: 31.03 ± 1.95 g, total length: 105.41 ± 1.20 

mm, mean ± SE) used in experiments were collected during the peak of ovarian 

maturation from the Selection and Reproduction Center of Crayfish (30.41 °N, 

112.75 °E), Qianjiang, China. After transportation to the laboratory, crayfish were 

randomly paired and each paired crayfish (one male crayfish and one female crayfish) 

was kept separately in a tank (35×30×25 cm). In the beginning, all crayfish were 

reared under the same temperature conditions (23 ℃) in the five independent closed 

recirculation systems, and then water temperature was adjusted gradually at a rate of 

1 ℃ per day until the experimental temperature was reached and then maintained 

thereafter (17 ℃, 21 ℃, 25 ℃, 29 ℃, and 33 ℃). Each tank served as an independent 

replicated experimental unit. In each tank, PVC pipes were provided for shelters of 

https://en.wikipedia.org/wiki/Water�
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crayfish (four pipes in each large tanks and one pipe in each small tank). Tap water 

with ultraviolet sterilization and aeration for chlorine elimination was delivered to 

each tank at a constant rate of 1 L/min during the study. Photoperiod was maintained 

at a 12:12 (light: dark) cycle. Water temperature was recorded every 2h with data 

loggers over the duration of the experiment. The pH, dissolved oxygen, and hardness 

were measured daily by a YSI probe (Yellow Springs Instruments, Yellow Springs, 

OH, USA). The concentration of ammonia nitrogen was determined using standard 

methods (APHA et al., 1989). Water quality parameters during the whole experiment 

were within the suitable ranges: dissolved oxygen 5.60 ± 0.9 mg/L, pH 7.12 ± 0.21, 

hardness 125 ± 7 mg/L, and ammonia nitrogen 0.54 ± 0.13 mg/L. 

2.1.3 Effects of feeding levels on growth and muscle composition 

The experiment was conducted in 15 concrete ponds (Fig. 2.1, 90 juveniles per 

pond of 9 m2) at the Selection and Reproduction Center of Crayfish, Qianjiang, Hubei 

Province, China. The running water flow rate in ponds was approximately 7 L/min, 

and constant aeration was supplied to each pond. Water depth was maintained at 

approximately 27 cm. H. verticillata was planted in 35 polyethylene flowerpots (0.44 

m diameter) in each pond and used as both shelters and foods for P. clarkii. The 

coverage of H. verticillata was 60% in each pond. The water temperature, pH, and 

dissolved oxygen (DO) were measured by a YSI probe (Yellow Springs Instruments, 

Yellow Springs, OH, USA). The concentrations of ammonia nitrogen, nitrite, 

chemical oxygen demand, total nitrogen, total phosphorus and chlorophyll-a were 

determined using standard methods (APHA, 1992). Water quality parameters for all 

ponds (mean ± SE) were within the ranges of crayfish growth throughout the study: 

temperature 27.27 ± 1.06 ℃; DO 4.33 ± 0.70 mg/L; pH 9.3 ± 0.05; ammonia nitrogen 

0.1400 ± 0.005 mg/L; nitrite 0.0472 ± 0.006 mg/L; total nitrogen 1.0609 ± 0.020 

mg/L; total phosphorus 0.0445 ± 0.003 mg/L; chemical oxygen demand 8.8048 ± 

0.100 mg/L; and chlorophyll-a 14.5477 ± 0.340 μg/L. 
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Figure 2.1. Diagram of the ponds used for culturing juvenile Procambarus clarkii 

during the experiment. 

2.1.4 Effects of protein levels on growth and muscle composition 

The experiment was conducted in 8 cconcrete ponds (Fig. 2.1, 90 juveniles per 

pond of 9 m2) at the Selection and Reproduction Center of Crayfish, Qianjiang, Hubei 

Province, China. Other culture environment was same with 2.1.3. 

2.2 Experimental design 

2.2.1 Reproductive pattern and population growth dynamics 

During the sampling period, we collected crayfish monthly from March 2016 to 

February 2017 with 8 cylindrical traps baited with fresh silver carp. The traps were 

100 cm long with 5 mm mesh, 30 cm cross-section, and two opposing funnels 10 cm 

in diameter. For each sampling, trapping was performed and retrieved in the afternoon. 

The periods of trapping were one day from June to September; two days from March 

to May, and October; and three days from November to February. The same sampling 

site order and timetable were followed every month in order to minimize the bias in 

measurement. During the whole sampling period, water temperature was recorded 

every two hours by a HOBO data-logger (UA-002-64, HOBO Pendant temperature / 

light 64K data logger, Onset company, America). 

For each sampling, catch per unit effort (CPUE) was calculated for each sampling 

as the daily number of crayfish per trap. All samples were then transported to the 

laboratory to dissect. After transportation to the lab, females were checked for 

attached eggs, if present, they were counted to determine the fecundity. The sampled 

crayfish were sorted by sex. Cephalothorax length (CTL, from the tip of the rostrum 
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to the cephalothorax posterior margin) was measured by a 0.01 mm precision caliper. 

Crayfish weight was determined by a 0.01g precision scale. The gonads and 

hepatopancreas of females were weighted to calculate the gonadosomatic index (GSI) 

(measuring the sexual maturity and relating to ovary development) and hepatosomatic 

index (HSI). 

2.2.2 Reproductive performance of P. clarkii 

The experiment was designed to evaluate the optimal temperature for the 

reproductive performance of P. clarkii. It was conducted from September to October 

2017 for 50 days under five constant temperatures (17 ℃, 21 ℃, 25 ℃, 29 ℃, and 

33 ℃), with 12 replicates of each treatment (total N = 480, 240 females and 240 

males). Each replicate consisted of four paired female and male crayfish. The crayfish 

were fed twice daily with an artificial diet purchased from Charoen Pokphand Group 

(WHS001-2016, 30.23% protein, 10.74 % lipid, 10.18% moisture, and 8.70% ash). 

All crayfish were checked every day so that their mortality, accurate dates for mating 

and spawning could be determined. Tanks were cleaned every day. 

At the beginning and the end of the experiment, crayfish weight was determined 

by a 0.01g precision scale. Feeding rates were measured following the methods 

described in a previous study (Vam Ham et al., 2003). Specifically, crayfish were fed 

with an excess quantity of weighted artificial diet until feeding activities stopped 

within one hour. Then, the remaining artificial diet was removed, dried and 

reweighted. Finally, we determined the given amount of artificial diet to calculate the 

feeding rates. The duration from mating to spawning was calculated as the number of 

days from mating to spawning. After spawning, all eggs were counted to determine 

the fecundity of female P. clarkii. 

2.2.3 Embryonic development 

This experiment was designed to determine the optimal temperature for 

embryonic development. It was conducted from September to December 2017 at 

17 ℃, 21 ℃, 25 ℃, 29 ℃, and 33 ℃. Once females spawning, the eggs were 

sampled for monitoring embryonic development. There were 12 replicates in each 

temperature treatment (total N=60 for females). Eggs from the same ovigerous female 



32 
 

crayfish served as an independent replicate. Ovigerous crayfish rearing methods were 

identical to those for experiment 1. The experiment was terminated when all eggs in 

all replicates hatched. 

More than 10 eggs at each treatment were collected for each sampling to 

determine embryos developmental stages under the dissecting microscope LEICA 

MVX10 (M205FA). Photographs were taken on, which was subsequently projected 

for calculating the various stages of development. During the 36 hours of spawning, 

eggs were examed every 2h and thereafter, daily until hatching. The embryonic 

development was classified into 9 stages according to previous studies (Dai et al., 

2009; Feng et al., 2007; Harper and Reiber, 2006; Xiaoqing et al., 2009): Ⅰ, zygote; Ⅱ, 

cleavage; Ⅲ, blastula; Ⅳ, semicircular furrow; Ⅴ, circular furrow; Ⅵ, gastrula; Ⅶ, 

nauplius; Ⅷ, zoea; and Ⅸ, hatching. The duration of development for each stage 

was recorded. The end of each stage was defined as the time at which 50% of the 

embryos sampled had passed into the next stage. This index is often chosen to 

compare embryonic development when different numbers of eggs are sampled in 

different studies (Geffen et al., 2006; Webb et al., 2007; Yang and Chen, 2005). 

2.2.4 Effects of feeding levels on growth and muscle composition 

Crayfish were exposed to five feeding treatments (20%, 40%, 60%, 80%, and 100% 

satiation) following the method described in the previous study (Vam Ham et al., 

2003). Throughout the experiment, crayfish were fed twice daily (8:00 and 18:00) 

with a widely used artificial diet. The experimental diet (26% protein level, based on 

previous nutritive studies) followed a common commercial diet formulation 

(WHS001-2016) from Charoen Pokphand Group (Jover, et al., 1999; McClain, 1995) . 

Ingredients and proximate analysis of the diet are presented in Table 2.1.  
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Table 2.1 Ingredient composition and proximate analysis of experimental diet. 

Ingredients Diet (%) 
Fish meala 0.5 
Rapeseed mealb 14 
Soybean mealc 3 
Cottonseed meald 10 
Wheat floure 20 
Rice branf 8 
DDGSg 18 
Corn glutenh 15 
Soybean oili 2 
Vitamin premixj 0.1 
Mineral premixk 0.5 
Ca(H2PO4)2 0.5 
Sodium chloride 1 
Cellulose 3.9 
Binder 3.5 
Proximate composition   
Crude protein 26.53 
Crude lipid 10.41 
Ash 6.87 
Moisture 13.96 

a Fish meal was from Qingdao Great Seven Co., Ltd., Shandong, China. 
b, c, d Rapeseed meal, soybean meal, and cottonseed meal were purchased from Jiangxi 
Zhengbang Tech, Jiangxi, China. 
e, f, g, h Wheat flour, rice bran, DDGS, and corn gluten were from Wuhan Yufeng 
Cereals, Oils and Foodstuffs Industrial, Hubei, China. 
i Soybean oil was from Handan Mingfu Vegetable Oil Company, Hebei, China. 
j, k Vitamin and mineral premix were purchased from Haid Feeds Co., Ltd., 
Guangzhou, China. 
 

A plastic pallet (30 × 15 cm) was placed at the bottom of each pond, and the 

artificial diet was placed on it (Fig. 2.1). The reference 100% satiation level was 

determined by feeding crayfish excess weighted artificial diet until feeding activity 

stopped within one hour. Then, the remaining artificial diet was removed, dried and 

reweighted (Vam Ham et al., 2003). We then calculated the amount of artificial diet 

that was consumed by crayfish under 100% satiation. P. clarkii in other treatments 

were then fed at restricted levels of 80%, 60%, 40%, and 20%, which were adjusted 

daily with reference to 100% satiation. At 100% satiation level, the given amount of 
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artificial diet was approximately 5% of the wet body weight per day (2% at 8:00 and 3% 

at 18:00). The experiment ended after 50 days, when the majority of the males 

achieved a non-growing, sexually active form.  

2.2.5 Effects of protein levels on growth and muscle composition 

Crayfish were exposed to two protein treatments (26% and 30% protein levels) 

following the same management described in 2.3. Ingredients and proximate analysis 

of the diet are presented in Table 2.2. 

Table 2.2 Formulation and chemical composition of two artificial diets for the 
experiment (% dry matter) 

Ingredients 
Content (%) 

26% protein level diet 30% protein level diet 
Fish meal 0.5 2 
Rapeseed meal 14 10 
Soybean meal 3 25 
Cottonseed meal 10 11 
Wheat flour 20 20 
Rice bran 8  
DDGS 18 20 
Corn gluten 15  
Soybean oil 2 2 
Vitamin premix 0.1 0.1 
Mineral premix 0.5 0.4 
Ca(H2PO4)2 0.5 0.5 
Sodium chloride 1 1 
Cellulose 3.9 4 
Binder 3.5 4 
Proximate composition   
Crude protein 26.53 30.23 
Crude lipid 10.41 10.74 
Ash 6.87 8.7 
Moisture 13.96 10.18 
 
2.3 Parameters measurement, calculation and analyses 

2.3.1 Reproductive pattern and population growth dynamics 

The gonadosomatic index (GSI) (measuring the sexual maturity and relating to 

ovary development) and hepatosomatic index (HSI) (indice of energy status): 

GSI=100×Wg / Wt 
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HSI =100×Wh / Wt 

Where Wg, Wh, and Wt are the gonad weight, hepatopancreas weight and body 

weight of P. clarkii, respectively. 

Dissected gonads were then fixed for 24 h in Bouin’s solution (Wuhan Servicebio 

technology company) for histological analysis. Samples were dehydrated in 50%, 

70%, 85%, 90%, 95%, and 100% ethanol and embedded in paraffin block. Then they 

were subjected to microtomy to obtain sections with 4 μm (Leica RM2016, USA). 

Slides were deparaffinized (2 changes of xylene, 20 min each; 3 changes of 100% 

ethanol, 5min each), rinsed in distilled water. Then all the slides were stained with 

hematoxylin and eosin (Kienan, 1999; Suvarna et al., 2012). The histopathological 

analyses were performed on micrographs under an Olympus BX53 microscope. The 

ovarian development was classified into 7 stages: stage Ⅰ, stage Ⅱ, stage Ⅲ, stage Ⅳ, 

stage Ⅴ, stage Ⅵ, stage Ⅶ, following the method described by the previous study 

(Kulkarni et al., 1991). 

Furthermore, in order to estimate the population dynamics parameters (K, Linf, Ø’, 

Z, M, F, and E), the cephalothorax length (CTL) data for each sex was used because it 

was more reliable in contrast to the flexible abdominal joint of crayfish (Ghia et al., 

2015). K is referred to a relative growth rate and has dimensions of time-1 and Ø’ has 

a clear biological meaning (the intercept of logK and logLinf regression) and it is used 

to compare seasonal estimates of growth parameters as well as overall estimates by 

different fitting techniques (Al-Hosni and Siddeek, 1999). To estimate these 

parameters, we use the electronic length frequency analysis (ELEFAN), a system of 

fishery assessment procedures that is commonly employed to estimate population 

parameters based on length-frequency data (Pauly and David, 1980; Taylor and 

Mildenberger, 2017). The FISAT software has been the most frequently used for 

estimating population parameters. However, it is limited in importing data and 

performing automated analyses (Mildenberger et al., 2017). The R package 

“TropFishR” remedies these shortcomings and uniquely adds the further data-limited 

method capacity by including traditional and updated ELEFAN methods (two 

optimization approaches: generalized simulated annealing ELEFAN_SA, and genetic 
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algorithm ELEFAN_GA) for growth curves fitting and parameters estimates 

(Mildenberger et al., 2017; Taylor and Mildenberger, 2017). So in this study, the 

frequency distributions were analyzed and fitted with growth curves by the ELEFAN 

of R package “TropFishR”. 

The parameters were calculated as follows:  

Ø’=logK+2logLinf  (Pauly and Munro, 1984); 

The expected longevity (tmax): tmax=3/K+t0 (Huang et al., 2012); 

The Z and M were obtained through the Powell-Wetherall method (Wetherall, 

1986). The F is obtained by subtracting M from Z. The E is defined as E= F/Z. 

Where Linf is the asymptotic CTL (calculated as Lmax/0.95, where Lmax is the 

maximum recorded CTL); K is the growth coefficient; t0 is the initial condition 

parameter (when crayfish have CTL=0, although biologically meaningless, it 

represents an important component of curve) and can be calculated as 

ln(-t0)=-0.3922-0.2752 lnLinf - 1.308 lnK. 

2.3.2 Reproductive performance and embryonic development 

For adult crayfish, the survival, feeding rate, and spawning rate were calculated 

as follows at the end of the experiment: 

Survival (%) = 100 × (final crayfish number / initial crayfish number). 

Feeding rate (% body weight / day) = 100 × total feed intake (dry matter, g/days) 

/ [(initial body weight (wet weight, g) + final body weight (wet weight, g)) / 2]. 

Spawning rates (%) = 100 × (final spawning crayfish number / initial female 

crayfish number). 

Based on the duration of embryonic development, we built a 

temperature-dependent developmental model for embryos. It was based on the law of 

total effective temperatures (Ikemoto and Takai, 2000): K= D(T-α), where K is the 

effective accumulated temperature of P. clarkii, T is the temperature (℃), α is 

theoretical biological zero temperature (℃), and D is the development time (days). 

Based on our data, the predictive exponential model (Bělehrádek’s equation) of the 

developmental time was established as follows: D = a(T-α)b, where a, b, and α are 

constants. It is commonly used to describe the relationship between temperature (℃) 
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and embryonic development time (Yamakawa and Matsuda, 1997). The a and b 

reflect the response of eggs to temperature changes, α is “theoretical biological zero 

temperature” (theoretical temperature below which eggs stop their development), D is 

the development time (days) and T is the temperature (℃) (Belehradek, 1957). Based 

on the relationship of embryonic development and temperature, we estimated the 

Bělehrádek equation parameters following the methods described by previous studies 

(Corkett and McLaren, 1970; Yamakawa and Matsuda, 1997). 

2.3.3 Effects of feeding levels on growth and muscle composition 

At the end of the experiment, all crayfish were starved for 24 h and then collected 

for growth performance parameters measurement. Ten males and ten females from 

each pond (60 crayfish for each treatment) were randomly sampled for muscle 

composition analysis and chill-killed using an ice-water bath. The tail muscles were 

removed from the shells and stored at -20 ℃ for muscle composition analysis. 

Samples of two individuals from each pond were also chill-killed and maintained for 

stable isotope analysis (six individuals for each treatment). 

2.3.4 Effects of protein levels on growth and muscle composition 

At the end of the experiment, all crayfish were starved for 24 h and then collected 

for growth performance parameters measurement. Ten males and ten females from 

each pond (80 crayfish for each treatment) were randomly sampled for muscle 

composition analysis and chill-killed using an ice-water bath. The tail muscles were 

removed from the shells and stored at -20 ℃ for muscle composition analysis. 

Samples of two individuals from each pond were also chill-killed and maintained for 

stable isotope analysis (eight individuals for each treatment). Three artificial diet 

samples and four H. verticillata samples were collected for stable isotope analysis. 

Parameters for growth performance such as survival, final length (L), final weight 

(W), gonad weight, liver weight, and muscle weight were recorded and calculated as 

follows:  

Survival (%) = 100 × (Nt / N0)  

Specific growth for weight (SGRW, %, per day) = 100 × [ln(Wt) - ln(W0)] / T 

Specific growth for length (SGRL, %, per day) = 100 × [ln(Lf) - ln(L0)] / T 
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Gonadosomatic index (GSI, %) = 100 × Wg / Wt 

Hepatosomatic index (HSI, %) = 100 × Wl / Wt 

where Nt is the final number of P. clarkii per treatment, and N0 is the initial 

number of P. clarkii per treatment; Wt is the final weight of P. clarkii, and W0 is the 

initial weight of P. clarkii; Lf is the final length of P. clarkii, and L0 is the initial 

length of P. clarkii; Wg is the gonad weight of P. clarkii, and Wl is the liver weight of 

P. clarkii; and T is the number of experimental days. 

Crayfish muscle and diets were analysed for protein, lipid, moisture, and ash 

contents. Protein content was determined using the Kjeldahl method (N × 6.25) 

(William, 1980) with a 4800 Kjeltec Auto Analyzer (FOSS Tecator, Haganas, 

Sweden). Lipid content was determined by chloroform-methanol extraction. Moisture 

content was determined by placing a 1-g sample into a convection oven (105 ℃) for 2 

h and drying it to constant weight (William, 1980). Ash content was determined by 

placing a 1-g sample combusting at 550 ℃ in a muffle furnace for approximately 10 h 

(William, 1980). 

For stable isotope analysis, samples were oven dried at 60 ℃ for at least 48 h to 

constant weight and were very finely ground (< 200 μm). All samples were processed 

for δ15N and δ13C isotopes by the Department of Earth System Science, Tsinghua 

University, Beijing, China (Alfaro et al., 2006). Approximately 3-mg samples were 

combusted, gasses analysed by gas chromatography and continuous flow-mass 

spectrometry (MAT-253, Thermo Fisher Scientific, USA). Samples were referenced 

to pre-calibrated C4 sucrose, which was cross-referenced to the Vienna PeeDee 

Belemnite standard. The reference standard of δ15N was atmospheric N2 and measured 

to a precision of ± 1%. The isotope values for δ15N (‰) and δ13C (‰) were according 

to the following equation: 

δ13C (‰) = [(Rsample / Rstandard) - 1] × 1000 

δ15N (‰) = [(Rsample/ Rstandard) - 1] × 1000 
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2.4 Statistical analyses 

2.4.1 Reproductive pattern and population growth dynamics 

The non-parametric Kruskal-Wallis test followed by pairwise Wilcoxon Rank 

Sum tests (post hoc test) to detect the differences in GSI, HSI, CPUE, and the 

estimated population dynamics parameters. Student’s t-test was used to compare the 

differences of CPUE between females and males. The relationships between CPUE 

and temperature, and GSI and HSI were analyzed by Pearson’s product-moment 

correlation test. Chi-squared test was used to access the sex ratio balance among 

different months. Generalized additive model (GAM) was used to illustrate the 

relationships between weight, CTL, and cephalothorax width and fecundity. Statistical 

differences were set to 0.05 and all statistical analyses were performed in the software 

R version 3.3.2 (R Core Team, 2017). 

2.4.2 Reproductive performance and embryonic development 

We used non-parametric Kruskal-Wallis tests followed by pairwise Wilcoxon 

Rank Sum tests (post hoc test) to detect the differences in survival, feeding rates, 

spawning rates, duration from mating to the spawning, fecundity, and embryos 

hatching time among different temperature treatments. Independent samples t tests 

were used to analyze the differences in survival between sexes. We used non‐metric 

multidimensional scaling analysis (NMDS) to test differences of embryos 

development under different temperatures. Stress (mismatch in the relationship 

between the distance in the original space and the reduced ordination space) is 

normally a factor indicating the quality of NMDS analysis, and lower values generally 

result in good interpretations (McCune et al., 2002; Witting and Becker, 2010). 

Statistical differences were set to 0.05 and all statistical analyses were performed in 

the software R version 3.3.2 (R Core Team, 2017). 

2.4.3 Effects of feeding levels on growth and muscle composition 

The pairwise permutation test was carried out to test differences of survival 

among treatments. Kruskal-Wallis tests were used to analyse differences of other 

growth parameters and muscle composition among treatments (non-parametric data) 

followed by Wilcox post hoc tests. Principal component analysis (PCA) was applied 
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to further summarize the trends in growth performance when feeding levels reduced 

(Næs and Risvik, 1996). For the stable isotope data, we used the Bayesian 

stable-isotope mixing model of the “SIAR” package in R to obtain the contributions 

of the artificial diet and H. verticillata (Parnell, 2008). This model has strong 

statistical power in allowing uncertainty in the sources, the consumers’ isotopic 

signatures, and the fractionation values. We used the most appropriate fraction factor 

values of 3.4‰ for δ15N and 0.8‰ for δ13C, according to the previous study (Alcorlo 

and Baltanas, 2013). All analyses were performed by R version 3.3.2 (R Core Team, 

2017), and the significance level was set to 0.05, and the significance level was set to 

0.05. 

2.4.4 Effects of protein levels on growth and musle composition 

The pairwise permutation test was carried out to test differences of survival 

among treatments. Students’ t-tests were used to analyze the differences in other 

growth parameters, muscle composition, and crayfish δ13C and δ15N values of the two 

treatments. Kruskal-Wallis test was used to analyze differences in δ13C and δ15N 

values of two artificial diets and H. verticillata. Growth performance parameters were 

also analyzed by principal component analysis (PCA). For the stable isotope data, we 

calculated the contributions of diet and H. verticillata to the growth of P. clarkii using 

the “SIAR” package in R. All analyses were performed by R version 3.3.2, and the 

significance level was set to 0.05. 
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Abstract 

High dietary protein inputs in aquaculture can lead to suboptimal growth and 

increased production costs. Red swamp crayfish, Procambarus clarkii, is one of the 

most noteworthy species in China, but little information is available concerning their 

dietary protein requirements under practical pond farming conditions where crayfish 

also derive a substantial part of their dietary needs from natural foods. In this study, 

we tested the effects of two dietary protein levels (26% and 30%) of two artificial 

diets on growth performance and muscle composition of juveniles P. clarkii in eight 

concrete ponds cultured with the macrophyte Hydrilla verticillata (four replicates for 

each treatment). The results found that no significant differences were observed in 

growth performance of P. clarkii when they fed with different dietary protein levels 

diets. Muscle composition analysis revealed that P. clarkii fed to 26% protein level 

diet had significantly higher crude protein and ash contents than that fed to 30% 

protein level while dietary protein levels had no significant influences on the lipid 

content in crayfish muscles. Stable isotope analysis suggested a shift in crayfish diets 

to H. verticillata when dietary protein levels decreased. With this study, we hope to 

encourage crayfish farmers to reduce dietary protein inputs and maximizing the use of 

natural foods uch as macrophytes in cultured ponds to maximize crayfish yields and 

reduce production costs. 

Keywords: Procambarus clarkii; Growth performance; Muscle composition analysis; 

Principal component analysis; Stable isotope analysis 
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1. Introduction 

Aquaculture has been one of the fastest growing animal-food sectors, and global 

aquaculture production was 110.2 million tones, with the sale values estimated at 

USD 243.5 billion (FAO, 2018). China, the world’s largest producer, produces more 

than one-third of global fish production, largely depending on its fast developmental 

aquaculture industry (Ottinger et al., 2016). However, the rapid growth of aquaculture 

has already raised many issues related to environmental impacts, among which high 

organic and nutrient loadings in fish or crayfish aquaculture water bodies is perhaps 

the most serious (Talbot and Hole, 1994). As reported, most aquaculture wastes were 

ultimately from dietary inputs, especially from high protein levels diets, containing 

nutrients and numerous organic compounds (e.g. ammonium, phosphorus, dissolved 

organic carbon and organic matter) (Cho and Bureau, 2001; Crab et al., 2007). This 

high organic and nutrient loadings resulted in water deterioration, pathogenic 

microorganisms occurrence, and fish or crayfish hypoxia or even death 

(Chávez-Crooker and Obreque-Contreras, 2010). Therefore, management of 

aquaculture wastes must be approached by improving feed utilization and feeding 

strategies to develop sustainable aquaculture which addresses allocation of dietary 

inputs to maintain sustainability and productivity of aquaculture systems under 

environmental capacity (Hasan, 2000). 

The red swamp crayfish, Procambarus clarkii (Girard, 1852), originating from 

northeastern Mexico and south-central United States, was introduced to China in 1929 

(Li et al., 2012). Due to its high adaptability, rapid growth, short life cycles, and 

highly commercial values, P. clarkii aquaculture has developed rapidly in recent years 

and it has become the most noteworthy freshwater species both commercially and 

academically. The annual production was up to more than 0.85 million tons in 2016, 

constituting 41.94% of China’s freshwater shrimp aquaculture production (Fisheries 

Department of Ministry of Aquaculture, 2017). It has become one of the most 

significant freshwater fishery products in China, and without doubt, the aquaculture of 

P. clarkii will continue to play an important role in the national supply of crayfish in 

the future. However, the intensive crayfish aquaculture suffered a lot from water 
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quality deterioration and disease outbreaks. For instance, more than 80% of farmed 

shrimp or crayfish production loss was due to white spot syndrome virus (WSSV) 

infection (Chen et al., 1997; Du et al., 2007; Zhan et al., 1998). It is thus highly 

demanding to reduce dietary inputs and improve aquaculture management to avoid 

aquaculture wastes, potential eutrophication, as well as a mass of economic loss 

(Person, 1991). However, any measures towards sustainable development must 

consider the feeding biology, the nutritional requirements of the cultured species, and 

the economics of both feed and fish production. 

P. clarkii is omnivorous, and it has a diverse diet in the wild such as macrophytes, 

detritus, periphyton, benthos, plankton, agriculture by-products and microbially 

enriched detritus (Alcorlo et al., 2004; Correia, 2003; Gutierrez-Yurrita et al., 1998). 

Among these foods, it prefers fresh macrophytes, which have been proved to be an 

important part of its diet (Cronin et al., 2002; Smart et al., 2002). Among factors 

influencing its feeding preferences, amounts of phenolic compounds in macrophytes 

was the foremost instead of protein and phosphorus amounts (Cirujano et al., 2004). 

In contrast, it did not show preferences for any animal preys (Gherardi and Barbaresi, 

2007). 

However, the feeding preferences varied with life stages, with a preference from 

carnivorous (juvenile crayfish) over herbivorous (pre-adults and adults) (Correia, 

2003). However, in intensive aquaculture systems, artificial diets are the main foods 

resources for crayfish and it accounts for more than 50% of the total aquaculture costs 

(Keckeis and Schiemer, 1992; Wong et al., 2016). As a primary component in diets 

formulation, protein is, of course, one of the most expensive components and highly 

determines diets prices (Huner and Meyers, 1979). High protein inputs in culture 

systems led to water pollution, low dissolved oxygen levels and decreasing feed 

efficiency and immune systems, which thus resulted in huge economic loss and waste 

outputs (Craig et al., 2017; Henry and Fountoulaki, 2014; Martinez-Cordova et al., 

2003; Velazco‐Vargas et al., 2014). Conversely, low dietary protein inputs resulted in 

low fish or crayfish growth rates and failure to reach commercial sizes (Craig et al., 

2017). Thus, scientific feeding strategies minimizing feeds and production costs while 
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maintaining aquaculture production and environmental capacity to a sustainable level 

are crucial to the economic success and sustainability of P. clarkii aquaculture (Cho 

and Bureau, 2001). Optimal dietary protein requirements were relatively well 

investigated for juvenile P. clarkii, which confirmed that optimal dietary protein 

levels were 24%-30% (Hai and Jie, 2012; Jover et al., 1999; Ling et al., 2012; Wu et 

al., 2007; Xu et al., 2013a; Zhang et al., 2012). However, these studies of dietary 

nutrient requirement were under laboratory-controlled conditions, and the results from 

these studies could not be fully applied to pond culture conditions since many cultured 

organisms also derived a substantial part of nutrition from natural foods. This is 

particularly true for P. clarkii, which is capable of feeding various natural foods (e.g. 

macrophytes, detritus, periphyton, benthos, plankton, and microbially enriched 

detritus) (Alcorlo et al., 2004; Correia, 2003; Gutierrez-Yurrita et al., 1998) while 

little information exists concerning their dietary protein requirements under practical 

pond farmimg conditions where natural foods also contribute to crayfish growth. In 

this respect, identifying and quantifying the contribution of natural foods to the diets 

of P. clarkii in ponds will be helpful to advance scientific feeding management 

strategies, which will improve production efficiencies in P. clarkii aquaculture. 

In this study, we hypothesized that reduction in dietary protein levels to a proper 

level would not negatively influence the growth and muscle composition of P. clarkii, 

and that crayfish would compensate with more natural foods to maintain their growth 

when dietary protein levels reduced. To test this hypothesis, we placed 720 juvenile P. 

clarkii in eight concrete ponds cultured with widely-planted macrophyte Hydrilla 

verticillata in many crayfish cultured ponds in China. Then they were fed with two 

different protein levels artificial diets, which were chosen based on the dietary protein 

levels from previous studies and what have been commonly-used by farmers in 

crayfish aquaculture in China. Thus, the current study was conducted to: (1) 

investigate the effects of reduced dietary protein levels on the growth performance 

and muscle composition of juvenile P. clarkii; (2) quantify the contributions of 

artificial diets and H. verticillata to crayfish growth when dietary protein levels 

reduced. The study will hopefully provide scientific knowledge for farmers to refine 
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feeding strategies and improve the sustainability and productivity of P. clarkii 

aquaculture. 

2. Materials and Methods 

2.1. Experimental design 

Juvenile P. clarkii (4.82 ± 0.15 g, 60.03 ± 0.52 mm, mean ± SE, no significant 

differences among treatments for crayfish sizes at the beginning of the experiment) 

were obtained from ponds at the Selection and Reproduction Center of Crayfish, 

Qianjiang, Hubei Province, China. A 50-day feeding experiment was conducted in 

eight experimental concrete ponds (90 juveniles per pond of 9 m2), following the 

European Directive 2010/63/EU for animal experiments. There were four replicate 

ponds for the two treatments (26% and 30% protein levels). Before the experiment, 

crayfish were acclimated to the culture conditions for one week. At the beginning of 

the experiment, healthy juveniles were collected and randomly allocated to 8 concrete 

ponds. The running water flow rates in ponds were approximately 7 L/min, and 

constant aeration was supplied to each pond. Water depth was maintained at 

approximately 27 cm and H. verticillata was planted in 35 polyethylene flowerpots 

(0.44 m diameter) in each pond and used as both shelters and foods for P. clarkii with 

the coverage of 60% in each pond. The water temperature, pH, and dissolved oxygen 

(DO) were measured by a YSI probe (Yellow Springs Instruments, Yellow Springs, 

OH, USA). The concentrations of ammonia nitrogen, nitrite, chemical oxygen 

demand, total nitrogen, total phosphorus, and chlorophyll-a were determined using 

standard methods (APHA, 1992). Water quality parameters for all ponds (mean ± SE) 

were within the ranges of crayfish growth throughout the study: temperature 27.27 ± 

1.06 ℃; DO 4.33  ± 0.70 mg/L; pH 9.3 ± 0.05; ammonia nitrogen 0.1400 ± 0.005 

mg/L; nitrite 0.0472 ± 0.006 mg/L; total nitrogen 1.0609 ± 0.020 mg/L; total 

phosphorus 0.0445 ± 0.003 mg/L; chemical oxygen demand 8.8048 ± 0.100 mg/L; 

and chlorophyll-a 14.5477 ± 0.340 μg/L. 

2.2. Feeding management 

Throughout the experiment, crayfish were fed twice daily (8:00 and 18:00) in the 

two experiments. 
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A plastic pallet (30 × 15 cm) was placed at the bottom of each pond, and the 

artificial diet was placed on it (Fig. 1). For each feeding practice, crayfish were fed 

with excess weighted artificial diet. After their feeding activities stopped within one 

hour, the remaining artificial diet was removed, dried and reweighted (Van Ham et al., 

2003). We then calculated the amount of artificial diet that was consumed by crayfish. 

The experiment ended after 50 days, when the majority of the males achieved a 

non-growing, and sexually active form. 

2.3. Sample collection 

At the end of the experiment, all crayfish were starved for 24 h and then collected 

for growth performance parameters measurement. Ten males and ten females from 

each pond (80 crayfish for each treatment) were randomly sampled for muscle 

composition analysis and chill-killed using an ice-water bath. The tail muscles were 

removed from the shells and stored at -20 ℃ for muscle composition analysis. 

Samples of two individuals from each pond were also chill-killed and maintained for 

stable isotope analysis.  

2.4. Growth performance 

Parameters for growth performance such as survival, final length (L), final weight 

(W), gonad weight, liver weight, and muscle weight were recorded and calculated as 

follows:  

Survival (%) = 100 × (Nt / N0)  

Specific growth for weight (SGRW, %, per day) = 100 × [ln(Wt) - ln(W0)] / T 

Specific growth for length (SGRL, %, per day) = 100 × [ln(Lf) - ln(L0)] / T 

Gonadosomatic index (GSI, %) = 100 × Wg / Wt 

Hepatosomatic index (HSI, %) = 100 × Wl / Wt 

where Nt is the final number of P. clarkii per treatment, and N0 is the initial 

number of P. clarkii per treatment; Wt is the final weight of P. clarkii, and W0 is the 

initial weight of P. clarkii; Lf is the final length of P. clarkii, and L0 is the initial 

length of P. clarkii; Wg is the gonad weight of P. clarkii, and Wl is the liver weight of 

P. clarkii; and T is the number of experimental days. 
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2.5. Muscle composition analysis 

Crayfish muscle and diets were analysed for protein, lipid, moisture, and ash 

contents. Protein content was determined using the Kjeldahl method (N × 6.25) 

(William, 1980) with a 4800 Kjeltec Auto Analyzer (FOSS Tecator, Haganas, 

Sweden). Lipid content was determined by chloroform-methanol extraction (Folch, 

Lees & Sloane Stanley, 1957). Moisture content was determined by placing a 1-g 

sample into a convection oven (105 ℃) for 2 h and drying it t o constant weight 

(William, 1980). Ash content was determined by placing a 1-g sample combusting at 

550 ℃ in a muffle furnace for approximately 10 h (William, 1980).  

2.6. Stable isotope analysis 

In total, 16 crayfish (four males and four females from each treatment), three 

artificial diet samples and four H. verticillata samples were collected at the end of the 

experiment and were analysed for their carbon and nitrogen isotope ratios, 

respectively. Muscle samples of crayfish (one male and one female randomly chosen 

from each pond, eight individuals for each treatment) were oven dried at 60 ℃ for at 

least 48 h to constant weight and were very finely ground (< 200 μm). All samples 

were processed for δ15N and δ13C isotopes by the Department of Earth System 

Science, Tsinghua University, Beijing, China (Alfaro, Thomas, Sergent & Duxbury, 

2006). Approximately 3-mg samples were combusted, gasses analysed by gas 

chromatography and continuous flow-mass spectrometry (MAT-253, Thermo Fisher 

Scientific, USA). Samples were referenced to pre-calibrated C4 sucrose, which was 

cross-referenced to the Vienna PeeDee Belemnite standard. The reference standard of 

δ15N was atmospheric N2 and measured to a precision of ± 1%. The isotope values for 

δ15N (‰) and δ13C (‰) were according to the following equation: 

δ13C (‰) = [(Rsample / Rstandard) - 1] × 1000 

δ15N (‰) = [(Rsample/ Rstandard) - 1] × 1000. 

2.7. Statistical analyses 

The pairwise permutation test was carried out to test differences of survival 

among treatments. Students’ t-tests were used to analyze the differences in other 

growth parameters, muscle composition, and crayfish δ13C and δ15N values of the two 
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treatments. Kruskal-Wallis test was used to analyze differences in δ13C and δ15N 

values of two artificial diets and H. verticillata. Growth performance parameters were 

also analyzed by principal component analysis (PCA). For the stable isotope data, we 

calculated the contributions of diet and H. verticillata to the growth of P. clarkii using 

the “SIAR” package in R. All analyses were performed by R version 3.3.2, and the 

significance level was set to 0.05. 

3 Results 

3.1Growth performance 

The growth parameters such as survival, W, L, GSI, HSI, SGRW, SGRL, and 

muscle weight of males and females are shown in Table 1. Crayfish survival were 

84.45% and 70.56% for 26% and 30% treatments, and there were no significant 

differences among the treatments (Students’ t-test, t = 2.06, P = 0.09). 

Most specifically, for males, no significant differences in growth parameters 

except muscle weight were observed among the treatments (Students’ t-test, W: t = 

1.25, P = 0.22; L: t = 1.72, P = 0.10; SGRW: t = 1.18, P = 0.25; SGRL: t = 1.70, P = 

0.10; GSI: t = 1.27, P = 0.22; HSI: t = 0.29, P = 0.77; muscle weight: t = 2.30, P = 

0.03). The muscle weight in the 26% treatment was significantly higher than the 30% 

treatments (Students’ t-test, muscle weight: t = 2.30, P = 0.03).  

Table 1 Growth performance parameters for female and male Procambarus 

clarkii fed at different protein levels diet (mean ± SE). 

 Treatment 
26% Protein level 30% Protein level 

Survival (%) 84.45 ± 3.77 70.56 ± 5.60 
Males   
W (g)a 25.29 ± 1.23 23.34 ± 0.94 
L (mm)b 87.52 ± 1.49 84.37 ± 1.07 
GSI (%)c 0.071 ± 0.013 0.051 ± 0.007 
HSI (%)d 7.79 ± 0.35 7.91 ± 0.23 
SGRW (%, day-1) e 3.28 ± 0.10 3.12 ± 0.08 
SGRL

 (%,day-1) f 0.75± 0.0.03 0.68 ± 0.03 
Muscle weight (g) 2.09 ± 0.10a 1.80 ± 0.07b 
Females   
W (g) 22.79 ± 1.37 21.66 ± 0.69 
L (mm) 90.46±2.03 90.00 ± 0.89 
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GSI (%) 0.38± 0.035 0.34 ± 0.039 
HSI (%) 9.89 ± 0.15 10.05± 0.29 
SGRW (%,day-1) 3.06 ± 0.12 2.98 ± 0.06 
SGRL (%,day-1) 0.81 ± 0.04 0. 81 ± 0.02 
Muscle weight (g) 2.38 ± 0.11 2.37 ± 0.06 

Values in the same row sharing the same superscript are not significantly different (P > 
0.05).  
aW: final weight (g). 
bL: final length (mm). 
cGSI: gonadosomatic index (%) = 100×(gonad weight, g)/(final weight, g). 
dHSI: hepatosomatic index (%) = 100×(liver weight, g)/(final weight, g). 
eSGRW: specific growth for weight (%/day) = 100×[ln(final weight)-ln(initial weight )] 
/ experimental days. 
fSGRL: specific growth for length (%/day) = 100×[ln(final length)-ln(initial length )] / 
experimental days. 

 

Female P. clarkii fed to diet with 30% protein level showed no significant 

differences in all parameters (Students’ t-test, W: t = 0.74, P = 0.47; L: t = 0.21, P = 

0.84; SGRW: t = 0.60, P = 0.55; SGRL: t = 0.14, P = 0.89; GSI: t = 1.06, P = 0.30; HSI: 

t = 0.50, P = 0.62; muscle weight: t = 0.10, P =0.92). 

PCA was performed to summarize the main trends in the growth performance of 

both males and females in the two treatments (Fig. 1). PC1 included W, L, SGRW, 

SGRL, and muscle weight, explaining 56.19% of the variance among samples. PC2 

mainly separated females and males into two groups by GSI and HSI, explaining 

30.26% of the variance. The two components explained 86.44% of the total variance. 

Considering both males and females, Fig. 1 illustrates that crayfish fed to 26% 

treatment had on significant differences in all parameters when compared with those 

of 30% treatment. 
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Figure 1. Principal component analysis (PCA) of growth parameters for both male 

and female Procambarus clarkii fed with different protein level diets. Each point 

represents a specific crayfish. Abbreviations are as follows: 26: 26% protein level, 

and 30: 30% protein level. GSI: gonadosomatic index, HSI: hepatosomatic index, 

SGRW: specific growth for weight, SGRL: specific growth for length. 

3.2 Muscle composition 

The ash, lipid, moisture, and protein contents of P. clarkii in the two different 

treatments are shown in Fig. 2. P. clarkii fed to 26% protein level diet had 

significantly higher crude protein and ash contents than that fed to 30% protein level 

(Students’ t-test, crude protein: t = 4.47, P < 0.001; ash: t = 5.67, P < 0.001). While 

the moisture content of P. clarkii in the 26% treatment was significantly lower than 

that of in the 30% treatments (Students’ t-test, moisture: t = -4.37, P < 0.001). Dietary 

protein levels had no significant influences on the lipid content in crayfish muscles 

(Students’ t-test, crude lipid: t = -1.47, P = 0.17). 
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Figure 2. Box-plot showing the variations in percentages of the ash, lipid, moisture, 

and protein of Procambarus clarkii among two different protein levels. Box-plot 

representation: the horizontal line inside the box represents the median, and the lower 

and upper borders of the box represent the 25th and 75th percentiles. The upper and 

lower whiskers indicate the maximum and minimum range of the data excluding 

outliers. 

3.3 Stable isotope analysis 

The δ13C and δ15N values of P. clarkii from the different treatments are shown in 

Fig. 3 and Fig. 4. The δ13C and δ15N values were not significantly different in the two 

treatments (Students’ t-test, δ13C: t = -2.39, P = 0.03; δ15N: t = 0.06, P = 0.95). 



104 
 

Individuals exhibited variability in their isotopic signatures in 26% and 30% 

treatments, which were -20.94‰ and -20.12‰ for δ13C, 4.77‰ and 4.76‰ for δ15N, 

respectively. The mean δ13C and δ15N values were -20.82‰ and 4.27‰ for 26% 

treatment, and -20.09‰ and 4.96‰ for 30% treatment, respectively. H. verticillata 

had lower δ13C and δ15N values than did the artificial diet, at -25.19‰ and 2.88‰, 

respectively. The δ13C and δ15N values of the artificial diet and H. verticillata were 

significantly different (Kruskal-Wallis test, δ13C: χ² = 6.71, P = 0.03; δ15N: χ² = 8.02, 

P = 0.02). 

 

Figure 3. Stable isotope plots of nitrogen-carbon showing isotopic signatures of 

artificial diet with 26% protein level, Hydrilla verticillata and Procambarus clarkii 

(mean ± SD). Group 1, Group 2, Group 3, and Group 4 represent the four replicates in 

26% treatment. 
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Figure 4. Stable isotope plots of nitrogen-carbon showing isotopic signatures of 

artificial diet with 30% protein level, Hydrilla verticillata, and Procambarus clarkii 

(mean ± SD). Group 1, Group 2, Group 3, and Group 4 represent the four replicates in 

30% treatment. 

Table 2 Mean percentage contributions (95% confidence interval) of artificial diets 

and Hydrilla verticillata to the diets of Procambarus clarkii in 26% and 30% 

treatments 

Treatments Replicates 
Foods contributions (%) 
Artificial diet Hydrilla verticillata 

26%  1 66.34 (22.60 – 100) 33.66 (0 – 77.34) 
 2 59.17 (18.52– 98.92) 40.83 (1.08 – 81.49) 
 3 52.10 (13.13 – 90.49) 47.90 (9.51 – 86.87) 
 4 54.65 (10.85 – 96.99) 45.35 (3.01 – 89.15) 
30 %  1 65.62 (25.37 – 100) 34.38 (0 – 74.63) 
 2 60.25 (23.68 – 98.30) 39.75 (1.70 – 76.32) 
 3 63.61 (24.87 – 100) 36.39 (0 – 75.13) 
 4 61.15 (19.11 – 100) 38.85 (0.06 – 79.89) 

 

The Bayesian mixing model results revealed that H. verticillata was an important 

component of crayfish diet. The mean contribution of H. verticillata increased from 

37.34% to 41.93% when the dietary protein levels decreased from 30% to 26%, 

although 95% confidence intervals overlapped (Table 2). 
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4 Discussion 

4.1Effects of dietary protein levels on growth performance of P. clarkii 

The current study demonstrated that reducing the dietary protein level of the 

artificial diet to a level of 26% did not significantly affect the growth performance of 

crayfish. This suggested that feeding P. clarkii to a dietary protein level of 26% could 

ensure crayfish production at a good level with fewer costs. Although based on the 

laboratorial experiments, without considering the contribution of macrophytes, many 

previous studies confirmed that the growth of P. clarkii did not benefit from high 

dietary protein levels. For instance, juvenile P. clarkii obtained the best growth rate 

when they fed with a diet of 27% protein level (Wu et al., 2007). Others suggested 

that optiaml dietary levels for juvenile crafish were 24% - 30% (Hai and Jie, 2012; 

Ling et al., 2012; Xu et al., 2013a; Xu et al., 2011; Zhang et al., 2012). Similar results 

have also been found on other species such as Macrobrachium americanum 

(Méndez‐Martínez et al., 2017), Ctenopharyngodon idella (Xu et al., 2016), Cherax 

quadricarinatus (Cortés‐Jacinto et al., 2003), Macrobrachium carcinus 

(Benítez-Mandujano and Ponce-Palafox, 2014), and Litopenaeus vannamei (Shahkar 

et al., 2014). All of these studies showed that excess dietary protein levels have 

negative effects on the growth of cultured organisms. 

For intensive aquaculture operation, artificial diets may make up more than 50% 

of thte production costs (Keckeis and Schiemer, 1992; Wong et al., 2016), and the 

diets prices highly depend on the proportion of protein. In order to harvested crayfish 

at desirable market sizes in the shortest time, farmers tended to use high protein levels 

artificial diets. However, high protein inputs in culture systems caused water pollution, 

low dissolved oxygen levels and decreasing efficiency of food absorption and immune 

systems, which thus resulted in huge economic loss (Craig et al., 2017; Henry and 

Fountoulaki, 2014; Martinez-Cordova et al., 2003; Velazco‐Vargas et al., 2014). 

Considering the similar production of the two treatments in the current study, we 

suggest reducing the dietary protein levels to 26% to maintain aquaculture production 

at minimum economic losts which not only brings numerous benefits to farmers but 
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also is the key to improving the economical and environmental sustainability of 

crayfish culture.  

4.2Effects of dietary protein levels on muscle composition of P. clarkii 

Muscle composition results showed that P. clarkii fed to 26% protein levels had 

significantly higher crude protein and ash contents than that fed to 30% protein level 

while no significant influences on the lipid content. This suggested that reducing 

dietary protein level to 26% would not have negative effects on crayfish muscle 

composition. Crude protein contents in muscle tended to decrease with the increase of 

dietary protein levels. This result was consistent with what has been reported on 

crayfish Astacus leptodactylus (Ghiasvand et al., 2012) and crab Portunus 

trituberculatus (Jin et al., 2013), however, it was not accordance with several previous 

studies. Some found that muscle crude protein content tended to increase with 

increase in dietary protein levels significantly for P. clarkii (Li, 2012; Yu, 2011), 

Cherax quadricarinatus (Pavasovic et al., 2007), and Macrobrachium americanum 

(Méndez‐Martínez et al., 2017) while others demonstrated that dietary protein levels 

had no significant differences on muscle composition for P. clarkii (Ling et al., 2012), 

C. quadricarinatus (Thompson et al., 2004), Macrobrachium carcinus 

(Benítez-Mandujano and Ponce-Palafox, 2014), Litopenaeus vannamei (Hu et al., 

2008), and Macrobrachium nipponense (Zhang et al., 2017). Crude lipid content was 

not significantly affected by dietary protein levels in the present study, which was in 

agreement with those reported for P. trituberculatus (Huo et al., 2014), and C. 

quadricarinatus (Thompson et al., 2004) but disagreed with studies reported in P. 

clarkii (Li, 2012; Su et al., 2009; Xu et al., 2013a), A. leptodactylus (Ghiasvand et al., 

2012), P. trituberculatus (Jin et al., 2013), M. carcinus (Benítez-Mandujano and 

Ponce-Palafox, 2014), M. nipponense (Zhang et al., 2017), and M. americanum 

(Méndez‐Martínez et al., 2017). The ash and moisture contents showed opposite 

tendency with the increase of dietary protein levels in the current study. In contrast, 

most studies found no significant differences in ash and moisture contents with 

dietary protein levels increasing (Catacutan, 2002; Ghiasvand et al., 2012; Hu et al., 

2008; Huo et al., 2014; Jin et al., 2013; Méndez‐Martínez et al., 2017; Wu et al., 2007; 
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Zhang et al., 2017). Many factors could affect the muscle compostion content of 

cultured organisms. For instance, the protein and ash contents are size-dependent, and 

lipid content tends to increase with sizes and be affected by life stages and energy 

intake (Shearer, 1994). The different diet formulation also had significant effects on 

muscle composition contents. The study has proved that diets containing energy from 

carbohydrate produced higher body protein levels than diets containing the same 

amount of energy from lipid (Shearer, 1994). In addition, other factors such as feeding 

amounts, temperature, salinity, and protein digestibility of crayfish would result in the 

different amounts of protein, lipid, carbohydrate and energy crayfish obtain, and thus 

cause the differences in their muscle composition. Taken together, our results of 

muscle composition analysis indicates the use of high dietary protein levels would be 

unnecessary when a high abundance of natural foods are present in the culture 

systems. It is concluded that a high protein input through farming period is not the 

best feeding strategies for this crayfish. 

4.3 Natural foods contributions and implications for sustainable aquaculture 

In this study, stable isotope analysis showed that H. verticillata was an important 

component of P. clarkii diets, and its contributed to crayfish at a level of 37.34% and 

41.93% when the dietary protein levels decreased from 30% to 26%. This confirmed 

our hypothesis that a reduction in dietary protein levels to a proper level would not 

negatively influence the growth and muscle composition of P. clarkii because of the 

supplementary nutrition from H. verticillata. Actually, besides H. verticillata, other 

natural foods have also been proved to contribute a greater proportion to the growth of 

P. clarkii such as benthic detritus, sediment, planktonic, zooplankton, and 

invertebrates (Alcorlo et al., 2004; Grey and Jackson, 2012; Gutierrez-Yurrita et al., 

1998; Huner, 1981; Kreider and Watts, 1998). These studies confirmed that significant 

nutritional roles of natural foods played in intensive or semi-intensive crayfish culture 

can not be ignored. Such cases could also be found in other crayfish. For instance, in 

semi-intensive pond culture of Cherax quadricarinatus, the contribution of natual 

plants to crayfish growth could be up to approximately 44% (Joyce and Pirozzi, 2016). 

For Paranephrops zealandicus, terrestrial detritus constitited up to 58.3% of stomach 
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contents (Hollows et al., 2002). These results had important implications on the 

effective utilization of natural foods in crayfish culture, which also highlighted the 

benefits of natutal foods contributing to crayfish growth and reduced production costs. 

However, when using the Bayesian mixing model calculating food resources 

contributions, considerable interindividual isotopic variability in each treatment was 

observed. This reflected that there existed food resources differentiation among 

crayfish in the current study (Grey et al., 2004). This could be attributed to the feeding 

preferences of P. clarkii, which have been proved to unrelated to nutritional value and 

foods availability (Gherardi and Barbaresi, 2007). Thus, although P. clarkii was 

provided with abundant and nutrient-enriched artificial diets, it still showed 

differences in foods utilization. However, without exact studies analyzing the possible 

effects of how interindividual isotopic variability influences the contributions of 

different foods sources, we are not sure that the contributions estimated in this study 

were highly precise. Anyway, they did suggest the important roles of natural foods 

provided in crayfish growth. Futhermore, the stable istope analyses are convenient 

means to quantify the contributions of natural foods in aquaculture, we suggest future 

studies on interindividual isotopic variability to provide valuable insights into feeding 

behaviour and niche breadth of crayfish, and probably of other organisms. 

4.4 Implications of reduced dietary protein levels for sustainable aquaculture 

At a management level, reducing current dependence of farming systems on high 

dietary protein inputs and maximizing utilization of natural foods as alternative and 

more sustainable sources of nutrition is of high significance to further reduce 

production costs (feed costs), and thus maintain profitability (Tacon, 1997). The 

nutritional and economic importances of natural foods have been well recognized in 

many crustacean species cultures with a consequent increase in ponds productivity 

and yield. For example, previous studies on Cherax destructor and Litopenaeus 

stylirostris have demonstrated the growth-enhancing effects of natural foods in ponds, 

which contributed to 28%—79% and 37—40% of their growth and thus helps save 

artificial diet costs (Cardona et al., 2015; Duffy et al., 2011). Similar cases could also 

be found in Litopenaeus vannamei (Gamboa-Delgado et al., 2011; Porchas-Cornejo et 
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al., 2012; Roy et al., 2012; Xu et al., 2013b), Farfantepenaeus brasiliensis 

(Emerenciano et al., 2012), Cherax quadricarinatus (Viau et al., 2012), 

Macrobrachium rosenbergii (Correia et al., 2002; Correia et al., 2003), Litopenaeus 

stylirostris (Cardona et al., 2015), and Marsupenaeus japonicas (Arapi et al., 2012). 

All these studies indicate that maximizing the use of natural foods in the overall 

nutritional budget of pond-cultured crayfish will not only improve crustacean species 

growth but also reduces production costs to a large degree. In this respect, it is 

important that farmers learned to be more efficient in their use of their available 

natural foods in ponds to maximum production profit. Since food and feeding involve 

large production cost, therefore further studies should be encouraged to reduce 

production costs through the utilization of natural foods and exploration sustainable 

feeding strategies. 
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The main aim of this thesis was to investigate the reproduction, population 

dynamics of commercial populations in China and explore the optimal artificial 

reproduction techniques and juveniles feeding strategies. I interpreted the 

reproductive pattern and population dynamics of P. clarkii in a commercial pond, and 

this part played a very important role in sustainable fishery management. I also tested 

the hypotheses that water manipulating could be an alternative to traditional artificial 

reproduction of P. clarkii and reducing inputs of artificial diets to a proper level 

would not affect crayfish growth and muscle composition due to the supplementary 

nutrition provided by natural food items. These studies will hopefully provide 

guidance for scientists, government, and farmers to make scientific aquaculture 

management and reduce production costs. 

In this framework, I put forward that avoid sex selection during reproductive 

seasons and reducing fishing pressure on immature crayfish. High fishing pressure 

during reproductive season could influence long-term stock productivity. It may also 

cause death of offspring. Furthermore, reducing fishing on younger crayfish and 

selectively catching old crayfish will help to promote large-sized individuals and 

render crayfish culture more profitable. This would also offer more access to the 

environmental resources (e.g., food availability) for juveniles and then may result in 

faster growth. I also tried to manipulate water temperature to improve reproductive 

performance and embryonic development. The results showed similar effectiveness in 

inducing spawning when compared with traditional artificial reproduction techniques 

(eyestalk ablation and hormones injection), which confirmed our hypothesis. For the 

embryonic development, we found abnormalities when temperatures were above 

29 ℃, which indicated that higher water temperature should not be applied to 

embryos management. Further, I built a developmental model to predict the 

embryonic development under various water temperatures. I finally showed 

possibility of reducing feeding levels and dietary protein levels in aquaculture 

management. For this study, reducing feeding level to 60% satiation and dietary 

protein level to 26% did not affect crayfish growth performance and muscle 

composition significantly. This was mainly because natural food items H. verticillata 
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in the ponds provided additional nutrition for crayfish and stable isotope analysis also 

confirmed this idea. However, the natural food items could not totally replace the 

artificial diets because of the low protein and lipid contents. This was the reason why 

crayfish fed to 20% satiation showed growth retard. Based on these results, I suggest 

reducing high inputs of artificial diets and maximizing use of natural food items to 

reduce production costs in aquaculture. 

7.1 Reproductive time of P. clarkii in Qianjiang, China 

In this thesis, we evaluated crayfish reproductive pattern by calculating 

gonadosomatic index (GSI), hepatosomatic index (HSI), and determining their 

ovarian development and fecundity. Finally, we found female P. clarkii spawned once 

yearly, and mostly spawning activities started from September to November. 

However, due to low water temperature, eggs in late autumn were probably prevented 

from hatching. Those eggs, having survived the harsh winter conditions, would be 

more likely to hatch in the next spring when the environment is favorable. Thus, in 

our studied area, we found two recruitment phases yearly, which were from October 

to November, and March to May. The delaying hatching could be an adaptive strategy 

of P. clarkii for unfavorable environmental conditions such as low water temperature 

in winter (Lass et al., 2005). Previous studies showed that it would take up to 130 

days for P. clarkii eggs to be successfully hatched when water temperature was below 

10℃ (Suko, 1954; Suko, 1956). In the present study, the mean water temperature was 

13.58℃ and 10.03℃ in November and December, which confirmed that eggs 

released in late autumn were probably prevented from hatching by low water 

temperature. Accordingly, we found another crayfish recruitment in spring. Actually, 

in different places, different recruitment events were observed. For instance, there 

were two-yearly distinct recruitments in Italy (Scalici & Gherardi, 2007; Maccarrone 

et al., 2016), southern Portugal (Adao & Marques, 1993), Spain (Cano & Ocete, 1997; 

Alcorlo, Geiger & Otero, 2008), America (Sommer, 1984) and Japan (Suko, 1958), 

while only one recruitment occurred in central Portugal (Anastácio & Marques, 1995) 

and Germany (Chucholl, 2011). The crayfish ovarian development and embryonic 

development were related to various factors such as water temperature, habitat uses, 
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and food resources (Sastry, 1983; Harhoğlu and Farhadi, 2017), thus, the differences 

in plastic recruitment patterns were difficult to explain. In this thesis, we infer that the 

single spawning peak with two recruitment patterns is most likely driven by the low 

water temperature, but further studies are still needed to test it. 

7.2 Population dynamics of commercial P. clarkii in China 

We estimated P. clarkii population dynamics including growth coefficient (K), 

growth parameter index (Ø’), total mortality rate (Z), natural mortality rate (M), 

fishing mortality rate (F), and exploitation rate (E) by using electronic length 

frequency analysis in R package “TropFishR” based on data of cephalothorax length 

(CTL). Finally, we found five growth cohorts for both females and males, and 

crayfish had faster growth rate but smaller sizes in the studies area. We then estimated 

total mortality rate (Z), natural mortality rate (M) and fishing mortality rate (F) of the 

commercial population, which were 1.93, 1.02, 0.91 year-1 for females and 2.32, 0.93, 

1.39 year-1 for males, respectively. These results showed that the mortality of male 

crayfish was mainly caused by fishing. The estimates of exploitation rate (E) indicated 

that male crayfish were overexploited and under high fishing pressure, with the values 

of 0.47 and 0.60 year-1 for females and males, respectively. 

Length-frequency analysis showed the structure of commercial P. clarkii 

population is made up of five growth cohorts for both females and males. Among 

which, the first three growth cohorts were constituted of abundant younger crayfish, 

which were fast-growing individuals while the fourth and fifth growth cohorts were 

constituted of old individuals with extremely slow growth rates. When compared with 

other studies, we found that cohorts of P. clarkii varied considerably in numbers 

across populations. For instance, we found five cohorts in Portugal (Anastacio et al., 

2009), six in Italy (Dörr & Scalici, 2013), seven in China (Huang et al., 2012), and 

eight and nine for males and females in Germany (Chucholl, 2011). The differences in 

growth cohorts estimation were probably caused by the differences in CTL sizes of P. 

clarkii among those studies. For instance, in our study, only crayfish with a CTL 

higher than 15.20 mm were captured, which were mainly attributed to trapping 

activities. Thus, the selectivity of sampling traps used in different studies might 
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partially affect the growth cohorts estimation to a certain degree. Therefore, it was 

possible that the CTL frequency analysis in our study only partially described the real 

population structure of the commercial P. clarkii population. 

Furthermore, we also found that fishing mortality rate (F) and exploitation rate (E) 

of male P. clarkii were higher than females. Generally, natural mortality rate (M) has 

been widely used as the upper limit of F for sustainable fishing, which suggests that E 

should be less than 0.5 to prevent populations from overfishing (Gulland, 1971; 

Gulland, 1983; MacCall, 2009; Froese et al., 2016). However, in the present study, the 

estimated E of 0.60 for males was higher, indicating that the male P. clarkii was 

overexploited and under high fishing pressure. This might be related to the 

males-directed fishing selection during the reproductive period. During reproductive 

periods, female crayfish tended to stay in burrows for parental care to their offspring 

and it was hard to catch them (Gherardi & Barbaresi, 2000; Thiel, 2000; Dörr et al., 

2006; Donato et al., 2018). And in order to maximize short-term catch rates and 

profitability, farmers intentionally targeted male crayfish during fishing activities and 

then more males were selectively harvested during the reproductive periods (Zhou et 

al., 2010). This males-directed selectivity may impose adverse effects on reproductive 

output since it causes difficulties in females finding mates. Similar cases were also 

found in crabs (Gray & Powell, 1966; Smith & Jamieson, 1991). Thus, in fishery 

management, the possible side effects of sex selection on reproductive success of the 

population should be considered (Zhou et al., 2010). Actually, overfishing causes 

damage and stress to crayfish, which negatively affected their growth and survival 

(Chopin & Arimoto, 1995). Even though some crayfish escape from fishing, they may 

be injured and die later due to physical damage. In such a situation, the fishing 

activities should be well monitored to protect the commercial P. clarkii population 

from further depletion. We thus suggest reducing fishing intensity on immature 

crayfish and avoid sex selection during the reproductive period to improve the overall 

sustainability of commercial P. clarkii populations. 
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7.3 Reasons why we did not determine age composition when analyzing 

population dynamics for crayfish? 

Age and growth plays very important roles in fishery management, and 

knowledge of accurate age will help to know how fishing activities affect population 

growth dynamics and ecosystem services (Beamish & McFarlane, 1983). Normally, 

the age of aquatic animals can be determined through scales, bones, vertebrae and 

otoliths (Campana, 2001; Campana et al., 2006). However, for crustaceans, they 

underwent several times of molting during their life cycle and during intermolt, they 

grew rapidly. This provided limitations for studies their age composition because of 

the potential loss of calcified structures for each molting. In this situation, age studies 

of crustacean species are limited and the most common way is to use length-frequency 

analysis to estimate. Up to now, this methods have been used for lots of crustacean 

species such as crab Trachypleus tridentatus (Almendral & Schoppe, 2005), lobsters 

Homarus americanus (Gendron & Sainte-Marie, 2006) and Panulirus ornatus 

(Kienzle et al., 2012), crayfish Pacifastacus leniusculus (Fonseca & Sheehy, 2007) 

and Cambarus hubbsi (Larson & Magoulick, 2011), and shrimp Pleoticus muelleri 

(Castilho et al., 2012). 

However, this method could estimate with high accuracy only when the studied 

species are satisfied with three assumptions: (1) they have restricted reproductive 

seasons; (2) they show significant annual growth; (3) population does not migrate. In 

this case, this method is suitable for short-lived species age determination (Hartnoll, 

1982). Furthermore, the length-frequency analysis might estimate different results for 

the same population because this method depends highly on the cephalothorax length 

data which is strongly related to the selectivity of sampling traps. For instance, in the 

present study, only crayfish with a cephalothorax length higher than 15.20 mm were 

captured. Therefore, it was possible that this length-frequency analysis only partially 

described the real population age composition. This method could also be unreliable if 

the samples included high proportion of older individuals. When analyzing age 

composition, older crayfish with slower growth rates might group together with young 

individuals which show fast growth. This would finally affect the estimated results. 
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It’s why length-frequency analysis is applied to estimation of age composition of 

many shrimps with short lifespan. Although this method has drawbacks, the 

convenience of this method makes it still the main way to estimate age structures of 

crustacean species (Vogt, 2011). 

7.4 Perspectives on temperature manipulation of crayfish reproduction 

The ability to induce spawning spontaneously is a key step for large-scale 

production of juvenile crayfish in aquaculture. With the fast development of 

aquaculture, new technological advances in artificial reproduction are crucial to 

effective stock enhancement. As traditional artificial techniques, the eyestalk ablation 

and hormone injection have been extensively used for inducing spawning activities of 

crustacean species. According to several previous studies, the spawning rates for 

crayfish injected hormones ranged from 20% to 77.5% and when P. clarkii was 

treated with eyestalk ablation, spawning rates averaged 63.33% (Liu et al., 2014; Liu 

et al., 2013b; Zhang, 2011). However, these two methods often compromise with low 

survival (from 15.56% to 51.11%) for female crayfish in these studies. Such cases 

could also be found in other crustacean species, such as Penaeus monodon, Penaeus 

vannamei, and Macrobrachium rosenbergii (Vaca and Alfaro, 2000; Wei and Zhao, 

1992; Wen et al., 2009). In the current study, results showed that water temperature 

manipulation could induce more than 50% crayfish spawning and the survival 

averaged 84% for all treatments. This indicated that temperature manipulation could 

be an efficient and more ethical alternative for crayfish reproduction compared to 

eyestalk ablation and hormones injection. Furthermore, the quality of eggs could be 

influenced by eyestalk ablation and hormones injection. The eggs’ quality is often 

reflected by egg sizes, egg shape and clarity, larval survival, percentages of 

fertilization, hatching, and abnormalities (Bourque & Phelps, 2007). However, this 

requires a series of long-term studies to evaluate the egg quality and this information 

is still limited now. Anyway, these results support that water manipulation is an 

efficient alternative technique of reproduction, and 21 ℃ – 25 ℃ is suggested for 

improving the the reproductive performance of female P. clarkii. 
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7.5 Higher water temperature should not be applied into P. clarkii embryos 

management 

We have evaluated effects of five temperatures (17 ℃, 21 ℃, 25 ℃, 29 ℃ and 

33 ℃) on P. clarkii embryonic development. Finally, we found that embryos showed 

abnormalities and subsequently died at 29 ℃ and 33 ℃. These abnormalities occurred 

during the early stages of embryo development (< 72h), which included abnormal 

cleavage, blastula lesions, punctured membranes, abnormal invagination of blastula, 

and gastrulation lesions. However, no abnormalities were observed in embryos at 

17 ℃, 21 ℃, and 25 ℃. 

In aquaculture, abnormality of embryos is one of the most serious problems, 

which is mainly due to suboptimal culture conditions (Cobcroft et al., 2001; Fraser 

and De Nys, 2005). For example, high temperature could induce abnormalities of 

embryos especially during cleavage, blastomere and gastrulation stages of many 

hatchery-reared species (Aritaki and Seikai, 2004; Huang et al., 2010; Sfakianakis et 

al., 2004; Wang and Tsai, 2000). In our study, P. clarkii exposed to the high 

temperatures (29 ℃ and 33 ℃) during embryonic development also showed 

abnormalities and ceased to develop while no abnormalities were detected at lower 

temperatures (17 ℃, 21 ℃, and 25 ℃). Similar phenomena have also been reported 

in many fish species such as Solea senegalensis (Dionísio et al., 2012), Danio rerio 

(Casper et al., 2015), Vimba vimba (Lugowska and Kondera, 2018), Sparus aurata 

(Georgakopoulou et al., 2010), and Dicentrarchus labrax (Georgakopoulou et al., 

2007).  

Furthermore, high water temperature caused mortalities of embryos (Lahnsteiner 

et al., 2012; Lugowska and Witeska, 2018). In our study, all the embryos failed to 

hatch above 29 ℃ while a previous study showed that 40% of the embryos of P. 

clarkii died at 30 ℃, and 100% died at 41 ℃ (Lv et al., 2004). We inferred that 

different maternal thermal history could be responsible for this discrepancy, which 

was considered as the most important factor influencing thermal tolerance, thus 

resulting in the different results of embryos thermal tolerance between the two studies 

(Lutterschmidt and Hutchison, 1997; Soundarapandian et al., 2014). There were also 
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studies showing that dynamic temperature changes helped to increase crayfish thermal 

tolerance (Beitinger et al., 2000; Heath, 1963; Hutchison and Ferrance, 1970; Mora 

and Maya, 2006). Thus, the reduced thermal tolerance of embryos might be also due 

to constant temperatures in the present study. Based on these results, we thus 

recommend performing embryos hatching at 25℃ and avoiding hatching 

temperatures higher than 29°C to perform balanced embryonic development. 

7.6 Supplementary nutrition from natural foods cannot be ignored 

Overfeeding and high dietary protein inputs in aquaculture can lead to suboptimal 

growth and increased production costs. For many crayfish, they are omnivorous and 

can feed on macrophytes, detritus, periphyton, benthos, and plankton in wild 

(Anderson et al, 1987; Nunes & Parsons, 1999; Soares et al., 2005; Gherardi & 

Barbaresi, 2008). In this thesis, we have confirmed that feeding levels could be 

reduced to 60% satiation, which would not impair crayfish growth performance and 

muscle composition. Reducing dietary protein levels to 26% could also have the 

similar effects. The stable isotope analysis also demonstrated that crayfish consumed 

more natural foods from the ponds when the feeding levels or protein levels decreased. 

This provides incentives for farmers to reduce the artificial diets input in aquaculture. 

Actually, lower feeding levels have been recommended by many authors, and some 

studies suggest that natural food items in ponds can save up to 24.79–50% of the 

artificial feed, for instance, in Litopenaeus vannamei culture (Roy, Davis & Whitis, 

2012; Gamboa-Delgado, Pena-Rodriguez, Ricque-Marie & Cruz-Suarez, 2011; Lara, 

Hostins, Bezerra, Poersch & Wasielesky, 2017). Other studies on Cherax destructor 

and Litopenaeus stylirostris have also demonstrated the growth-enhancing effects of 

natural foods in ponds, which contributed to 28%—79% and 37—40% of their growth 

and thus helps save artificial diet costs (Cardona et al., 2015; Duffy et al., 2011). 

Studies on fish have also demonstrated that reducing feeding levels to 65% satiation 

for Scophthalmus maximus (Van Ham et al., 2003), and to 90% satiation for 

Paralichthys olivaceus (Cho et al., 2007) does not reduce their production. 

Furthermore, natural foods in aquaculture systems help to save production costs. 

In intensive aquaculture systems, it is common that artificial diets account for more 



122 
 

than 50% of total aquaculture costs (Keckeis & Schiemer, 1992; Wong, Mo, Choi, 

Cheng & Man, 2016). If P. clarkii is fed to 60% satiation, then 40% of the cost (about 

$4318 per year) of the artificial diet will be saved. At a management level, reducing 

current dependence on high diets inputs and maximizing utilization of natural foods as 

alternative and more sustainable sources of nutrition is of high significance to further 

reduce production costs (feed costs), and thus maintain profitability. What’s more, 

farmers will gain more profits from these feeding strategies. With this study, we also 

hope to encourage further scientific works aiming at refining feeding strategies of 

aquatic species and limiting feeding amounts, while considering the contributions of 

natural food items in aquaculture. 

  



123 
 

 

 

 

 

Chapter 8 

 

Conclusions and perspective 

 

  



124 
 

Generally, the current study focused on the reproductive biology and ecological 

factors influencing reproductive performance, embryonic development, and juvenile 

growth of P. clarkii. Firstly, our results have highlighted that spawning activities of 

female P. clarkii took place from September to November with two recruitments 

yearly (a major one from October to November and the minor one from March to May) 

in Qianjiang, China. There were five growth cohorts for females and males in the 

commercial pond while male P. clarkii were overexploited and under high fishing 

pressure. Secondly, our study suggests that manipulating water temperature is an 

effective way to induce spawning in females and optimize embryonic development to 

improve larval production. We found that the optimal temperatures for improving P. 

clarkii reproductive performance were 21 ℃ and 25 ℃ and the optimal temperature 

for embryonic development was 25 ℃. We also bu ilt a temperature-dependent 

developmental model, which could help farmers to predict larval recruitment 

depending on their culture conditions. Thirdly, the study demonstrated that reducing 

the amounts of an artificial diet to a feeding level of 60% satiation did not 

significantly affect the growth performance and muscle composition of both male and 

female P. clarkii. Stable isotope analysis suggested a shift in crayfish diets to easily 

available H. verticillata when feeding levels decreased. Fourthly, reducing the dietary 

protein level of the artificial diet to a level of 26% would also not significantly affect 

the growth performance and muscle composition of crayfish. 

Due to the big challenge in sustainable and continuous supply of juvenile crayfish 

to P. clarkii culture industry, further works on improving female reproductive output 

and embryos survival should be encouraged to promote aquaculture productivity and 

sustainable fisheries. For instance, embryos are generally sensitive to environmental 

conditions, and any huge changes in environment conditions will affect their 

developmental process and then have potential effects on juveniles growth and 

survival. Salinity, expected to influence crayfish embryos metabolic activities, 

developmental rates, yolk utilization efficiency, and other physiplogical processes, 

has significant implications on P. clarkii embryonic development and survival. 

Therefore, studies of potential salinity effects will be helpful to improve hatching 



125 
 

rates and embryonic development. These studies will be also applied in intensive 

embryos management for mass juveniles production. 

Besides salinity, nutrition is playing vital role in improving juvenile crayfish 

growth and survival. The onset of exogenous feeding is crucial to juveniles survival. 

If failure in supplying sufficient food resources, high proportion of motality will occur 

during juvenile crayfish growth (Huner, 2002). There were numerous studies showing 

that cultured organisms survival could be up to 82% in Mugil cephalus, 91% in 

Sparus aurata, and 85% in Solea senegalensis if they were reared in an optimal 

conditions (e.g. abundant food resources) (Tamaru et al., 1994; Yúfera et al., 2005). 

Thus, understanding of nutritional roles and nutrient composition of feeds in the early 

ontogeny of P. clarkii is of primary importance in improving juvenile crayfish 

survival and designing inert artificial feeds for their first feeding in aquaculture. 

Furthermore, the first feeding is considered as the transition period from which the 

source of energy basic to support embryonic development changing from yolk 

reserves to exogenous feeding. In order to achive successful transition, understanding 

metabolic processes involved in food uptake, digestion and assimilation is also of high 

priority (Yufera and Darias, 2007). For example, to what level that lipid and protein 

can be absorpted after juvenile crayfish start to feeding exogenous feeds? How do 

pancreatic enzymes (trypsin, lipases, and amylase) activities response to different 

exogenous feeds? How do digestive regulatory peptides or hormones act together to 

influence crayfish digestive activities after their first feeding? Further studies on these 

parts are very necessary to build a bright scenario towards sustainable aquaculture. 

From the perspective of sustainable aquaculture, increasing crayfish yield and 

reducing production costs with the tolerance of environment capacity has gained great 

concerns in recent years. Seperating crayfish eggs from female crayfish abdomen for 

artificial incubation provides new outlook to save adult crayfish management costs. 

Although this method excludes the social experience of maternal care, it is considered 

as an alternative to traditional crayfish reproduction. Stripping eggs from female 

crayfish for artificial reproduction reduces maternal egg brooding problems and also 

prevent transmission of pathogens from brood stock to offsprings (Pérez et al. 1999; 
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Seemann, 2014). There were previous findings showing that artificial incubation of 

freshwater crayfish eggs could have higher survival rates when compared with 

maternal incubation (Strempel 1974; Pérez et al. 1999). However, information on 

specific time of eggs stripping and eggs quality evaluation is still limited (Seemann, 

2014). Further studies aiming at assessing the detailed differences between early 

stipped eggs and maternal hatching eggs in growth performance, survival, and ability 

to resist fungal infections are highly needed before this technique being applied in 

aquaculture on a large scale. In addition, during artificial incubation after stripping 

eggs from females, exploring antifungal drugs (e.g. formaldehyde, hydrogen peroxide, 

copper sulphate) to prevent eggs from fungal infection is also important in improving 

crayfish survival and hatching rate. The salt solution might also be used as an 

alternative way to control fungal infections. In this case, the general state of artificial 

eggs health can be greatly improved and mass of high quality juveniles can be 

supplied to the aquaculture industry by more further studies working on those aspects. 
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