W. H. Brattain and J. Bardeen, Surface Properties of Germanium, vol.32, pp.1-41

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, A New Detector for Gaseous Components Using Semiconductive Thin Films. », vol.34, pp.1502-1503, 1962.

N. Taguchi, Japanese Patent Application, pp.45-38200, 1962.

S. S. Shendage, « Sensitive and selective NO2 gas sensor based on WO3 nanoplates, Sensors and Actuators B: Chemical, vol.240, pp.426-433, 2017.

E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett, vol.81, issue.10, pp.1869-1871, 2002.

Z. P. Khlebarov, A. I. Stoyanova, and D. I. Topalova, « Surface acoustic wave gas sensors, Sensors and Actuators B: Chemical, vol.8, issue.1, pp.33-40, 1992.

J. Kong, « Nanotube Molecular Wires as Chemical Sensors, Science, vol.287, pp.622-625, 2000.

H. Bai, G. Shi, H. Bai, and G. Shi, « Gas Sensors Based on Conducting Polymers », Sensors, vol.7, pp.267-307, 2007.

B. Ayhan, « Fluctuation enhanced sensing (FES) with a nanostructured, semiconducting metal oxide film for gas detection and classification, Sensors and Actuators B: Chemical, vol.188, pp.651-660, 2013.

N. T. Thu, « Fe2O3 nanoporous network fabricated from Fe3O4/reduced graphene oxide for high-performance ethanol gas sensor, Sensors and Actuators B: Chemical, vol.255, pp.3275-3283, 2018.

D. E. Motaung, « Ultra-high sensitive and selective H2 gas sensor manifested by interface of n-n heterostructure of CeO2-SnO2 nanoparticles, Sensors and Actuators B: Chemical, vol.254, pp.984-995, 2018.

H. Deng, « A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol-gel method, J Mater Sci: Mater Electron, vol.27, issue.7, pp.6766-6772, 2016.

S. Capone, Solid State Gas Sensors: State of the Art and Future Activities, vol.35, 2004.

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2000.

D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, Electrochemical Biosensors: Recommended Definitions and Classification* », vol.34, pp.635-659, 2001.

J. R. Stetter and J. Li, Amperometric Gas SensorsA Review, vol.108, pp.352-366, 2008.

H. Wan, H. Yin, and A. J. Mason, « Rapid measurement of room temperature ionic liquid electrochemical gas sensor using transient double potential amperometry, Sensors and Actuators B: Chemical, vol.242, pp.658-666, 2017.

Y. Imai, D. Tadaki, T. Ma, Y. Kimura, A. Hirano-iwata et al., « Response characteristics of hydrogen gas sensor with porous piezoelectric poly (vinylidene fluoride) film », Sensors and Actuators B: Chemical, vol.247, pp.479-489, 2017.

, Chapitre 1 : Les capteurs de gaz à oxydes métalliques, généralités et techniques de caractérisation 43

J. Hu, « Miniaturized polymer coated film bulk acoustic wave resonator sensor array for quantitative gas chromatographic analysis, Sensors and Actuators B: Chemical, vol.274, pp.419-426, 2018.

L. Rana, R. Gupta, M. Tomar, V. Gupta, /. Zno et al., An efficient NO2 gas sensor, Sensors and Actuators B: Chemical, vol.252, pp.840-845, 2017.

E. Brauns, E. Morsbach, G. Schnurpfeil, M. Bäumer, and E. W. Lang, « A miniaturized catalytic gas sensor for hydrogen detection based on stabilized nanoparticles as catalytic layer, Sensors and Actuators B: Chemical, vol.187, pp.420-425, 2013.

«. Ptc-,

X. Chong, « Plasmonic nanopatch array with integrated metal-organic framework for enhanced infrared absorption gas sensing, Nanotechnology, vol.28, pp.26-27, 2017.

H. Zhu, « Flow-through microfluidic photoionization detectors for rapid and highly sensitive vapor detection, Lab Chip, vol.15, pp.3021-3029, 2015.

D. Fischer, « Thin SnOx films for surface plasmon resonance enhanced ellipsometric gas sensing (SPREE) », Beilstein J Nanotechnol, vol.8, pp.522-529, 2017.

Z. Ke, D. Tang, X. Lai, Z. Dai, and Q. Zhang, « Optical fiber evanescent-wave sensing technology of hydrogen sulfide gas concentration in oil and gas fields, Optik, vol.157, pp.1094-1100, 2018.

S. Yi, S. Tian, D. Zeng, K. Xu, S. Zhang et al., « An In2O3 nanowire-like network fabricated on coplanar sensor surface by sacrificial CNTs for enhanced gas sensing performance, Sensors and Actuators B: Chemical, vol.185, pp.345-353, 2013.

Z. Zhang, M. Haq, Z. Wen, Z. Ye, and L. Zhu, « Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe, Applied Surface Science, vol.434, pp.891-897, 2018.

Z. Cai, H. Li, J. Ding, and X. Guo, « Hierarchical flowerlike WO3 nanostructures assembled by porous nanoflakes for enhanced NO gas sensing, Sensors and Actuators B: Chemical, vol.246, pp.225-234, 2017.

S. Mills, B. Lee, and V. Misra, « Room temperature ozone and humidity response evolution of atomic layer deposited SnO lt;inf gt;2 lt;/inf gt; sensors, IEEE SENSORS, pp.1-3, 2017.

Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, « Oxygen sensing characteristics of individual ZnO nanowire transistors », Appl. Phys. Lett, vol.85, pp.6389-6391, 2004.

A. Wei, L. Pan, and W. Huang, « Recent progress in the ZnO nanostructure-based sensors, Materials Science and Engineering: B, vol.176, pp.1409-1421, 2011.

S. De, « Ethanol and Hydrogen Gas-Sensing Properties of CuO-CuFe 2 O 4 Nanostructured Thin Films, IEEE Sensors Journal, vol.18, pp.6937-6945, 2018.

A. Paliwal, A. Sharma, M. Tomar, and V. Gupta, « Carbon monoxide (CO) optical gas sensor based on ZnO thin films, Sensors and Actuators B: Chemical, vol.250, pp.679-685, 2017.

S. S. Bhande, R. S. Mane, A. V. Ghule, and S. Han, « A bismuth oxide nanoplatebased carbon dioxide gas sensor, Scripta Materialia, vol.65, pp.1081-1084, 2011.

, Chapitre 1 : Les capteurs de gaz à oxydes métalliques, généralités et techniques de caractérisation 44

A. F. Abu-hani, Y. E. Greish, S. T. Mahmoud, F. Awwad, and A. I. , Ayesh, « Lowtemperature and fast response H2S gas sensor using semiconducting chitosan film, Sensors and Actuators B: Chemical, vol.253, pp.677-684, 2017.

Y. Wang, « NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3, Sensors and Actuators B: Chemical, vol.238, pp.473-481, 2017.

Q. Zhou, Z. Lu, Z. Wei, L. Xu, Y. Gui et al., Hydrothermal Synthesis of Hierarchical Ultrathin NiO Nanoflakes for High-Performance CH4 Sensing », vol.6, 2018.

F. , Modélisation des temps de réponse des capteurs chimiques, vol.4, pp.899-904, 2001.

J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti et al., « Template-Free Synthesis and Assembly of Single-Crystalline Tungsten Oxide Nanowires and their Gas-Sensing Properties, Angewandte Chemie, vol.118, issue.2, pp.267-271, 2006.

J. Y. Son, S. J. Lim, J. H. Cho, W. K. Seong, and H. Kim, « Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor », Appl. Phys. Lett, vol.93, issue.5, p.53109, 2008.

X. Liu, « A Survey on Gas Sensing Technology », Sensors, vol.12, issue.7, pp.9635-9665

A. Dey, « Semiconductor metal oxide gas sensors: A review, Materials Science and Engineering: B, vol.229, pp.206-217, 2018.

G. Eranna, B. C. Joshi, D. P. Runthala, and R. P. Gupta, « Oxide Materials for Development of Integrated Gas Sensors-A Comprehensive Review, Critical Reviews in Solid State and Materials Sciences, vol.29, pp.111-188, 2004.

A. Ruiz, J. Arbiol, A. Cirera, A. Cornet, and J. R. Morante, « Surface activation by Ptnanoclusters on titania for gas sensing applications, Materials Science and Engineering: C, vol.19, issue.1, pp.105-109, 2002.

L. Zhu and W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review, Sensors and Actuators A: Physical, vol.267, pp.242-261, 2017.

C. Wang, W. Zeng, L. Luo, P. Zhang, and E. Z. Wang, « Gas-sensing properties and mechanisms of Cu-doped SnO 2 spheres towards H 2 S », Ceramics International, vol.42, issue.8, pp.10006-10013, 2016.

F. M. Li, « Influence of Ce doping on microstructure of ZnO nanoparticles and their acetone sensing properties, Journal of Alloys and Compounds, vol.649, pp.1136-1144, 2015.

A. Patil, C. Dighavkar, and R. Borse, « Al doped ZnO thick films as CO2 gas sensors, Journal of Optoelectronics and Advanced Materials, vol.13, pp.1331-1337, 2011.

R. Yoo, S. Cho, M. Song, and W. Lee, « Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant, Sensors and Actuators B: Chemical, vol.221, pp.217-223, 2015.

X. Liu, K. Pan, W. Li, D. Hu, S. Liu et al., « Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol-gel method under different heat treatments, Ceramics International, vol.40, issue.7, pp.9931-9939, 2014.

Y. Li, A. Trinchi, W. Wlodarski, and K. Galatsis, Kalantar-zadeh, « Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants, Sensors and Actuators B: Chemical, vol.93, issue.1, pp.431-434, 2003.

, Chapitre 1 : Les capteurs de gaz à oxydes métalliques, généralités et techniques de caractérisation 45

R. Ahmad, S. M. Majhi, X. Zhang, T. M. Swager, and K. N. Salama, « Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials, Advances in Colloid and Interface Science, vol.270, pp.1-27, 2019.

J. M. Walker, S. A. Akbar, and P. A. Morris, « Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review, Sensors and Actuators B: Chemical, vol.286, pp.624-640, 2019.

N. Yamazoe, « New approaches for improving semiconductor gas sensors, Sensors and Actuators B: Chemical, vol.5, issue.1, pp.7-19, 1991.

X. Qu, R. Yang, F. Tong, Y. Zhao, and M. Wang, « Hierarchical ZnO microstructures decorated with Au nanoparticles for enhanced gas sensing and photocatalytic properties, Powder Technology, vol.330, pp.259-265, 2018.

J. F. Chang, H. H. Kuo, I. C. Leu, and M. H. Hon, « The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors and Actuators B: Chemical, vol.84, issue.2, pp.258-264, 2002.

F. Lu, Y. Liu, M. Dong, and X. Wang, « Nanosized tin oxide as the novel material with simultaneous detection towards CO, H2 and CH4, Sensors and Actuators B: Chemical, vol.66, issue.1, pp.225-227, 2000.

S. G. Ansari, P. Boroojerdian, S. R. Sainkar, R. N. Karekar, R. C. Aiyer et al., « Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles, Thin Solid Films, vol.295, issue.1, pp.271-276, 1997.

E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri, Single crystal ZnO nanowires as optical and conductometric chemical sensor, J. Phys. D: Appl. Phys, vol.40, issue.23, pp.7255-7259, 2007.

J. Elias, L. Philippe, and J. Michler, Lévy-Clément, « Mechanism of formation of urchin-like ZnO, Electrochimica Acta, vol.56, pp.9532-9536, 2011.

K. Govender, D. S. Boyle, P. B. Kenway, and P. O'brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution, Journal of Materials Chemistry, vol.14, pp.2575-2591, 2004.

P. X. Gao, Z. L. Wang, and . Nanopropeller, Appl. Phys. Lett, vol.84, pp.2883-2885, 2004.

X. Y. Kong and Z. L. Wang, Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts, vol.3, pp.1625-1631, 2003.

P. X. Gao and Z. L. Wang, « Nanoarchitectures of semiconducting and piezoelectric zinc oxide, Journal of Applied Physics, vol.97, p.44304, 2005.

X. Li, X. Li, Z. Li, J. Wang, and J. Zhang, « WS2 nanoflakes based selective ammonia sensors at room temperature, Sensors and Actuators B: Chemical, vol.240, pp.273-277, 2017.

A. Qurashi, T. Yamazaki, E. M. El-maghraby, and E. T. Kikuta, « Fabrication and gas sensing properties of In2O3 nanopushpins », Appl. Phys. Lett, vol.95, p.153109, 2009.

H. Zhang, P. Song, D. Han, and Q. Wang, « Synthesis and formaldehyde sensing performance of LaFeO3 hollow nanospheres, Physica E: Low-dimensional Systems and Nanostructures, vol.63, pp.21-26, 2014.

C. Li, Z. Du, H. Yu, and T. Wang, « Low-temperature sensing and high sensitivity of ZnO nanoneedles due to small size effect, Thin Solid Films, vol.517, pp.5931-5934, 2009.

X. Zhang, « ZIF-8 derived hierarchical hollow ZnO nanocages with quantum dots for sensitive ethanol gas detection, Sensors and Actuators B: Chemical, vol.289, pp.144-152, 2019.

, Chapitre 1 : Les capteurs de gaz à oxydes métalliques, généralités et techniques de caractérisation 46

Y. Wei, « Hydrothermal synthesis of Ag modified ZnO nanorods and their enhanced ethanol-sensing properties, Materials Science in Semiconductor Processing, vol.75, pp.327-333, 2018.

Q. Wan, « Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Applied Physics Letters, vol.84, pp.3654-3656, 2004.

L. Zhu, Y. Li, and W. Zeng, « Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties, Applied Surface Science, vol.427, pp.281-287, 2018.

Q. Qi, « Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference, Sensors and Actuators B: Chemical, vol.134, issue.1, pp.36-42, 2008.

L. Mei, « Ultrasensitive ethanol sensor based on 3D aloe-like SnO2, Sensors and Actuators B: Chemical, pp.7-11, 2012.

Y. H. Navale, S. T. Navale, F. J. Stadler, N. S. Ramgir, and V. B. Patil, « Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors, Ceramics International, vol.45, issue.2, pp.1513-1522, 2019.

Z. Jing and J. Zhan, « Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates, Advanced Materials, vol.20, issue.23, pp.4547-4551, 2008.

P. Camagni, G. Faglia, P. Galinetto, C. Perego, G. Samoggia et al., « Photosensitivity activation of SnO2 thin film gas sensors at room temperature, Sensors and Actuators B: Chemical, vol.31, issue.1, pp.99-103, 1996.

C. Zhang, A. Boudiba, P. Marco, R. Snyders, M. Olivier et al., « Room temperature responses of visible-light illuminated WO3 sensors to NO2 in sub-ppm range, Sensors and Actuators B: Chemical, vol.181, pp.395-401, 2013.

X. Geng, D. Lahem, C. Zhang, C. Li, M. Olivier et al., « Visible light enhanced black NiO sensors for ppb-level NO2 detection at room temperature, Ceramics International, vol.45, issue.4, pp.4253-4261, 2019.

G. Korotcenkov and B. K. Cho, « Metal oxide composites in conductometric gas sensors: Achievements and challenges, Sensors and Actuators B: Chemical, vol.244, pp.182-210, 2017.

M. Alcañiz, « Design of an electronic system and its application to electronic tongues using variable amplitude pulse voltammetry and impedance spectroscopy », Journal of Food Engineering, vol.111, issue.1, pp.122-128, 2012.

K. Y. Aristovich, B. C. Packham, H. Koo, G. S. Santos, A. Mcevoy et al., « Imaging fast electrical activity in the brain with electrical impedance tomography, NeuroImage, vol.124, pp.204-213, 2016.

G. Durante, W. Becari, F. A. Lima, and H. E. Peres, « Electrical Impedance Sensor for Real-Time Detection of Bovine Milk Adulteration, IEEE Sensors Journal, vol.16, issue.4, pp.861-865, 2016.

A. Labidi, « Impedance spectroscopy on WO3 gas sensor, Sensors and Actuators B: Chemical, vol.106, issue.2, pp.713-718, 2005.

N. Al-hardan, M. J. Abdullah, and A. A. Aziz, « Impedance spectroscopy of undoped and Cr-doped ZnO gas sensors under different oxygen concentrations, Applied Surface Science, vol.257, pp.8993-8997, 2011.

N. H. Al-hardan, A. A. Aziz, M. J. Abdullah, and N. M. Ahmed, Conductometric Gas Sensing Based on ZnO Thin Films: An Impedance Spectroscopy Study, vol.7, pp.487-490, 2018.

F. Hamou, N. Zekri, and «. , analyse des matériaux par spectroscopie d'impédance : application au verre borosilicate

, Chapitre 1 : Les capteurs de gaz à oxydes métalliques, généralités et techniques de caractérisation 47

C. Kwan, G. Schmera, J. M. Smulko, L. B. Kish, P. Heszler et al., Advanced Agent Identification With Fluctuation-Enhanced Sensing, vol.8, pp.706-713, 2008.

L. B. Kish, G. Schmera, C. Kwan, J. Smulko, P. Heszler et al., « Fluctuation-enhanced sensing, Noise and Fluctuations in Circuits, Devices, and Materials, vol.6600, p.66000, 2007.

M. Kotarski and J. Smulko, « Noise measurement set-ups for fluctuations-enhanced gas sensing, Metrol. Meas. Syst, vol.16, issue.3, pp.457-464, 2009.

G. Schmera, C. Kwan, P. Ajayan, R. Vajtai, and L. B. Kish, Fluctuation-Enhanced Sensing: Status and Perspectives, vol.2113, p.1, 2007.

?. Lentka, J. M. Smulko, R. Ionescu, C. G. Granqvist, and L. B. Kish, « Determination of gas mixture components using fluctuation enhanced sensing and the LS-SVM regression algorithm, Metrology and Measurement Systems, vol.22, issue.3, pp.341-350, 2015.

L. B. Kish, R. Vajtai, and C. G. Granqvist, « Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues, Sensors and Actuators B: Chemical, vol.71, issue.1, pp.55-59, 2000.

T. Contaret, J. Seguin, and E. K. Aguir, « Noise analysis of metal-oxide gas microsensors response to a mixture of NO2 and CO, IEEE SENSORS, pp.285-288, 2014.

T. Contaret, J. Seguin, P. Menini, and K. Aguir, « Physical-Based Characterization of Noise Responses in Metal-Oxide Gas Sensors, IEEE Sensors Journal, vol.13, issue.3, pp.980-986, 2013.

J. L. Solis, G. E. Seeton, Y. Li, and L. B. Kish, « Fluctuation-enhanced multiplegas sensing by commercial Taguchi sensors, IEEE Sensors Journal, vol.5, issue.6, pp.1338-1345, 2005.

V. Aroutiounian, Z. Mkhitaryan, A. Adamian, C. Granqvist, and L. Kish, « Fluctuation-enhanced gas sensing, Procedia Chemistry, vol.1, pp.216-219, 2009.

M. Tonezzer, Selective gas sensor based on one single SnO2 nanowire, Sensors and Actuators B: Chemical, vol.288, pp.53-59, 2019.

A. Staerz, T. Russ, U. Weimar, and N. Barsan, Understanding the Sensing Mechanism of WO3 based Gas Sensors, 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), pp.1-3, 2019.

S. Chamuah, K. K. Sarma, S. Baruah, and . Zno, ZnS core/shell nanostructures based gas sensor for sensing Acetone gas at room temperature, Journal of Engineering Technology, vol.8, 2019.

R. Kumar, O. Al-dossary, G. Kumar, and E. A. Umar, Zinc Oxide Nanostructures for NO2 Gas-Sensor Applications: A Review, vol.7, pp.97-120, 2015.

J. Joussot-dubien, Nouveau Traité de Chimie Minérale, vol.5, 1962.

S. Chu, W. Water, and J. Liaw, « Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering, Journal of the European Ceramic Society, vol.23, issue.10, pp.1593-1598, 2003.

Ü. Özgür, A comprehensive review of ZnO materials and devices, vol.98, p.41301, 2005.

T. Prasada-rao, M. C. Kumar, A. Safarulla, V. Ganesan, S. R. Barman et al., « Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis, Physica B: Condensed Matter, vol.405, issue.9, pp.2226-2231, 2010.

, Chapitre 1 : Les capteurs de gaz à oxydes métalliques, généralités et techniques de caractérisation 48

C. Tsay and W. Hsu, « Sol-gel derived undoped and boron-doped ZnO semiconductor thin films: Preparation and characterization, Ceramics International, vol.39, issue.7, pp.7425-7432, 2013.

D. Gaspar, L. Pereira, K. Gehrke, B. Galler, E. Fortunato et al., High mobility hydrogenated zinc oxide thin films, vol.163, pp.255-262, 2017.

N. Kumar, A. Dubey, B. Bahrami, S. Venkatesan, Q. Qiao et al., « Origin of high carrier mobility and low residual stress in RF superimposed DC sputtered Al doped ZnO thin film for next generation flexible devices, Applied Surface Science, vol.436, pp.477-485, 2018.

M. Chaves, « Al-doping and Properties of AZO Thin Films Grown at Room Temperature: Sputtering Pressure Effect, Materials Research, vol.22, issue.2, 2019.

L. S. Rocha, C. R. Foschini, C. C. Silva, E. Longo, and A. Z. , Simões, « Novel ozone gas sensor based on ZnO nanostructures grown by the microwave-assisted hydrothermal route, Ceramics International, vol.42, issue.3, pp.4539-4545, 2016.

V. Galstyan, N. Poli, and E. E. Comini, Highly Sensitive and Selective H2S Chemical Sensor Based on ZnO Nanomaterial », Applied Sciences, vol.9, p.1167, 2019.

G. C. Bond, Heterogeneous Catalysis: Principles and Applications, 1987.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, « Recent progress in processing and properties of ZnO, Superlattices and Microstructures, vol.34, issue.1, pp.3-32, 2003.

C. G. Van-de-walle, D. B. Laks, G. F. Neumark, and S. T. Pantelides, « First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe, Phys. Rev. B, vol.47, pp.9425-9434, 1993.

C. H. Park, S. B. Zhang, and S. Wei, « Origin of p-type doping difficulty in ZnO: The impurity perspective, Phys. Rev. B, vol.66, issue.7, p.73202, 2002.

S. Kim and J. Son, « Epitaxial ZnO Thin Films for the Application of Ethanol Gas Sensor: Thickness and Al-Doping Effects », Electrochem. Solid-State Lett, vol.12, issue.2, pp.17-19, 2009.

D. Y. Kim and J. Y. Son, Horizontal ZnO Nanowires for Gas Sensor Application: Al-Doping Effect on Sensitivity, vol.12, pp.109-111, 2009.

L. M. Li, Z. F. Du, and T. H. Wang, « Enhanced sensing properties of defect-controlled ZnO nanotetrapods arising from aluminum doping, Sensors and Actuators B: Chemical, vol.147, issue.1, pp.165-169, 2010.

H. Ayd?n, F. Yakuphanoglu, and C. Ayd?n, « Al-doped ZnO as a multifunctional nanomaterial: Structural, morphological, optical and low-temperature gas sensing properties, Journal of Alloys and Compounds, vol.773, pp.802-811, 2019.

S. Kuo, « Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films, Journal of Crystal Growth, vol.287, issue.1, pp.78-84, 2006.

G. Liang, P. Fan, X. Cai, D. Zhang, and Z. Zheng, « The Influence of Film Thickness on the Transparency and Conductivity of Al-Doped ZnO Thin Films Fabricated by Ion-Beam Sputtering », Journal of Elec Materi, vol.40, issue.3, pp.267-273, 2011.

F. K. Shan and Y. S. Yu, « Band gap energy of pure and Al-doped ZnO thin films, Chapitre 1 : Les capteurs de gaz à oxydes métalliques, généralités et techniques de caractérisation, vol.24, p.49, 2004.

H. Kim, « Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices, Thin Solid Films, pp.798-802, 2000.

Y. Ammaih, A. Lfakir, B. Hartiti, A. Ridah, P. Thevenin et al., optical and electrical properties of ZnO:Al thin films for optoelectronic applications, Opt Quant Electron, vol.46, issue.1, pp.229-234, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01344864

G. H. Jo, S. Kim, and J. Koh, « Enhanced electrical and optical properties based on stress reduced graded structure of Al-doped ZnO thin films, Ceramics International, vol.44, issue.1, pp.735-741, 2018.

S. O. El-hamali, W. M. Cranton, N. Kalfagiannis, X. Hou, R. Ranson et al., « Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing, Optics and Lasers in Engineering, vol.80, pp.45-51, 2016.

S. Saini, « Effect of self-grown seed layer on thermoelectric properties of ZnO thin films, Thin Solid Films, vol.605, pp.289-294, 2016.

E. A. Martín-tovar, L. G. Daza, A. J. López-arreguín, A. Iribarren, and R. Castrorodriguez, « Effect of substrate rotation speed on structure and properties of Al-doped ZnO thin films prepared by rf-sputtering », Transactions of Nonferrous Metals Society of China, vol.27, issue.9, pp.2055-2062, 2017.

, « Diffraction des rayons X -Cristallographie

A. B. Rosli, M. M. Marbie, S. H. Herman, M. H. Ani, and . Gold, Catalyzed Growth of Aluminium-doped Zinc Oxide Nanorods by Sputtering Method, J. Nanomaterials, vol.2014, pp.92-92, 2014.

G. J. Fang, D. J. Li, and B. Yao, Effect of Vacuum Annealing on the Properties of Transparent Conductive AZO Thin Films Prepared by DC Magnetron Sputtering », physica status solidi (a), vol.193, pp.139-152, 2002.

A. A. Al-ghamdi, « Semiconducting properties of Al doped ZnO thin films, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.131, pp.512-517, 2014.

A. Purohit, S. Chander, A. Sharma, S. P. Nehra, and M. S. Dhaka, « Impact of low temperature annealing on structural, optical, electrical and morphological properties of ZnO thin films grown by RF sputtering for photovoltaic applications, Optical Materials, vol.49, pp.51-58, 2015.

B. D. Cullity, « Elements of X-ray Diffraction, 1978.

A. K. Chawla, D. Kaur, and R. Chandra, « Structural and optical characterization of ZnO nanocrystalline films deposited by sputtering, Optical Materials, vol.29, issue.8, pp.995-998, 2007.

M. Ali-y?ld?r?m and A. Ate?, Influence of films thickness and structure on the photoresponse of ZnO films », vol.283, pp.1370-1377

L. K. Vandamme and G. Leroy, « Analytical expressions for correction factors for noise measurements with a four-point probe, Fluct. Noise Lett, vol.06, pp.161-178, 2006.

S. L. Rumyantsev, GaN-Based Materials and Devices, vol.33, pp.175-195, 2004.

, Chapitre 1 : Les capteurs de gaz à oxydes métalliques, généralités et techniques de caractérisation 50

R. Kubo, « The fluctuation-dissipation theorem, Rep. Prog. Phys, vol.29, issue.1, pp.255-284, 1966.

J. R. Schrieffer, Semiconductor surface physics, p.55, 1957.

P. Dutta, P. Dimon, and P. M. Horn, « Energy Scales for Noise Processes in Metals, Phys. Rev. Lett, vol.43, issue.9, pp.646-649

F. N. Hooge, « 1/f noise sources, IEEE Transactions on Electron Devices, vol.41, issue.11, 1926.

F. N. Hooge, « 1/? noise is no surface effect, Physics Letters A, vol.29, issue.3, pp.139-140, 1969.

L. K. Vandamme and H. J. Casier, « The 1/f noise versus sheet resistance in poly-Si is similar to poly-SiGe resistors and Au-layers, Proceedings of the 30th European Solid-State Circuits Conference, pp.365-368, 2004.

G. Leroy, « Etude et réalisation d'un banc de mesure de bruit basse fréquence de 10

, Hz à 1 MHz : application à la caractérisation électrique de matériaux en couches minces », thesis, 2002.

S. Swann, « Magnetron sputtering », Physics in Technology, vol.19, issue.2, pp.67-75, 1988.

H. Ko, W. Tai, K. Kim, S. Kim, S. Suh et al., « Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering », Journal of Crystal Growth, vol.277, issue.1, pp.352-358, 2005.

J. Bessot, « Dépôts par pulvérisation cathodique, p.27, 1985.

A. L. Gobbi, P. A. Nascente, and «. D. Sputtering, , pp.699-706, 2013.

, Cibles de Sputtering -Pulvérisation cathodique

D. Sur,

S. Park and J. Koh, « Low temperature rf-sputtered In and Al co-doped ZnO thin films deposited on flexible PET substrate, Ceramics International, vol.40, issue.7, pp.10021-10025, 2014.

F. Otieno, M. Airo, R. M. Erasmus, D. G. Billing, A. Quandt et al., Structural and spectroscopic analysis of ex-situ annealed RF sputtered aluminium doped zinc oxide thin films », Journal of Applied Physics, vol.122, issue.7, p.75303, 2017.

Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang et al., « Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method, Superlattices and Microstructures, vol.49, issue.6, pp.644-653, 2011.

G. Bräuer, B. Szyszka, M. Vergöhl, and R. Bandorf, « Magnetron sputtering -Milestones of 30 years, vol.84, pp.1354-1359, 2010.

K. Ellmer, « Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties, J. Phys. D: Appl. Phys, vol.33, issue.4, pp.17-32, 2000.

P. Jensen, Growth of nanostructures by cluster deposition : a review, 1999.

L. Bardotti, « Diffusion and aggregation of large antimony and gold clusters deposited on graphite, Surface Science, vol.367, issue.3, pp.276-292, 1996.

K. Kyuno and G. Ehrlich, « Diffusion and dissociation of platinum clusters on Pt(111), Surface Science, vol.437, issue.1, pp.29-37, 1999.

C. M. Chang, C. M. Wei, and S. P. Chen, « Self-Diffusion of Small Clusters on fcc Metal (111) Surfaces », Phys. Rev. Lett, vol.85, issue.5, pp.1044-1047, 2000.

T. S. Rahman, C. Gosh, O. Trushin, A. Kara, and E. A. Karim, Atomistic studies of thin film growth », présenté à Optical Science and Technology, the SPIE 49th Annual Meeting, p.1, 2004.

A. Siad, « Etude numérique et expérimentale de la croissance de couches minces déposées par pulvérisation réactive, Ecole nationale supérieure d'arts et métiers-ENSAM, 2016.

M. Nie, N. Kaiser, and K. Ellmer, Growth and morphology evolution of semiconducting oxides and sulfides prepared by magnetron sputtering, Optimisation des paramètres de dépôt des couches minces de AZO 118, vol.2, 2014.

B. A. Movachan and A. V. Demchishin, Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Dioxide Fiz, vol.28, pp.83-90, 1969.

J. A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, vol.11, pp.666-670, 1974.

R. Messier, A. P. Giri, and R. A. Roy, « Revised structure zone model for thin film physical structure », Journal of Vacuum Science & Technology A, vol.2, issue.2, pp.500-503, 1984.

G. Maeder and «. Stress-measurement-», Chemica Scripta, vol.26, pp.23-31

R. Cebulla, R. Wendt, and K. Ellmer, « Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties », Journal of Applied Physics, vol.83, issue.2, pp.1087-1095, 1998.

H. C. Ong, A. X. Zhu, and G. T. Du, « Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films, Applied Physics Letters, vol.80, issue.6, pp.941-943, 2002.

S. Chu, W. Water, and J. Liaw, « Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering, Journal of the European Ceramic Society, vol.23, issue.10, pp.1593-1598, 2003.

N. Akin, S. Sebnem-cetin, M. Cakmak, T. Memmedli, and E. S. Ozcelik, « Effect of film thickness on properties of aluminum doped zinc oxide thin films deposition on polymer substrate, J Mater Sci: Mater Electron, vol.24, pp.5091-5096, 2013.

R. Vinodkumar, « Highly conductive and transparent laser ablated nanostructured Al: ZnO thin films, Applied Surface Science, vol.257, issue.3, pp.708-716, 2010.

G. H. Jo, S. Kim, and J. Koh, « Enhanced electrical and optical properties based on stress reduced graded structure of Al-doped ZnO thin films, Ceramics International, vol.44, issue.1, pp.735-741, 2018.

M. Jun, S. Park, and J. Koh, « Comparative studies of Al-doped ZnO and Gadoped ZnO transparent conducting oxide thin films, Nanoscale Research Letters, vol.7, issue.1, p.639, 2012.

G. Koh, « Laser annealing effects on Ga dopants for ZnO thin films for transparent conducting oxide applications, Ceramics International, vol.45, issue.5, pp.6190-6197, 2019.

J. A. Thornton and D. W. Hoffman, « Stress-related effects in thin films, Thin Solid Films, vol.171, issue.1, pp.5-31, 1989.

B. M. Kramer, « Requirements for wear-resistant coatings, Thin Solid Films, vol.108, issue.2, pp.117-125, 1983.

F. M. D'heurle, Aluminum films deposited by rf sputtering, vol.1, pp.725-732, 1970.

D. W. Hoffman and J. A. Thornton, « Internal stresses in sputtered chromium, Thin Solid Films, vol.40, pp.355-363, 1977.

S. Rahmane, M. S. Aida, M. A. Djouadi, and N. Barreau, « Effects of thickness variation on properties of ZnO:Al thin films grown by RF magnetron sputtering deposition, Superlattices and Microstructures, vol.79, pp.148-155, 2015.

B. Ayachi, « Towards full sputtering deposition process for CIGS solar cell fabrication: from single thin film deposition up to device characterization, p.197, 2016.

S. Y. Choi, K. Choi, and S. J. Kim, « Rapid thermal annealing effects on the electrical and structural properties of the AZO thin film deposited at a room temperature, Int. J. Adv. Res. Electr. Electron. Instrum. Eng, vol.2, pp.6034-6043, 2013.

Z. Tang, H. Koshino, S. Sato, H. Shimizu, and H. Shirai, « Rapid thermal annealing treatment of ZnO: Al films for photovoltaic applications », Journal of Non-Crystalline Solids, vol.358, pp.2501-2503, 2012.

H. J. Cho, « The effect of annealing on Al-doped ZnO films deposited by RF magnetron sputtering method for transparent electrodes, Thin Solid Films, vol.518, issue.11, pp.2941-2944, 2010.

C. Lennon, R. B. Tapia, R. Kodama, Y. Chang, S. Sivananthan et al., « Effects of annealing in a partially reducing atmosphere on sputtered Al-Doped ZnO thin films », Journal of Electronic Materials, vol.38, issue.8, pp.1568-1573, 2009.

J. Kim, « Rapid thermal annealed Al-doped ZnO film for a UV detector, Materials Letters, vol.65, issue.4, pp.786-789, 2011.

J. Cho, K. Yoon, M. Oh, and W. Choi, « Effects of H 2 Annealing Treatment on Photoluminescence and Structure of ZnO : Al / Al2 O 3 Grown by Radio-Frequency Magnetron Sputtering, J. Electrochem. Soc, vol.150, issue.10, pp.225-228, 2003.

H. P. Chang, F. H. Wang, J. Y. Wu, C. Y. Kung, and H. W. Liu, « Enhanced conductivity of aluminum doped ZnO films by hydrogen plasma treatment, Thin Solid Films, vol.518, pp.7445-7449, 2010.

B. Ayachi, T. Aviles, and J. Vilcot, Sion, « Rapid thermal annealing effect on the spatial resistivity distribution of AZO thin films deposited by pulsed-direct-current sputtering for solar cells applications, Applied Surface Science, vol.366, pp.53-58, 2016.

B. Oh, M. Jeong, D. Kim, W. Lee, and J. Myoung, « Post-annealing of Aldoped ZnO films in hydrogen atmosphere, Journal of Crystal Growth, vol.281, issue.2, pp.475-480, 2005.

W. Yang, « Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method, Applied Surface Science, vol.255, issue.11, pp.5669-5673, 2009.

C. Charpentier, « Investigation of deposition conditions and annealing treatments on sputtered ZnO:Al thin films: Material properties and application to microcristalline silicon solar cells, Theses, Ecole Polytechnique, 2012.

J. P. Kar, « Influence of sputtering pressure on morphological, mechanical and electrical properties of Al-doped ZnO films, Solid-State Electronics, vol.54, issue.11, pp.1447-1450, 2010.

S. Rahmane, M. A. Djouadi, M. S. Aida, N. Barreau, and B. Abdallah, Hadj Zoubir, « Power and pressure effects upon magnetron sputtered aluminum doped ZnO films properties, Thin Solid Films, vol.519, issue.1, pp.5-10, 2010.

N. Yamazoe, « New approaches for improving semiconductor gas sensors, Sensors and Actuators B: Chemical, vol.5, pp.7-19, 1991.

A. Van-der-drift, « Evolutionary selection, a principle governing growth orientation in vapour-deposited layers, Philips Res. Rep, vol.22, issue.3, p.267, 1967.

F. Wang, M. Z. Wu, Y. Y. Wang, Y. M. Yu, X. M. Wu et al., Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films », Vacuum, vol.89, pp.127-131, 2013.

H. Nanto, T. Minami, S. Shooji, and E. S. Takata, « Electrical and optical properties of zinc oxide thin films prepared by rf magnetron sputtering for transparent electrode applications, Journal of Applied Physics, vol.55, issue.4, pp.1029-1034, 1984.

N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, « Control of preferred orientation for ZnOx films: control of self-texture », Journal of Crystal Growth, vol.130, issue.2, pp.269-279, 1993.

N. P. Poddar and S. K. Mukherjee, « Investigations on preferentially oriented Al-doped ZnO films developed using rf magnetron sputtering, J Mater Sci: Mater Electron, vol.30, issue.1, pp.537-548, 2019.

P. R. Kalvani, A. R. Jahangiri, S. Shapouri, A. Sari, and Y. S. Jalili, « Multimode AFM analysis of aluminum-doped zinc oxide thin films sputtered under various substrate temperatures for optoelectronic applications, Superlattices and Microstructures, vol.132, p.106173, 2019.

J. Lee, « Effects of sputtering pressure and thickness on properties of ZnO:Al films deposited on polymer substrates, Journal of Electroceramics, vol.23, issue.2-4, pp.512-518, 2009.

S. Kuo, « Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films, Journal of Crystal Growth, vol.287, issue.1, pp.78-84, 2006.

G. Liang, P. Fan, X. Cai, D. Zhang, and Z. Zheng, « The Influence of Film Thickness on the Transparency and Conductivity of Al-Doped ZnO Thin Films Fabricated by Ion-Beam Sputtering », Journal of Elec Materi, vol.40, issue.3, pp.267-273, 2011.

M. Ali-y?ld?r?m and A. Ate?, « Influence of films thickness and structure on the photoresponse of ZnO films, Optics Communications, vol.283, issue.7, pp.1370-1377

Y. Akaltun, « Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction, Thin Solid Films, vol.594, pp.30-34, 2015.

D. Song, P. Widenborg, W. Chin, and A. G. Aberle, « Investigation of lateral parameter variations of Al-doped zinc oxide films prepared on glass substrates by rf magnetron sputtering, Solar Energy Materials and Solar Cells, vol.73, issue.1, pp.1-20, 2002.

L. Vandamme, =. Lodewijk, and . Lode, On 1/f noise in ohmic contacts ». Technische Hogeschool Eindhoven, 1976.

L. K. Vandamme, « 1/f noise of point contacts affected by uniform films, Journal of Applied Physics, vol.45, issue.10, pp.4563-4565, 1974.

E. Napieralska-juszczak, K. Komeza, F. Morganti, J. K. Sykulski, G. Vega et al., International Journal of Applied Electromagnetics and Mechanics, vol.53, issue.4, pp.617-629, 2017.

C. Pariset, Effet dimensionnel classique dans des couches minces de bismuth et d'antimoine », vol.91, pp.301-320, 1982.

T. Sun, « Surface and grain-boundary scattering in nanometric Cu films, Phys. Rev. B, vol.81, p.155454

A. F. Kohan, G. Ceder, D. Morgan, and C. , Van de Walle, « First-principles study of native point defects in ZnO, Phys. Rev. B, vol.61, pp.15019-15027, 2000.

L. K. Vandamme and A. Douib, Specific contact resistance and noise in contacts on thin layers, vol.25, pp.1125-1127, 1982.

L. K. Vandamme and H. J. Casier, « The 1/f Noise versus sheet resistance in poly-Si is similar to poly-SiGe resistors and Au-layers », présenté à ESSCIRC 2004 -Proceedings of the 34th European Solid-State Device Research Conference, pp.365-368, 2004.

S. Steinhauer, A. Köck, C. Gspan, W. Grogger, L. K. Vandamme et al., « Low-frequency noise characterization of single CuO nanowire gas sensor devices, Appl. Phys. Lett, vol.107, p.123112, 2015.

A. Barhoumi, « Correlations between 1/f noise and thermal treatment of Aldoped ZnO thin films deposited by direct current sputtering, Journal of Applied Physics, vol.115, p.204502, 2014.

G. P. , Zhigal'skii, « 1/f noise and nonlinear effects in thin metal films, Phys.-Usp, vol.40, issue.6, p.599, 1997.

L. K. Vandamme and J. Kedzia, « Concentration, mobility and 1/f noise of electrons and holes in thin bismuth films, Thin Solid Films, vol.65, issue.3, pp.283-292, 1980.

S. Yeh, W. Hsu, J. Lee, Y. Lee, and J. Lin, « 1/f noise in micrometersized ultrathin indium tin oxide films, Appl. Phys. Lett, vol.103, p.123118, 2013.

S. Tabassum, E. Yamasue, H. Okumura, and K. N. Ishihara, « Electrical stability of Aldoped ZnO transparent electrode prepared by sol-gel method, Applied Surface Science, vol.377, pp.355-360, 2016.

S. Tabassum, E. Yamasue, H. Okumura, and K. N. Ishihara, « Sol-gel and rf sputtered AZO thin films: analysis of oxidation kinetics in harsh environment, Journal of Materials Science: Materials in Electronics, vol.25, issue.11, pp.4883-4888, 2014.

T. L. Chen, D. S. Ghosh, D. Krautz, S. Cheylan, and V. Pruneri, « Highly stable Aldoped ZnO transparent conductors using an oxidized ultrathin metal capping layer at its percolation thickness, Applied Physics Letters, vol.99, issue.9, p.93302, 2011.

J. Lee, D. Lee, D. Lim, and K. Yang, electrical and optical properties of ZnO:Al films deposited on flexible organic substrates for solar cell applications, Thin Solid Films, vol.515, pp.6094-6098, 2007.

P. Sakthivel, R. Murugan, S. Asaithambi, M. Karuppaiah, S. Rajendran et al., « Influence of radiofrequency power on structural, morphological, optical and electrical properties of magnetron sputtered CdO: Sm thin films as alternative TCO for optoelectronic applications, Journal of Alloys and Compounds, vol.765, pp.146-157, 2018.

A. Spadoni and M. L. Addonizio, Effect of the RF sputtering power on microstructural, optical and electrical properties of Al doped ZnO thin films, Thin Solid Films, vol.589, pp.514-520, 2015.

A. Bikowski, T. Welzel, and K. Ellmer, « The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films, Applied Physics Letters, vol.102, p.242106, 2013.

A. Bikowski, T. Welzel, and K. Ellmer, « The correlation between the radial distribution of high-energetic ions and the structural as well as electrical properties of magnetron sputtered ZnO:Al films », Journal of Applied Physics, vol.114, p.223716, 2013.

S. Peng, « Influences of the RF power ratio on the optical and electrical properties of GZO thin films by DC coupled RF magnetron sputtering at room temperature, Physica B: Condensed Matter, vol.503, pp.111-116, 2016.

L. Xu, R. Wang, Y. Liu, D. Zhang, and E. Q. Xiao, « Influence of post-annealing on the properties of Ta-doped In2O3 transparent conductive films, vol.56, pp.1535-1538, 2011.

H. Dai, H. Xu, Y. Zhou, F. Lu, and Z. Fu, « Electrochemical Characteristics of Al 2 O 3 -Doped ZnO Films by Magnetron Sputtering, The Journal of Physical Chemistry C, vol.116, issue.1, pp.1519-1525

M. N. Rezaie, N. Manavizadeh, E. Nadimi, and F. A. Boroumand, « Quality enhancement of AZO thin films at various thicknesses by introducing ITO buffer layer, J Mater Sci: Mater Electron, vol.28, issue.13, pp.9328-9337, 2017.

M. Kim, K. Yim, J. Son, and J. Leem, « Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films, Bulletin of the Korean Chemical Society, vol.33, issue.4, pp.1235-1241, 2012.

S. Kuo, « Effects of RF power on the structural, optical and electrical properties of Al-doped zinc oxide films, Microelectronics Reliability, vol.50, pp.730-733, 2010.

E. Muchuweni, T. S. Sathiaraj, and H. Nyakotyo, « Physical properties of gallium and aluminium co-doped zinc oxide thin films deposited at different radio frequency magnetron sputtering power, Ceramics International, vol.42, pp.17706-17710, 2016.

N. E. Duygulu, A. O. Kodolbas, and A. Ekerim, « Effects of argon pressure and r.f. power on magnetron sputtered aluminum doped ZnO thin films, Journal of Crystal Growth, vol.394, pp.116-125, 2014.

R. Ondo-ndong, G. Ferblantier, M. Kalfioui, A. Boyer, and E. A. Foucaran, « Properties of RF magnetron sputtered zinc oxide thin films, Journal of Crystal Growth, vol.255, issue.1, pp.130-135, 2003.

R. G. Waykar, « Influence of RF power on structural, morphology, electrical, composition and optical properties of Al-doped ZnO films deposited by RF magnetron sputtering, J Mater Sci: Mater Electron, vol.27, issue.2, pp.1134-1143, 2016.

B. S. Chun, « The effect of deposition power on the electrical properties of Aldoped zinc oxide thin films », Appl. Phys. Lett, vol.97, issue.8, p.82109, 2010.

J. Kim, H. Kim, and D. K. Kim, Effect of RF Power on an Al-doped ZnO Thin Film Deposited by RF Magnetron Sputtering », Journal of the Korean Physical Society, vol.59, issue.3, pp.2349-2353, 2011.

V. Assunção, « New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering, Thin Solid Films, vol.442, issue.1, pp.102-106, 2003.

A. Achahour, « Suppression of contact noise in a study on 1/f noise as a function of film thickness in Al-doped ZnO, Thin Solid Films, vol.645, pp.70-76, 2018.

R. Lu, G. Xu, and J. Z. Wu, « Effects of thermal annealing on noise property and temperature coefficient of resistance of single-walled carbon nanotube films, Appl. Phys. Lett, vol.93, p.213101, 2008.

C. Wang, H. Zhong, E. Simoen, X. Jiang, Y. Jiang et al., « Structural Variation and Its Influence on the 1/f Noise of a-Si1-x Ru x Thin Films Embedded with Nanocrystals », Chinese Phys. Lett, vol.36, issue.2, p.28101, 2019.

M. Kotarski, J. Smulko, and «. Sensing, , 2009.

A. K. Vidybida, Adsorption-desorption noise can be used for improving selectivity, Sensors and Actuators A: Physical, vol.107, pp.233-237, 2003.

L. B. Kish, R. Vajtai, and C. G. Granqvist, « Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues, Sensors and Actuators B: Chemical, vol.71, issue.2, pp.55-59, 2000.

J. M. Smulko, L. B. Kish, and G. Schmera, « Application of nonlinearity measures to chemical sensor signals, Noise and Information in Nanoelectronics, Sensors, and Standards, vol.5115, pp.92-100, 2003.

V. Varlet, A. Bouvet, M. Augsburger, and «. , argon : utilisations, toxicité et stratégie analytique en toxicologie médicolégale, Ann Toxicol Anal, vol.24, issue.4, pp.185-192, 2012.

P. Shankar and J. B. Rayappan, « Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases -A review, p.19, 2015.

A. Dey, « Semiconductor metal oxide gas sensors: A review, Materials Science and Engineering: B, vol.229, pp.206-217, 2018.

A. Gurlo, « Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen, ChemPhysChem, vol.7, issue.10, pp.2041-2052, 2006.

A. Wei, L. Pan, and W. Huang, « Recent progress in the ZnO nanostructure-based sensors, Materials Science and Engineering: B, vol.176, pp.1409-1421, 2011.

J. Raoult and F. Pascal, Leyris, « I-V and low frequency noise characterization of poly and amorphous silicon Ti-and Co-salicide resistors, Thin Solid Films, vol.518, issue.9, pp.2497-2500

G. Leroy, J. Gest, L. K. Vandamme, and A. P. Van-deursen, « Analytical expressions for the conductance noise measured with four circular contacts placed in a square array, Journal of Applied Physics, vol.101, issue.6, p.63710, 2007.

L. Chenghua, Caractérisations électriques de polymères conducteurs intrinsèques Polyaniline/Polyuréthane dans une large gamme de fréquence (DC à 20 GHz), 2010.

T. Contaret, J. Seguin, P. Menini, and K. Aguir, « Physical-Based Characterization of Noise Responses in Metal-Oxide Gas Sensors, IEEE Sensors Journal, vol.13, issue.3, pp.980-986, 2013.

P. Kuberský, A. Hamá?ek, S. Ne?p?rek, R. Soukup, and R. Vik, « Effect of the geometry of a working electrode on the behavior of a planar amperometric NO2 sensor based on solid polymer electrolyte, Sensors and Actuators B: Chemical, vol.187, pp.546-552, 2013.

P. Sedlak, « Noise in amperometric NO2 sensor, 2013 22nd International Conference on Noise and Fluctuations (ICNF), pp.1-4, 2013.

J. Ederth, J. M. Smulko, L. B. Kish, P. Heszler, and C. G. Granqvist, « Comparison of classical and fluctuation-enhanced gas sensing with PdxWO3 nanoparticle films, Sensors and Actuators B: Chemical, vol.113, issue.1, pp.310-315, 2006.

J. M. Smulko, « New approaches for improving selectivity and sensitivity of resistive gas sensors: a review, Sensor Review, vol.35, issue.4, pp.340-347, 2015.

S. Steinhauer, A. Köck, C. Gspan, W. Grogger, L. K. Vandamme et al., « Low-frequency noise characterization of single CuO nanowire gas sensor devices, Appl. Phys. Lett, vol.107, p.123112, 2015.

L. Zhu and W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review, Sensors and Actuators A: Physical, vol.267, pp.242-261, 2017.

P. S. Kolhe, A. B. Shinde, S. G. Kulkarni, N. Maiti, P. M. Koinkar et al., « Gas sensing performance of Al doped ZnO thin film for H2S detection, Journal of Alloys and Compounds, vol.748, pp.6-11, 2018.

U. Cindemir, M. Trawka, J. Smulko, C. Granqvist, L. Österlund et al., « Fluctuation-enhanced and conductometric gas sensing with nanocrystalline NiO thin films: A comparison, Sensors and Actuators B: Chemical, vol.242, pp.132-139, 2017.

C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Metal Oxide Gas Sensors: Sensitivity and Influencing Factors », Sensors, vol.10, pp.2088-2106, 2010.

P. Sedlák, P. Kuberský, and F. Mívalt, Effect of various flow rate on current fluctuations of amperometric gas sensors, vol.283, pp.321-328, 2019.

A. Bejaoui, J. Guerin, J. A. Zapien, and K. Aguir, « Theoretical and experimental study of the response of CuO gas sensor under ozone, Sensors and Actuators B: Chemical, vol.190, pp.8-15, 2014.

T. Wolkenstein, Electronic Processes on Semiconductor Surfaces during Chemisorption, T. Wolkenstein, Éd, pp.35-82, 1991.

L. Yang, G. Leroy, J. Gest, and L. K. Vandamme, « 1/? noise in ZnO films, 2011 21st International Conference on Noise and Fluctuations, pp.90-93, 2011.

, Communications et publications Publications

?. A. Achahour, G. Leroy, L. K. Vandamme, B. Ayachi, B. Duponchel et al., Suppression of contact noise in a study on 1/f noise as a function of film thickness in Al-doped ZnO, Thin Solid Films, vol.645, pp.70-76, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02409513

?. S. Ben-ameur, A. Achahour, C. Liang, P. Ropa, and G. Leroy, Fluctuations-enhanced sensing of Al-doped ZnO Nano-films, The fourth International Conference on "Research to Aplications & Markets

?. A. Achahour, G. Leroy, N. Waldhoff, B. Ayachi, K. Blary et al., Vandamme, 1/f noise as function of thickness in Al-doped ZnO thin films, pp.20-23, 2017.

?. H. Slimi, A. Achahour, G. Leroy, N. Waldhoff, B. Duponchel et al., Effects of thickness on 1/f noise of Co and In co, pp.20-23, 2017.

?. A. Achahour, A. Souissi, R. Mimouni, G. Leroy, N. Waldhoff et al., Caractérisation par la mesure du bruit BF de couches minces de ZnO codopé Mo et In, Journées Nationales du Réseau Doctoral en Micronanoélectronique

?. A. Achahour, A. Souissi, R. Mimouni, G. Leroy, N. Waldhoff et al., Caractérisation par la mesure du bruit BF de couches minces de ZnO codopé Mo et In, Journées de caractérisation Microondes et Matériaux

?. A. Souissi, A. Achahour, G. Leroy, M. Amlouk, and S. Guermazi, Dépendance de la conductivité optique avec le bruit BF des couches minces ZnO codopé Molybdène et Indium, Quatrième Rencontre Francophone sur les matériaux isolants (4 ème RFMI) du 28 au 30 Octobre 2016 à Mahdia

. Résumé,

. Dans, nous avons réalisé et caractérisé des couches minces de AZO pour des applications capteurs ultrasensibles fonctionnant à la température ambiante. La méthode de détection des gaz choisie est la méthode de mesure du bruit basse fréquence (BF)

, Nous avons investigué l'effet de différents paramètres de dépôt sur la résistivité électrique afin de trouver un compromis entre eux et nous conduire à une faible résistivité. Pour cela, nous avons étudié l'influence de l'épaisseur des couches minces de AZO (50 nm à 450 nm) sur les propriétés structurales, morphologiques, électriques, L'élaboration du matériau est réalisée au moyen d'un bâti de pulvérisation cathodique RF à magnétron

, Une plateforme d'analyse des gaz contenant l'ensemble de l'instrumentation associée à notre capteur a été développée et présentée. Nous avons étudié en détail la réponse de la série de AZO en fonction de l'épaisseur sous différentes pressions l'oxygène injectées, et évalué les performances des différents capteurs. Les résultats obtenus ont montré que la détection de l'oxygène par la mesure de bruit BF est plus sensible que par la méthode en continue. Nous avons conclu de cette étude que : i) le niveau du bruit en 1/f mesuré pour un courant continu donné en présence de l'oxygène diminué par rapport à son niveau atteint à l'air ambiant, ii) la sensibilité Gnoise augmente avec l'augmentation de l'épaisseur de la couche active de AZO du capteur, iii) la sensibilité Gnoise augmente avec la pression d'oxygène puis sature, iv) le temps de réponse, Puis une étude de l'effet de la puissance RF de dépôt et du recuit post-dépôt sur les différentes propriétés est présentée