. Rp-hplc,

, Absorption chromatogram of H-(Me)FGC(S t Bu)K(Cy5.0A)-NH2 (?abs = 650 nm

, Emission chromatogram of H-(Me)FGC(S t Bu)K(Cy5.0A)-NH2 (?exc = 610 nm and detected at ?em = 665 nm)

, -carboxypropyl)(methyl)amino)phenyl)diazenyl)-7-(diethylamino)-5-phenylphenazin-5-ium BHQ3A

, NOBF4 (51 mg, 0.44 mmol, 1.1 eq.) was added and the reaction mixture was stirred at 0 °C during 1 h, Then

, 92 mg, 0.48 mmol, 1.2 eq.) in dry ACN (2 ml) was slowly added and using methanol in DCM and 1% triethylamine as eluent (gradient of 0% to 20%) and semi-preparative RP-HPLC (system B) affording BHQ3A as a blue solid, A solution of functionalized tertiary aniline 9

H. Nmr, 300 MHz, DMSO-d6) ? 12.16 (s, 1H), 8.34 (d, J = 9.0 Hz, 1H), 8.16 -8.06 (m, 2H), 7.99 -7.89 (m, 4H), 7.75 (dd, J = 6.5, 3.0 Hz, 2H), 7.69 (m, 3H), 7.15 (d, J = 1.8 Hz, 1H), vol.6

C. Nmr,

-. Ac and . Cy5, 0B)DEVDAK(Dde)-NH2

-. Ac and . Cy5, 0B)DEVDAK(Dde)-NH2 was prepared according to the general procedure 4 from Cy5, vol.8

, DIPEA (7.2 µl, 41.2 µmol, 5 eq.) in NMP (1 ml) and Ac-KDEVDAK(Dde)-NH2 (10 mg, TSTU (2.7 mg, 9.1 µmol, 1.1 eq.), vol.9

, The coupling was monitored by RP-HPLC and 12 was precipitated in cold Et2O. The crude solid was isolated by centrifugation and dissolved in DMF

, Hydroxylamine hydrochloride (2.9 mg, 41.2 µmol, 5 eq.) and imidazole (2.8 mg, 41.2 µmol, 5 eq.) were added. The reaction mixture was stirred at RT for 3 hours and Dde removal was monitored by

, Selected fractions were lyophilised to give the TFA salt of targeted peptide affording Ac-K(Cy5.0B)DEVDAK(Dde)-NH2 as blue solid (5.2 mg, 3.9 µmol

, HRMS calculated for C68H99N12O15

-. Ac and . Cy5, 0B)DEVDAK(BHQ3A)-NH2 P1

, NMP (150 µl) and Ac-K(Cy5.0B)DEVDAK(Dde)-NH2

, The coupling was monitored by RP-HPLC before purification by semi-preparative RP-HPLC (system A)

, HRMS calculated for C101H129Na3N18O16

. Rp-hplc,

, -methoxyethoxy)quinazolin-4-yl)amino)phenyl)-1H-1,2,3-triazol-1-yl)hexyl)-3,3-dimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-1-(5-carboxypentyl, vol.3, p.7

, DIPEA (33 µl, 190 µmol, 10 eq.), erlotinib (7.5 mg, 19 µmol, 1 eq.) and Cy5.0C (13 mg, 19 µmol, 1 eq.) in dry ACN (10 ml) affording 25 as a blue solid

, HRMS calculated for C56H65N8O10S2

. Rp-hplc,

, DIPEA (15 µl, 90 µmol, 10 eq.), erlotinib (3.5 mg, 9 µmol, 1 eq.) and MD130 (10 mg, 9 µmol, 1 eq.) in dry ACN (2 ml) affording 26 as a blue solid

, HRMS calculated for C84H111N14O9S2

. Rp-hplc,

, Absorption chromatogram of 26 (max plot mode) and corresponding absorption spectrum H-(Me)FGCK(Cy5.0A-erlotinib

, 300 µl of 0.1 M of aqueous solution of NaHCO3 affording the radiolabelable precursor 27 as a blue solid

, HRMS calculated for C80H103N14O9S

. Rp-hplc,

, sodium acetate (0.9 mg, 1 µmol, 1.5 eq.), ReOCl3(PPh3)2 (0.6 mg, 2.6 µmol, 1 eq.) were dissolved in MeOH (250 µl) and stirred at reflux (65 °C) overnight

, Formation of the complex was monitored by RP-HPLC before purification by semi-preparative RP-HPLC (system

R. Weissleder and M. J. Pittet, Imaging in the Era of Molecular Oncology, Nature, vol.452, issue.7187, pp.580-589, 2008.

M. L. James and S. S. Gambhir, A Molecular Imaging Primer: Modalities, Imaging Agents, and Applications, Physiol. Rev, vol.2012, issue.2, pp.897-965

I. S. Alam, M. A. Arshad, Q. Nguyen, and E. O. Aboagye, Radiopharmaceuticals as Probes to Characterize Tumour Tissue, Eur. J. Nucl. Med. Mol. Imaging, vol.42, issue.4, pp.537-561, 2015.

E. A. Owens, M. Henary, G. El-fakhri, and H. S. Choi, Tissue-Specific Near-Infrared Fluorescence Imaging, Acc. Chem. Res, vol.49, issue.9, pp.1731-1740, 2016.

B. Ballou, L. A. Ernst, and A. S. Waggoner, Fluorescence Imaging of Tumors in Vivo, Curr. Med. Chem, vol.12, issue.7, pp.795-805, 2005.

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging, Chem. Rev, vol.110, issue.5, pp.2620-2640, 2010.

A. Mochida, F. Ogata, T. Nagaya, P. L. Choyke, and H. Kobayashi, Activatable Fluorescent Probes in Fluorescence-Guided Surgery: Practical Considerations, Bioorg. Med. Chem, vol.26, issue.4, pp.925-930, 2018.

T. Nagaya, Y. A. Nakamura, P. L. Choyke, and H. Kobayashi, Fluorescence-Guided Surgery. Front. Oncol, vol.2017, issue.314, pp.1-16

C. Wang, Z. Wang, T. Zhao, Y. Li, G. Huang et al., Optical Molecular Imaging for Tumor Detection and Image-Guided Surgery, Biomaterials, vol.157, pp.62-75, 2018.

,

M. Garland, J. J. Yim, and M. Bogyo, A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application, Cell Chem. Biol, vol.23, issue.1, pp.122-136, 2016.

M. Gao, F. Yu, C. Lv, J. Choo, and L. Chen, Fluorescent Chemical Probes for Accurate Tumor Diagnosis and Targeting Therapy, Chem. Soc. Rev, vol.2017, issue.8, pp.2237-2271

K. R. Zinn, M. Korb, S. Samuel, J. M. Warram, D. Dion et al., IND-Directed Safety and Biodistribution Study of Intravenously Injected Cetuximab-IRDye800 in Cynomolgus Macaques, Mol. Imaging Biol, vol.17, issue.1, pp.49-57, 2015.

E. L. Rosenthal, J. M. Warram, E. De-boer, T. K. Chung, M. L. Korb et al., Safety and Tumor Specificity of Cetuximab-IRDye800 for Surgical Navigation in Head and Neck Cancer, Clin. Cancer Res, vol.21, issue.16, pp.3658-3666, 2015.

L. E. Sanman and M. Bogyo, Activity-Based Profiling of Proteases, Annu. Rev. Biochem, vol.83, issue.1, pp.249-273, 2014.

T. Fujii, M. Kamiya, and Y. Urano, In Vivo Imaging of Intraperitoneally Disseminated Tumors in Model Mice by Using Activatable Fluorescent Small-Molecular Probes for Activity of Cathepsins, Bioconjug. Chem, issue.10, pp.1838-1846, 2014.

T. Yogo, K. Umezawa, M. Kamiya, R. Hino, and Y. Urano, Development of an Activatable Fluorescent Probe for Prostate Cancer Imaging, Bioconjug. Chem, issue.8, pp.2069-2076, 2017.

,

Y. Urano, M. Sakabe, N. Kosaka, M. Ogawa, M. Mitsunaga et al., Rapid Cancer Detection by Topically Spraying a -Glutamyltranspeptidase-Activated Fluorescent Probe, Sci. Transl. Med, vol.2011, issue.110, pp.1-10

,

Y. Miyata, T. Ishizawa, M. Kamiya, S. Yamashita, K. Hasegawa et al., Intraoperative Imaging of Hepatic Cancers Using ?-Glutamyltranspeptidase-Specific Fluorophore Enabling Real-Time Identification and Estimation of Recurrence, Sci. Rep, vol.2017, issue.1, pp.1-10

H. Kubo, K. Hanaoka, Y. Kuriki, T. Komatsu, T. Ueno et al., Rapid Detection of Metastatic Lymph Nodes of Colorectal Cancer with a Gamma-Glutamyl Transpeptidase-Activatable Fluorescence Probe, Sci. Rep, vol.8, issue.1, p.17781, 2018.

K. E. Sapsford, L. Berti, and I. L. Medintz, Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor-Acceptor Combinations, Angew. Chem. Int. Ed, vol.45, issue.28, pp.4562-4589, 2006.

H. Hu, S. Gehrig, G. Reither, D. Subramanian, M. A. Mall et al., FRET-Based and Other Fluorescent Proteinase Probes, Biotechnol. J, vol.2014, issue.2, pp.266-281

,

L. O. Ofori, N. P. Withana, T. R. Prestwood, M. Verdoes, J. J. Brady et al., Design of Protease Activated Optical Contrast Agents That Exploit a Latent Lysosomotropic Effect for Use in Fluorescence-Guided Surgery, ACS Chem. Biol, vol.10, issue.9, pp.1977-1988, 2015.

J. J. Yim, M. Tholen, A. Klaassen, J. Sorger, and M. Bogyo, Optimization of a Protease Activated Probe for Optical Surgical Navigation, Mol. Pharm, vol.15, issue.3, pp.750-758, 2018.

,

S. Achilefu, Introduction to Concepts and Strategies for Molecular Imaging, Chem. Rev, vol.110, issue.5, pp.2575-2578, 2010.

L. E. Jennings and N. J. Long, Two Is Better than One'-Probes for Dual-Modality Molecular Imaging, Chem. Commun, issue.24, pp.3511-3524, 2009.

F. L. Thorp-greenwood and M. P. Coogan, Multimodal Radio-(PET/SPECT) and Fluorescence Imaging Agents Based on Metallo-Radioisotopes: Current Applications and Prospects for Development of New Agents, Dalton Trans, vol.40, issue.23, pp.6129-6143, 2011.

J. Culver, W. Akers, and S. Achilefu, Multimodality Molecular Imaging with Combined Optical and SPECT/PET Modalities, J. Nucl. Med, vol.49, issue.2, pp.169-172, 2008.

U. Seibold, B. Wängler, R. Schirrmacher, and C. Wängler, Bimodal Imaging Probes for Combined PET and OI: Recent Developments and Future Directions for Hybrid Agent Development, BioMed Res. Int, pp.1-13, 2014.

A. Paulus, P. Desai, B. Carney, G. Carlucci, T. Reiner et al., Development of a Clickable Bimodal Fluorescent/PET Probe for in Vivo Imaging, EJNMMI Res, vol.2015, issue.1

Y. Gai, G. Xiang, X. Ma, W. Hui, Q. Ouyang et al., Universal Molecular Scaffold for Facile Construction of Multivalent and Multimodal Imaging Probes, Bioconjug. Chem, vol.27, issue.3, pp.515-520, 2016.

J. Meyer, P. Adumeau, J. S. Lewis, and B. M. Zeglis, Click Chemistry and Radiochemistry: The First 10 Years, Bioconjug. Chem, issue.12, pp.2791-2807, 2016.

A. P. Gorka, R. R. Nani, and M. J. Schnermann, Cyanine Polyene Reactivity: Scope and Biomedical Applications, Org Biomol Chem, vol.13, issue.28, pp.7584-7598, 2015.

W. Sun, S. Guo, C. Hu, J. Fan, and X. Peng, Recent Development of Chemosensors Based on Cyanine Platforms, Chem. Rev, vol.116, issue.14, pp.7768-7817, 2016.

S. M. Usama, T. Thompson, and K. Burgess, Productive Manipulation of Cyanine Dye ?-Networks, Angew. Chem. Int. Ed, vol.59, issue.2-5, 2019.

R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, C. J. Lewis, and A. S. Waggoner, Cyanine Dye Labeling Reagents: Sulfoindocyanine Succinimidyl Esters, Bioconjug. Chem, vol.4, issue.2, pp.105-111, 1993.

B. Chipon, G. Clavé, C. Bouteiller, M. Massonneau, P. Renard et al., Synthesis and Post-Synthetic Derivatization of a Cyanine-Based Amino Acid. Application to the Preparation of a Novel Water-Soluble NIR Dye, Tetrahedron Lett, issue.47, pp.8279-8284, 2006.

A. M. Brouwer, Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report), Pure Appl. Chem, vol.83, issue.12, pp.2213-2228, 2011.

E. Boros and A. B. Packard, Radioactive Transition Metals for Imaging and Therapy, Chem. Rev, vol.2019, issue.2, pp.870-901

M. Bartholomä, J. Valliant, K. P. Maresca, J. Babich, and J. Zubieta, Single Amino Acid Chelates (SAAC): A Strategy for the Design of Technetium and Rhenium Radiopharmaceuticals, Chem Commun, issue.5, pp.493-512, 2009.

S. Ahlgren, K. Andersson, and V. Tolmachev, Kit Formulation for 99mTc-Labeling of Recombinant Anti-HER2 Affibody Molecules with a C-Terminally Engineered Cysteine, Nucl. Med. Biol, vol.37, issue.5, pp.539-546, 2010.

P. Bohn, F. Mouchard, J. Rouvet, A. De-boisgrollier, and P. Vera, Me)FGCDEVD, a Potential Tracer for Apoptosis Detection, Bioorg. Med. Chem. Lett, vol.23, issue.5, pp.1375-1378, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00937472

W. Bannwarth and R. Knorr, Formation of Carboxamides with N,N,N?,N?-Tetramethyl (Succinimido) Uronium Tetrafluoroborate in Aqueous / Organic Solvent Systems, Tetrahedron Lett, vol.32, issue.9, pp.1157-1160, 1991.

K. Ralhan, V. G. Krishnakumar, and S. Gupta, Piperazine and DBU: A Safer Alternative for Rapid and Efficient Fmoc Deprotection in Solid Phase Peptide Synthesis, RSC Adv, vol.2015, issue.126, pp.104417-104425

J. F. Kerr, A. H. Wyllie, and A. R. Currie, Apoptosis: A Basic Biological Phenomenon with Wideranging Implications in Tissue Kinetics, Br. J. Cancer, vol.26, issue.4, pp.239-257, 1972.

J. Denault and G. S. Salvesen, Caspases: Keys in the Ignition of Cell Death, Chem. Rev, vol.102, issue.12, pp.4489-4500, 2002.

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.

B. A. Smith and B. D. Smith, Biomarkers and Molecular Probes for Cell Death Imaging and Targeted Therapeutics, Bioconjug. Chem, vol.2012, issue.10, pp.1989-2006

N. A. Thornberry, Caspases: Enemies Within, Science, vol.281, issue.5381, pp.1312-1316, 1998.

L. E. Edgington, M. Verdoes, and M. Bogyo, Functional Imaging of Proteases: Recent Advances in the Design and Application of Substrate-Based and Activity-Based Probes, Curr. Opin. Chem. Biol, vol.15, issue.6, pp.798-805, 2011.

L. E. Edgington-mitchell and M. Bogyo, Detection of Active Caspases During Apoptosis Using Fluorescent Activity-Based Probes, In Programmed Cell Death, vol.1419, pp.27-39, 2016.

L. E. Edgington, A. B. Berger, G. Blum, V. E. Albrow, M. G. Paulick et al., Noninvasive Optical Imaging of Apoptosis by Caspase-Targeted Activity-Based Probes, Nat. Med, vol.15, issue.8, pp.967-973, 2009.

Y. Shaulov-rotem, E. Merquiol, T. Weiss-sadan, O. Moshel, S. Salpeter et al., A Novel Quenched Fluorescent Activity-Based Probe Reveals Caspase-3 Activity in the Endoplasmic Reticulum during Apoptosis, Chem. Sci, vol.2016, issue.2, pp.1322-1337

,

K. Bullok and D. Piwnica-worms, Synthesis and Characterization of a Small, Membrane-Permeant, Caspase-Activatable Far-Red Fluorescent Peptide for Imaging Apoptosis, J. Med. Chem, issue.17, pp.5404-5407, 2005.

K. E. Bullok, D. Maxwell, A. H. Kesarwala, S. Gammon, J. L. Prior et al., Piwnica-Worms, D. Biochemical and in Vivo Characterization of a Small, Membrane-Permeant, Caspase-Activatable Far-Red Fluorescent Peptide for Imaging Apoptosis ?, Biochemistry, vol.46, issue.13, pp.4055-4065, 2007.

D. Maxwell, Q. Chang, X. Zhang, E. M. Barnett, and D. Piwnica-worms, An Improved Cell-Penetrating, Caspase-Activatable, Near-Infrared Fluorescent Peptide for Apoptosis Imaging, Bioconjug. Chem, vol.20, issue.4, pp.702-709, 2009.

M. Debunne, C. Portal, B. Delest, E. Brakenhielm, F. Lallemand et al., In Vitro and Ex Vivo Evaluation of Smart Infra-Red Fluorescent Caspase-3 Probes for Molecular Imaging of Cardiovascular Apoptosis, Int. J. Mol. Imaging, pp.1-13, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02296580

V. Jolivel, S. Arthaud, B. Botia, C. Portal, B. Delest et al., Biochemical Characterization of a Caspase-3 Far-Red Fluorescent Probe for Non-Invasive Optical Imaging of Neuronal Apoptosis, J. Mol. Neurosci, vol.54, issue.3, pp.451-462, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01196843

H. Su, G. Chen, U. Gangadharmath, L. F. Gomez, Q. Liang et al., Evaluation of [18F]-CP18 as a PET Imaging Tracer for Apoptosis, Mol. Imaging Biol, vol.15, issue.6, pp.739-747, 2013.

C. Xia, G. Chen, U. Gangadharmath, L. F. Gomez, Q. Liang et al., In Vitro and In Vivo Evaluation of the Caspase-3 Substrate-Based Radiotracer [18F]-CP18 for PET Imaging of Apoptosis in Tumors, Mol. Imaging Biol, vol.15, issue.6, pp.748-757, 2013.

F. G. Blankenberg and J. F. Norfray, Multimodality Molecular Imaging of Apoptosis in Oncology, Am. J. Roentgenol, vol.197, issue.2, pp.308-317, 2011.

C. Xiong, W. Lu, R. Zhang, M. Tian, W. T. Gelovani et al., Cell-Permeable 99mTc(CO3)-Labeled Fluorogenic Caspase 3 Substrate for Dual-Modality Detection of Apoptosis, vol.15, pp.8979-8984

H. Lee, W. J. Akers, P. P. Cheney, W. B. Edwards, K. Liang et al., Complementary Optical and Nuclear Imaging of Caspase-3 Activity Using Combined Activatable and Radio-Labeled Multimodality Molecular Probe, J. Biomed. Opt, vol.14, issue.4, pp.405071-0405073, 2009.

M. Mackay, A. M. ;-p?rez-l?pez, M. Bradley, and A. Lilienkampf, Eliminating Caspase-7 and Cathepsin B Cross-Reactivity on Fluorogenic Caspase-3 Substrates, Mol BioSyst, vol.12, issue.3, pp.693-696, 2016.

C. J. Vickers, G. E. González-páez, and D. W. Wolan, Selective Detection and Inhibition of Active Caspase-3 in Cells with Optimized Peptides, J. Am. Chem. Soc, vol.135, issue.34, pp.12869-12876, 2013.

C. J. Vickers, G. E. González-páez, and D. W. Wolan, Discovery of a Highly Selective Caspase-3 Substrate for Imaging Live Cells, ACS Chem. Biol, vol.2014, issue.10, pp.2199-2203

L. Jouanno, A. Chevalier, N. Sekkat, N. Perzo, H. Castel et al., Kondrat'eva Ligation: Diels-Alder-Based Irreversible Reaction for Bioconjugation, J. Org. Chem, issue.21, pp.10353-10366, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01144842

A. Chevalier, P. Renard, and A. Romieu, Azo-Based Fluorogenic Probes for Biosensing and Bioimaging: Recent Advances and Upcoming Challenges, Chem. -Asian J, vol.12, issue.16, pp.2008-2028, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01562215

A. Chevalier, C. Massif, P. Renard, and A. Romieu, Bioconjugatable Azo-Based Dark-Quencher Dyes: Synthesis and Application to Protease-Activatable Far-Red Fluorescent Probes, Chem. -Eur. J, vol.19, issue.5, pp.1686-1699, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00996530

D. S. Pisoni, L. Todeschini, A. C. Borges, C. L. Petzhold, F. S. Rodembusch et al., Symmetrical and Asymmetrical Cyanine Dyes. Synthesis, Spectral Properties, and BSA Association Study, J. Org. Chem, issue.12, pp.5511-5520, 2014.

K. E. Linder, E. Metcalfe, P. Nanjappan, T. Arunachalam, K. Ramos et al., Vitro Evaluation, and In Vivo Metabolism of Fluor/Quencher Compounds Containing IRDye 800CW and Black Hole Quencher-3 (BHQ-3), pp.1287-1297, 2011.

W. C. Chan, B. W. Bycroft, D. J. Evans, and P. D. White, A Novel 4-Aminobenzyl Ester-Based Carboxy-Protecting Group for Synthesis of Atypical Peptides by Fmoc-But Solid-Phase Chemistry, J. Chem. Soc. Chem. Commun, vol.21, pp.2209-2210, 1995.

T. Conroy, K. A. Jolliffe, and R. J. Payne, Efficient Use of the Dmab Protecting Group: Applications for the Solid-Phase Synthesis of N-Linked Glycopeptides, Org. Biomol. Chem, vol.7, issue.11, pp.2255-2258, 2009.

L. Raibaut, H. Drobecq, and O. Melnyk, Selectively Activatable Latent Thiol and Selenolesters Simplify the Access to Cyclic or Branched Peptide Scaffolds, Org. Lett, issue.14, pp.3636-3639, 2015.

J. Ruczy?ski, B. Lewandowska, P. Mucha, and P. Rekowski, Problem of Aspartimide Formation in Fmoc-Based Solid-Phase Peptide Synthesis Using Dmab Group to Protect Side Chain of Aspartic Acid, J. Pept. Sci, vol.14, issue.3, pp.335-341, 2008.

A. Isidro-llobet, M. Alvarez, and F. Albericio, Amino Acid-Protecting Groups, Chem. Rev, vol.109, issue.6, pp.2455-2504, 2009.

E. M. Sletten and C. R. Bertozzi, Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality, Angew. Chem. Int. Ed, vol.48, issue.38, pp.6974-6998, 2009.

S. I. Presolski, V. P. Hong, and M. G. Finn, Copper-Catalyzed Azide-Alkyne Click Chemistry for Bioconjugation, Current Protocols in Chemical Biology

A. P. Arkin, L. Mahal, F. Romesberg, K. Shah, C. Shamu et al., , vol.110148, 2011.

A. Mortlock, K. Foote, J. Kettle, and B. Aquila, Kinase Inhibitors in Cancer, Reference Module in Chemistry, 2014.

S. Peters and D. C. Betticher, Rôle de l'EGFR dans le cancer pulmonaire non à petites cellules, Rev. Médicale Suisse, vol.5, pp.1096-1100, 2009.

R. Vardanyan, V. Hruby, and . Agents, In Synthesis of Best-Seller Drugs, pp.495-547, 2016.

J. Dowell, J. D. Minna, P. E. Kirkpatrick, and . Hydrochloride, Nat. Rev. Drug Discov, vol.4, issue.1, pp.13-14, 2005.

A. Cortot, Rôle du récepteur à l'EGF dans la survenue et le traitement des cancers bronchiques non à petites cellules -EGFR plays a key-role in the pathogenesis and treatment of non-small-cell lung cancer, p.7, 2007.

E. Dansin and C. Ferté, Indications des inhibiteurs de tyrosine kinase de l'EGFR dans le cancer bronchique non à petites cellules : pratiques actuelles et perspectives, vol.8

P. Slobbe, A. J. Poot, A. D. Windhorst, G. A. Van-dongen, and . Pet, Imaging with Small-Molecule Tyrosine Kinase Inhibitors: TKI-PET, Drug Discov. Today, vol.2012, pp.1175-1187

A. A. Memon, S. Jakobsen, F. Dagnaes-hansen, B. S. Sorensen, S. Keiding et al., Positron Emission Tomography (PET) Imaging with [11C]-Labeled Erlotinib: A Micro-PET Study on Mice with Lung Tumor Xenografts, Cancer Res, vol.69, issue.3, pp.873-878, 2009.

I. Bahce, E. F. Smit, M. Lubberink, A. A. Van-der-veldt, M. Yaqub et al., Development of [11C]Erlotinib Positron Emission Tomography for In Vivo Evaluation of EGF Receptor Mutational Status, Clin. Cancer Res, vol.19, issue.1, pp.183-193, 2013.

A. Jain, M. Kameswaran, U. Pandey, K. Prabhash, and H. D. Sarma, Dash, A. 68 Ga Labeled Erlotinib: A Novel PET Probe for Imaging EGFR over-Expressing Tumors, Bioorg. Med. Chem. Lett, vol.2017, issue.19, pp.4552-4557

F. Guisier, P. Bohn, M. Patout, N. Piton, I. Farah et al., In-and Ex-Vivo Molecular Imaging of Apoptosis to Assess Sensitivity of Non-Small Cell Lung Cancer to EGFR Inhibitors Using Probe-Based Confocal Laser Endomicroscopy, PLOS ONE, vol.2017, issue.7
URL : https://hal.archives-ouvertes.fr/hal-01643963

M. Patout, F. Guisier, X. Brune, P. Bohn, A. Romieu et al., Real-Time Molecular Optical Micro-Imaging of EGFR Mutations Using a Fluorescent Erlotinib Based Tracer, BMC Pulm. Med, vol.19, issue.3, pp.1-9, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02353026

J. L. Merlin, Les inhibiteurs de tyrosine kinase en oncologie -Tyrosine kinase inhibitors in oncology, vol.14

S. H. Ahn and E. Boros, Nuclear and Optical Bimodal Imaging Probes Using Sequential Assembly: A Perspective, Cancer Biother. Radiopharm, vol.33, issue.8, pp.308-315, 2018.

C. Canovas, M. Moreau, J. Vrigneaud, P. Bellaye, B. Collin et al., Modular Assembly of Multimodal Imaging Agents through an Inverse Electron Demand Diels-Alder Reaction, Bioconjug. Chem, vol.2019, issue.3, pp.888-897

C. Shi, J. B. Wu, and D. Pan, Review on Near-Infrared Heptamethine Cyanine Dyes as Theranostic Agents for Tumor Imaging, Targeting, and Photodynamic Therapy, J. Biomed. Opt, vol.21, issue.5, pp.509011-05090111, 2016.

J. Richard, M. Massonneau, P. Renard, and A. Romieu, Hydroxycoumarin?Hemicyanine Hybrids: A New Class of Far-Red Emitting Fluorogenic Dyes, pp.4175-4178, 2008.

M. V. Kvach, A. V. Ustinov, I. A. Stepanova, A. D. Malakhov, M. V. Skorobogatyi et al., A Convenient Synthesis of Cyanine Dyes: Reagents for the Labeling of Biomolecules, Eur. J. Org. Chem, issue.12, pp.2107-2117, 2008.

J. Murray, D. Nowak, L. Pukenas, R. Azhar, M. Guillorit et al., Solid Phase Synthesis of Functionalised SAM-Forming Alkanethiol-Oligoethyleneglycols, J Mater Chem B, vol.2014, issue.24, pp.3741-3744

L. Yao, B. T. Smith, and J. Aubé, Base-Promoted Reactions of Bridged Ketones and 1,3-and 1,4-Haloalkyl Azides: Competitive Alkylation vs Azidation Reactions of Ketone Enolates, J. Org. Chem, vol.69, issue.5, pp.1720-1722, 2004.

. Résumé,

, La qualité du diagnostic oncologique, déterminant la thérapie et le pronostic du patient, repose sur différentes techniques d'imagerie ou modalités, associées à des molécules de contraste afin de générer une image représentative

, L'imagerie moléculaire, incluant l'imagerie optique de fluorescence et l'imagerie nucléaire, est couramment utilisée pour la prise en charge oncologique des patients

. Récemment and M. De-molécules-de-contraste-appelée, MOnomolecular Multimodal Imaging Agent) a émergé, associant plusieurs modalités au sein d'une structure moléculaire unique. Cette combinaison performante cumule les forces de chacune des modalités combinées en palliant leur limitation respective

C. Dans-ce, ces travaux de thèse portent sur le développement et l'exploitation d'une plateforme polyvalente bimodale (fluorescente et radioactive) composée d'un synthon peptidique, radiomarquable par chélation du 99m Tc, couplé à fluorophore présentant des propriétés spectroscopiques d'émission dans le proche infra-rouge, gamme spectrale privilégiée pour l'imagerie in vivo. Cette plateforme est finalement clickable à toute (bio)molécule d'intérêt

, L'exploitation de cette plateforme bimodale clickable a été explorée dans le contexte du diagnostic oncologique via deux cibles enzymatiques principales : la caspase-3 et les tyrosine-kinases

, Les étapes de conception, synthèse, optimisation, développement et validation biologique préliminaire in vitro de la plateforme et des sondes dérivées bimodales sont présentés

, Mots clés : imagerie moléculaire, multimodalité, fluorescence, SPECT, caspase-3, erlotinib Abstract Oncologic healthcare and remission prognosis rely on a reliable and accurate diagnosis. Molecular imaging, including optical and nuclear imaging, is currently used for the management cancer therapy

, Recently, a new class of bio-imaging agent called MOMIA (MOnomolecular Multimodal Imaging Agent) emerged by combining the synergistic strengths of several modalities on the same molecular structure

, We envisioned to merge optical and nuclear imaging in order to develop a molecular tool offering a non-invasive, highly resolutive and sensitive detection

, Our approach relies on a universal bimodal clickable scaffold with a selected targeting ligand. Two distinct enzymatic targets have been explored in the oncologic context: caspase-3 as a key component in an apoptotic program and tyrosine kinase inhibitors involved in lung cancer therapy

, These multimodal sensors have a promising potential in translational clinical applications. Key words: molecular imaging, multimodality, fluorescence, SPECT, p.3