, Request a new user account by sending an e-mail to: bernard.offmann@univ-nantes.fr) References

N. V. Bhagavan and C. Ha, Essentials of Medical Biochemistry, 2011.

C. Christiansen, Geriatric Physical Therapy, 2012.

F. Côté and M. G. Hahn, Oligosaccharins: structures and signal transduction, Plant Mol. Biol, 1994.

D. S. Newburg, G. M. Ruiz-palacios, and A. L. Morrow, HUMAN MILK GLYCANS PROTECT INFANTS AGAINST ENTERIC PATHOGENS, Annu. Rev. Nutr, 2005.

R. Stern and M. J. Jedrzejas, Carbohydrate polymers at the Center of life's origins: The importance of molecular processivity, Chem. Rev, 2008.

R. Geys, W. Soetaert, and I. Van-bogaert, Biotechnological opportunities in biosurfactant production, Current Opinion in Biotechnology, 2014.

V. K?en and T. ?ezanka, Sweet antibiotics -The role of glycosidic residues in antibiotic and antitumor activity and their randomization, FEMS Microbiology Reviews, 2008.

M. H. Ribeiro, Naringinases: Occurrence, characteristics, and applications, Applied Microbiology and Biotechnology, 2011.

J. E. Wallace and L. R. Schroeder, Koenigs-Knorr reactions. Part 1. Effects of a 2-O-acetyl substituent, the promoter, and the alcohol concentration on the stereoselectivity of reactions of 1,2-cis-glucopyranosyl bromide, J. Chem. Soc., Perkin Trans. 1, 1976.

J. E. Wallace and L. R. Schroeder, Koenigs-Knorr reactions. Part II. A mechanistic study of mercury( II ) cyanide-promoted reactions of 2,3,4,6-tetra-O-methyl-?-D -glucopyranosyl bromide with cyclohexanol in benzene-nitromethane, J. Chem. Soc., Perkin Trans, vol.2, 1976.

J. E. Wallace and L. R. Schroeder, Koenigs-Knorr reactions. Part 3. Mechanistic study of mercury(II) cyanide promoted reactions of 2-O-acetyl-3,4,6-tri-O-methyl-?-Dglucopyranosyl bromide with cyclohexanol in benzene-nitromethane, J. Chem. Soc. Perkin Trans, vol.2, 1977.

N. J. Agard, Chemical approaches to glycobiology, ACS Symp. Ser, vol.990, pp.251-271, 2008.

L. ;. Kürti and B. Czakó, of Named Reactions in Organic Synthesis, 2005.

M. R. Hayes and J. Pietruszka, Synthesis of glycosides by glycosynthases, Molecules, vol.22, 2017.

K. C. Nicolaou and H. J. Mitchell, Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology, Angew. Chem., Int. Ed, vol.2, 2001.

N. L. Douglas, S. V. Ley, U. Lücking, and S. L. Warriner, Tuning glycoside reactivity: New tool for efficient oligosaccharide synthesis, J. Chem. Soc. Perkin Trans, p.1, 1998.

P. Grice, S. V. Ley, J. Pietruszka, H. W. Priepke, and E. P. Walther, Tuning the Reactivity of Glycosides: Efficient One-pot Oligosaccharide Synthesis, Synlett, vol.7, pp.781-784, 1995.

L. Green, One-pot synthesis of tetra-and pentasaccharides from monomeric building blocks using the principles of orthogonality and reactivity tuning, Synlett, 1997.

Y. Chen, Improved synthesis of 1-O-acyl-?-D-glucopyranose tetraacetates, Molecules, vol.22, pp.1-11, 2017.

R. B. Conrow and S. Bernstein, Steroid Conjugates. VI.1aAn Improved Koenigs-Knorr Synthesis of Aryl Glucuronides Using Cadmium Carbonate, a New and Effective Catalyst11b, J. Org. Chem, 1971.

R. U. Lemieux, K. B. Hendriks, R. V. Stick, and K. James, Halide Ion Catalyzed Glycosidation Reactions. Syntheses of ?-Linked Disaccharides, J. Am. Chem. Soc, 1975.

I. E. Ackermann, D. V. Banthorpe, W. D. Fordham, J. P. Kinder, and I. Poots, Preparation of New Terpenyl ? D Glucopyranosides by a Modified Königs Knorr Procedure, Liebigs Ann. der Chemie, pp.79-81, 1989.

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, 2014.

D. H. Crout and G. Vic, Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis, Curr. Opin. Chem. Biol, vol.2, pp.98-111, 1998.

L. L. Lairson and S. G. Withers, Mechanistic analogies amongst carbohydrate modifying enzymes, Chemical Communications, vol.10, pp.2243-2248, 2004.

B. M. De-roode, M. C. Franssen, A. Van-der-padt, and R. M. Boom, Perspectives for the Industrial Enzymatic Production of Glycosides, Biotechnology Progress, 2003.

F. Van-rantwijk, M. Woudenberg-van-oosterom, and R. A. Sheldon, Glycosidase-catalysed synthesis of alkyl glycosides, Journal of Molecular Catalysis -B Enzymatic, 1999.

C. Goedl, T. Sawangwan, P. Wildberger, and B. Nidetzky, Sucrose phosphorylase: A powerful transglucosylation catalyst for synthesis of ?-D-glucosides as industrial fine chemicals, Biocatal. Biotransformation, 2010.

S. J. Reid and V. R. Abratt, Sucrose utilisation in bacteria: Genetic organisation and regulation, Appl. Microbiol. Biotechnol, vol.67, pp.312-321, 2005.

W. L. Library, Studies on the, pp.351-362, 1943.

G. P. Moss, Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse, 2012.

M. R. Stam, E. G. Danchin, C. Rancurel, P. M. Coutinho, and B. Henrissat, Dividing the large glycoside hydrolase family 13 into subfamilies: Towards improved functional annotations of ?-amylase-related proteins, Protein Eng. Des. Sel, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02668771

J. Lee, Molecular cloning of a gene encoding the sucrose phosphorylase from Leuconostoc mesenteroides B-1149 and the expression in Escherichia coli, Enzyme Microb. Technol, vol.39, pp.612-620, 2006.

T. Koga, Purification and some properties of sucrose phosphorylase from Leuconostoc mesenteroides, Agric. Biol. Chem, 1991.

H. Kawasaki, N. Nakamura, M. Ohmori, K. Amari, and T. Sakai, Screening for Bacteria Producing Sucrose Phosphorylase and Characterization of the Enzymes, Biosci. Biotechnol. Biochem, 1996.

C. Goedl, A. Schwarz, A. Minani, and B. Nidetzky, Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: Characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of ?-d-glucose 1-phosphate, J. Biotechnol, 2007.

J. H. Lee, Cloning and expression of the sucrose phosphorylase gene from Leuconostoc mesenteroides in Escherichia coli, Biotechnol. Lett, 2008.

J. J. Ferretti, T. T. Huang, and R. B. Russell, Sequence analysis of the glucosyltransferase A gene (gtfA) from Streptococcus mutans Ingbritt, Infect. Immun, 1988.

J. P. Robeson, R. G. Barletta, and R. Curtiss, Expression of a Streptococcus mutans glucosyltransferase gene in Escherichia coli, J. Bacteriol, vol.153, pp.211-221, 1983.

R. R. Russell, H. Mukasa, A. Shimamura, and J. J. Ferretti, Streptococcus mutans gtfA gene specifies sucrose phosphorylase, Infect. Immun, 1988.

L. A. Van-den-broek, Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083, Appl. Microbiol. Biotechnol, 2004.

H. C. Choi, Development of new assay for sucrose phosphorylase and its application to the characterization of Bifidobacterium longum SJ32 sucrose phosphorylase, Food Sci. Biotechnol, 2011.

D. Aerts, Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors, Carbohydr. Res, vol.346, pp.1860-1867, 2011.

D. Aerts, T. Verhaeghe, M. De-mey, T. Desmet, and W. Soetaert, A constitutive expression system for high-throughput screening, Eng. Life Sci, 2011.

L. Du, A novel sucrose phosphorylase from the metagenomes of sucrose-rich environment: Isolation and characterization, World J. Microbiol. Biotechnol, 2012.

A. Cerdobbel, K. De-winter, T. Desmet, and W. Soetaert, Sucrose phosphorylase as crosslinked enzyme aggregate: Improved thermal stability for industrial applications, Biotechnol. J, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00579475

A. Cerdobbel, T. Desmet, K. De-winter, J. Maertens, and W. Soetaert, Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization, J. Biotechnol, 2010.

C. Goedl, T. Sawangwan, P. Wildberger, and B. Nidetzky, Sucrose phosphorylase: A powerful transglucosylation catalyst for synthesis of ?-D-glucosides as industrial fine chemicals, Biocatal. Biotransformation, vol.28, pp.10-21, 2010.

D. Aerts, Consensus engineering of sucrose phosphorylase: The outcome reflects the sequence input, Biotechnol. Bioeng, 2013.

D. Sprogøe, Crystal Structure of Sucrose Phosphorylase from Bifidobacterium adolescentis, Biochemistry, 2004.

E. A. Macgregor, ?. Jane?ek, and B. Svensson, Relationship of sequence and structure to specificity in the ?-amylase family of enzymes, Biochimica et Biophysica Acta -Protein Structure and Molecular Enzymology, vol.1546, pp.1-20, 2001.

N. Ramasubbu, V. Paloth, Y. Luo, G. D. Brayer, and M. J. Levine, Structure of Human Salivary ?-Amylase at 1.6 Å Resolution: Implications for its Role in the Oral Cavity, Acta Crystallogr. Sect. D Biol. Crystallogr, 1996.

S. Janecek, B. Svensson, and B. Henrissat, Domain evolution in the alpha-amylase family, J. Mol. Evol, 1997.

D. E. Koshland, . Stereochemistry, . The, . Of, and . Reactions, Biol. Rev, 1953.

O. Mirza, Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion, J. Biol. Chem, vol.281, pp.35576-35584, 2006.

A. Schwarz, L. Brecker, and B. Nidetzky, Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu 237 ?Gln mutant enzymes, Biochem. J, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478733

A. Schwarz and B. Nidetzky, Asp-196 ? Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate, FEBS Lett, 2006.

M. Mueller and B. Nidetzky, The role of Asp-295 in the catalytic mechanism of Leuconostoc mesenteroides sucrose phosphorylase probed with site-directed mutagenesis, FEBS Lett, 2007.

T. Desmet and W. Soetaert, Enzymatic glycosyl transfer: Mechanisms and applications, Biocatal. Biotransformation, 2011.

P. Wildberger, C. Luley-goedl, and B. Nidetzky, Aromatic interactions at the catalytic subsite of sucrose phosphorylase: Their roles in enzymatic glucosyl transfer probed with Phe52 ? Ala and Phe52 ? Asn mutants, FEBS Lett, vol.585, pp.499-504, 2011.

W. Nerinckx, T. Desmet, and M. Claeyssens, A hydrophobic platform as a mechanistically relevant transition state stabilising factor appears to be present in the active centre of all glycoside hydrolases, FEBS Lett, vol.538, pp.1-7, 2003.

P. Wildberger, A. Todea, and B. Nidetzky, Probing enzymesubstrate interactions at the catalytic subsite of Leuconostoc mesenteroides sucrose phosphorylase with site-directed mutagenesis: The roles of Asp49and Arg395, Biocatal. Biotransformation, 2012.

M. Mueller and B. Nidetzky, Dissecting differential binding of fructose and phosphate as leaving group/nucleophile of glucosyl transfer catalyzed by sucrose phosphorylase, FEBS Lett, vol.581, pp.3814-3818, 2007.

V. Spiwok, B. Králová, and I. Tvaro?ka, Modelling of ?-d-glucopyranose ring distortion in different force fields: a metadynamics study, Carbohydr. Res, 2010.

M. Kraus, C. Grimm, and J. Seibel, Redesign of the Active Site of Sucrose Phosphorylase through a Clash-Induced Cascade of Loop Shifts, ChemBioChem, vol.17, pp.33-36, 2016.

M. H. Jensen, Crystal Structure of the Covalent Intermediate of Amylosucrase from Neisseria polysaccharea, Biochemistry, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02680144

P. N. Science and . Title,

T. Desmet and W. Soetaert, Broadening the synthetic potential of disaccharide phosphorylases through enzyme engineering, Process Biochemistry, vol.47, pp.11-17, 2012.

B. Nidetzky, C. Eis, and M. Albert, Role of non-covalent enzyme-substrate interactions in the reaction catalysed by cellobiose phosphorylase from Cellulomonas uda, Biocatal. Biotransform, vol.659, pp.649-659, 2000.

C. Eis and B. Nidetzky, Characterization of trehalose phosphorylase from Schizophyllum commune, Biochem. J, vol.341, p.385, 1999.

T. Verhaeghe, M. Diricks, D. Aerts, W. Soetaert, and T. Desmet, Mapping the acceptor site of sucrose phosphorylase from Bifidobacterium adolescentis by alanine scanning, J. Mol. Catal. B Enzym, 2013.

T. H. Rat, The Wistar Rat. Anzccart, vol.6, pp.4-7, 1993.

H. Dore, , 1894.

J. Lee, Molecular cloning of a gene encoding the sucrose phosphorylase from Leuconostoc mesenteroides B-1149 and the expression in Escherichia coli, Enzyme Microb. Technol, 2006.

R. N. Goldberg, Y. B. Tewari, and J. C. Ahluwalia, Thermodynamics of the hydrolysis of sucrose, J. Biol. Chem, vol.264, pp.9901-9904, 1989.

S. Kitao, H. Sekine, and . ?-d-glucosyl, Transfer to Phenolic Compounds by Sucrose Phosphorylase from Leuconostoc mesenteroides and Production of ?-Arbutin, Biosci. Biotechnol. Biochem, vol.58, pp.38-42, 1994.

T. Verhaeghe, Converting bulk sugars into prebiotics: Semi-rational design of a transglucosylase with controlled selectivity, Chem. Commun, 2016.

M. Kraus, J. Görl, M. Timm, and J. Seibel, Synthesis of the rare disaccharide nigerose by structure-based design of a phosphorylase mutant with altered regioselectivity, Chem. Commun, vol.52, pp.4625-4627, 2016.

F. Cheng, L. Zhu, and U. Schwaneberg, Directed evolution 2.0: Improving and deciphering enzyme properties, Chemical Communications, 2015.

P. A. Romero and F. H. Arnold, Exploring protein fitness landscapes by directed evolution, Nature Reviews Molecular Cell Biology, 2009.

S. Lutz, Beyond directed evolution-semi-rational protein engineering and design, Current Opinion in Biotechnology, 2010.

Z. Cheng, Identification of key residues modulating the stereoselectivity of nitrile hydratase toward rac-mandelonitrile by semi-rational engineering, Biotechnol. Bioeng, 2018.

J. Pei, Multiple protein sequence alignment, Curr. Opin. Struct. Biol, vol.18, pp.382-386, 2008.

S. Salentin, S. Schreiber, V. J. Haupt, M. F. Adasme, and M. Schroeder, PLIP: Fully automated protein-ligand interaction profiler, Nucleic Acids Res, 2015.

A. Stern, Advanced models for detecting positive and purifying selection using a Bayesian inference approach, Nucleic Acids Res, 2007.

S. Engelen, L. A. Trojan, S. Sacquin-mora, R. Lavery, and A. Carbone, Joint evolutionary trees: A large-scale method to predict protein interfaces based on sequence sampling, PLoS Comput. Biol, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00705756

M. C. Saraf, IPRO: An iterative computational protein library redesign and optimization procedure, Biophys. J, 2006.

M. C. Saraf, G. L. Moore, and C. D. Maranas, Using multiple sequence correlation analysis to characterize functionally important protein regions, Protein Eng. Des. Sel, 2003.

M. C. Saraf, A. R. Horswill, S. J. Benkovic, and C. D. Maranas, FamClash: A method for ranking the activity of engineered enzymes, Proc. Natl. Acad. Sci, 2004.

F. H. Arnold and G. Georgiou, Directed Evolution Library Creation, vol.231, 2003.

E. Krissinel and K. Henrick, Inference of Macromolecular Assemblies from Crystalline State, J. Mol. Biol, 2007.

A. T. Laurie, R. M. Jackson, and . Q-sitefinder, An energy-based method for the prediction of protein-ligand binding sites, Bioinformatics, 2005.

M. Hendlich, F. Rippmann, G. Barnickel, and . Ligsite, Automatic and efficient detection of potential small molecule-binding sites in proteins, J. Mol. Graph. Model, 1997.

K. Stierand and M. Rarey, Drawing the PDB: Protein-Ligand Complexes in Two Dimensions, ACS Med. Chem. Lett, 2010.

M. Hernandez, D. Ghersi, and R. Sanchez, SITEHOUND-web: A server for ligand binding site identification in protein structures, Nucleic Acids Res, 2009.

D. La, 3D-SURFER: Software for high-throughput protein surface comparison and analysis, Bioinformatics, 2009.

J. Dundas, CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues, Nucleic Acids Res, 2006.

P. Schmidtke, V. Le-guilloux, J. Maupetit, P. Tufféry, and . Fpocket, Online tools for protein ensemble pocket detection and tracking, Nucleic Acids Res, 2010.

A. E. Firth, W. M. Patrick, and P. Glue-it, new programmes for analyzing protein diversity in randomized libraries, 2008.

M. T. Reetz and J. D. Carballeira, Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes, Nat. Protoc, 2007.

J. Bendl, HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering, Nucleic Acids Res, 2016.

L. Sumbalova, J. Stourac, T. Martinek, D. Bednar, and J. Damborsky, HotSpot Wizard 3.0: Web server for automated design of mutations and smart libraries based on sequence input information, Nucleic Acids Res, 2018.

A. E. Firth and W. M. Patrick, Statistics of protein library construction, Bioinformatics, 2005.

R. K. Kuipers, 3DM: Systematic analysis of heterogeneous superfamily data to discover protein functionalities, Proteins Struct. Funct. Bioinforma, 2010.

H. Ashkenazy, E. Erez, E. Martz, T. Pupko, N. Ben-tal et al., Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids, Nucleic Acids Res, 2010.

O. Goldenberg, E. Erez, G. Nimrod, and N. Ben-tal, The ConSurf-DB: Pre-calculated evolutionary conservation profiles of protein structures, Nucleic Acids Res, 2009.

V. Parthiban, M. M. Gromiha, and D. Schomburg, CUPSAT: Prediction of protein stability upon point mutations, Nucleic Acids Res, 2006.

H. Zhou and Y. Zhou, Distance-scaled, finite ideal-gas reference state improves structurederived potentials of mean force for structure selection and stability prediction, Protein Sci, vol.11, pp.2714-2726, 2009.

I. Mihalek, I. Re?, and O. Lichtarge, A Family of Evolution-Entropy Hybrid Methods for Ranking Protein Residues by Importance, J. Mol. Biol, 2004.

D. H. Morgan, D. M. Kristensen, D. Mittelman, and O. Lichtarge, ET viewer: An application for predicting and visualizing functional sites in protein structures, Bioinformatics, vol.22, pp.2049-2050, 2006.

R. P. Joosten, A series of PDB related databases for everyday needs, Nucleic Acids Res, 2011.

E. Chovancova, CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures, PLoS Comput. Biol, 2012.

E. Capriotti, P. Fariselli, R. Casadio, and . I-mutant2, Predicting stability changes upon mutation from the protein sequence or structure, Nucleic Acids Res, vol.0, 2005.

B. G. Ma and I. N. Berezovsky, The mblosum: A server for deriving mutation targets and position-specific substitution rates, J. Biomol. Struct. Dyn, 2010.

P. D. Thomas, PANTHER: A library of protein families and subfamilies indexed by function, Genome Res, 2003.

Y. Choi, G. E. Sims, S. Murphy, J. R. Miller, and A. P. Chan, Predicting the Functional Effect of Amino Acid Substitutions and Indels, PLoS One, 2012.

W. S. Valdar, Scoring residue conservation, Proteins Struct. Funct. Genet, 2002.

P. C. Ng, S. Henikoff, and . Sift, Predicting amino acid changes that affect protein function, Nucleic Acids Res, 2003.

G. E. Crooks, G. Hon, J. M. Chandonia, S. E. Brenner, and . Weblogo, A sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

E. Yaffe, D. Fishelovitch, H. J. Wolfson, D. Halperin, and R. Nussinov, MolAxis: Efficient and accurate identification of channels in macromolecules, Proteins Struct. Funct. Genet, 2008.

L. Pravda, MOLEonline: A web-based tool for analyzing channels, tunnels and pores, Nucleic Acids Res, 2018.

Y. Dehouck, J. M. Kwasigroch, D. Gilis, and M. Rooman, PoPMuSiC 2.1: A web server for the estimation of protein stability changes upon mutation and sequence optimality, BMC Bioinformatics, 2011.

J. Schymkowitz, The FoldX web server: An online force field, Nucleic Acids Res, 2005.

R. A. Laskowski, M. B. Swindells, and . Ligplot+, Multiple ligand-protein interaction diagrams for drug discovery, J. Chem. Inf. Model, 2011.

B. Huang and . Metapocket, A Meta Approach to Improve Protein Ligand Binding Site Prediction, Omi. A J. Integr. Biol, 2009.

K. A. Bava, ProTherm, version 4.0: thermodynamic database for proteins and mutants, Nucleic Acids Res, 2004.

J. Damborsky and J. Brezovsky, Computational tools for designing and engineering biocatalysts, pp.26-34, 2009.

J. A. Brannigan and A. J. Wilkinson, Protein engineering 20 years on, Nature Reviews Molecular Cell Biology, vol.3, pp.964-970, 2002.

P. C. Hsieh and R. Vaisvila, Protein engineering: Single or multiple site-directed mutagenesis, Methods Mol. Biol, 2013.

J. Cline, PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases, Nucleic Acids Res, 1996.

K. A. Eckert and T. A. Kunkel, High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase, Nucleic Acids Res, 1990.

T. S. Wong, D. Roccatano, M. Zacharias, and U. Schwaneberg, A statistical analysis of random mutagenesis methods used for directed protein evolution, J. Mol. Biol, 2006.

P. Hanson-manful and W. M. Patrick, Construction and analysis of randomized proteinencoding libraries using error-prone PCR, Methods Mol. Biol, 2013.

R. Verma, U. Schwaneberg, and D. M. Roccatano, 03D: A sequence/structure based server for protein engineering, ACS Synth. Biol, vol.1, pp.139-150, 2012.

Y. Bromberg and B. Rost, Comprehensive in silico mutagenesis highlights functionally important residues in proteins, Bioinformatics, 2008.

L. Depot, RCSB Protein Data Bank, Bioinformatics, 2005.

S. Pundir, M. J. Martin, and C. O'donovan, UniProt Protein Knowledgebase. Methods Mol. Biol, vol.1558, pp.41-55, 2017.

, BLAST. BLAST Basic Local Alignment Search Tool. Blast Program Selection Guide, 2013.

S. F. Altschul, Gapped BLAST and PSI-BLAST: A new generation of protein database search programs, Nucleic Acids Research, 1997.

S. D. Lam, S. Das, I. Sillitoe, and C. Orengo, An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences, Acta Crystallographica Section D: Structural Biology, 2017.

A. ?ali and . Modeller-a, Program for Protein Structure Modeling, Comp. protein Model. by Satisf. Spat. restraints, pp.779-815, 1993.

B. Webb and A. Sali, Methods in Molecular Biology, 2017.

Y. Song, High-resolution comparative modeling with RosettaCM, Structure, 2013.

C. Berkel, A. M. Mauricio, E. Schoenfelder, and I. N. Sandler, Putting the Pieces Together: An Integrated Model of Program Implementation, Prev. Sci, 2011.

A. Hildebrand, M. Remmert, A. Biegert, and J. S??ding, Fast and accurate automatic structure prediction with HHpred, Proteins Struct. Funct. Bioinforma, 2009.

M. Källberg, Template-based protein structure modeling using the RaptorX web server, Nat. Protoc, 2012.

Y. Yang, E. Faraggi, H. Zhao, and Y. Zhou, Improving protein fold recognition and templatebased modeling by employing probabilistic-based matching between predicted one-Page 181 of 188 dimensional structural properties of query and corresponding native properties of templates, Bioinformatics, 2011.

M. Biasini, SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res, 2014.

D. E. Kim, D. Chivian, and D. Baker, Protein structure prediction and analysis using the Robetta server, Nucleic Acids Res, 2004.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc, 2015.

J. Yang, The I-TASSER Suite: protein structure and function prediction, Nat. Methods, 2014.

P. Larsson, M. J. Skwark, B. Wallner, and A. Elofsson, Improved predictions by Pcons.net using multiple templates, Bioinformatics, 2011.

L. J. Mcguffin, J. D. Atkins, B. R. Salehe, A. N. Shuid, and D. B. Roche, IntFOLD: An integrated server for modelling protein structures and functions from amino acid sequences, Nucleic Acids Res, 2015.
URL : https://hal.archives-ouvertes.fr/lirmm-01287105

E. Feyfant, A. Sali, and A. Fiser, Modeling mutations in protein structures, Protein Sci, 2007.

R. A. Laskowski, M. W. Macarthur, D. S. Moss, and J. M. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, J. Appl. Crystallogr, 1993.

R. W. Hooft, G. Vriend, C. Sander, and E. E. Abola,

, Nature, 1996.

V. B. Chen, MolProbity: All-atom structure validation for macromolecular crystallography, Acta Crystallogr. Sect. D Biol. Crystallogr, 2010.

M. Shen and A. Sali, Statistical potential for assessment and prediction of protein structures, Protein Sci, 2006.

D. Cremer and J. A. Pople, A General Definition of Ring Puckering Coordinates, J. Am. Chem. Soc, 1975.

K. N. Kirschner, GLYCAM06: a generalizable biomolecular force field. Carbohydrates, J. Comput. Chem, vol.29, pp.622-655, 2008.

O. Guvench, E. Hatcher, R. M. Venable, R. W. Pastor, and A. D. Mackerell, CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses, J. Chem. Theory Comput, vol.5, pp.2353-2370, 2009.

R. D. Lins and P. H. Hünenberger, A new GROMOS force field for hexopyranose-based carbohydrates, J. Comput. Chem, 2005.

E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev, 1926.

A. Lüchow, Quantum Monte Carlo methods, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011.

L. J. Sham, Density functional theory, Phys. Today, 1982.

M. Rahal-sekkal, N. Sekkal, C. Kleb, and P. Bleckmann, Structures and energies of Dgalactose and galabiose conformers as calculated by ab initio and semiempirical methods, J. Comput. Chem, 2003.

J. Fanfrlík, A reliable docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands, J. Phys. Chem. B, vol.114, pp.12666-12678, 2010.

O. Guvench, CHARMM Additive All-Atom Force Field for Carbohydrate Derivatives and Its Utility in Polysaccharide and Carbohydrate-Protein Modeling, J. Chem. Theory Comput, vol.7, pp.3162-3180, 2011.

L. Pol-fachin, V. H. Rusu, H. Verli, and R. D. Lins, GROMOS 53A6GLYC, an improved GROMOS force field for hexopyranose-based carbohydrates, J. Chem. Theory Comput, 2012.

D. Kony, W. Damm, S. Stoll, and W. F. Van-gunsteren, An improved OPLS-AA force field for carbohydrates, J. Comput. Chem, 2002.

X. Xiong, Force fields and scoring functions for carbohydrate simulation, Carbohydrate Research, 2015.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general Amber force field, J. Comput. Chem, 2004.

G. M. Morris, Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem, 2009.

O. Trott and A. Olson, AutoDock Vina: inproving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem, 2010.

A. K. Nivedha, D. F. Thieker, S. Makeneni, H. Hu, R. J. Woods et al., Improving Glycosidic Angles during Carbohydrate Docking, J. Chem. Theory Comput, 2016.

B. Henrissat, M. Vegetales, and F. Grenoble, A classification of glycosyl hydrolases based sequence similarities amino acid, Biochem. J, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00310263

S. J. Reid and V. R. Abratt, Sucrose utilisation in bacteria: genetic organisation and regulation, Appl. Microbiol. Biotechnol, vol.67, pp.312-321, 2005.

R. Silverstein, J. Voet, D. Reed, and R. H. Abeles, Purification and mechanism of action of sucrose phosphorylase, J. Biol. Chem, 1967.

J. G. Voet and R. H. Abeles, The mechanism of action of sucrose phosphorylase. Isolation and properties of a beta-linked covalent glucose-enzyme complex, J. Biol. Chem, vol.245, pp.1020-1031, 1970.

L. J. Wong and I. A. Rose, Kinetic competence of a phosphoryl enzyme intermediate in the glucose-1,6-p2 synthase-catalyzed reaction. Purification, properties, and kinetic studies, J. Biol. Chem, vol.251, pp.5431-5439, 1976.

B. R. Brooks, CHARMM: the biomolecular simulation program, J. Comput. Chem, vol.30, pp.1545-1614, 2009.

K. Lindorff-larsen, Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins, vol.78, pp.1950-1958, 2010.

A. Sali and T. L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol, vol.234, pp.779-815, 1993.

D. Van-der-spoel, GROMACS: Fast, flexible, and free, J. Comput. Chem, vol.26, pp.1701-1718, 2005.

L. Huang and B. Roux, Automated force field parameterization for nonpolarizable and polarizable atomic models based on ab initio target data, J. Chem. Theory Comput, 2013.

K. Vanommeslaeghe, E. P. Raman, and A. D. Mackerell, Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges, J. Chem. Inf. Model, vol.52, pp.3155-3168, 2012.

K. Vanommeslaeghe and A. D. Mackerell, Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing, J. Chem. Inf. Model, vol.52, pp.3144-3154, 2012.

W. L. Delano, The PyMOL Molecular Graphics System, Version 1.8. Schrödinger LLC, 2014.

U. C. Singh and P. A. Kollman, An approach to computing electrostatic charges for molecules, J. Comput. Chem, vol.5, pp.129-145, 1984.

B. H. Besler, K. M. Merz, and P. A. Kollman, Atomic charges derived from semiempirical methods, J. Comput. Chem, vol.11, pp.431-439, 1990.

K. Vanommeslaeghe, CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields, J. Comput. Chem, vol.31, pp.671-690, 2010.

W. Yu, X. He, K. Vanommeslaeghe, and A. D. Mackerell, Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations, J. Comput. Chem, 2012.

A. Blondel and M. Karplus, New formulation for derivatives of torsion angles and improper torsion angles in molecular mechanics: Elimination of singularities, J. Comput. Chem, 1996.

A. W. Sousa-da-silva and W. F. Vranken, ACPYPE -AnteChamber PYthon Parser interfacE, BMC Res. Notes, vol.5, p.367, 2012.

G. A. Özpinar, W. Peukert, and T. Clark, An improved generalized AMBER force field (GAFF) for urea, J. Mol. Model, 2010.

. Rcsb and . Research, Collaboratory for Structural Bioinformatics (RCSB), 1998.

J. Iglesias-fernández, L. Raich, A. Ardèvol, and C. Rovira, The complete conformational free energy landscape of ?-xylose reveals a two-fold catalytic itinerary for ?-xylanases, Chem. Sci, 2015.

S. W. Cui, Food Carbohydrates : Chemistry, Physical Properties, and Applications. FOOD CARBOHYDRATES, 2005.

R. Stick and . Carbohydrates, The Essential Molecules of Life, Carbohydrates Essent. Mol. Life, 2008.

J. Slavin, Fiber and prebiotics: Mechanisms and health benefits, Nutrients, 2013.

I. Yamamoto, N. Muto, E. Nagata, T. Nakamura, and Y. Suzuki, Formation of a stable Lascorbic acid alpha-glucoside by mammalian alpha-glucosidase-catalyzed transglucosylation, Biochim. Biophys. Acta, p.90171, 1990.

A. Crozier, D. Del-rio, and M. N. Clifford, Bioavailability of dietary flavonoids and phenolic compounds, Molecular Aspects of Medicine, vol.31, pp.446-467, 2010.

H. Mitchell, Sweeteners and Sugar Alternatives in Food Technology, Sweeten. Sugar Altern. Food Technol, 2007.

R. V. Stick and . Carbohydrates, , 2001.

M. Kraus, C. Grimm, and J. Seibel, Redesign of the Active Site of Sucrose Phosphorylase through a Clash-Induced Cascade of Loop Shifts, ChemBioChem, 2016.

N. Eswar, Comparative protein structure modeling using MODELLER, Curr. Protoc. Protein Sci, 2007.

R. Sánchez and . Sali, Comparative protein structure modeling. Introduction and practical examples with modeller, Methods in molecular biology, 2000.

M. A. Lill and M. L. Danielson, Computer-aided drug design platform using PyMOL, J. Comput. Aided. Mol. Des, 2011.

V. Kren and L. Martínková, Glycosides in medicine: 'The role of glycosidic residue in biological activity, Curr. Med. Chem, 2001.

F. Rivas, A. Parra, A. Martinez, and A. Garcia-granados, Enzymatic glycosylation of terpenoids, Phytochemistry Reviews, 2013.

E. C. O'neill and R. A. Field, Enzymatic synthesis using glycoside phosphorylases, Carbohydr. Res, 2015.

C. Goedl, A. Schwarz, M. Mueller, L. Brecker, and B. Nidetzky, Mechanistic differences among retaining disaccharide phosphorylases: insights from kinetic analysis of active site mutants of sucrose phosphorylase and ?,?-trehalose phosphorylase, Carbohydrate Research, 2008.

U. T. Bornscheuer, Immobilizing enzymes: How to create more suitable biocatalysts, Angewandte Chemie -International Edition, 2003.

R. A. Sheldon, Cross-linked enzyme aggregates as industrial biocatalysts, Org. Process Res. Dev, vol.15, pp.213-223, 2011.

A. Cerdobbel, Increasing the thermostability of sucrose phosphorylase by a combination of sequence-and structure-based mutagenesis, Protein Eng. Des. Sel, 2011.

D. Winter, K. Soetaert, W. Desmet, and T. , An imprinted cross-linked enzyme aggregate (iCLEA) of sucrose phosphorylase: Combining improved stability with altered specificity, Int. J. Mol. Sci, 2012.

K. L. Morrison and G. A. Weiss, Combinatorial alanine-scanning, Current Opinion in Chemical Biology, 2001.

N. E. Labrou, Random Mutagenesis Methods for In Vitro Directed Enzyme Evolution, Curr. Protein Pept. Sci, 2009.

F. H. Arnold and G. Georgiou, Directed enzyme evolution : Screening and selection methods, Methods, vol.230, pp.2836-2837, 2003.

A. K. Nivedha, D. F. Thieker, S. Makeneni, H. Hu, R. J. Woods et al., Improving Glycosidic Angles during Carbohydrate Docking, J. Chem. Theory Comput, 2016.

A. Currin, N. Swainston, P. J. Day, and D. B. Kell, Synthetic biology for the directed evolution of protein biocatalysts: Navigating sequence space intelligently, Chemical Society Reviews, 2015.

C. G. Acevedo-rocha, M. T. Reetz, and Y. Nov, Economical analysis of saturation mutagenesis experiments, Sci. Rep, 2015.

J. Reichert and J. S??hnel, The IMB Jena Image Library of Biological Macromolecules: 2002 update, Nucleic Acids Res, 2002.