C. F. Meares, Perspectives in bioconjugate chemistry, 1993.

W. R. Algar, Chemoselective and Bioorthogonal Ligation Reactions 1-36, 2017.

G. T. Hermanson, Bioconjugate Techniques. Bioconjugate Techniques, 2013.

A. Beck, L. Goetsch, C. Dumontet, and N. Corvaïa, Strategies and challenges for the next generation of antibody-drug conjugates, Nat. Rev. Drug Discov, vol.16, pp.315-337, 2017.

V. Chudasama, A. Maruani, and S. Caddick, Recent advances in the construction of antibodydrug conjugates, Nat. Chem, vol.8, pp.114-119, 2016.

T. Sano, C. Smith, and C. Cantor, Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates, Science, vol.258, pp.120-122, 1992.

S. A. Kazane, Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR, Proc. Natl. Acad. Sci, vol.109, pp.3731-3736, 2012.

T. L. Cuellar, Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates, Nucleic Acids Res, vol.43, pp.1189-1203, 2015.

G. Mathe, L. O. Tran-ba, and J. Bernard, Effet sur la leucémie 1210 de la Souris d'une combinaison par diazotation d'A-mêthoptérine et de y-globulines de hamsters porteurs de cette leucémie par hétérogreffe, C.R. Hebd. Séances Acad. Sci., Série B, vol.246, pp.1626-1628, 1958.

H. L. Perez, Antibody-drug conjugates: Current status and future directions, Drug Discov. Today, vol.19, pp.869-881, 2014.

P. Trail, Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates, Science, vol.261, pp.212-215, 1993.

G. Pietersz and K. Krauer, Antibody-targeted drugs for the therapy of cancer, J. Drug Target, vol.2, pp.183-215, 1994.

P. F. Bross, Approval summary: Gemtuzumab ozogamicin in relapsed acute myeloid leukemia, Clinical Cancer Research, vol.7, 2001.

A. Younes, Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas, N. Engl. J. Med, vol.363, pp.1812-1821, 2010.

R. A. Claro, . De, K. Mcginn, and V. U. Kwitkowski, Food and Drug Administration Approval Summary : Brentuximab Vedotin for the Treatment of Relapsed Hodgkin Lymphoma or Relapsed Systemic Anaplastic Large-Cell Lymphoma U . S . Food and Drug Administration Approval Summary : Lymphoma or Relapsed Sys, Clin. Cancer Res, vol.18, pp.5845-5849, 2012.

P. D. Senter and E. L. Sievers, The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma, Nat. Biotechnol, vol.30, pp.631-637, 2012.

L. Amiri-kordestani, FDA approval: Ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer, Clin. Cancer Res, vol.20, pp.4436-4441, 2014.

A. Ballantyne and S. Dhillon, Trastuzumab emtansine: First global approval, Drugs, vol.73, pp.755-765, 2013.

D. Pfister, N. Ulmer, A. Klaue, O. Ingold, and M. Morbidelli, Modeling the Kinetics of Protein Conjugation Reactions, Chemie Ing. Tech, vol.88, pp.1598-1608, 2016.

M. T. Kim, Y. Chen, J. Marhoul, and F. Jacobson, Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate, Bioconjug. Chem, vol.25, pp.1223-1232, 2014.

V. S. Goldmacher, G. Amphlett, L. Wang, and A. C. Lazar, Statistics of the Distribution of the D. References |, p.95

, Abundance of Molecules with Various Drug Loads in Maytansinoid Antibody-Drug Conjugates, Mol. Pharm, vol.12, pp.1738-1744, 2015.

K. J. Hamblett, Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate, Clin. Cancer Res, vol.10, pp.7063-7070, 2004.

D. Willner, -Maleimidocaproyl)hydrazone of doxorubicin. A new derivative for the preparation of immunoconjugates of doxorubicin, Bioconjug. Chem, vol.4, issue.6, pp.521-527, 1993.

S. O. Doronina, Development of potent monoclonal antibody auristatin conjugates for cancer therapy, Nat. Biotechnol, vol.21, pp.778-784, 2003.

V. Chudasama, A. Maruani, and S. Caddick, Recent advances in the construction of antibodydrug conjugates, Nat. Chem, vol.8, pp.114-119, 2016.

E. M. Sletten and C. R. Bertozzi, Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality, Angew. Chemie Int. Ed, vol.48, pp.6974-6998, 2009.

C. S. Finn, M. G. Mckay, C. S. Finn, and M. G. , Click chemistry in complex mixtures: Bioorthogonal bioconjugation, Chem. Biol, vol.21, pp.1075-1101, 2014.

K. Lang and J. W. Chin, Bioorthogonal reactions for labeling proteins, ACS Chem. Biol, vol.9, pp.16-20, 2014.

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angew. Chemie -Int. Ed, vol.40, 2001.

E. R. Stadtman, Protein oxidation and aging, Free Radic. Res, vol.40, pp.1250-1258, 2006.

J. Dommerholt, P. J. Rutjes, and F. L. Van-delft, Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides, Top. Curr. Chem, vol.374, p.16, 2016.

J. Dommerholt, Highly accelerated inverse electron-demand cycloaddition of electrondeficient azides with aliphatic cyclooctynes, Nat. Commun, vol.5, pp.5378-5384, 2014.

A. Maruani, D. A. Richards, and V. Chudasama, Dual modification of biomolecules, Org. Biomol. Chem, vol.14, pp.6165-6178, 2016.

X. Chen and Y. Wu, Selective chemical labeling of proteins, Org. Biomol. Chem, vol.14, pp.5417-5439, 2016.

A. Maruani, A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy, Nat. Commun, vol.6, p.6645, 2015.

R. Van-geel, Chemoenzymatic Conjugation of Toxic Payloads to the Globally Conserved N-Glycan of Native mAbs Provides Homogeneous and Highly Efficacious Antibody-Drug Conjugates, Bioconjug. Chem, vol.26, pp.2233-2242, 2015.

P. Akkapeddi, Construction of homogeneous antibody-drug conjugates using siteselective protein chemistry, Chem. Sci, vol.7, pp.2954-2963, 2016.

D. Gilis, S. Massar, N. J. Cerf, and M. Rooman, Optimality of the genetic code with respect to protein stability and amino-acid frequencies, Genome Biol, vol.2, pp.1-12, 2001.

R. M. Kramer, V. R. Shende, N. Motl, C. N. Pace, and J. M. Scholtz, Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility, Biophys. J, vol.102, pp.1907-1915, 2012.

K. Trainor, A. Broom, and E. M. Meiering, Exploring the relationships between protein sequence, structure and solubility, Curr. Opin. Struct. Biol, vol.42, pp.136-146, 2017.

D. G. Hoare and D. E. Koshland, A Procedure for the Selective Modification of Carboxyl Groups in Proteins, J. Am. Chem. Soc, vol.2525, pp.2057-2058, 1966.

D. G. Hoare and D. E. Koshland, A Method for the Quantitative Modification and Estimation of Carboxylic Acid Groups in Proteins A Method for the Quantitative Modification of Carboxylic Acid Groups in Proteins, J. Biol. Chem, vol.242, pp.2447-2453, 1967.

K. A. Totaro, Systematic Investigation of EDC/sNHS-Mediated Bioconjugation Reactions for Carboxylated Peptide Substrates, Bioconjug. Chem, vol.27, pp.994-1004, 2016.

R. Woodward, A new synthesis of peptides, J. Am. Chem. Soc, vol.83, pp.1010-1012, 1961.

R. Wade, M. E. Whisson, and M. Szekerke, Some Serum Protein Nitrogen Mustard Complexes with High Chemotherapeutic Selectivity, Nature, vol.215, pp.1303-1304, 1967.

G. F. Rowland, G. J. O'neill, and D. Davies, Suppression of tumour growth in mice by a drug-antibody conjugate using a novel approach to linkage, Nature, vol.255, pp.487-488, 1975.

E. Hurwitz, The Covalent Binding of Daunomycin and Adriamycin to Antibodies, with Retention of Both Drug and Antibody Activities, Cancer Res, vol.35, pp.1175-1181, 1975.

J. L. Winkelhake, Effects of chemical modification of antibodies on their clearance from the circulation. Addition of simple aliphatic compounds by reductive alkylation and carbodiimide promoted amide formation, J. Biol. Chem, vol.252, pp.1865-1868, 1977.

V. Gautier, A. J. Boumeester, P. Lössl, and A. J. Heck, Lysine conjugation properties in human IgGs studied by integrating high-resolution native mass spectrometry and bottom-up proteomics, Proteomics, vol.0, pp.1-10, 2015.

Y. Chen, M. T. Kim, .. Zheng, L. Deperalta, G. Jacobson et al., Structural Characterization of Cross-Linked species in Trastuzumab Emtansine (Kadcyla®), Bioconjug. Chem, vol.27, pp.2037-2047, 2016.

C. B. Rosen, Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins, Nat. Chem, vol.6, pp.804-809, 2014.

M. D. Leavell, P. Novak, C. R. Behrens, J. S. Schoeniger, and G. H. Kruppa, Strategy for selective chemical cross-linking of tyrosine and lysine residues, J. Am. Soc. Mass Spectrom, vol.15, pp.1604-1611, 2004.

H. Chih, Identification of amino acid residues responsible for the release of free drug from an antibody-drug conjugate utilizing lysine-succinimidyl ester chemistry, J. Pharm. Sci, vol.100, pp.2518-2543, 2011.

O. Koniev, MAPN: First-in-class reagent for kinetically resolved thiol-to-thiol conjugation, Bioconjug. Chem, vol.26, pp.1863-1867, 2015.

Z. Miao, Y. Hong, T. Zhu, A. Chucholowski, and W. , Drug-conjugates, conjugation methods, and uses thereof, pp.2013173391-2013173392, 2013.

A. Varadarajan, R. M. Sharkey, D. M. Goldenberg, and M. F. Hawthorne, Conjugation of phenyl isothiocyanate derivatives of carborane to antitumor antibody and in vivo localization of conjugates in nude mice, Bioconjug. Chem, vol.2, pp.102-110, 1991.

R. Pei, A monospecific HLA-B27 fluorescein isothiocyanate-conjugated monoclonal antibody for rapid, simple and accurate HLA-B27 typing, Tissue Antigens, vol.41, pp.200-203, 1993.

J. W. Goding, Conjugation of antibodies with fluorochromes: Modifications to the standard methods, J. Immunol. Methods, vol.13, pp.215-226, 1976.

R. Hudson, The development and characterisation of porphyrin isothiocyanatemonoclonal antibody conjugates for photoimmunotherapy, Br. J. Cancer, vol.92, pp.1442-1449, 2005.

C. F. Meares, Conjugation of antibodies with bifunctional chelating agents: Isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions, Anal. Biochem, vol.142, pp.68-78, 1984.

K. E. Linder, Technetium labeling of monoclonal antibodies with functionalized BATOs. 1. TcCl(DMG)3PITC

, Bioconjug. Chem, vol.2, pp.160-170, 1991.

S. Mirzadeh, M. W. Brechbiel, R. W. Atcher, and O. A. Gansow, Radiometal labeling of immunoproteins: covalent linkage of 2-(4-isothiocyanatobenzyl)diethylenetriaminepentaacetic acid ligands to immunoglobulin, Bioconjug. Chem, vol.1, pp.59-65, 1990.

D. S. Wilbur, Trifunctional conjugation reagents. Reagents that contain a biotin and a radiometal chelation moiety for application to extracorporeal affinity adsorption of radiolabeled antibodies, Bioconjug. Chem, vol.13, pp.1079-1092, 2002.

C. Dingels, F. Wurm, M. Wagner, H. Klok, and H. Frey, Squaric Acid Mediated Chemoselective PEGylation of Proteins: Reactivity of Single-Step-Activated ?-Amino Poly(ethylene glycol)s. Chem. -A Eur, J, vol.18, pp.16828-16835, 2012.

F. R. Wurm, Be squared: expanding the horizon of squaric acid-mediated conjugations, Chem. Soc. Rev, vol.42, p.8220, 2013.

I. Storer, R. Aciro, C. Jones, and L. H. , Squaramides: physical properties, synthesis and applications, Chem. Soc. Rev, vol.40, pp.2330-2346, 2011.

M. Ximenis, Kinetic Analysis and Mechanism of the Hydrolytic Degradation of Squaramides and Squaramic Acids, J. Org. Chem, vol.82, pp.2160-2170, 2017.

R. Hicks and C. J. , A desferrioxamine B squaramide ester for the incorporation of zirconium-89 into antibodies, Chem. Commun. Chem. Commun, vol.52, pp.11889-11892, 2016.

M. Popkov, C. Rader, B. Gonzalez, S. C. Sinha, and C. F. Barbas, Small molecule drug activity in melanoma models may be dramatically enhanced with an antibody effector, Int. J. Cancer, vol.119, pp.1194-1207, 2006.

L. Li, Chemical Adaptor Immunotherapy: Design, Synthesis, and Evaluation of Novel Integrin-Targeting Devices, J. Med. Chem, vol.47, pp.5630-5640, 2004.

C. Rader, S. C. Sinha, M. Popkov, R. A. Lerner, and C. F. Barbas, Chemically programmed monoclonal antibodies for cancer therapy: adaptor immunotherapy based on a covalent antibody catalyst, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.5396-5400, 2003.

K. M. Nicholas, A cofactor approach to copper-dependent catalytic antibodies, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.2648-53, 2002.

F. Guo, Breaking the one antibody-one target axiom, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.11009-11014, 2006.

S. C. Sinha, S. Das, L. Li, R. A. Lerner, and C. F. Barbas, Preparation of integrin ?(v)?(3)-targeting Ab 38C2 constructs, Nat. Protoc, vol.2, pp.449-456, 2007.

V. R. Doppalapudi, Chemically programmed antibodies: Endothelin receptor targeting CovX-Bodies TM, Bioorg. Med. Chem. Lett, vol.17, pp.501-506, 2007.

M. J. Smyth, G. A. Pietersz, and I. F. Mckenzie, Selective enhancement of antitumor activity of N-acetyl melphalan upon conjugation to monoclonal antibodies, Cancer Res, vol.47, pp.62-71, 1987.

A. Wakankar, Physicochemical stability of the antibody -Drug conjugate trastuzumab-DM1: Changes due to modification and conjugation processes, Bioconjug. Chem, vol.21, pp.1588-1595, 2010.

D. Rosario, R. B. Wahl, and R. L. , Site-specific radiolabeling of monoclonal antibodies with biotin/streptavidin, Int. J. Radiat. Appl. Instrumentation. Part B. Nucl. Med. Biol, vol.16, pp.525-529, 1989.

X. Li, Stable and Potent Selenomab-Drug Conjugates, Cell Chem. Biol, vol.24, pp.433-442, 2017.

J. F. Ponte, Understanding How the Stability of the Thiol-Maleimide Linkage Impacts the Pharmacokinetics of Lysine-Linked Antibody-Maytansinoid Conjugates, Bioconjug. Chem, vol.27, pp.1588-1598, 2016.

A. D. Baldwin and K. L. Kiick, Tunable degradation of maleimide-Thiol adducts in reducing environments, Bioconjug. Chem, vol.22, pp.1946-1953, 2011.

B. Shen, Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates, Nat. Biotechnol, vol.30, pp.184-193, 2012.

P. Strop, Location matters: Site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates, Chem. Biol, vol.20, pp.161-167, 2013.

R. P. Lyon, Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates, Nat. Biotechnol, vol.32, pp.1059-1062, 2014.

D. Kalia, S. P. Pawar, and J. S. Thopate, Stable and Rapid Thiol Bioconjugation by Light-Triggered Thiomaleimide Ring Hydrolysis, Angew. Chemie Int. Ed, vol.56, pp.1885-1889, 2017.

L. N. Tumey, Mild method for succinimide hydrolysis on ADCs: impact on ADC potency, stability, exposure, and efficacy, Bioconjug. Chem, vol.25, pp.1871-80, 2014.

S. D. Fontaine, R. Reid, L. Robinson, G. W. Ashley, and D. V. Santi, Long-term stabilization of maleimide-thiol conjugates, Bioconjug. Chem, vol.26, pp.145-152, 2015.

R. J. Christie, Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides, J. Control. Release, vol.220, pp.660-670, 2015.

S. Kolodych, CBTF: New amine-to-thiol coupling reagent for preparation of antibody conjugates with increased plasma stability, Bioconjug. Chem, vol.26, pp.197-200, 2015.

O. Koniev, Selective irreversible chemical tagging of cysteine with 3-arylpropiolonitriles, Bioconjug. Chem, vol.25, pp.202-206, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02475604

J. T. Patterson, Improving the serum stability of site-specific antibody conjugates with sulfone linkers, Bioconjug. Chem, vol.25, pp.1402-1407, 2014.

L. Li, Vinyl sulfone bifunctional derivatives of DOTA allow sulfhydryl-or aminodirected coupling to antibodies. Conjugates retain immunoreactivity and have similar biodistributions, Bioconjug. Chem, vol.13, pp.110-115, 2002.

G. Badescu, A new reagent for stable thiol-specific conjugation, Bioconjug. Chem, vol.25, pp.460-469, 2014.

N. Toda, S. Asano, C. F. Barbas, and . Rapid, Stable, Chemoselective Labeling of Thiols with Julia-Kocie?ski-like Reagents: A Serum-Stable Alternative to Maleimide-Based Protein Conjugation, Angew. Chemie Int. Ed, vol.52, pp.12592-12596, 2013.

E. V. Vinogradova, C. Zhang, A. M. Spokoyny, B. L. Pentelute, and S. L. Buchwald, Organometallic palladium reagents for cysteine bioconjugation, Nature, vol.526, pp.687-691, 2015.

R. A. Al-shuaeeb, Palladium-Catalyzed Chemoselective and Biocompatible Functionalization of Cysteine-Containing Molecules at Room Temperature. Chem. -A Eur, J, vol.22, pp.11365-11370, 2016.

D. Rosario, R. B. Wahl, R. L. Brocchini, S. J. Lawton, R. G. Smith et al., Sulfhydryl Site-Specific Cross-Linking and Labeling of Monoclonal Antibodies by a Fluorescent Equilibrium Transfer Alkylation Cross-Link Reagent, Bioconjugate Chem, vol.1, pp.51-59, 1990.

F. Liberatore, Site-directed chemical modification and cross-linking of a monoclonal antibody using equilibrium transfer alkylating cross-link reagents, Bioconjugate Chem, vol.1, pp.36-50, 1990.

M. T. Lee, Enabling the controlled assembly of antibody conjugates with a loading of two modules without antibody engineering, Chem. Sci, vol.8, pp.2056-2060, 2017.

N. Gupta, Development of a facile antibody-drug conjugate platform for increased stability and homogeneity, Chem. Sci, vol.40, pp.14-23, 2017.

S. L. Kuan, T. Wang, and T. Weil, Site-Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome. Chem. -A Eur, J, vol.22, pp.17112-17129, 2016.

D. S. Wilbur, J. E. Stray, D. K. Hamlin, D. K. Curtis, and R. L. Vessella, Monoclonal antibody Fab' fragment cross-linking using equilibrium transfer alkylation reagents. A strategy for sitespecific conjugation of diagnostic and therapeutic agents with F(ab')2 fragments, Bioconjug Chem, vol.5, pp.220-235, 1994.

S. Shaunak, Site-specific PEGylation of native disulfide bonds in therapeutic proteins, Nat. Chem. Biol, vol.2, pp.312-313, 2006.

S. Balan, Site-specific PEGylation of protein bisulfide bonds using a three-carbon bridge, Bioconjug. Chem, vol.18, pp.61-76, 2007.

J. Choi, PEGylated Protein Durgs: Basic Science and Clinical Applications, pp.47-73, 2009.

G. Badescu, Bridging Disulfides for Stable and Defined Antibody Drug Conjugates, Bioconjug. Chem, vol.25, pp.1124-1136, 2014.

P. Bryant, In vitro and in vivo evaluation of cysteine rebridged trastuzumab-MMAE antibody drug conjugates with defined drug-to-antibody ratios, Mol. Pharm, vol.12, pp.1872-1879, 2015.

T. Wang, Water-soluble allyl sulfones for dual site-specific labelling of proteins and cyclic peptides, Chem. Sci, vol.7, pp.3234-3239, 2016.

M. W. Jones, Polymeric Dibromomaleimides As Extremely Efficient Disulfide Bridging Bioconjugation and Pegylation Agents, J. Am. Chem. Soc, vol.134, pp.1847-1852, 2012.

C. R. Behrens, Antibody-Drug Conjugates (ADCs) Derived From Interchain Cysteine Cross-Linking Demonstrate Improved Homogeneity and Other Pharmacological Properties Over Conventional Heterogeneous ADCs, Mol. Pharm, vol.12, pp.3986-3998, 2015.

E. A. Hull, Homogeneous bispecifics by disulfide bridging, Bioconjug. Chem, vol.25, pp.1395-1401, 2014.

M. Morais, Optimisation of the dibromomaleimide (DBM) platform for native antibody conjugation by accelerated post-conjugation hydrolysis, Org. Biomol. Chem, vol.25, pp.1871-1880, 2017.

L. Castañeda, Acid-cleavable thiomaleamic acid linker for homogeneous antibody-drug conjugation, Chem. Commun. (Camb), vol.49, pp.8187-8196, 2013.

J. P. Nunes, Functional native disulfide bridging enables delivery of a potent, stable and targeted antibody-drug conjugate (ADC), Chem. Commun, vol.51, pp.10624-10627, 2015.

D. Richards, Photochemically re-bridging disulfide bonds and the discovery of a thiomaleimide mediated photodecarboxylation of C-terminal cysteines, Org. Biomol. Chem, vol.14, pp.455-459, 2015.

E. Robinson, Pyridazinediones deliver potent, stable, targeted and efficacious antibodydrug conjugates (ADCs) with a controlled loading of 4 drugs per antibody, RSC Adv, vol.7, pp.9073-9077, 2017.

M. T. Lee, A. Maruani, J. R. Baker, S. Caddick, and V. Chudasama, Next-generation disulfide stapling: reduction and functional re-bridging all in one, Chem. Sci, vol.7, pp.799-802, 2016.

G. B. Mcgaughey, M. Gagné, and A. K. Rappé, ?-Stacking interactions. Alive and well in proteins, J. Biol. Chem, vol.273, pp.15458-15463, 1998.

S. D. Tilley and M. B. Francis, Tyrosine-selective protein alkylation using ?-allylpalladium complexes, J. Am. Chem. Soc, vol.128, pp.1080-1081, 2006.

N. S. Joshi, L. R. Whitaker, and M. B. Francis, A three-component Mannich-type reaction for selective tyrosine bioconjugation, J. Am. Chem. Soc, vol.126, pp.15942-15943, 2004.

J. M. Mcfarland, N. S. Joshi, and M. Francis, Characterization of a Three-Component Coupling Reaction on Proteins by Isotopic Labeling and Nuclear Magnetic Resonance Spectroscopy, J. Am. Chem. Soc, vol.130, pp.7639-7644, 2008.

D. W. Romanini and M. B. Francis, Attachment of Peptide Building Blocks to Proteins Through Tyrosine Bioconjugation, Bioconjug. Chem, vol.19, pp.153-157, 2008.

K. L. Seim, A. C. Obermeyer, and M. B. Francis, Oxidative Modification of Native Protein Residues Using Cerium(IV) Ammonium Nitrate, J. Am. Chem. Soc, vol.133, pp.16970-16976, 2011.

H. Ban, J. Gavrilyuk, and C. F. Barbas, Tyrosine bioconjugation through aqueous ene-type reactions: A click-like reaction for tyrosine, J. Am. Chem. Soc, vol.132, pp.1523-1525, 2010.

H. Ban, Facile and stabile linkages through tyrosine: Bioconjugation strategies with the tyrosine-click reaction, Bioconjug. Chem, vol.24, pp.520-532, 2013.

J. Kralovec, M. Singh, M. Mammen, A. H. Blair, and T. Ghose, Synthesis of site-specific methotrexate-IgG conjugates, Cancer Immunol. Immunother, vol.29, pp.293-302, 1989.

D. K. Kölmel and E. T. Kool, Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis, Chem. Rev, vol.117, pp.10358-10376, 2017.

J. Gavrilyuk, H. Ban, M. Nagano, W. Hakamata, and C. F. Barbas, Formylbenzene Diazonium Hexafluorophosphate Reagent for Tyrosine-Selective Modification of Proteins and the Introduction of a Bioorthogonal Aldehyde, Bioconjug. Chem, vol.23, pp.2321-2328, 2012.

N. Griebenow, S. Greven, M. Lobell, A. M. Dilmaç, and S. Bräse, A study on the trastuzumab conjugation at tyrosine using diazonium salts, RSC Adv, vol.5, pp.103506-103511, 2015.

S. Sato, K. Nakamura, and H. Nakamura, Tyrosine-Specific Chemical Modification with in Situ Hemin-Activated Luminol Derivatives, ACS Chem. Biol, vol.10, pp.2633-2640, 2015.

J. J. Bruins, Site-Specific Protein Labeling by Tyrosine Oxidation-Strain-Promoted (4 + 2) Cycloaddition, Bioconjug. Chem, vol.28, pp.1189-1193, 2017.

J. Warwicker, S. Charonis, and R. A. Curtis, Lysine and arginine content of proteins: Computational analysis suggests a new tool for solubility design, Mol. Pharm, vol.11, pp.294-303, 2014.

N. Ahmed and P. J. Thornalley, Peptide Mapping of Human Serum Albumin Modified Minimally by Methylglyoxal in Vitro and in Vivo, Ann. N. Y. Acad. Sci, vol.1043, pp.260-266, 2005.

Y. Dempsey-mitchell, J. A. Yankeelov, J. A. Mitchell, C. D. Crawford, and T. H. , Simple trimerization of 2,3-butanedione yielding a selective reagent for the modification of arginine in proteins, J. Am. Chem. Soc, vol.90, pp.1664-1666, 1968.

D. Suckau, M. Mak, and M. Przybylski, Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.5630-5634, 1992.

T. P. King, Selective Chemical Modification of Arginyl Residues, Biochemistry, vol.5, pp.3454-3459, 1966.

K. Takahashi, The Reaction of Phenylglyoxal with Arginine Residues in Proteins, J. Biol. Chem, vol.243, pp.6171-6179, 1968.

T. W. Lo, M. E. Westwood, A. C. Mclellan, T. Selwood, and P. J. Thornalleys, Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alphaacetyllysine, and bovine serum albumin, J. Biol. Chem, vol.269, pp.32299-32305, 1994.

K. Nakaya, H. Horinishi, and K. Shibata, States of Amino Acid Residues in Proteins XIV. Glyoxal as a Reagent for Discrimination of Arginine Residues, J. Biochem, vol.61, pp.345-351, 1967.

M. A. Gauthier and H. Klok, Arginine-Specific Modification of Proteins with Polyethylene Glycol, Biomacromolecules, vol.12, pp.482-493, 2011.

T. Oya, Methylglyoxal Modification of Protein: chemical and immunochemical characterization of methylglyoxal-arginine adducts, J. Biol. Chem, vol.274, pp.18492-18502, 1999.

M. A. Vanoni, M. Simonetta, B. Curti, A. Negri, and S. Ronchi, Phenylglyoxal modification of arginines in mammalian D-amino-acid oxidase, Eur. J. Biochem, vol.167, pp.261-267, 1987.

I. Stipani, Inhibition of the Reconstituted Mitochondrial Oxoglutarate Carrier by Arginine-Specific Reagents, Arch. Biochem. Biophys, vol.331, pp.48-54, 1996.

A. A. Mostafa, Plasma protein advanced glycation end products, carboxymethyl cysteine, and carboxyethyl cysteine, are elevated and related to nephropathy in patients with diabetes, Mol. Cell. Biochem, vol.302, pp.35-42, 2007.

Y. Gao and Y. Wang, Site-Selective Modifications of Arginine Residues in Human Hemoglobin Induced by Methylglyoxal, Biochemistry, vol.45, pp.15654-15660, 2006.

S. M. Hensen, Phenylglyoxal-based visualization of citrullinated proteins on western blots, Molecules, vol.20, pp.6592-6600, 2015.

D. M. Lewallen, Chemical Proteomic Platform to Identify Citrullinated Proteins, ACS Chem. Biol, vol.10, pp.2520-2528, 2015.

K. W. Clancy, E. Weerapana, and P. R. Thompson, Detection and identification of protein citrullination in complex biological systems, Curr. Opin. Chem. Biol, vol.30, pp.1-6, 2016.

D. A. Thompson, R. Ng, and P. E. Dawson, Arginine selective reagents for ligation to peptides and proteins, J. Pept. Sci, vol.22, pp.311-319, 2016.

C. Chumsae, Arginine modifications by methylglyoxal: Discovery in a recombinant monoclonal antibody and contribution to acidic species, Anal. Chem, vol.85, pp.11401-11409, 2013.

Y. Gong, D. Andina, S. Nahar, L. Jean-christophe, and M. A. Gauthier, Releasable and Traceless PEGylation of Arginine-rich Antimicrobial Peptides, Chem. Sci, vol.8, pp.4082-4086, 2017.

K. Gevaert, P. Van-damme, L. Martens, and J. Vandekerckhove, Diagonal reverse-phase chromatography applications in peptide-centric proteomics: Ahead of catalogue-omics?, Anal. Biochem, vol.345, pp.18-29, 2005.

J. M. Antos and M. B. Francis, Selective tryptophan modification with rhodium carbenoids in aqueous solution, J. Am. Chem. Soc, vol.126, pp.10256-10257, 2004.

J. Ruiz-rodriguez, F. Albericio, and R. Lavilla, Postsynthetic modification of peptides: Chemoselective C-arylation of tryptophan residues. Chem. -A Eur, J, vol.16, pp.1124-1127, 2010.

B. V. Popp and Z. T. Ball, Structure-selective modification of aromatic side chains with dirhodium metallopeptide catalysts, J. Am. Chem. Soc, vol.132, pp.6660-6662, 2010.

T. J. Williams, A. J. Reay, A. C. Whitwood, and I. J. Fairlamb, A mild and selective Pdmediated methodology for the synthesis of highly fluorescent 2-arylated tryptophans and tryptophan-containing peptides: a catalytic role for Pd0 nanoparticles?, Chem. Commun, vol.50, pp.3052-3054, 2014.

M. B. Hansen, F. Hubálek, T. Skrydstrup, and T. Hoeg-jensen, Chemo-and Regioselective Ethynylation of Tryptophan-Containing Peptides and Proteins. Chem. -A Eur, J, vol.22, pp.1572-1576, 2016.

Y. Seki, Transition Metal-Free Tryptophan-Selective Bioconjugation of Proteins, J. Am. Chem. Soc, vol.138, pp.10798-10801, 2016.

J. R. Kramer and T. J. Deming, Reversible chemoselective tagging and functionalization of methionine containing peptides, Chem. Commun, vol.49, pp.5144-5146, 2013.

O. Boutureira and G. J. Bernardes, Advances in chemical protein modification, Chem. Rev, vol.115, pp.2174-2195, 2015.

W. Wang, Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies, Mol. Immunol, vol.48, pp.860-866, 2011.

T. W. Rademacher, S. W. Homans, R. B. Parekh, and R. A. Dwek, Immunoglobulin G as a glycoprotein, Biochem. Soc. Symp, vol.51, pp.131-148, 1986.

P. R. Hamann, An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance, Bioconjug. Chem, vol.16, pp.346-353, 2005.

A. C. Stan, D. L. Radu, S. Casares, C. A. Bona, and T. D. Brumeanu, Antineoplastic efficacy of doxorubicin enzymatically assembled on galactose residues of a monoclonal antibody specific for the carcinoembryonic antigen, Cancer Res, vol.59, pp.115-121, 1999.

Q. Zhou, Site-Specific Antibody-Drug Conjugation through Glycoengineering, Bioconjug. Chem, vol.25, pp.510-520, 2014.

T. B. Parsons, Optimal synthetic glycosylation of a therapeutic antibody, Angew. Chemie -Int. Ed, vol.55, pp.2361-2367, 2016.

N. Jain, S. W. Smith, S. Ghone, and B. Tomczuk, Current ADC Linker Chemistry, Pharm. Res, vol.32, pp.3526-3540, 2015.

K. Tsuchikama and Z. An, Antibody-drug conjugates: recent advances in conjugation and linker chemistries, Protein Cell, vol.1, p.14, 2016.

O. Koniev and A. Wagner, Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation, Chem. Soc. Rev, vol.44, pp.5495-5551, 2015.

S. Yoshitake, Y. Yamada, E. Ishikawa, and R. Masseyeff, Conjugation of Glucose Oxidase from Aspergillus niger and Rabbit Antibodies Using N-Hydroxysuccinimide Ester of N-(4-Carboxycyclohexylmethyl)-Maleimide, Eur. J. Biochem, vol.101, pp.395-399, 1979.

J. M. Peeters, T. G. Hazendonk, E. C. Beuvery, and G. I. Tesser, Comparison of four bifunctional reagents for coupling peptides to proteins and the effect of the three moieties on the immunogenicity of the conjugates, J. Immunol. Methods, vol.120, pp.133-143, 1989.

S. Hashida and E. Ishikawa, Use of Normal IgG and its Fragments to Lower the Non-Specific Binding of Fab'-Enzyme Conjugates in Sandwich Enzyme Immunoassay, Anal. Lett, vol.18, pp.1143-1155, 1985.

J. B. Gould, V. N. Marks, and . Immunoassay, , 1988.

I. Uto, Determination of urinary Tamm-Horsfall protein by ELISA using a maleimide method for enzyme-antibody conjugation, J. Immunol. Methods, vol.138, pp.87-94, 1991.

C. Vogel and . Immunoconjugates, Antibody Conjugates in Radioimaging and Therapy of Cancer, 1987.

H. K. Erickson, Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing, Cancer Res, vol.66, pp.4426-4433, 2006.

A. G. Polson, Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma, Blood, vol.110, pp.616-623, 2007.

E. J. Tournier, J. Wallach, and P. Blond, Sulfosuccinimidyl 4-(N-maleimidomethyl)-1-cyclohexane carboxylate as a bifunctional immobilization agent. Optimization of the coupling conditions, Anal. Chim. Acta, vol.361, pp.33-44, 1998.

K. R. Gee, E. A. Archer, and H. C. Kang, 4-Sulfotetrafluorophenyl (STP) esters: New watersoluble amine-reactive reagents for labeling biomolecules, Tetrahedron Lett, vol.40, pp.1471-1474, 1999.

K. Xu, Characterization of the drug-to-antibody ratio distribution for antibody-drug conjugates in plasma/serum, Bioanalysis, vol.5, pp.1057-1071, 2013.

A. Beck, Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates, Expert review of proteomics, vol.13, pp.157-183, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02335539

I. Dovgan, S. Kolodych, O. Koniev, and A. Wagner, 2-(Maleimidomethyl)-1,3-Dioxanes (MD): a Serum-Stable Self-hydrolysable Hydrophilic Alternative to Classical Maleimide Conjugation, Sci. Rep, vol.6, p.30835, 2016.

J. Marcoux, Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate, Protein Sci, vol.24, pp.1210-1223, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02335552

G. Terral, A. Beck, and S. Cianférani, Insights from native mass spectrometry and ion mobilitymass spectrometry for antibody and antibody-based product characterization, J. Chromatogr. B, vol.1032, pp.79-90, 2016.

O. Koniev, Development of new bioselective ligation reactions, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01182689

C. A. Montalbetti and V. Falque, Amide bond formation and peptide coupling, Tetrahedron, vol.61, pp.10827-10852, 2005.

E. Valeur and M. Bradley, Amide bond formation: beyond the myth of coupling reagents, Chem Soc Rev, vol.38, pp.606-631, 2009.

T. I. Al-warhi, H. M. Al-hazimi, and A. El-faham, Recent development in peptide coupling reagents, J. Saudi Chem. Soc, vol.16, pp.97-116, 2012.

R. B. Woodward and R. A. Olofson, The reaction of isoxazolium salts with nucleophiles, Tetrahedron, vol.22, pp.415-440, 1966.

K. Llamas, M. Owens, R. L. Blakeley, and B. Zerner, N-Ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward's Reagent K) as a Reagent for Nucleophilic Side Chains of Proteins, J. Am. Chem. Soc, vol.108, pp.5543-5548, 1986.

H. Shiu, Electron-Deficient Alkynes as Cleavable Reagents for the Modification of Cysteine-Containing Peptides in Aqueous Medium. Chem. -A Eur, J, vol.15, pp.3839-3850, 2009.

M. R. Jafari, J. Lakusta, R. J. Lundgren, and R. Derda, Allene Functionalized Azobenzene Linker Enables Rapid and Light-Responsive Peptide Macrocyclization, Bioconjug. Chem, vol.27, pp.509-514, 2016.

M. Jedrzejczak, R. E. Motie, D. P. Satchell, R. S. Satchell, and W. N. Wassef, Kinetics of Aminolysis of some Benzoyl Fluorides and Benzoic Anhydrides in Non-hydroxylic Solvents, J. Chem. Soc., Perkin Trans. 2, vol.78, pp.1471-1479, 1994.

G. Prabhu, N. Narendra, B. Basavaprabhu, V. Panduranga, and V. V. Sureshbabu, Amino acid fluorides: viable tools for synthesis of peptides, peptidomimetics and enantiopure heterocycles, RSC Adv, vol.5, pp.48331-48362, 2015.

L. A. Carpino, M. Beyermann, H. Wenschuh, and M. Bienert, Peptide Synthesis via Amino Acid Halides, Acc. Chem. Res, vol.29, pp.268-274, 1996.

M. E. Due-hansen, A Protocol for Amide Bond Formation with Electron Deficient Amines and Sterically Hindered Substrates, Org. Biomol. Chem, vol.14, pp.430-433, 2016.

A. El-faham and F. Albericio, Peptide Coupling Reagents, More than a Letter Soup, Chem. Rev, vol.111, pp.6557-6602, 2011.

H. Hemantha, G. Chennakrishnareddy, T. Vishwanatha, and V. Sureshbabu, One-Pot Synthesis of Ureido Peptides and Urea-Tethered Glycosylated Amino Acids Employing Deoxo-Fluor and TMSN3, Synlett, pp.407-410, 2009.

G. Nagendra, R. S. Lamani, N. Narendra, and V. V. Sureshbabu, A convenient synthesis of 1,3,4-thiadiazole and 1,3,4-oxadiazole based peptidomimetics employing diacylhydrazines derived from amino acids, Tetrahedron Lett, vol.51, pp.6338-6341, 2010.

A. Bianco, C. P. Sonksen, P. Roepstorff, and J. Briand, Solid-Phase Synthesis and Structural Characterization of Highly Substituted Hydroxyproline-Based 2,5-Diketopiperazines, J. Org. Chem, vol.65, pp.2179-2187, 2000.

K. Hung, P. W. Harris, and M. A. Brimble, Synthesis of the Peptaibol Framework of the Anticancer Agent Culicinin D: Stereochemical Assignment of the AHMOD Moiety, Org. Lett, vol.14, pp.5784-5787, 2012.

K. Sakamoto, Y. Nakahara, and Y. Ito, Combination of silyl carbamate and amino acid fluoride for solid-phase peptide synthesis, Tetrahedron Lett, vol.43, pp.1515-1518, 2002.

M. Sintes, Activation-Free Fluorogenic Reagent for Labeling Bioactive Amines, Bioconjug. Chem, vol.27, pp.1430-1434, 2016.

N. Kielland, M. Vendrell, R. Lavilla, and Y. Chang, Imaging histamine in live basophils and macrophages with a fluorescent mesoionic acid fluoride, Chem. Commun, vol.48, p.7401, 2012.

A. Romieu, The first comparative study of the ability of different hydrophilic groups to water-solubilise fluorescent BODIPY dyes, New J. Chem, vol.37, pp.1016-1027, 2013.

S. Fredriksson, Protein detection using proximity-dependent DNA ligation assays, Nat. Biotechnol, vol.20, pp.473-477, 2002.

T. Sugo, Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles, J. Control. Release, vol.237, pp.1-13, 2016.

Y. K. Oh and T. G. Park, siRNA delivery systems for cancer treatment, Adv. Drug Deliv. Rev, vol.61, pp.850-862, 2009.

D. Bumcrot, M. Manoharan, V. Koteliansky, and D. W. Sah, RNAi therapeutics: a potential new class of pharmaceutical drugs, Nat. Chem. Biol, vol.2, pp.711-719, 2006.

K. Gunasekaran, T. H. Nguyen, H. D. Maynard, T. P. Davis, and V. Bulmus, Conjugation of siRNA with comb-type PEG enhances serum stability and gene silencing efficiency, Macromol. Rapid Commun, vol.32, pp.654-659, 2011.

J. M. Harris and R. B. Chess, Effect of pegylation on pharmaceuticals, Nat. Rev. Drug Discov, vol.2, pp.214-221, 2003.

P. G. Holder and D. Rabuka, Biosimilars of Monoclonal Antibodies 591-640, 2016.

Y. L. Lyubchenko, A. A. Gall, and L. S. Shlyakhtenko, Visualization of DNA and protein-DNA complexes with atomic force microscopy, Methods Mol. Biol, vol.1117, pp.367-384, 2014.

X. Chen, K. Muthoosamy, A. Pfisterer, B. Neumann, and T. Weil, Site-selective lysine modification of native proteins and peptides via kinetically controlled labeling, Bioconjug. Chem, vol.23, pp.500-508, 2012.

R. M. Versteegen, R. Rossin, W. Ten-hoeve, H. M. Janssen, and M. S. Robillard, Click to Release: Instantaneous Doxorubicin Elimination upon Tetrazine Ligation, Angew. Chemie Int. Ed, vol.52, pp.14112-14116, 2013.

M. Xu, J. Tu, and R. M. Franzini, Rapid and efficient tetrazine-induced drug release from highly stable benzonorbornadiene derivatives, Chem. Commun, vol.53, pp.6271-6274, 2017.

R. Rossin, Triggered Drug Release from an Antibody-Drug Conjugate Using Fast 'clickto-Release' Chemistry in Mice, Bioconjug. Chem, vol.27, pp.1697-1706, 2016.

M. Das, R. Jain, A. K. Agrawal, K. Thanki, and S. Jain, Macromolecular Bipill of Gemcitabine and Methotrexate Facilitates Tumor-Specific Dual Drug Therapy with Higher Benefit-to-Risk Ratio, Bioconjug. Chem, vol.25, pp.501-509, 2014.

J. G. Vineberg, Design, Synthesis, and Biological Evaluations of Tumor-Targeting Dual-Warhead Conjugates for a Taxoid-Camptothecin Combination Chemotherapy, J. Med. Chem, vol.57, pp.5777-5791, 2014.

D. A. Richards, A. Maruani, and V. Chudasama, Antibody fragments as nanoparticle targeting ligands: a step in the right direction, Chem. Sci, vol.0, pp.1-15, 2016.

A. Guzaev and H. Lönnberg, Bis(hydroxymethylation) of the Active Methylene Group of 1,3-Dicarbonyl and Related Compounds, Synthesis (Stuttg), pp.1281-1284, 1997.

M. Melnick, Bis tertiary amide inhibitors of the HIV-1 protease generated via protein structure-based iterative design, J. Med. Chem, vol.39, pp.2795-2811, 1996.

I. Dovgan, Acyl Fluorides: Fast, Efficient, and Versatile Lysine-Based Protein Conjugation via Plug-and-Play Strategy, Bioconjug. Chem, vol.28, pp.1452-1457, 2017.

, Relative Intensity

T. Sano, C. Smith, and C. Cantor, Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates, Science, vol.258, pp.120-122, 1992.

S. A. Kazane, D. Sok, E. H. Cho, M. L. Uson, P. Kuhn et al., Sitespecific DNA-antibody conjugates for specific and sensitive immuno-PCR, Proc. Natl. Acad. Sci, vol.109, pp.3731-3736, 2012.

T. L. Cuellar, D. Barnes, C. Nelson, J. Tanguay, S. Yu et al., Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates, Nucleic Acids Res, vol.43, pp.1189-1203, 2015.

G. Mathe, L. O. Tran-ba, and J. Bernard, Effet sur la leucémie 1210 de la Souris d'une combinaison par diazotation d'A-mêthoptérine et de y-globulines de hamsters porteurs de cette leucémie par hétérogreffe, C.R. Hebd. Séances Acad. Sci., Série B, vol.246, pp.1626-1628, 1958.

H. L. Perez, P. M. Cardarelli, S. Deshpande, S. Gangwar, G. M. Schroeder et al., Antibody-drug conjugates: Current status and future directions, Drug Discov. Today, vol.19, pp.869-881, 2014.

P. Trail, D. Willner, S. J. Lasch, J. Henderson, S. Hofstead et al., Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates, Science, vol.261, pp.212-215, 1993.

G. Pietersz and K. Krauer, Antibody-targeted drugs for the therapy of cancer, J. Drug Target, vol.2, pp.183-215, 1994.

P. F. Bross, J. Beitz, G. Chen, H. Xiao, . Chen et al., Approval summary: Gemtuzumab ozogamicin in relapsed acute myeloid leukemia, Clin. Cancer Res, 2001.

A. Younes, N. L. Bartlett, J. P. Leonard, D. Kennedy, C. M. Lynch et al.,

A. Torres, Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas, N. Engl. J. Med, vol.363, pp.1812-1821, 2010.

R. A. Claro, . De, K. Mcginn, and V. Kwitkowski, Food and Drug Administration Approval Summary : Brentuximab Vedotin for the Treatment of Relapsed Hodgkin Lymphoma or Relapsed Systemic Anaplastic Large-Cell Lymphoma U . S . Food and Drug Administration Approval Summary : Lymphoma or Relapsed Sys, Clin. Cancer Res, vol.18, pp.5845-5849, 2012.

P. D. Senter and E. L. Sievers, The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma, Nat. Biotechnol, vol.30, pp.631-637, 2012.

L. Amiri-kordestani, G. M. Blumenthal, Q. C. Xu, L. Zhang, S. W. Tang et al.,

C. Chi, B. Candau-chacon, R. Hughes, P. Russell, A. M. Miksinski et al.,

D. Palmby, T. Schrieber, S. J. Liu, Q. Wang, J. Song et al., FDA approval: Adotrastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer, Clin. Cancer Res, vol.20, pp.4436-4441, 2014.

A. Ballantyne and S. Dhillon, Trastuzumab emtansine: First global approval, Drugs, vol.73, pp.755-765, 2013.

D. Pfister, N. Ulmer, A. Klaue, O. Ingold, and M. Morbidelli, Modeling the Kinetics of Protein Conjugation Reactions, Chemie Ing. Tech, vol.88, pp.1598-1608, 2016.

M. T. Kim, Y. Chen, J. Marhoul, and F. Jacobson, Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate, Bioconjug. Chem, vol.25, pp.1223-1232, 2014.

V. S. Goldmacher, G. Amphlett, L. Wang, and A. C. Lazar, Statistics of the Distribution of the Abundance of Molecules with Various Drug Loads in Maytansinoid Antibody-Drug Conjugates, Mol. Pharm, vol.12, pp.1738-1744, 2015.

K. J. Hamblett, P. D. Senter, D. F. Chace, M. M. Sun, J. Lenox et al.,

S. X. Bernhardt, A. K. Kopcha, R. F. Zabinski, D. L. Meyer, and J. A. Francisco, Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate, Clin. Cancer Res, vol.10, pp.7063-7070, 2004.

D. Willner, P. A. Trail, S. J. Hofstead, H. D. King, S. J. Lasch et al., -Maleimidocaproyl)hydrazone of doxorubicin. A new derivative for the preparation of immunoconjugates of doxorubicin, Bioconjug. Chem, vol.4, issue.6, pp.521-527, 1993.

S. O. Doronina, B. E. Toki, M. Y. Torgov, B. A. Mendelsohn, C. G. Cerveny et al.,

P. D. Senter, Development of potent monoclonal antibody auristatin conjugates for cancer therapy, Nat. Biotechnol, vol.21, pp.778-784, 2003.

V. Chudasama, A. Maruani, and S. Caddick, Recent advances in the construction of antibodydrug conjugates, Nat. Chem, vol.8, pp.114-119, 2016.

A. Beck, L. Goetsch, C. Dumontet, and N. Corvaïa, Strategies and challenges for the next generation of antibody-drug conjugates, Nat. Rev. Drug Discov, vol.16, pp.315-337, 2017.

S. Panowski, S. Bhakta, H. Raab, P. Polakis, and J. R. Junutula, Site-specific antibody drug conjugates for cancer therapy, MAbs, vol.6, pp.34-45, 2014.

V. Chudasama, A. Maruani, and S. Caddick, Recent advances in the construction of antibodydrug conjugates, Nat. Chem, vol.8, pp.114-119, 2016.

O. Koniev and A. Wagner, Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation, Chem. Soc. Rev, vol.44, pp.5495-5551, 2015.

V. L. Chudasama, F. S. Stark, J. M. Harrold, J. Tibbitts, S. R. Girish et al., Semi-mechanistic Population Pharmacokinetic Model of Multivalent Trastuzumab Emtansine in Patients with Metastatic Breast cancer, Clin. Pharmacol. Ther, vol.92, pp.520-527, 2012.

A. D. Baldwin and K. L. Kiick, Tunable degradation of maleimide-Thiol adducts in reducing environments, Bioconjug. Chem, vol.22, pp.1946-1953, 2011.

E. J. Tournier, J. Wallach, and P. Blond, Sulfosuccinimidyl 4-(N-maleimidomethyl)-1-cyclohexane carboxylate as a bifunctional immobilization agent. Optimization of the coupling conditions, Anal. Chim. Acta, vol.361, pp.33-44, 1998.

K. R. Gee, E. A. Archer, and H. C. Kang, STP) esters: New watersoluble amine-reactive reagents for labeling biomolecules, vol.40, pp.1471-1474, 1999.

K. Xu, L. Liu, R. Dere, E. Mai, R. Erickson et al., Characterization of the drug-to-antibody ratio distribution for antibody-drug conjugates in plasma/serum, Bioanalysis, vol.5, pp.1057-1071, 2013.

B. Shen, K. Xu, L. Liu, H. Raab, S. Bhakta et al.,

A. Ebens, A. Wong, W. L. Vandlen, R. Kaur, S. Sliwkowski et al.,

J. R. Junutula, Conjugation site modulates the in vivo stability and therapeutic activity of antibodydrug conjugates, Nat. Biotechnol, vol.30, pp.184-193, 2012.

P. Strop, S. H. Liu, M. Dorywalska, K. Delaria, R. G. Dushin et al.,

M. G. Casas, Y. Abdiche, D. Zhou, R. Chandrasekaran, C. Samain et al.,

S. Krimm, T. Wong, S. M. Chin, J. Yu, J. Dilley et al., Location matters: Site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates, Chem. Biol, vol.20, pp.161-167, 2013.

R. P. Lyon, J. R. Setter, T. D. Bovee, S. O. Doronina, J. H. Hunter et al.,

E. Balasubramanian, C. L. Duniho, S. M. Leiske, C. I. Li, F. Senter et al., Selfhydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates, Nat. Biotechnol, vol.32, pp.1059-1062, 2014.

L. N. Tumey, M. Charati, T. He, E. Sousa, D. Ma et al., Mild method for succinimide hydrolysis on ADCs: impact on ADC potency, stability, exposure, and efficacy, Bioconjug. Chem, vol.25, pp.1871-80, 2014.

S. D. Fontaine, R. Reid, L. Robinson, G. W. Ashley, and D. V. Santi, Long-term stabilization of maleimide-thiol conjugates, Bioconjug. Chem, vol.26, pp.145-152, 2015.

R. J. Christie, R. Fleming, B. Bezabeh, R. Woods, S. Mao et al., Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides, J. Control. Release, vol.220, pp.660-670, 2015.

S. Kolodych, O. Koniev, Z. Baatarkhuu, J. Y. Bonnefoy, F. Debaene et al.,

A. Dorsselaer and A. Wagner, CBTF: New amine-to-thiol coupling reagent for preparation of antibody conjugates with increased plasma stability, Bioconjug. Chem, vol.26, pp.197-200, 2015.

O. Koniev, G. Leriche, M. Nothisen, J. S. Remy, J. M. Strub et al., Selective irreversible chemical tagging of cysteine with 3-arylpropiolonitriles, Bioconjug. Chem, vol.25, pp.202-206, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02475604

J. T. Patterson, S. Asano, X. Li, C. Rader, C. F. Barbas et al., Improving the serum stability of site-specific antibody conjugates with sulfone linkers, Bioconjug. Chem, vol.25, pp.1402-1407, 2014.

F. Lhospice, D. Brégeon, C. Belmant, P. Dennler, A. Chiotellis et al., Site-Specific conjugation of monomethyl auristatin e to Anti-CD30 antibodies improves their pharmacokinetics and therapeutic index in rodent models, Mol. Pharm, vol.12, pp.1863-1871, 2015.