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Résumé

L’évolution constante des besoins des clients et des utilisateurs exige une réponse
rapide de la part des équipes logicielles. Cela crée une forte demande pour un fonc-
tionnement sans rupture des processus logiciels. L’intégration, la livraison et le dé-
ploiement continus, également connus sous le nom de DevOps, ont fait d’énormes
progres en rendant les processus logiciels réactifs au changement. Ces progres n’ont
toutefois eu que peu d’effets sur les exigences en matiere de logiciels. Aujourd’hui,
la plupart des besoins sont exprimés en langage naturel. Cette approche a un grand
pouvoir expressif, mais au détriment d’autres aspects de la qualité des exigences telles
que la tracabilité, la réutilisabilité, la vérifiabilité et la compréhensibilité. Le défi est
ici d’améliorer ces aspects sans sacrifier I’expressivité.

Bertrand Meyer, dans sa méthode multi-exigences, releve ce défi et propose
d’exprimer les besoins individuels en trois couches: sous-ensemble déclaratif d’un lan-
gage de programmation orienté objet, langage naturel et notation graphique. Cette ap-
proche a motivé et inspiré les travaux de la présente these. Alors que I’approche multi-
exigences se concentre sur la tracabilité et la compréhensibilité, 1’approche Seamless
Object-Oriented Requirements (SOOR) présentée dans cette theése prend en compte la
vérifiabilité, la réutilisabilité et la compréhensibilité.

Cette these explore I’hypotheése de Martin Glinz selon laquelle, pour soutenir la
continuité, les exigences logicielles devraient étre des objets. L’exploration confirme
I’hypothese et aboutit a un ensemble de méthodes basées sur des outils pour spécifier,
valider, vérifier et réutiliser les exigences orientées objets. La contribution technique
réutilisable la plus importante de cette these est une bibliotheque Eiffel préte a I’emploi
de patrons de classes, qui capturent les modeles d’exigences logicielles récurrents. Les
exigences orientées objets, concretes et sans rupture, héritent de ces patrons et devien-
nent des clients du logiciel spécifié. La construction de logiciels orientés objets devient
la méthode de spécification, de validation et de réutilisation des exigences; la concep-
tion par contrat devient la méthode de vérification de 1’exactitude des implémentations
par rapport aux exigences.

Cette these s’appuie sur plusieurs expériences et montre que la nouvelle approche
proposée favorise la vérifiabilité, la réutilisabilité et la compréhensibilité des exigences
tout en maintenant I’expressivité a un niveau acceptable. Les expérimentations met-
tent en oeuvre plusieurs exemples, dont certains sont des standards de 1’état de 1’art de
I’ingénierie des exigences. Chaque expérimentation illustre un probléme par un exem-
ple, propose une solution générale et montre comment la solution regle le probleme.
Alors que I’expérimentation s’appuie sur Eiffel et son support d’outils avancés, tels
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que la preuve et les tests automatisés, chaque idée présentée dans I’approche SOOR
s’adapte conceptuellement a tout langage de programmation orienté objet typé sta-
tiquement, possédant un mécanisme de généricité et un support élémentaire pour les
contrats.



Abstract

The constantly changing customers’ and users’ needs require fast response from soft-
ware teams. This creates strong demand for seamlessness of the software processes.
Continuous integration, delivery and deployment, also known as DevOps, made a huge
progress in making software processes responsive to change. This progress had little
effect on software requirements, however. Specifying requirements still relies on the
natural language, which has an enormous expressive power, but inhibits requirements’
traceability, verifiability, reusability and understandability. Promoting the problematic
qualities without inhibiting the expressiveness too much introduces a challenge.

Bertrand Meyer, in his multirequirements method, accepts the challenge and pro-
poses to express individual requirements on three layers: declarative subset of an
object-oriented programming language, natural language and a graphical notation. This
approach has motivated and inspired the work on the present thesis. While multire-
quirements focus on traceability and understandability, the Seamless Object-Oriented
Requirements approach presented in the dissertation takes care of verifiability, reusabil-
ity and understandability.

The dissertation explores the Martin Glinz’ hypothesis that software requirements
should be objects to support seamlessness. The exploration confirms the hypothesis
and results in a collection of tool-supported methods for specifying, validating, verify-
ing and reusing object-oriented requirements. The most significant reusable technical
contribution of the dissertation is a ready-to-use Eiffel library of template classes that
capture recurring software requirement patterns. Concrete seamless object-oriented re-
quirements inherit from these templates and become clients of the specified software.
Object-oriented software construction becomes the method for requirements specifi-
cation, validation and reuse; Design by Contract becomes the method for verifying
correctness of implementations against the requirements.

The dissertation reflects on several experiments and shows that the new approach
promotes requirements’ verifiability, reusability and understandability while keeping
expressiveness at an acceptable level. The experiments rely on several examples, some
of which are used as benchmarks in the requirements literature. Each experiment il-
lustrates a problem through an example, proposes a general solution, and shows how
the solution fixes the problem. While the experimentation relies on Eiffel and its ad-
vanced tool support, such as automated proving and testing, each idea underpinning
the approach scales conceptually to any statically typed object-oriented programming
language with genericity and elementary support for contracts.
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Introduction

Seamless development

It affects project organization, and the
very nature of the software
profession; in line with modern trends
in other industries, it tends to remove
barriers between narrow specialties —
analysts who only deal in ethereal
concepts, designers who only worry
about structure, implementers who
only write code — and to favor the
emergence of a single category of
generalists: developers in a broad
sense of the term, people who are able
to accompany part of a project from
beginning to end.

Bertrand Meyer

Definition 0.0.1 Seamlessness is the use of a continuous process throughout the soft-
ware lifecycle [Mey97)].

Bertrand Meyer, in his “Object-Oriented Software Construction” (OOSC) book
[Mey97]], presented the idea of developers in a broad sense of the term — as people who
are able to accompany part of a project from beginning to end. This idea, originating
from the first edition of the OOSC book back in 1988, was prophetic: companies more
and more value individual contributors who alone can take a software feature from the
analysis through construction to maintenance. Software processes and tools should
support such contributors, collectively called developers. As opposed to the skills of
the people performing specific tasks, such as analysts, architects, programmers and
testers, developers’ skills crosscut these tasks. Software processes’ continuity stands
on the developers’ shoulders, and the present dissertation has the objective of simpli-
fying their lives at the conceptual level, as DevOps [Ebe+16]] does at the level of tools
automating mundane tasks, such as building and testing. People naturally want to solve
creative tasks, everything else should be automated. DevOps tools not only automate
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tasks within individual software development lifecycle (SDLC) phases, but also trigger
execution of a next phase when observing certain events in the previous phase.

While tools may help, several conceptual gaps remain, one of which is the nota-
tional gap. Individual SDLC phases have been historically relying on their own no-
tations, which was sensible when people were given specific tasks and mastering one
notation would be enough to handle one task. With individual contributors taking re-
sponsibility for entire features, the following problems emerge:

e The developers must learn and practice several notations.
e Dedicated traceability tools must be in place.
e The developers must have enough discipline to record traceability links.

The seamless approach [WNO4], [Mey97] attempts to remove the notational gap by
applying the implementation programming language throughout the SDLC. Success of
this effort would have the following implications:

e Knowing the implementation programming language would be enough to prac-
tice the entire SDLC.

e The native code traceability features of integrated development environments
(IDEs) would also serve for tracing requirements.

e The developers would not need to record traceability links between different
kinds of artifacts — requirements, code, tests, etc.

The idea to use programming languages as requirements notations is gaining sup-
port. Many groups of stakeholders prefer descriptions of operational activity paths over
declarative requirements specifications [SFOO03]]. A demand exists for educating devel-
opers capable of both abstracting in a problem space and automating the transition to
a solution space [WHR14]|. The decision to express requirements in programming lan-
guages may also be the only way to bring the developers closer to the requirements
they implement: industry practitioners are generally not keen to switching their tools
[Dal+18].

The real situation does not meet these needs, however. The state-of-the-practice
[PQF17] and the literature [IPP18] studies show no evidence that existing requirements
approaches consider connecting the problem and the solution spaces. The studied ap-
proaches focus on reusing natural language, use cases, domain models and several
other artifacts disjoint from the solution space.

The thesis

The object-oriented paradigm builds on the idea of supporting developers at the level of
language and environment [Mey97]l. This aspiration does not meet the reality, however.
Developers specify requirements in natural language or modeling notations, implement
them in programming languages, verify correctness of the solutions using tests and
sometimes “reuse” the requirements through copying and pasting. Modern IDEs pay a
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lot of attention to implementation and testing, sometimes to modeling. Requirements
are left out to specialized tools working with their own notations and semantics. The
Seamless Object-Oriented Requirements approach attempts to make requirements full
citizens of the IDE:s.

Martin Glinz, in his “Should Requirements Be Objects?” position paper [Gli]],
discusses arguments in favor and against treating requirements as objects. The “in
favor” section concludes with the following remark:

“Furthermore, if we employ state-of-the-art object-oriented design and
implementation techniques, an object-oriented requirements specification
would allow a seamless application of object-oriented software engineer-
ing methods through the complete development cycle, from inception to
deployment. We would get a smooth transition from requirements into ar-
chitecture and design and could apply round-trip engineering methods and
tools. So why longer hesitate? Just let requirements become objects.”

The “against” section then downplays that inspirational argument. It opens with several
examples of requirements that are “clearly not objects™:

“The promises of abstraction and comprehensibility sound good, but —
treating requirements as objects is like making a problem fit a solution,
instead of doing it vice-versa. What is a requirement? A requirement may
be a goal, for example “The new CRM system shall reduce the number
of customer complaints by at least 50%.” Is this an object? What does it
encapsulate? Has it a state or behavior? Not really. So let’s try another
kind of requirement. A requirement may be a function, for example “The
system shall compute the maximum speed that the train can run with on
the current track segment.” Is a function an object? Definitely not. So let’s
again try another kind of requirement. A requirement can be a constraint,
for example “In normal operating mode, the lift shall never move when the
doors are not closed completely.” But again, a constraint is no object.”

The analysis of these examples, leading to the negative conclusion, looks superficial.
Yes, all these requirements are objects — textual objects at a minimum. Natural lan-
guage text constitutes one dimension of requirements. The developers will eventually
write executable tests to verify correctness of candidate solutions against these require-
ments. These tests will form another dimension of the same requirements. Other di-
mensions, such as graphical, or audio representations may exist. Requirements fre-
quently follow, as empirical evidence suggests, several patterns (SRPs — software re-
quirement patterns) along some of these dimensions [DAC99], [KCO2], [KCOS5]; these
SRPs should be reusable. Here comes the main thesis of my dissertation:

Requirements, with their recurring structure and multidimensional nature,
constitute natural input for the object-oriented analysis.

The answer to the Martin Glinz’ “Should Requirements Be Objects?” question is a
clear “yes”. Here are the sub-theses that refine the main one:

1. Requirements are objects instantiated from requirement classes.
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2. Construction of requirement classes follows the object-oriented
principles [Mey97].

3. The requirements’ dimensions are implemented through the requirement classes’
features.

The requirement classes map to recurring requirement patterns, some of which reccur
especially often [DAC99], [KCO5]]. Such patterns should be reusable, and object ori-
entation provides the reusability mechanisms that have already found their place in the
developers’ daily practices. The requirements’ dimensions — textual, graphical, verifi-
able etc. — constitute their meaning [Mey13|]. Different software engineering activities
favor different dimensions; it is natural, therefore, for a single requirement to exist in
different notations serving different purposes. It seems natural to represent require-
ments as classes with the features supporting the multidimensional analysis. Bertrand
Meyer stated the initial principles behind object-oriented requirements in the “Thesis
B” section of his “Multirequirements” article [Mey13]]. The present dissertation devel-
ops these principles to cover more practical problems and situations. Part [I] discusses
these problems and situations in detail.

Summary of contribution

The thesis presents Seamless Object-Oriented Requirements — a practial requirements
methodology optimized for the purposes of seamless development. It reuses the ex-
isting features of the modern IDEs for specifying, validating, verifying, reusing and
tracing requirements. The IDEs become the single working environment for develop-
ers who take full responsibility for complete software features. The methodology relies
on the following key notions:

e Seamless object-oriented requirement (SOOR).
o Seamless object-oriented requirement template (SOORT).

Section [3.3| precisely defines and interconnects these notions, and Section [3.4] presents
activities in which these notions serve as the main artifacts. The rest of the dissertation
uses the “SOOR” abbreviation to refer either to the approach, or to an individual re-
quirement specified according to the approach; the actual meaning will be clear from
the context.

The dissertation presents a unified seamless approach that features a wide range of
technical capabilities for specifying, validating, implementing and verifying require-
ments. The following list summarizes these capabilities:

1. Handling realistic systems with hard to formalize requirements [NMR15].
2. Specifying arbitrary abstract data types (ADTs) [NM16]]

3. Statically checking contracts’ well-definedness, correctness and completeness
[INM16].

4. Static proof-oriented detection of inconsistent contracts [Naul§]].
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5. Incrementally-iterative proof-oriented software process reusing the underlying
IDE for handling requirements [NM17].

6. Specifying and verifying control software temporal properties and timing con-
straints [Nau+19].

7. Capturing software requirement patterns (SRPs) as object-oriented templates for
faster specification, validation and verification of new requirements [Naul9al]. A
ready-to-use library of templates capturing known SRPs [Naul9bf|] supports this
capability.

How to read the dissertation

Part [] describes the problem in more detail. Part [[T| presents the solution. Chapters [3]
- 3] present the key ideas. Chapters [7] - [I2] provide the technical details behind these
ideas and conduct several experiments to showcase these ideas in practice. Chapter [6]
provides the connection between key ideas and the details behind them. Part[[Tl]reflects
on the results, drawing conclusions and paving the road towards future work.

I recommend the following ways of reading the present manuscript:

1. Read it completely, skipping chapters [7] - [I2] to overview the most important
ideas and develop intuition behind them. This way of reading will require staying
focused: the material is dense and contains only the essentials of the thesis.

2. Sequentially read chapters [7]- [I2] This will increase the amount of reading but
lower its density: the chapters incrementally develop the essential ideas, building
each on top of the previous ones in a bottom-up fashion.

3. Read the dissertation completely. Chapter [6] connects chapters [7] - [I2] with the
essentials overview. This way of reading will give the full picture and require
the biggest amount of time.
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Part I

The Problem






Chapter 1

State of the Art

The present chapter discusses existing approaches leading to seamlessness (Defini-
tion[0.0.1)) in some sense. These approaches may not explicitly focus on requirements
or seamlessness, rather focusing on some other aspects, such as testing; seamlessness
may come as a side effect. Section[I.T|characterizes approaches that are clearly relevant
to the discussion, while Section characterizes clearly irrelevant approaches.

1.1 Inclusion criteria

We only discuss approaches that lead to seamlessness at the software development life
cycle (SDLC) level, in all directions: if a change happens in one SDLC phase, its con-
sequences are observable in the other phases. Such approaches lead to the possibility
of using the same set of notations and tools throughout the entire SDLC. Two notations
are clearly unavoidable: the implementation programming language and the natural
language.

1.2 Exclusion criteria

Some approaches, such as seamless model-based requirements engineering [Teul7]],
develop seamlessness within the analysis phase alone, with little concern for bridg-
ing the gap between requirements and other SDLC phases. The present dissertation
has a clear objective: simplifying lives of individual generalists — software developers.
Multiplying the notations disjoint from the implementation programming language and
focusing on individual SDLC phases do not contribute to this objective.

Model-verify-generate approach assume modeling the system formally, verifying
correctness of the model and then generating source code from the model. The well-
known Event-B [[Abr10] and LTSA [MKO6| methods fall into this approach.

The present dissertation excludes the model-verify-generate approach from the dis-
cussion for the following reasons:
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e Entering the solution space too early. The model-verify-generate approaches
require a model of the future system already at the requirements specification
stage. Requirements are not self-contained in these approaches: they become as-
sertions (invariants, guards, trigger conditions, etc.) in the context of the chosen
model. While design decisions must ensure satisfaction of the requirements, with
the model-based approaches formulation of requirements themselves depends on
pre-taken design decisions.

e Seamlessness in one direction. All changes start with changing the model, from
which the source code is then re-generated. There is no way to modify the gen-
erated code and see if the modification violates the model. This is a critical
problem: in practice it is always necessary to optimize the source code to meet
non-functional requirements, such as performance and security, and the model-
verify-generate approach does not provide mechanisms for expressing such re-
quirements. While some of these approaches perform the model-to-code trans-
lation automatically, the need to modify the code will raise the demand for an
additional effort of keeping the model consistent with the source code.

e Difficulty to master. The model-verify-generate approaches rely on mathemati-
cal
formalisms that require specialized education. Forcing an existing, sometimes
jelled, development team to learn these formalisms may ruin the project. These
may not be a problem for companies developing mission-critical software, but
we cater to generalists.

e Capturing the requirements as assertions in the modeling formalism. This may
be realistic if both the customer and the contractor understand the modeling no-
tation well enough to agree on the resulting document. Early requirements take
the natural language form, and the model-verify-generate approach leaves the
problem of connecting these early requirements with models open.

The model-verify-generate approach generally targets mission- and life-critical sys-
tems. This focus allows its practitioners to rely on additional strong assumptions about
the process’ high maturity level, the input requirements’ high quality, the developers’
awareness of formal methods and the project’s generous schedule and budget. These
assumptions rarely hold for the mass market software development.

1.3 Design by Contract

The first attempt to achieve full seamlessness and bring requirements to the developers’
fingertips belongs to Design by Contract (DbC) [Mey92|]. The method equips classes
and their features with two-state assertions visible to their clients. DbC benefits seam-
lessness at the following levels:

Specification: contracts, when written during the analysis phase, prescribe the desired
software behavior.
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Construction: developers may rely on the IDE’s intelligent facilities displaying the
components’ contracts; this greatly simplifies choosing the most appropriate
components.

Verification: DbC enables both static and dynamic verification. Running an applica-
tion equipped with contracts makes the runtime environment check these con-
tracts; a contract violation forces the developer to debug both the contract and
the code implementing it. Program proving, on the other hand, makes it possible
to statically verify the absence of runtime violations before the first run of the
program [[T'sc+15].

Documentation: together with natural language comments, contracts may serve as
comprehensive documentation for ready-to-use components.

With all its benefits, DbC in its pure form lacks specifications’ incrementality. An
individual requirement may crosscut more than two states and several concepts from
the problem space. In this case, the contract assertions reflecting the requirement will
be spread across several classes and features, which may inhibit the process’ continu-
ity. Individual requirements often take the form of standalone prescriptive statements
[LamO9], and establishing traceability links between a single statement and several
contract assertions will require specialized tools. Requirements that promote the pro-
cess’ continuity, or seamlessness-oriented requirements, should be standalone entities
to eliminate the issue.

1.4 Multirequirements

The multirequirements method [Mey13] makes specifications incremental. The fol-
lowing principles define the method:

1. Develop individual requirements incrementally on several layers, including the
following three: formal, graphical, natural language.

2. Use these layers both in a complementary way (when one of them is more ap-
propriate to the description of a system property) and redundantly (for example
to combine the precision of formal descriptions with the convincing power of
graphical descriptions).

3. Model systems through object-oriented techniques: classes as the basic unit of
decomposition, inheritance to capture abstraction variants, contracts to capture
semantics.

4. Use an object-oriented language (e.g. Eiffel) to write the formal layer according
to the principles of 3).

5. Use the contract sublanguage of the programming language as the notation for
the formal layer.

6. As the goal is to describe models, not implementations, ignore the imperative
parts of the programming language (such as assignment).
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Figure 1.1: Multirequirement describing relationships between requirements and
projects (taken from the original work [Meyl13]]). The three representation layers
present the same meaning in different notations: natural language, Eiffel and BON. The
natural language representation contains traceability links framed with the /> symbol.

7. Use an appropriate graphical notation (BON [WN94]) for the graphical layer.

8. Weave the layers to produce requirements descriptions, including a comprehen-
sive requirements document if requested, but also any other appropriate views.

9. Enforce and assess traceability between the layers and all products of the re-
quirements process, and between requirements and other product artifacts, both
down and up.

10. Rely on appropriate tools to support the process, including incremental develop-
ment.

These principles expressly pursue seamlessness at the level of requirements to
object-oriented software [Mey97|] designed around the DbC principles.

Multirequirements interweave natural language prose with pieces of contracted
code and BON [WNO94] diagrams (Figure[I.). The prose encloses names of important
concepts in slash symbols to enable traceability across the three layers.
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1.5 Parameterized unit tests

Parameterized unit tests (PUTs) may lead to seamlessness in the world of programming
languages without native support for contracts. Their invention was motivated by the
poor reuse of closed unit tests: several unit tests may check software correctness against
the same abstract data type (ADT) axiom on different test inputs. In this case, these
unit tests would duplicate the axiom’s structure. Tillmann and Schulte [TSO5| proposed
to replace closed unit tests with parameterized methods, where the parameters would
serve as universally quantified variables of the respective ADT axioms. For example,
instead of writing closed unit test (in C#):

[TestMethod]

void TestAdd() {
ArrayList a = new ArraylList(0);
object o = new object();
a.Add(o);
Assert.IsTrue(al[0] == o0);

}
they proposed to define a parameterized test axiom:

[TestAxiom]
void TestAdd(ArrayList a, object o) {
Assume.IsTrue(a!=null);
int i = a.Count;
a.Add(o);
Assert.IsTrue(al[i] == 0);

}
and then rewrite the original unit test as:

[TestMethod]
void TestAddwWithOverflow() {

TestAdd(new ArrayList(0), new object());
}

Adding another test checking the same axiom becomes straightforward:

[TestMethod]

void TestAddWithNoOverflow() {
TestAdd(new ArrayList(1l), new object());

}

PUTSs promote separation of concerns by splitting ADT axioms and test inputs,
where the inputs may be automatically generated from the axioms [[THO8]. The ap-
proach promotes seamlessness, though the original purpose was to increase the level of
reuse: requirements, in the form of ADT axioms, become expressed in the implemen-
tation programming language.

PUTSs’ contributions are (taken from the original work [TSOS5]):
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e They allow unit tests to play a greater role as specifications of program behavior.
In fact, PUTs are axiomatic specifications.

e They enable automatic case analysis, which avoids writing implementation-
specific unit tests.

e Their generated test cases often result in complete path coverage of the imple-
mentation, which amounts to a formal proof of the PUTs’ assertions.

PUTs found their place in open source projects [Lam+15]] and in a software process that
replaces test-driven development (TDD) [Fra+03] with parameterized TDD (PTDD)
[DTS10].

1.6 Theory-based testing

Theory-based testing [SBEOS]|| leads to seamlessness in the same way as the PUT-based
testing does. Theories are partial specifications of program behavior [SBEOS]]. Their
syntax shares a lot with the PUTS’ syntax: both represent unit tests parameterized over
universally quantified paramenters:

@Theory defn0fSquareRoot(double n) {
// Assumptions
assumeTrue(n >= 0);

double result = sqrRoot(n) * sqrRoot(n);

// Assertions
assertEquals(n, result, /x precision: x/ 0.01);
assertTrue(result >= 0);

JUnit, a unit testing framework for Java programs, contains an implementation of
theories in version 4.4 and later.

Theory-based testing and PUT-based testing differ in how they handle the respec-
tive artifacts — theories and PUTs. Where Tillman and Schulte generate provably min-
imal test suites based on complete specifications, Saff et al. [SBEOS]|| accept heuristics
that generate data points designed to exercise as many code paths as possible in a short
time. Theory-based testing relaxes the requirement for the specifications to be com-
plete. From the seamlessness viewpoint, the two approaches are equal. Both encode
ADT axioms in the implementation programming language and have interchangeable
formats. Choosing one of them amounts to comparing the respective tools for generat-
ing test inputs.

1.7 Abstract testing

Abstract testing [Mer+15]] expressly attempts to bridge the gap between requirements
and test cases, while PUT- and theory-based testing were targeting reuse of unit tests
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and high coverage of code with tests. Syntactically, abstract tests rely on the same idea
that PUTs and theories build upon: specifying behaviors through contracted routines,
possibly parameterized. The approach treats these routines, however, not as abstrac-
tions of closed unit tests, but as formalizations of requirements. In this regard, Merz
et al. [Mer+15] detach the approach from testing and discuss it in the broader context
of verifiable requirements. Abstract testing focuses on control software, for which it
is necessary to non-deterministically initialize environment variables. The approach
achieves this initialization through auxiliary routine
nondeterministically_initialize_environment. Implementing this routine becomes a task
of the test engineer.

The following example presents the common structure of abstract tests:
abstract_test() {

nondeterministically_initialize_environment();
assume(precondition(x1));

assume(precondition(xn));
y = f(x1,.. .,xn);
assert(postcondition(xl,.. .,xn,y));

}

The first instruction non-deterministically initializes the environment; the assume state-
ments make assumptions about the environment; the assert statement requires the post-
condition to hold under the stated assumptions. Abstract testing contributes to seam-
lessness by explicitly proposing PUT-like constructs as a requirements notation.

1.8 Reflections

The authors of the PUT-like approaches (PUTs, theory-based testing and abstract test-
ing) sometimes perceive DbC as a competing approach [Lam+15]], which prevents the
two views from benefitting each other.

Contracts are irreplaceable in how they document software components. Figure[T.2]
depicts EiffelStudio during the programming process. More concretely, it depicts a
situation in which the programmer has just entered a dot symbol after a variable and
is looking for a feature to call. EiffelStudio offers the list of features callable on the
variable. Going through the list causes the selected feature’s documentation to appear
in the rightmost pop-up window. It contains the natural language description of the
feature along with its semantics in the form pre- and postconditions. The ability to see
the callable features’ meanings may significantly speed-up the programming process.

PUTs, on the other hand, offer incrementality: two PUTs may specify different
components but reside in the same class, which will simplify searching and modify-
ing them. DbC, on the contrary, assumes that the specified components contain their
own specifications in the form of contracts. This approach, also known as “Single-
Product Principle” [Mey97], ensures the great documenting capability of contracts. As
a side effect, it results in specifications spread across the specified components, which
complicates their management.

The present dissertation shows that contracts and the PUT-like specification ap-
proaches are, in fact, fundamentally connected and may benefit each other when prac-
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315 create stack.make
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37 Show Templates (Ctrl+Space)
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50 43 fulk BOOLEAN item inserted: is inserted (v)
51 & has (v: [like iterm] G): BOOLEAN ensure them —— from STACK
52 # isemply: BOOLEAN item pushed: item = v

53 & is_equal (cther: [like Current] LINKED_STACK [G]): BOOLEAN =

Figure 1.2: EiffelStudio displaying hints, including contracts and natural language
comments.

ticed together, thanks to program proving. To illustrate the concepts, the dissertation
uses AutoProof [Tsc+135] — the prover of Eiffel programs.



Chapter 2

Important Qualities of
Requirements

The present chapter describes important qualities of a practical requirements approach
and briefly evaluates the state-of-the-art approaches against the stated qualities; we
evaluate the SOOR approach in Chapter [I3]and Chapter [T4]

We map the stated qualities to the recommendations of the ISO/IEC/IEEE 29148
“Requirements engineering” standard [ISO11]], sections ““5.2.5 Characteristics of indi-
vidual requirements” and “5.2.6 Characteristics of a set of requirements”. The docu-
ment recommends, among other characteristics, to keep requirements singular — a re-
quirement statement should include only one requirement with no use of conjunctions.
The standard does not explain, however, why this characteristic is important. Neither
does it define the very notion of conjunction, widely known as a Boolean operator, in
the context of requirements. If defined, conjunction would most probably apply to a
pair of requirements expressed in the same notation. The dissertation focuses exactly
on what this hypothetical notation should look like, and defining operations on top of
it seems to be a concern for the future work. Given these arguments, we decided to
exclude the singularity characteristic from the discussion.

Most of the standardized characteristics support what we discuss as understandabil-
ity (Section 2.4). Expressiveness (Section [2.1)) characterizes requirements approaches
rather than requirements themselves, which is why the standard does not discuss it.
We find this quality important, however, because we are exploring applicability of pro-
gramming languages as requirements notations; while natural languages have enor-
mous expressive power, programming languages’ expressiveness needs to be explored.

2.1 Expressiveness

Definition 2.1.1 Expressiveness is the suitability of an approach for capturing re-
quirements of different forms.

Software takes the following forms:

17
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e Control software works in an infinite loop and continuously reacts to events in
the environment.

e Software components process input data in finite time and produce some output
data.

Software components serve as building blocks for control software and other soft-
ware components. They take the form of command-line utilities, program modules and
any other form that meets the definition of a software component. Requirements to soft-
ware components take the form of abstract data type (ADT) specifications [GHM76].
Arrays, stacks, strings are a few examples of software components; they come inside
standard libraries of programming languages.

Specification of control software, on the other hand, relies on temporal properties
[DAC99] and timing constraints [KCOS[] — requirements that the theory of ADTs does
not cover.

A practical approach thus should be suitable for expressing at least:

e ADT axioms,
e Temporal properties,
e Timing constraints.

The state-of-the-art approaches fail to meet this expressiveness standard. Multirequire-
ments fundamentally rely on contracts, and contracts cannot capture multicommand
ADT axioms; they also cannot capture temporal properties nor timing constraints.
PUTs, theories and abstract tests can capture multicommand requirements, but not tem-
poral properties and timing constraints.

The SOOR approach combines the expressive power of contracts and PUT-like
specifications for capturing all the three kinds of requirements.

2.2 Verifiability

Definition 2.2.1 A requirement is verifiable if it has the means to prove that the system
satisfies the specified requirement. [ISOI11|]

The standard [ISO11]] does not specify how these “means to prove” should tech-
nically look like. In this section we come up with several desired properties that such
means should have.

e Verifiability should be modular. The state-of-the-art approaches have problems
with verifiability. In multirequirements, the requirements in the form of contracts
become an integral part of the solution, which makes it conceptually impossible
to fully separate the problem from the solution. Contracts represent a powerful
verification mechanism suitable both for testing [Mey+09] and program prov-
ing [Tsc+15]]. Their nature, however, assumes instrumentation of the verified
code, which may not be possible for already implemented components. Even if
a component is available for modification, the instrumentation may alter it. A
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modular specification and verification mechanism should be in place that would
not require modifying the verified components.

e Verifiability should be twofold — both static and dynamic. The PUT-like ap-
proaches are free of the modularity problem: they do not require instrumenting
the verified solution. They are perceived, however, as purely testing approaches,
which is not the case for Design by Contract — it is equipped with tools for both
static [Tsc+15] and dynamic [Mey+09] verification. Seamlessness-oriented re-
quirements should have this duality and at the same time support verification
modularity.

e Verifiability should be reusable, in the sense of reusing requirements’ verifi-
able semantics. Requirements for finite-state verification mostly follow several
software requirement patterns (SRPs) [DAC99], [KCO35], yet the secondary stud-
ies of requirements reuse approaches do not evaluate the approaches’ suitability
for producing not just reusable but also verifiable requirements. This concern
applies to both state-of-the-practice [PQF17]] and state-of-the-literature [IPP18]]
secondary studies.

2.3 Reusability

Definition 2.3.1 Reusability is the suitability of recurring requirements’ structures to
be reused across projects for simplifying specification, comprehension and verification
of the new requirements.

The ISO/IEC/IEEE 29148 “Requirements engineering” standard [I[SO11]] mentions
requirements reusability only in the context of product lines and sends the reader to
the corresponding standard, ISO/IEC 26551 “Tools and methods of requirements en-
gineering and management for product lines”. We think, however, that requirements
reuse should not be limited to product lines. Empirial studies [DAC99], [KCO35] un-
covered recurring patterns in requirements not intended for development of product
lines. In our opinion, requirements reuse is at least as important as software reuse. It
might help not only save resources in the analysis phase, but also obtain requirements
specifications of better quality both in content and syntax. It might also decrease the
risk of writing low quality requirements and lead to the reuse of design, code, and test
artifacts.

Reusability has become a success story in the reuse of code [Zai+15] and tests
[TSO5], but not requirements. Despite the existence of many requirements reuse ap-
proaches [[IPP18]|] the actual level of requirements reuse is low [PQF17]]. Textual copy
and subsequent modification of requirements from previous projects are still the most
commonly used requirements reuse techniques [PQF17], which has already been long
recognized as deficient in the world of software reuse.

Control software requirements follow several SRPs. Dwyer et al. analyzed 555
specifications for finite-state verification from different domains and successfully
matched 511 of them to 23 known SRPs [DAC99|. The SRPs were encoded in mod-
eling notations with no guidance on how to reuse them across projects for verifying
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software solutions and put to an online catalogue. In 2005, Konrad and Cheng [KCO05]]
emphasized the importance of real-time requirements and created a catalogue of real-
time verification-oriented SRPs, inspired by the catalogue of Dwyer et al. The new
SRPs have the same qualitative semantics as the original ones but add the real-time
quantitative semantics in terms of three commonly used real-time temporal logics. How
to make these SRPs seamlessly reusable across projects?

The most critical factors inhibiting the industrial adoption of requirements reuse
through SRP catalogues are [PQF17]:

e The lack of a well-defined reuse method,
e The lack of quality and incompleteness of requirements to reuse,

e The lack of convenient tools and access facilities with suitable requirements clas-
sification.

Scientific literature studying requirements reuse approaches pays little attention to
these factors when measuring the studied approaches [IPP18]]. The degree of reuse
is the most frequently measured variable, but it is measured under the assumption that
the evaluated approach is fully practiced. This assumption does not meet the reality:
most of the practitioners who declare to practice requirements reuse approaches, apply
them very selectively [PQF17]. Secondary studies, which study other studies, equally
ignore the factors that matter to practitioners [[PP18]].

Neither multirequirements, nor the PUT-like specification mechanisms consider
the reusability concern extensively. PUTs achieve some reuse at the level of tests:
they capture ADT axioms often repeated in closed test methods, and testing reduces
to replacing the PUTs’ parameters with actual values. PUTs do not abstract away
the typing information, so they are not reusable across differently typed components.
Contracts, on which multirequirements rely, offer reusability across test methods by
design [Mey+09]: preconditions check relevance of the test input, and postconditions
check correctness of the tested software. From the typing perspective, contracts offer
reusability within the same inheritance tree: descendants inherit contracts from their
ancestors. The semantics of such inheritance depends on whether it is a precondition, a
postcondition, or a class invariant. DbC does not provide, however, explicit mechanism
to reuse recurring contracts across components not connected through the inheritance
relation.

2.4 Understandability

Definition 2.4.1 Understandable requirements have the same meaning to all stake-
holders and can immediately serve as input to their activities.

Seamlessness would allow individual stakeholders to quickly see how a change
on someone else’s side affects their work. Requirements should serve as the main
communication vehicle in responding to change. This places high demands on their
understandability. Early requirements typically come in the natural language form,
suffering from many understandability problems raised by Bertrand Meyer back in
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1985 [Mey85]. These problems happened to map very well to the standardized recom-
mended characteristics of requirements and their compositions [[SO11]:

Noise — the presence in the text of an element that does not carry information
relevant to any feature of the problem [Mey85]]. Variants: redundancy; remorse.
Removing noise results in necessary [ISO11] requirements.

Silence — the existence of a feature of the problem that is not covered by any
element of the text [Mey85]. Removing silence results in complete [ISO11]
specifications.

Overspecification — the presence in the text of an element that corresponds not
to a feature of the problem but to features of a possible solution [Mey85]. Re-
moving overspecification results in bounded [ISO11]| specifications consisting of
implementation free [ISO11] requirements.

Contradiction — the presence in the text of two or more elements that define a
feature of the system in an incompatible way [Mey85]]. Removing contradiction
results in consistent [ISO11]] specifications.

Ambiguity — the presence in the text of an element that makes it possible to inter-
pret a feature of the problem in at least two different ways [Mey85]. Removing
ambiguity results in unambiguous [ISO11]] specifications.

Forward reference — the presence in the text of an element that uses features of
the problem not defined until later in the text [Mey85]. Forward referencing is
a special case of non-traceable requirements. Removing forward referencing re-
sults in upwards traceable requirements. Adding downwards traceability results
in fully traceable [ISO11]] requirements.

Wishful thinking — the presence in the text of an element that defines a feature of
the problem in such a way that a candidate solution cannot realistically be vali-
dated with respect to this feature [Mey85]]. Removing wishful thinking results in
affordable [ISO11] specifications consisting of feasible [ISO11]] requirements.

The characteristics recommended by the standard promote requirements’ understand-
ability. The state-of-the-art approaches lack evaluation against these characteristics.
The PUT-like mechanisms are:

Implementation free: they have the form of external test methods that call ex-
ported implementations’ features.

Unambiguous: they have unique meaning as programming language constructs.

Downwards traceable: the calls to the specified features become the traceability
vehicle.

The PUT-like approaches lack explicitly defined mechanisms that would guarantee the
remaining characteristics.

Multirequirements are specified at several representation layers; one of the layers
consists of piecemeal contracts. This makes multirequirements:
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e Unambiguous: contracts have a precise mathematical semantics.

e Downwards traceable: the multirequirements’ piecemeal contracts are part of the
implementation.

e Upwards traceable: multirequirements collocate contracts’ pieces with represen-
tations of the same requirements at the other layers.

Multirequirements promote completeness, consistency, unambiguity and feasibility:
the several representations of the same requirement may force the reader to think deeper
about its meaning. They inhibit implementation freedom, however: as piecemeal con-
tracts, they will become part of the future implementation.

Meyer proposed the process of passing requirements through a formal notation to
produce their more understandable natural language versions — “The Formal Picnic
Approach” [Mey18]]. The state-of-the-art approaches do not include a similar-purpose
mechanism.

Our task is to reuse the existing mechanisms of PUTs, multirequirements and for-
mal picnics to promote the desired understandability characteristics and remove the
mechanisms that inhibit them.



Part 11

The Unified Solution
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Chapter 3

Essentials

The solution to the problem of finding a seamlessness-oriented requirements approach
for object-oriented software construction is the object-oriented software construction
itself [Mey97]]. Requirements should be classes, in the object-oriented sense. Re-
curring requirement patterns should become abstract template classes with deferred
features that, when implemented, will turn into concrete requirements. Technically,
project-specific requirements inherit from these template classes and become clients of
the specified software components. Methodologically, object-oriented software con-
struction [Mey97] becomes the requirements specification method, and DbC [Mey92]
becomes the requirements verification method. The dissertation presents a ready-to-use
library of Eiffel classes that capture already identified SRPs for control software and
software components. The library provides a starting point for practicing the approach
that we called Seamless Object-Oriented Requirements (SOOR).

The SOOR process takes natural language requirements on input and produces
on output object-oriented requirements that are reusable and verifiable. Every object-
oriented requirement also contains a function that automatically generates paraphrased
natural language version of the input natural language requirement. The main purpose
of having the paraphrased natural language version is to validate the original input
requirement: the developer looking at the two versions will unconsciously start com-
paring them and possibly correcting the original requirement. This process is currently
known as “The Formal Picnic Approach” [Mey18|] and was justified more than 30 years
ago [Mey85]]. Object-oriented requirements also contain preprogrammed contracted
routines for verifying correctness of candidate solutions. They encode in the verifiable
form either ADT axioms, if the task is to implement a software component, or temporal
properties and timing constraints, if the task is to implement a control software.

The present chapter details the key artifacts of the process and the core activities
consuming and producing these artifacts.
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3.1 The choice of notation and technology

The main task of the thesis was to explore applicability of object-oriented program-
ming languages at the analysis phase. We chose Eiffel as the representative language
to illustrate our concepts. It has human-friendly syntax, natively supports contracts
and builds around object-oriented concepts. An advanced technology stack accompa-
nies Eiffel. Contracts-based program proving and testing with AutoProof [Tsc+15]] and
AutoTest [Mey+09], traceability to and from external sources with the Eiffel Informa-
tion System (EIS) allowed us work at the cutting edge of the programming technology.
AutoProof has been playing a key role in our studies. It is a program prover based
on Hoare logic [Hoa69] extended with semantic collaboration [Pol+14] — reasoning
framework that covers phenomena specific to object-oriented programming, such as
aliasing, callbacks and information hiding. Polikarpova et al. demonstrated practical
applicability of AutoProof by using it to fully verify EiffelBase2 — a specified library of
containers [PTF18]. We have been using EiffelBase2 extensively as a valuable source
of data for testing our ideas.

3.2 Specification drivers

Design by Contract [Mey92|] was originally designed under the assumption that the
contracts would be checked at run time. Practitioners were perceiving code solely as an
executable artifact. AutoProof makes it possible to use program elements as statically
verifiable statements that may never be executed. This possibility has been the main
thinking vehicle driving the development of the thesis.

Specification drivers operationalize this possibility and a key hypothesis of the the-
sis: Hoare logic is the best notation for capturing software requirements formally. The
dissertation describes several innovative concepts, among which the notion of spec-
ification driver is the most fundamental. Understanding this concept is essential for
understanding the rest of the work: the other concepts build on top of specification
drivers. Syntactically, a specification driver is an object-oriented Hoare triple, or a self-
contained contracted routine. The following specification driver formally captures one
of the axioms of stack:

push_then_pop (s_1, s_2: STACK [G]; x: G)
- pop (push (s, X)) =s
- Popping a stack after pushing an element on it results in the original stack,
- assuming that these operations modify only the stack itself.
require
s_1~s_2
modify
s_1
do
s_1.push (x)
s_l.pop
ensure
s_1~s.2
end
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The natural language comment captures the axiom’s mathematical representation and
informal description. The push_then_pop routine depends only on its formal parameter
and is self-contained in that sense. The routine may be submitted for static verification
to AutoProof, or run as a parameterized unit test for dynamic verification. The modify
clause captures the frame condition, critical for static verification. The require and
ensure clauses capture the routine’s pre- and postcondition, respectively.

Definition 3.2.1 A specification driver is a self-contained contracted routine that cap-
tures some behavioral property of its formal parameters through the contract.

Chapter [§] gives more intuition behind specification drivers and how to apply them
in the presence of a program prover. The subsequent chapters develop this idea further
and find for it more complex applications — way more complex than specification and
verification of stack. The specification drivers’ syntax inherits a lot from the PUT-
like approaches, which focus on the testing-based verification of ADTs and oppose
themselves to contracts. Specification drivers:

e Capture temporal properties and timing constraints in addition to ADT axioms.

e Capture contracts’ well-definedness and inconsistency axioms for checking with
AutoProof.

e Serve as PUTs in testing-based verification.
e Capture requirement’s formal semantics in a form reusable across projects.

The remaining chapters expand, detail and illustrate these benefits of specification
drivers. The dissertation concludes with the generalized object-oriented treatment of
requirements with specification drivers serving as the verification mechanism. They
became the main thinking vehicle taking us to the general notions of seamless object-
oriented requirement (SOOR) and SOOR template (SOORT).

3.3 Artifacts

Definition 3.3.1 Natural-language requirements (NLR) are requirements relying on
the natural language and serving as the initial input to the software process. Execution
of the software process derives other artifacts from the initial input.

NLRs may take the form of completely informal statements, user stories, use cases,
etc. Their specific structure has no importance in the context of the present work.

Definition 3.3.2 Seamless Object-Oriented Requirement Templates (SOORT) are
generic and deferred classes capturing SRPs. The formal generic parameters and de-
ferred features represent blank sections of the templates to fill in.

SOORTs represent the key mechanism for achieving reusability of object-oriented re-
quirements.

Definition 3.3.3 Seamless Object-Oriented Requirements (SOOR) are non-generic
concrete classes capturing NLRs and inheriting from a SOORT.
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3.4 Activities

Several major activities characterize the SOOR approach. Chapter [5]provides technical
details to help developing new SOORTs. Chapter [4] presents a ready-to-use library of
SOORTS capturing already known SRPs. Chapter [6] introduces chapters detailing the
remaining activities. These chapters not only detail the respective processes, but also
give illustrative examples to develop better intuition behind the approach.

3.4.1 Developing a SOORT

Developing a SOORT requires the same skills as developing any other object-oriented
class. It assumes identification of a pattern, hardcoding its immutable part and param-
eterizing its variable part through abstraction and genericity.

1. Identify the pattern’s formal semantics.

2. Declare the SOORT class and name it to reflect the identified semantics.

3. Encode the identified semantics through specification drivers and put them inside
the SOORT class.

4. Make the specification drivers work with generic, not actual types; make the
generic types part of the enclosing SOORT’s declaration.

5. Implement the function (we call it out in the rest of the discussion remaining text)

producing the template’s string representation; use avaialable reflection facilities
to extract the generic types’ names.

3.4.2 Specifying a SOOR
Converting an NLR to a SOOR assumes identifying patterns to which the NLR belongs,
inheriting from the SOORTS capturing these patterns and implementing the SOORTSs’
variable parts. The resulting class must be fully defined.

1. Identify the NLR’s formal semantics.

2. Find the SOORT encoding the identified semantics.

3. Create a concrete class inheriting from the found SOORT.

4. Replace the SOORT’s formal generic parameters with actual generic parameters.

5. Implement the SOORT’s deferred features.

6. Make sure that the newly implemented SOOR successfully compiles.



3.4. ACTIVITIES 29

3.4.3 Having a formal picnic

Having a formal picnic for an NLR includes instantiating the SOOR corresponding
to the NLR, getting the instance’s natural language representation produced by the
out function (Section [3.4.1)), and comparing the result with the NLR. This comparison
should trigger rethinking and refinement of the input NLR.

1. Construct an object from the SOOR class resulting from the “Specifying a SOOR”
process.

2. Generate the object’s string representation by calling the standard out function.
The SOORT, from which the SOOR inherits, redefines the function according to
the SOORT’s semantics.

3. Compare the generated string with the input NLR.

4. If the generated string reflects the intended requirement’s meaning more accu-
rately than the input NLR, fix the NLR; go to step 3.

5. If the generated string does not reflect the intended requirement’s meaning, in-
herit the SOOR from a different SOORT that would capture the NLR’s meaning
more accurately; go to step 1.
3.4.4 Verifying through testing

Testing correctness of a candidate implementation against a SOOR consists of running
the specification drivers inside the SOOR, passing instances of the candidate imple-
mentation as formal arguments. The specification drivers serve as PUTs in this case.

1. Instantiate an object from the SOOR.

2. Call the object’s specification drivers one by one, providing all the necessary
actual arguments.

3. If a call fails with a precondition violation, fix the caller; go to step 2.

4. If a call fails with a loop variant violation, fix the implementation; go to step 2.
5. If a call fails with a postcondition violation, fix the implementation; go to step 2.
6. If a call fails with a loop invariant violation, identify the root cause of the failure.

7. Depending on the identified root cause, fix either the caller or the implementa-
tion; go to step 2.

8. If all the calls succeed, consider the tested implementation correct with respect
to the SOOR.

The AutoTest technology [Mey+09] automates steps 1 through 3. The practitioner will
only need to trace the AutoTest failures to their route causes and fix them.
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3.4.5 Verifying through program proving

Proving correctness of a candidate implementation against a SOOR consists of running
AutoProof on the SOOR. In this case, AutoProof will check correctness of the SOOR’s
specification drivers against the candidate solution’s contracts. This may require writ-
ing additional annotations on the specification drivers that capture the SOOR’s formal
semantics.

1. Run AutoProof on the SOOR.
2. If AutoProof rejects the input, fix the implementation contract; go to step 1.
3. If AutoProof accepts the input, consider the implementation contract correct.

4. Implement the derived contract and check the implementation’s correctness with
AutoProof.
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Technical Contribution

The chapter presents two Eiffel libraries of SOORTSs publicly available in [Naul9b|
and as appendices of this dissertation:

e For specifying control software requirements (Appendix [A). SOORTs of this
kind capture recurring behaviors. They contain only one specification driver for
verifying concrete SOORs.

e For specifying requirements to software components (Appendix [B). SOORTs of
this kind capture recurring concepts from the problem space. They contain sev-
eral specification drivers capturing the ADT axioms describing the target con-
cepts.

For a better intuition behind this separation, here are examples of typical requirements
that might be handled using the two kinds of SOORTs:

e “Turning on air conditioning always results in the specified room temperature
within one hour”.

e “A store inventory behaves as a stack”.

In the first case, the system has only one goal: achieving the necessary temperature
in the room. The system achieves this goal by adjusting two parameters: the output
air temperature and intensity of blowing out the air. Using a SOORT in this case
assumes inheriting from it and connecting the system’s main feature to the SOORT.
The SOORT encodes the “Global Response” SRP, capturing its semantics through a
single specification driver (Appendix [A.20). Verification will consist in this case of
calling or proving the specification driver.

A store inventory has the following key features: adding a new item and removing
the topmost item. Applying the SOOR approach to the second requirement assumes
inheriting from and implementing the “Stack ADT” SOORT (Appendix [B.22)), con-
necting the inventory’s and the stack’s features. The SOORT contains several specifi-
cation drivers capturing the ADT axioms of stack. Verification will consist in this case
of calling or proving all these specification drivers.
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Scope
Pattern Global | Before | After | Between | Until | Total
Absence 41 5 12 18 9 85
Universality 110 1 5 2 1 119
Existence 12 1 4 8 1 26
Bounded Existence 0 0 0 1 0 1
Response 241 1 3 0 0 245
Precedence 25 0 1 0 0 26
Response Chain 8 0 0 0 0
Precedence Chain 1 0 0 0 0 1
UNKNOWN 44
Total 438 8 25 29 11 555

Table 4.1: Distribution of the requirements analyzed by Dwyer et al. [DAC99] among
known SRPs. Out of the 40 SRPs, 23 proved to be useful for covering some require-
ments. “Global Response” and “Global Universality” were the most frequently used
SRPs, covering 351 out of the 555 requirements.

The two libraries offer a starting point for practicing the SOOR approach. The
present chapter discusses their internals.

4.1 SOORTs for control software

Formal specifications of control software follow several known SRPs [DAC99], [KCO5].
We have developed an object-oriented library of Eiffel classes capturing the SRPs’ ver-
ification semantics and natural language representations. The classes are generic and
abstract enough to remain reusable across systems.

In 1999, Dwyer et al. [DAC99] published an article summarizing their study of 555
verification-oriented requirements taken from different software domains (Table [.T)).
The authors report that 511 out of the 555 requirements map into 23 known SRPs. The
SRPs are available online in 5 notations: LTL, CTL, GIL, Inca, QRE.

The online library of SOORTSs [Naul9b] captures in Eiffel the SRPs identified by
Dwyer et al. The templates are configurable and thus can be used both in the purely
qualitative form and with the real-time semantics added. The SOORTSs include the
real-time semantics anyway to limit the verification time through loop variants. The
templates have the maximum integer [Var| as the default time boundary value. Be-
cause both the SOORT's and SOORs are classes, where SOORs implement the SOORTSs
through the inheritance relation, specifying real-time semantics in SOORs becomes an
optional activity. The specifier may stay with the default time boundary provided by
the template or redefine it through the standard object-oriented redefinition techniques.
The object-oriented nature of SOORTS thus eliminates the need to maintain different
catalogues for qualitative and real-time semantics: choosing one of the two becomes a
matter of keeping or redefining the default time boundaries in the descendant SOORs.
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4.2 SOORT:s for software components

We found no studies like the one conducted by Dwyer et al. that would identify SRPs in
ADT specifications of software components. After searching the available literature for
such specifications, we concluded that few idiomatic ADTs and their variations often
illustrate specification and verification approaches. Studying industrial applications of
ADTs might be an interesting and challenging task as a possible continuation of the
present analysis.

Table .2 maps the studied literature to the identified ADTs. Some ADTs are es-
pecially popular, and some sources study especially many ADTs. The most discussed
ADTs are Stack and Queue plus their variations (5 occurrences each), Symbol table
(2 occurrences) and Set plus its variation. The contributions by John V Guttag and
his colleagues [GHM76], [Gut76], [GHM7S], [GH78] comprise most of the ADTs’
studies. Axel van Lamsweerde in his book [Lam09] discusses two examples of ADTs,
Book directory and Library, that are not basic data structures but information systems.
Do these studies and ADTs matter at all? Having empirical data from the industry
would objectively reflect the actual situation, but we have no such data yet; we present
a literature-based analysis instead. Besides looking at the number of ADTs discussed
in individual papers, we took into account the popularity of these works in terms of
citations on Google Scholar.

Table .3 maps the studied literature sources to the number of analyzed ADTs and
to the number of citations on Google Scholar (as of February, 2019). 2 out of the
8 sources have more than 1000 citations; 5 sources have more than 500 citations, 4
sources out of the 5 analyze 2 or more ADTs. Given the high citation level, we conclude
that the analyzed ADTs have practical value and are worth encoding them as reusable
templates. The SOORTSs encoding the ADTs reside in the “software_components”
directory of our GitHub repository [Naul9b|] and in Appendix [B|of this dissertation.
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[GHM78] | [GH78] | [GHM76] | [Lam09] | [KWO1] | [Tho87] | [Gut76] [ [LZ74] |
Array x | D BB 1 D ox ]
Bag X
Binary tree X
Binary tree with inorder X
Book directory X
Bounded queue X
Bounded stack X
Environment X
File X
Graph X
Library X
Mapping X
Polynomial X
Queue X X X X
Queue with append X
Set X
Set with emptiness check X
Stack X X X
Stack with replace X X
String X
Symbol table X X

Table 4.2: Mapping the ADTs to the literature sources analyzing them. An ‘x’ symbol means that the source from the topmost row analyzes
the ADT from the leftmost column.
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Source [GHM78] | [GH78] | [GHM76] | [Lam09] | [KW91] | [Tho87] | [Gut76] [ [LZ74] |
Number of ADTs 5 | 3 [ 1] 21 1 ] s 1]
Google Scholar citation index 552 719 175 1175 42 5 657 1067

4.2. SOORTS FOR SOFTWARE COMPONENTS

Table 4.3: Mapping the literature sources to the number of the studied ADTs and the number of citations on Google Scholar.
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Chapter 5

Internals of Seamless
Object-Oriented Requirement
Templates

Construction of SOORTs follows the same algorithm (Section [3.4.1), which is why
detailing one of them should suffice for understanding the overall idea. The SOORTSs’
structure follows the philosophy of capturing as much complexity as possible, to sim-
plify specification of concrete SOORs. Specifying a SOOR from a SOORT consists of
the following steps:

1. Inheriting from the SOORT.
2. Replacing the SOORT’s formal generic parameters with the specified types.

3. Connecting the SOORT’s deferred features with the specified types’ concrete
features.

From the extensibility viewpoint, the approaches to specifying SOORTS for control
software and for software components differ as follows:

e A SOORT for control software represents an SRP capturing a finalized behavior.

e A SOORT for software components is an extensible collection of related behav-
iors.

The following sections illustrate this difference on specific examples.

5.1 Requirement templates for control software

Figure [5.1] depicts the Eiffel SOORT corresponding to the most frequently recurring
SRP identified by Dwyer et al. — the “Global Response” SRP (Appendix [A.20). Out
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note
description: "S responds to P globally"

EIS: "name= Multirequirement", "src= http://tinyurl.com/y44wbnbs"
EIS: "name= Location on GitHub", "src= http://tinyurl.com/y2crlkjc"

deferred class

RESPONSE_GLOBAL [G, expanded S —CONDITION [G], expanded P —CONDITION [G]]

inherit
REQUIREMENT [G]
feature

frozen verify (system: G)
require
p_holds: ({P}).default.holds (system)
do
from
timer := time_boundary
until
({S}).default.holds (system)
loop
iterate (system)
variant
timer
end
end

feature

requirement_specific_output: STRING
do

Result := ({S}).name + " responds to " + ({P}).name + " globally"

end

end

CHAPTER 5. INTERNALS OF SOORTS

Figure 5.1: The SOORT encoding the “Global Response” SRP from the catalogue
of Dwyer et al (Appendix [A.20). Specification driver verify encodes the formal se-
mantics of the SRP. String function requirement_specific output produces the natural
language representation of the SRP parameterized with the formal generic parameters’
names. Integer function time_boundary, inherited from REQUIREMENT, specifies the default
time boundary for finite verification.
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of the 555 requirements analyzed by Dwyer et al., 241 were instances of this SRP
[DACO99]. It takes the following form in LTL:

g(pP = ©S) (CRY

where P is called “stimulus” and S is called “response”; “[J” and “<$” encode for
the “always” and “eventually” temporal logic [Pnu77|| operators. Line 2 in Figure [5.]
captures the string representation of the SRP, where s and p vary between requirements.
Line 3 provides a named hyperlink to a OneNote page detailing the SRP in the initial
5 notations provided by Dwyer et al. [DAC99]. Line 4 provides a named hyperlink to
the location of the class on GitHub. The EIS (Eiffel Information System) mechanism
of EiffelStudio makes it possible to construct, maintain and follow named hyperlinks.
Lines 6-7 declare the class capturing the SRP. The declaration depends on three formal
generic parameters — G, s and P:

e G stands for the specified type.
e s formalizes the “S” in the string representation.
o p formalizes the “P” in the string representation.

The S and P parameters are constrained: they must be conditions over the specified
type G. Requiring these types to be expanded allows them to have default objects; the
benefits of this possibility are coming shortly.

Lines 13-28 implement the verify routine that captures the SRP’s formal semantics
as a specification driver. The routine accepts a formal argument of the specified type
and expresses the SRP’s semantics in terms of this variable. Lines 16-17 require the
stimulus to hold through the precondition, where:

® p holds is a tag for easier debugging.
e ({P}).default returns the default object of type p.

e holds is a deferred Boolean function declared in class conpiTion, from which p
inherits.

e The ({P}).default.holds (system) assertion requires the stimulus to hold for systenm,
the formal parameter of verify.

Lines 19-20 initialize the timer variable declared in the parent REQUIREMENT class. Lines
21-22 capture the response s through the loop exit condition. Lines 23-24 modify the
system’s state, where:

e The iterate command is implemented in the REQUIREMENT class.
e iterate calls deferred command main of that class and decreases the timer.

e main is deferred for being implemented in concrete SOORs inheriting from the
SOORT.
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Lines 25-26 guarantee termination of the loop through the timer used as the loop vari-
ant. The verify routine, when called appropriately on a SOOR implementing the tem-
plate, becomes a test method; this maps to the “Verifying through testing” activity
(Section [3.4.4). When submitted to AutoProof, it becomes a Hoare logic theorem
capturing the requirement’s correctness axiom; this maps to the “Verifying through
program proving" activity (Section[3.4.5).

String function requirement_specific_ouput on lines 32-35 returns the SRP-dependent
natural language representation. The REQUIREMENT class implements, among other fea-
tures, string function out which, in its turn, takes the value of requirement_specific_ouput
and embeds it into the SRP-independent natural language representation. The SRP-
independent part includes the name of the requirement derived from the SOOR’s class
name, the name of the specified type and the real-time constraint.

The time boundary function returns the default time boundary for finite state verifi-
cation. This value comes from the REQUIREMENT ancestor class and is set to
{INTEGER}.max_value, the maximum integer avaiable on the current system. Concrete
SOORs may override this default. The verification process will simulate up to that
number of executions of iterate to observe the required response. If the response is not
observed after the last iteration, the verification process will fail.

5.2 ADT templates for software components

Figure [5.2] depicts the SOORT capturing the Binary Tree ADT specification with the
in_ord function (Appendix [B.4). The class consists of the following important parts:

e Line 2 in Figure[5.2] provides a general description of the template.
e Lines 3-4 provide a hyperlink to the source of the specification in the literature.
e Line 5 provides a named hyperlink to the location of the class on GitHub.

e Lines 7-8 declare type 8 intended to behave as a binary tree containing elements
of 1; q stands for the queue type returned by the in_ord function. To show that q,
indeed, behaves as a queue of 1s, the template’s implementers must supply type
0s conforming to the QUEUE_WITH_APPEND_ADT template applied to q and 1.

e Lines 13-15 reflect the fact that the current SOORT inherits the regular binary
tree behavior.

e Lines 17-22 declare the new function, in_ord (“in order”™).
e Lines 24-50 state the ADT axioms due to the new function.
e Lines 52-61 state the well-definedness axiom for the contract of in_ord.

Unlike the SOORTS for control software (Section @ ADT SOORTSs have several
specification drivers for verification. In the example on Figure [5.2] the new SOORT
adds two axioms, a_11 and a_12, to the axioms inherited from the parent SOORT. Be-
cause the new ADT declares another function, in_ord, these new axioms are required
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note
description: "Reusable abstract data type specification of binary tree with ‘‘inord’’ operation."
description: "Found in ‘“The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
EIS: "name= Location on GitHub", "src= https://tinyurl.com/y3peoll5"

deferred class
BINARY_TREE_WITH_INORD_ADT [B, I, Q, QS —QUEUE_WITH_APPEND_ADT [Q, I]]
-- Binary trees ‘‘B’’ contain elements of ‘‘I’'’.
-- They rely on queues ‘‘Q’' with elements of ‘‘I’'’ conforming to the
-- ‘‘QUEUE_WITH_APPEND_ADT'’ specification.

inherit
BINARY_TREE_ADT [B, I]

feature
-- Deferred definitions.

in_ord (b_tree: B): Q
deferred
end

feature
-- Abstract data type axioms.

frozen a_11

local
b_tree: B

do
b_tree := empty_tree
check

in_ord (b_tree) ~ ({QS}).default.newq

end

end

frozen a_12 (b_tree_left: B; item: I; b_tree_right: B; g_left, g_right: Q)
require
in_ord (b_tree_left) ~ q_left
in_ord (b_tree_right) ~ g_right
local
b_tree: B
do
b_tree := make (b_tree_left, item, b_tree_right)
({QS}).default.addq (gq_left, item)
({QS}).default.appendq (q_left, g_right)
check
in_ord (b_tree) ~ g_left
end
end

feature
-- Well-definedness axioms.

frozen in_ord_well_defined (b_tree_1, b_tree_2: B)

require
b_tree_1~b_tree_2
do
ensure
in_ord (b_tree_1) ~ in_ord (b_tree_2)
end
end

Figure 5.2: The SOORT for the ADT specification of binary tree with function “in
order” Appendix [B-4). It inherits specification drivers of the BINARY_TRee_ADT SOORT
encoding the ADT specification of binary tree without that function.
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for completeness of the resulting ADT specification. The in_ord_well defined auxiliary
axioms requires the contract of in_ord to be well-defined. Well-definedness axioms ap-
ply only to verification with AutoProof: they make sure that the respective features’
contracts are strong enough to maintain the equivalence classes.

To specify a SOOR stating that objects of a custom type T behave as binary trees
with elements of E, convertible to queues F with elements of E:

1. Inherit from the BINARY_TREE_WITH_INORD_ADT class with T for B, E for 1, F for q.
2. For gs, provide a SOOR that specifies F as queue with elements of E.

3. Implement the SOORT’s deferred definitions in terms of the features of types T,
Eand F.

To verify correctness of T against the binary tree axioms:

1. Run the specification drivers with names a_x on relevant test input (that is, satis-
fying the specification driver’s precondition) if you practice testing.

2. If you practice program proving, submit the resulting SOOR to AutoProof.

ADT SOORTs differ conceptually from control software SOORTSs with their ex-
tensibility. If a variation of an ADT emerges, then making the new SOORT a sub-
class of the original ADT’s SOORT will automatically include its specification drivers.
SOORTs for control software have finer granularity: they represent finalized behavioral
patterns.



Chapter 6

Navigating the Solution

To maximize understanding of the SOOR approach, the dissertation presents the idea
incrementally. The multirequirements approach serves as the starting point. Every
important idea that underpins the SOOR approach builds on top of the previous one.
At the same time, each idea is practically applicable alone, regardless of the ideas
building on top of it.

Chapter[7]demonstrates practical applicability of seamlessness in the sense of mul-
tirequirements [NMRI15]] by applying it to a well-known example from the require-
ments literature [JZ95]]. The resulting specification relies on the Mathematical Model
Library (MML) [PTF18|] — a library of immutable classes used in model-based con-
tracts [SWMO4|.

Multirequirements rely on contracts to achieve seamlessness, but contracts suffer
from the incompleteness problem [SWMO4]. Chapter [§| proposes an AutoProof-based
reasoning framework relying on the notion of specification 