B. H. Patel, C. Percivalle, D. J. Ritson, C. D. Duffy, and J. D. Sutherland, Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism, Nat. Chem, vol.7, pp.301-307, 2015.

K. Abe and H. Kimura, The possible role of hydrogen sulfide as an endogenous neuromodulator, J. Neurosci, vol.16, pp.1066-71, 1996.

R. Hosoki, N. Matsuki, and H. Kimura, The Possible Role of Hydrogen Sulfide as an Endogenous Smooth Muscle Relaxant in Synergy with Nitric Oxide, Biochem. Biophys. Res. Commun, vol.237, pp.527-531, 1997.

V. P. Lavrov, The effect of Matsesta hydrogen sulfide baths on the status of the myocardium and coronary arteries in experimental atherosclerosis, Vopr. Kurortol. Fizioter. Lech. Fiz. Kult, vol.33, pp.313-319, 1968.

H. Kruszyna, R. Kruszyna, and R. P. Smith, Cyanide and Sulfide Interact with Nitrogenous Compounds to Influence the Relaxation of Various Smooth Muscles, Exp. Biol. Med, vol.179, pp.44-49, 1985.

G. Yang, H2S as a Physiologic Vasorelaxant: Hypertension in Mice with Deletion of Cystathionine Gamma-Lyase, Science, vol.322, pp.587-590, 2008.

E. Blackstone, M. Morrison, and M. Roth, H2S Induces a Suspended Animation-Like State in Mice, Science, vol.308, pp.518-518, 2005.

M. R. Filipovic, J. Zivanovic, B. Alvarez, and R. Banerjee, Chemical Biology of H2S Signaling through Persulfidation, Chem. Rev, vol.118, pp.1253-1337, 2018.

G. Caliendo, G. Cirino, V. Santagada, and J. L. Wallace, Synthesis and Biological Effects of Hydrogen Sulfide (H2S): Development of H2S-Releasing Drugs as Pharmaceuticals, J. Med. Chem, vol.53, pp.6275-6286, 2010.

L. Li, P. Rose, and P. K. Moore, Hydrogen Sulfide and Cell Signaling, Annu. Rev. Pharmacol. Toxicol, vol.51, pp.169-187, 2011.

B. D. Paul and S. H. Snyder, H2S: A Novel Gasotransmitter that Signals by Sulfhydration, Trends Biochem. Sci, vol.40, pp.687-700, 2015.

E. Cuevasanta, A. Denicola, B. Alvarez, and M. N. Möller, Solubility and Permeation of Hydrogen Sulfide in Lipid Membranes, PLoS One, vol.7, p.34562, 2012.

J. Zivanovic and M. R. Filipovic, Hydrogen sulfide: stench from the past as a mediator of the future, Biochem. (Lond), vol.38, pp.12-17, 2016.

Y. Zhao, T. D. Biggs, and M. Xian, Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications, Chem. Commun, vol.50, pp.11788-11805, 2014.

R. Wedmann, Working with "H2S": Facts and apparent artifacts, Nitric Oxide, vol.41, pp.85-96, 2014.

K. Kashfi and K. R. Olson, Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras, Biochem. Pharmacol, vol.85, pp.689-703, 2013.

M. Pluth, Natural Products Containing Hydrogen Sulfide Releasing Moieties, Synlett, vol.26, pp.2633-2643, 2015.

E. Yagdi, C. Cerella, M. Dicato, and M. Diederich, Garlic-derived natural polysulfanes as hydrogen sulfide donors: Friend or foe?, Food Chem. Toxicol, vol.95, pp.219-233, 2016.

R. Munday, J. S. Munday, and C. M. Munday, Comparative effects of mono-, di-, tri-, and tetrasulfides derived from plants of the Allium family: redox cycling in vitro and hemolytic activity and Phase 2 enzyme induction in vivo. Free Radic, Biol. Med, vol.34, pp.1200-1211, 2003.

G. A. Benavides, Hydrogen sulfide mediates the vasoactivity of garlic, Proc. Natl. Acad. Sci, vol.104, pp.17977-17982, 2007.

Y. Zhao, H. Wang, and M. Xian, Cysteine-Activated Hydrogen Sulfide (H2S) Donors, J. Am. Chem. Soc, vol.133, pp.15-17, 2011.

C. Yang, A Novel Controllable Hydrogen Sulfide-Releasing Molecule Protects Human Skin Keratinocytes Against Methylglyoxal-Induced Injury and Dysfunction, Cell. Physiol. Biochem, p.61

B. D. Paul, Cystathionine ?-lyase deficiency mediates neurodegeneration in Huntington's disease, Nature, vol.509, pp.96-100, 2014.

J. I. Sbodio, S. H. Snyder, and B. D. Paul, Transcriptional control of amino acid homeostasis is disrupted in Huntington's disease, Proc. Natl. Acad. Sci, vol.113, pp.8843-8848, 2016.

P. M. Snijder, Overexpression of Cystathionine ?-Lyase Suppresses Detrimental Effects of Spinocerebellar Ataxia Type 3, Mol. Med, vol.21, pp.758-768, 2015.

M. Whiteman and P. G. Winyard, Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising, Expert Rev. Clin. Pharmacol, vol.4, pp.13-32, 2011.

M. Bhatia, Role of hydrogen sulfide in acute pancreatitis and associated lung injury, FASEB J, vol.19, pp.623-628, 2005.

A. D. Ang, J. Rivers-auty, A. Hegde, I. Ishii, and M. Bhatia, The effect of CSE gene deletion in caerulein-induced acute pancreatitis in the mouse, Am. J. Physiol. Gastrointest. Liver Physiol, vol.305, pp.712-733, 2013.

Y. Hui, J. Du, C. Tang, G. Bin, and H. Jiang, Changes in arterial hydrogen sulfide (H(2)S) content during septic shock and endotoxin shock in rats, J. Infect, vol.47, pp.155-60, 2003.

H. Zhang, L. Zhi, P. K. Moore, and M. Bhatia, Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.290, pp.1193-201, 2006.

L. Li, Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse, FASEB J, vol.19, pp.1196-1198, 2005.

L. Li, M. Salto-tellez, C. Tan, M. Whiteman, and P. Moore, GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic, Biol. Med, vol.47, pp.103-113, 2009.

M. Whiteman, The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages, Antioxid. Redox Signal, vol.12, pp.1147-54, 2010.

J. Yamamoto, Distribution of hydrogen sulfide (H2S)-producing enzymes and the roles of the H2S donor sodium hydrosulfide in diabetic nephropathy, Clin. Exp. Nephrol, vol.17, p.32, 2013.

H. Li, S. Feng, G. Zhang, and S. Wang, Correlation of Lower Concentrations of Hydrogen Sulfide with Atherosclerosis in Chronic Hemodialysis Patients with Diabetic Nephropathy, Blood Purif, vol.38, pp.188-194, 2014.

N. M. Morton, Genetic identification of thiosulfate sulfurtransferase as an adipocyteexpressed antidiabetic target in mice selected for leanness, Nat. Med, vol.22, pp.771-779, 2016.

M. R. Hellmich and C. Szabo, Hydrogen Sulfide and Cancer, Handb. Exp. Pharmacol, vol.230, pp.233-274, 2015.

D. Wu, Hydrogen sulfide in cancer: Friend or foe?, Nitric Oxide, vol.50, pp.38-45, 2015.

T. Finkel, N. J. Holbrook, and . Oxidants, oxidative stress and the biology of ageing, Nature, vol.408, pp.239-247, 2000.

B. D'autréaux and M. B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol, vol.8, pp.813-824, 2007.

C. E. Paulsen and K. S. Carroll, Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery, vol.113, pp.4633-4679, 2013.

Y. M. Janssen-heininger, Redox-based regulation of signal transduction: Principles, pitfalls, and promises. Free Radic, Biol. Med, vol.45, pp.1-17, 2008.

S. G. Rhee, Cell Signaling: H2O2, a Necessary Evil for Cell Signaling, Science, vol.312, pp.1882-1883, 2006.

Y. Collins, Mitochondrial redox signalling at a glance, J. Cell Sci, vol.125, pp.801-807, 2012.

C. C. Winterbourn and M. B. Hampton, Thiol chemistry and specificity in redox signaling. Free Radic, Biol. Med, vol.45, pp.549-561, 2008.

J. W. Nelson and T. E. Creighton, Reactivity and Ionization of the Active Site Cysteine Residues of DsbA, a Protein Required for Disulfide Bond Formation in vivo, Biochemistry, vol.33, pp.5974-5983, 1994.

A. V. Peskin, The High Reactivity of Peroxiredoxin 2 with H2O2 Is Not Reflected in Its Reaction with Other Oxidants and Thiol Reagents, J. Biol. Chem, vol.282, pp.11885-11892, 2007.

J. M. Denu and K. G. Tanner, Specific and Reversible Inactivation of Protein Tyrosine Phosphatases by Hydrogen Peroxide: Evidence for a Sulfenic Acid Intermediate and Implications for Redox Regulation, Biochemistry, vol.37, pp.5633-5642, 1998.

S. G. Rhee, T. S. Chang, Y. S. Bae, S. R. Lee, and S. W. Kang, Cellular Regulation by Hydrogen Peroxide, J. Am. Soc. Nephrol, vol.14, pp.211-215, 2003.

G. P. Bienert, J. K. Schjoerring, and T. P. Jahn, Membrane transport of hydrogen peroxide, Biochim. Biophys. Acta -Biomembr, vol.1758, pp.994-1003, 2006.

G. Tamma, Aquaporin Membrane Channels in Oxidative Stress, Cell Signaling, and Aging: Recent Advances and Research Trends, Oxid. Med. Cell. Longev, p.1501847, 2018.

A. Almasalmeh, D. Krenc, B. Wu, and E. Beitz, Structural determinants of the hydrogen peroxide permeability of aquaporins, FEBS J, vol.281, pp.647-656, 2014.

E. W. Miller, B. C. Dickinson, and C. J. Chang, Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling, Proc. Natl. Acad. Sci, vol.107, pp.15681-15686, 2010.

M. Bertolotti, Tyrosine Kinase Signal Modulation: A Matter of H2O2 Membrane Permeability?, Antioxid. Redox Signal, vol.19, pp.1447-1451, 2013.

M. Hara-chikuma, S. Watanabe, and H. Satooka, Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells, Biochem. Biophys. Res. Commun, vol.471, pp.603-609, 2016.

J. F. Turrens, Superoxide production by the mitochondrial respiratory chain, Biosci. Rep, vol.17, pp.3-8, 1997.

J. Hsu, Catalytic Properties of Human Manganese Superoxide Dismutase, J. Biol. Chem, vol.271, pp.17687-17691, 1996.

J. M. Mccord and I. Fridovich, Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein), J. Biol. Chem, vol.244, pp.6049-55, 1969.

A. Boveris and B. Chance, The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen, Biochem. J, vol.134, pp.707-723, 1973.

E. R. Galimov, The Role of p66shc in Oxidative Stress and Apoptosis, Acta Naturae, vol.2, pp.44-51, 2010.

C. Napoli, Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet, Proc. Natl. Acad. Sci, vol.100, pp.2112-2116, 2003.

G. G. Camici, Genetic deletion of p66Shc adaptor protein prevents hyperglycemiainduced endothelial dysfunction and oxidative stress, Proc. Natl. Acad. Sci, vol.104, pp.5217-5222, 2007.

M. Trinei, A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis, Oncogene, vol.21, pp.3872-3878, 2002.

M. Giorgio, Electron Transfer between Cytochrome c and p66Shc Generates Reactive Oxygen Species that Trigger Mitochondrial Apoptosis, Cell, vol.122, pp.221-233, 2005.

P. Francia, Deletion of p66shc Gene Protects Against Age-Related Endothelial Dysfunction, Circulation, vol.110, pp.2889-2895, 2004.

D. I. Brown and K. K. Griendling, Nox proteins in signal transduction. Free Radic, Biol. Med, vol.47, pp.1239-1253, 2009.

C. E. Paulsen, Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity, Nat. Chem. Biol, vol.8, pp.57-64, 2012.

C. E. Paulsen and K. S. Carroll, Orchestrating Redox Signaling Networks through Regulatory Cysteine Switches, ACS Chem. Biol, vol.5, pp.47-62, 2010.

M. B. Toledano, A. Planson, and A. Delaunay-moisan, Reining in H2O2 for safe signaling, Cell, vol.140, pp.454-460, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02663732

C. E. Paulsen and K. S. Carroll, Chemical Dissection of an Essential Redox Switch in Yeast, Chem. Biol, vol.16, pp.217-225, 2009.

R. D. Michalek, The Requirement of Reversible Cysteine Sulfenic Acid Formation for T Cell Activation and Function, J. Immunol, vol.179, pp.6456-6467, 2007.

Z. A. Wood, E. Schröder, J. Harris, and L. B. Poole, Structure, mechanism and regulation of peroxiredoxins, Trends Biochem. Sci, vol.28, pp.32-40, 2003.

S. Lourenço-dos-santos, I. Petropoulos, and B. Friguet, The Oxidized Protein Repair Enzymes Methionine Sulfoxide Reductases and Their Roles in Protecting against Oxidative Stress, in Ageing and in Regulating Protein Function, Antioxidants, issue.7, 2018.

L. B. Poole, P. A. Karplus, and A. Claiborne, Protein sulfenic acids in redox signaling, Annu. Rev. Pharmacol. Toxicol, vol.44, pp.325-347, 2004.

J. M. Hourihan, L. E. Moronetti-mazzeo, L. P. Fernández-cárdenas, and T. K. Blackwell, Cysteine Sulfenylation Directs IRE-1 to Activate the SKN-1/Nrf2 Antioxidant Response, Mol. Cell, vol.63, pp.553-566, 2016.

M. Fuangthong and J. D. Helmann, The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.6690-6695, 2002.

T. F. Brewer, F. J. Garcia, C. S. Onak, K. S. Carroll, and C. J. Chang, Chemical Approaches to Discovery and Study of Sources and Targets of Hydrogen Peroxide Redox Signaling Through NADPH Oxidase Proteins, Annu. Rev. Biochem, vol.84, pp.765-790, 2015.

V. Gupta and K. S. Carroll, Sulfenic acid chemistry, detection and cellular lifetime, Biochim. Biophys. Acta -Gen. Subj, vol.1840, pp.847-875, 2014.

M. Lo-conte and K. S. Carroll, The redox biochemistry of protein sulfenylation and sulfinylation, J. Biol. Chem, vol.288, pp.26480-26488, 2013.

S. Patai, Sulfenic Acids and Derivatives, 1990.

Y. H. Seo and K. S. Carroll, Profiling protein thiol oxidation in tumor cells using sulfenic acidspecific antibodies, Proc. Natl. Acad. Sci, vol.106, pp.16163-16168, 2009.

C. Maller, E. Schröder, and P. Eaton, Glyceraldehyde 3-Phosphate Dehydrogenase is Unlikely to Mediate Hydrogen Peroxide Signaling: Studies with a Novel Anti-Dimedone Sulfenic Acid Antibody, Antioxid. Redox Signal, vol.14, pp.49-60, 2011.

K. G. Reddie, Y. H. Seo, I. Muse, W. B. Leonard, S. E. Carroll et al., A chemical approach for detecting sulfenic acid-modified proteins in living cells, Mol. Biosyst, vol.4, p.521, 2008.

R. L. Charles, Protein Sulfenation as a Redox Sensor, Mol. Cell. Proteomics, vol.6, pp.1473-1484, 2007.

L. B. Poole, Fluorescent and Affinity-Based Tools To Detect Cysteine Sulfenic Acid Formation in Proteins, Bioconjug. Chem, vol.18, pp.2004-2017, 2007.

S. E. Leonard, K. G. Reddie, and K. S. Carroll, Mining the Thiol Proteome for Sulfenic Acid Modifications Reveals New Targets for Oxidation in Cells, ACS Chem. Biol, vol.4, pp.783-799, 2009.

J. Yang, Global, in situ, site-specific analysis of protein S-sulfenylation, Nat. Protoc, vol.10, pp.1022-1037, 2015.

Y. H. Seo and K. S. Carroll, Quantification of Protein Sulfenic Acid Modifications Using Isotope-Coded Dimedone and Iododimedone, Angew. Chemie Int. Ed, vol.50, pp.1342-1345, 2011.

T. H. Truong, F. J. Garcia, Y. H. Seo, and K. S. Carroll, Isotope-coded chemical reporter and acidcleavable affinity reagents for monitoring protein sulfenic acids, Bioorg. Med. Chem. Lett, vol.21, pp.5015-5020, 2011.

V. Gupta, J. Yang, D. C. Liebler, and K. S. Carroll, Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles, J. Am. Chem. Soc, vol.139, pp.5588-5595, 2017.

Z. A. Wood, L. B. Poole, and P. A. Karplus, Peroxiredoxin Evolution and the Regulation of Hydrogen Peroxide Signaling, Science, vol.300, pp.650-653, 2003.

J. Blackinton, Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1, J. Biol. Chem, vol.284, pp.6476-85, 2009.

T. Kinumi, J. Kimata, T. Taira, H. Ariga, and E. Niki, Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells, Biochem. Biophys. Res. Commun, vol.317, pp.722-728, 2004.

R. M. Canet-avilés, The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization, Proc. Natl. Acad. Sci, vol.101, pp.9103-9108, 2004.

B. Biteau, J. Labarre, and M. B. Toledano, ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin, Nature, vol.425, pp.980-984, 2003.

H. A. Woo, Reversing the Inactivation of Peroxiredoxins Caused by Cysteine Sulfinic Acid Formation, Science, vol.300, pp.653-656, 2003.

T. Chang, Characterization of Mammalian Sulfiredoxin and Its Reactivation of Hyperoxidized Peroxiredoxin through Reduction of Cysteine Sulfinic Acid in the Active Site to Cysteine, J. Biol. Chem, vol.279, pp.50994-51001, 2004.

M. Hamann, T. Zhang, S. Hendrich, and J. A. Thomas, Quantitation of protein sulfinic and sulfonic acid, irreversibly oxidized protein cysteine sites in cellular proteins, Methods Enzymol, vol.348, pp.146-56, 2002.

R. Karisch, Global Proteomic Assessment of the Classical Protein-Tyrosine Phosphatome and, Redoxome". Cell, vol.146, pp.826-840, 2011.

M. Lo-conte, J. Lin, M. A. Wilson, and K. S. Carroll, A Chemical Approach for the Detection of Protein Sulfinylation, ACS Chem. Biol, vol.10, pp.1825-1830, 2015.

S. Akter, Chemical proteomics reveals new targets of cysteine sulfinic acid reductase, Nat. Chem. Biol, vol.14, pp.995-1004, 2018.

N. Fujiwara, Oxidative Modification to Cysteine Sulfonic Acid of Cys111 in Human Copper-Zinc Superoxide Dismutase, J. Biol. Chem, vol.282, pp.35933-35944, 2007.

M. Fernandez-caggiano, Oxidant-induced Interprotein Disulfide Formation in Cardiac Protein DJ-1 Occurs via an Interaction with Peroxiredoxin 2, J. Biol. Chem, vol.291, pp.10399-10410, 2016.

Y. Chang, C. Huang, C. Lin, H. Chang, and C. Wu, Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: An integrated approach to explore the cysteine oxidation, Proteomics, vol.10, pp.2961-2971, 2010.

A. K. Mustafa, H2S Signals Through Protein S-Sulfhydration. Sci. Signal, vol.2, pp.72-72, 2009.

N. E. Francoleon, S. J. Carrington, and J. M. Fukuto, The reaction of H2S with oxidized thiols: Generation of persulfides and implications to H2S biology, Arch. Biochem. Biophys, vol.516, pp.146-153, 2011.

J. Pan and K. S. Carroll, Persulfide reactivity in the detection of protein S-sulfhydration, ACS Chem. Biol, vol.8, pp.1110-1116, 2013.

D. Zhang, Detection of protein S-sulfhydration by a tag-switch technique, Angew. Chem. Int. Ed. Engl, vol.53, pp.575-81, 2014.

I. Artaud and E. Galardon, A Persulfide Analogue of the Nitrosothiol SNAP: Formation, Characterization and Reactivity, ChemBioChem, vol.15, pp.2361-2364, 2014.

T. Ida, Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling, Proc. Natl. Acad. Sci, vol.111, pp.7606-7611, 2014.

P. K. Yadav, Biosynthesis and Reactivity of Cysteine Persulfides in Signaling, J. Am. Chem. Soc, vol.138, pp.289-299, 2016.

M. R. Filipovic, Persulfidation (S-sulfhydration) and H2S. in Handbook of experimental pharmacology, vol.230, pp.29-59, 2015.

E. Cuevasanta, Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide, J. Biol. Chem, vol.290, pp.26866-26880, 2015.

S. A. Everett and P. Wardman, Perthiols as antioxidants: Radical-scavenging and prooxidative mechanisms, Methods in enzymology, vol.251, pp.55-69, 1995.

C. L. Bianco, The chemical biology of the persulfide (RSSH)/perthiyl (RSS·) redox couple and possible role in biological redox signaling. Free Radic, Biol. Med, vol.101, pp.20-31, 2016.

X. Gao, Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response, Elife, vol.4, p.10067, 2015.

J. D. Malhotra and R. J. Kaufman, Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Cycle or a Double-Edged Sword?, Antioxid. Redox Signal, vol.9, pp.2277-2294, 2007.

M. R. Filipovic, Chemical Characterization of the Smallest S-Nitrosothiol, HSNO; Cellular Cross-talk of H2S and S -Nitrosothiols, J. Am. Chem. Soc, vol.134, pp.12016-12027, 2012.

M. R. Talipov and Q. K. Timerghazin, Protein Control of S-Nitrosothiol Reactivity: Interplay of Antagonistic Resonance Structures, J. Phys. Chem. B, vol.117, pp.1827-1837, 2013.

V. Vitvitsky, Cytochrome c Reduction by H2S Potentiates Sulfide Signaling, ACS Chem. Biol, vol.13, pp.2300-2307, 2018.

M. Lange, Direct Zinc Finger Protein Persulfidation by H2S Is Facilitated by Zn2+, Angew. Chemie -Int. Ed, vol.58, pp.7997-8001, 2019.

Y. Kimura, Polysulfides are possible H2S-derived signaling molecules in rat brain, FASEB J, vol.27, pp.2451-2457, 2013.

M. Eberhardt, H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway, Nat. Commun, vol.5, p.4381, 2014.

T. S. Bailey and M. D. Pluth, Reactions of isolated persulfides provide insights into the interplay between H2S and persulfide reactivity. Free Radic, Biol. Med, vol.89, pp.662-667, 2015.

J. I. Toohey, Sulfur signaling: Is the agent sulfide or sulfane?, Anal. Biochem, vol.413, pp.1-7, 2011.

J. Toohey, A. Cooper, and . Thiosulfoxide, Sulfane) Sulfur: New Chemistry and New Regulatory Roles in Biology, Molecules, vol.19, pp.12789-12813, 2014.

J. I. Toohey, Sulphane sulphur in biological systems: a possible regulatory role, Biochem J, vol.264, pp.625-632, 1989.

G. W. Kutney and K. Turnbull, Compounds containing the sulfur-sulfur double bond, Chem. Rev, vol.82, pp.333-357, 1982.

W. Kutzelnigg, Chemical Bonding in Higher Main Group Elements, Angew. Chemie Int. Ed. English, vol.23, pp.272-295, 1984.

R. Steudel, Y. Drozdova, K. Miaskiewicz, R. H. Hertwig, and W. Koch, How Unstable are Thiosulfoxides? An ab Initio MO Study of Various Disulfanes RSSR, J. Am. Chem. Soc, vol.119, pp.1990-1996, 1997.

C. J. Knowles, Cyanide Utilization and Degradation by Microorganisms, Ciba Foundation symposium, vol.140, pp.3-15, 2007.

F. Gliubich, Active site structural features for chemically modified forms of rhodanese, J. Biol. Chem, vol.271, pp.21054-61, 1996.

H. Mihara and N. Esaki, Bacterial cysteine desulfurases: their function and mechanisms, Appl. Microbiol. Biotechnol, vol.60, pp.12-23, 2002.

J. A. Dunkle, M. R. Bruno, F. W. Outten, and P. A. Frantom, Structural Evidence for Dimer-Interface-Driven Regulation of the Type II Cysteine Desulfurase, SufS. Biochemistry, vol.58, pp.687-696, 2019.

J. Lec, Unraveling the Mechanism of Cysteine Persulfide Formation Catalyzed by 3-Mercaptopyruvate Sulfurtransferases, ACS Catal, vol.8, pp.2049-2059, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01715178

M. R. Jackson, S. L. Melideo, M. S. Jorns, and . Human-sulfide, Quinone Oxidoreductase Catalyzes the First Step in Hydrogen Sulfide Metabolism and Produces a Sulfane Sulfur Metabolite, Biochemistry, vol.51, pp.6804-6815, 2012.

M. Libiad, Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells, J. Biol. Chem, vol.294, pp.12077-12090, 2019.

T. Yamanishi and S. Tuboi, The Mechanism of the L-Cystine Cleavage Reaction Catalyzed by Rat Liver ?-Cystathionase, J. Biochem, vol.89, pp.1913-1921, 1981.

R. Sengupta, Thioredoxin Catalyzes the Denitrosation of Low-Molecular Mass and Protein S-Nitrosothiols, Biochemistry, vol.46, pp.8472-8483, 2007.

M. Benhar, M. T. Forrester, D. T. Hess, and J. S. Stamler, Regulated Protein Denitrosylation by Cytosolic and Mitochondrial Thioredoxins, Science, vol.320, pp.1050-1054, 2008.

M. Benhar, J. W. Thompson, M. A. Moseley, and J. S. Stamler, Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach, Biochemistry, vol.49, pp.6963-6972, 2010.

N. Krishnan, C. Fu, D. J. Pappin, and N. K. Tonks, H2S-Induced Sulfhydration of the Phosphatase PTP1B and Its Role in the Endoplasmic Reticulum Stress Response, Sci. Signal, vol.4, pp.86-86, 2011.

Y. Ju, M. Fu, E. Stokes, L. Wu, and G. Yang, H?S-Mediated Protein S-Sulfhydration: A Prediction for Its Formation and Regulation, Molecules, vol.22, p.1334, 2017.

H. Peng, Y. Zhang, J. C. Trinidad, and D. P. Giedroc, Thioredoxin Profiling of Multiple Thioredoxin-Like Proteins in Staphylococcus aureus, Front. Microbiol, vol.9, pp.1-13, 2018.

É. Dóka, A novel persulfide detection method reveals protein persulfide-and polysulfidereducing functions of thioredoxin and glutathione systems, Sci. Adv, vol.2, p.1500968, 2016.

B. M. Hybertson, B. Gao, S. K. Bose, and J. M. Mccord, Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation, Mol. Aspects Med, vol.32, pp.234-246, 2011.

N. Wakabayashi, Protection against electrophile and oxidant stress by induction of the phase 2 response: Fate of cysteines of the Keap1 sensor modified by inducers, Proc. Natl. Acad. Sci, vol.101, pp.2040-2045, 2004.

J. W. Calvert, Genetic and Pharmacologic Hydrogen Sulfide Therapy Attenuates Ischemia-Induced Heart Failure in Mice, Circulation, vol.122, pp.11-19, 2010.

J. W. Calvert, Hydrogen Sulfide Mediates Cardioprotection Through Nrf2 Signaling, Circ. Res, vol.105, pp.365-374, 2009.

G. Yang, Hydrogen Sulfide Protects Against Cellular Senescence via S-Sulfhydration of Keap1 and Activation of Nrf2, Antioxid. Redox Signal, vol.18, pp.1906-1919, 2013.

J. M. Hourihan, J. G. Kenna, and J. D. Hayes, The Gasotransmitter Hydrogen Sulfide Induces Nrf2-Target Genes by Inactivating the Keap1 Ubiquitin Ligase Substrate Adaptor Through Formation of a Disulfide Bond Between Cys-226 and Cys-613, Antioxid. Redox Signal, vol.19, pp.465-481, 2013.

Z. Xie, Sulfhydration of p66Shc at Cysteine59 Mediates the Antioxidant Effect of Hydrogen Sulfide, Antioxid. Redox Signal, vol.21, pp.2531-2542, 2014.

H. Zhou, Hydrogen sulfide reduces RAGE toxicity through inhibition of its dimer formation. Free Radic, Biol. Med, vol.104, pp.262-271, 2017.

C. Hetz, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol, vol.13, pp.89-102, 2012.

A. Almanza, Endoplasmic reticulum stress signalling -from basic mechanisms to clinical applications, FEBS J, vol.286, pp.241-278, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01940307

K. Zhao, S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair, EMBO Rep, vol.15, pp.792-800, 2014.

Y. Liu, Hydrogen Sulfide Maintains Mesenchymal Stem Cell Function and Bone Homeostasis via Regulation of Ca2+ Channel Sulfhydration, Cell Stem Cell, vol.15, pp.66-78, 2014.

M. S. Vandiver, Sulfhydration mediates neuroprotective actions of parkin, Nat. Commun, vol.4, p.1626, 2013.

D. Peralta, A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation, Nat. Chem. Biol, vol.11, pp.156-163, 2015.

M. R. Hara, S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding, Nat. Cell Biol, vol.7, pp.665-674, 2005.

N. Sen, Hydrogen Sulfide-Linked Sulfhydration of NF-?B Mediates Its Antiapoptotic Actions, Mol. Cell, vol.45, pp.13-24, 2012.

T. Sawahata and R. A. Neal, Use of 1-fluoro-2,4-dinitrobenzene as a probe for the presence of hydrodisulfide groups in proteins, Anal. Biochem, vol.126, pp.360-364, 1982.

S. Longen, Quantitative Persulfide Site Identification (qPerS-SID) Reveals Protein Targets of H2S Releasing Donors in Mammalian Cells, Sci. Rep, vol.6, p.29808, 2016.

C. Park, I. Macinkovic, M. R. Filipovic, and M. Xian, Use of the "Tag-Switch" Method for the Detection of Protein S-Sulfhydration, Methods in enzymology, vol.555, pp.39-56, 2015.

A. Aroca, J. M. Benito, C. Gotor, and L. C. Romero, Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis, J. Exp. Bot, vol.52, pp.556-567, 2017.

L. Fu, Direct Proteomic Mapping of Cysteine Persulfidation, Antioxid. Redox Signal. In press, 2019.

R. Wang, Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?, FASEB J, vol.16, pp.1792-1798, 2002.

A. K. Mustafa, M. M. Gadalla, and N. Sen, H2S signals through protein S-sulfhydration, Sci Signal, vol.2, p.72, 2009.

G. Yang, L. Wu, and B. Jiang, H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase, Science, vol.322, pp.587-590, 2008.

H. Kimura, Y. Nagai, K. Umemura, and Y. Kimura, Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation, Antioxid Redox Signal, vol.7, pp.795-803, 2005.

A. Papapetropoulos, A. Pyriochou, and Z. Altaany, Hydrogen sulfide is an endogenous stimulator of angiogenesis, Proc Natl Acad Sci U S A, vol.106, pp.21972-21977, 2009.

L. Li, M. Bhatia, and P. K. Moore, Hydrogen sulphide-a novel mediator of inflammation?, Curr Opin Pharmacol, vol.6, pp.125-129, 2006.

B. D. Paul and S. H. Snyder, H2S signalling through protein sulfhydration and beyond, Nat Rev Mol Cell Biol, vol.13, pp.499-507, 2012.

O. Kabil, N. Motl, and R. Banerjee, H2S and its role in redox signaling, Biochim Biophys, vol.48, 2014.

E. Kouroussis, Acta, vol.1844, pp.1355-1366

M. R. Filipovic, J. Zivanovic, B. Alvarez, and R. Banerjee, Chemical biology of H S signaling through persulfidation, Chemical Reviews, vol.118, issue.3, pp.1253-1337, 2017.

C. M. Park, I. Macinkovic, M. R. Filipovic, and M. Xian, Use of the "Tag-Switch" method for the detection of protein S-sulfhydration, Methods Enzymol, 2015.

F. Meng, D. Yao, and Y. Shi, Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation, Mol Neurodegener, vol.6, p.34, 2011.

E. Bossy-wetzel, R. Schwarzenbacher, and S. A. Lipton, Molecular pathways to neurodegeneration, Nat Med, vol.10, pp.2-9, 2004.

Z. Gu, T. Nakamura, and D. Yao, Nitrosative and oxidative stress links dysfunctional ubiquitination to Parkinson's disease, Cell Death Differ, vol.12, pp.1202-1204, 2005.

D. Cho, T. Nakamura, and J. Fang, S-nitrosylation of Drp1 mediates ?-amyloidrelated mitochondrial fission and neuronal injury, Science, vol.324, pp.102-105, 2009.

J. Fang, T. Nakamura, and D. Cho, S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease, Proc Natl Acad Sci, vol.104, pp.18742-18747, 2007.

B. I. Giasson, V. Lee, and K. K. Chung, Are ubiquitination pathways central to Parkinson's disease?, Cell, vol.114, pp.1-8, 2003.

T. M. Dawson and V. L. Dawson, The role of parkin in familial and sporadic Parkinson's disease, Mov Disord, vol.25, issue.1, pp.32-39, 2010.

M. S. Vandiver, B. D. Paul, and R. Xu, Sulfhydration mediates neuroprotective actions of parkin, Nat Commun, vol.4, p.1626, 2013.

D. Zhang, I. Macinkovic, and D. No, Detection of protein S-sulfhydration by a Tag-Switch technique, Angew Chem Int Ed, vol.53, pp.575-581, 2014.

R. Wedmann, S. Bertlein, and I. Macinkovic, Filipovic MR (2015) Persulfidation (S-sulfhydration) and H2S, Handb Exp Pharmacol, vol.41, pp.29-59, 2014.

E. Cuevasanta, M. Lange, and J. Bonanata, Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide, J Biol Chem, vol.290, pp.26866-26880, 2015.

S. A. Everett, L. K. Folkes, P. Wardman, and K. D. Asmus, Free-radical repair by a novel perthiol: reversible hydrogen transfer and perthiyl radical formation, Free Radic Res, vol.20, pp.387-400, 1994.

J. Lu and A. Holmgren, The thioredoxin superfamily in oxidative protein folding, Antioxid Redox Signal, vol.21, pp.457-470, 2014.

A. Burke-gaffney, M. Callister, and H. Nakamura, Thioredoxin: friend or foe in human disease?, Trends Pharmacol Sci, vol.26, pp.398-404, 2005.

R. Wedmann, C. Onderka, and S. Wei, Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation, Chem Sci, 2016.

N. Sen, B. D. Paul, and M. M. Gadalla, Hydrogen sulfide-linked sulfhydration of NF-?B mediates its antiapoptotic actions, Mol Cell, vol.45, pp.13-24, 2012.

N. Krishnan, C. Fu, D. J. Pappin, and N. K. Tonks, H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response, Sci Signal, vol.4, pp.1-26, 2011.

G. Yang, K. Zhao, and Y. Ju, Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2, Antioxid Redox Signal, vol.18, pp.1906-1919, 2013.

J. M. Hourihan, J. G. Kenna, and J. D. Hayes, The gasotransmitter hydrogen sulfide induces Nrf2-target genes by inactivating the Keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between Cys-226 and Cys-613, Antioxid Redox Signal, vol.19, pp.465-481, 2013.

A. K. Mustafa, M. M. Gadalla, and S. H. Snyder, Signaling by gasotransmitters, Sci Signal, vol.2, p.2, 2009.

J. Pan, K. Carroll, C. Acs-references-aging, D. M. Walther, P. Kasturi et al., Persulfide reactivity in the detection of protein S-sulfhydration, Article Widespread Proteome Remodeling and Aggregation in Aging C . elegans, vol.161, pp.919-932, 2013.

T. Akaike, T. Ida, F. Y. Wei, M. Nishida, Y. Kumagai et al.,

T. Matsunaga and S. Kasamatsu, Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics, Nat. Commun, vol.8, p.1177, 2017.

S. Akter, L. Fu, Y. Jung, M. Conte, . Lo et al., Chemical proteomics reveals new targets of cysteine sulfinic acid reductase, Nat. Chem. Biol, vol.14, pp.995-1004, 2018.

B. E. Alexander, S. J. Coles, B. C. Fox, T. F. Khan, J. Maliszewski et al., Investigating the generation of hydrogen sulfide from the phosphonamidodithioate slow-release donor GYY4137, Med. Chem. Commun, vol.6, pp.1649-1655, 2015.

I. Artaud and E. Galardon, A persulfide analogue of the nitrosothiol SNAP: formation, characterization and reactivity, Chembiochem, vol.15, pp.2361-2364, 2014.

R. S. Balaban, S. Nemoto, and T. Finkel, Mitochondria, Oxidants, and Aging. Cell, vol.120, pp.483-495, 2005.

L. F. Bernal-perez, L. Prokai, and Y. Ryu, Selective N-terminal fluorescent labeling of proteins using 4-chloro-7-nitrobenzofurazan: A method to distinguish protein N-terminal acetylation, Anal. Biochem, vol.428, pp.13-15, 2012.

E. Blackstone, H2S Induces a Suspended Animation-Like State in Mice. Science (80-. ), vol.308, pp.518-518, 2005.

S. Brenner, The genetics of Caenorhabditis elegans, Genetics, vol.77, pp.71-94, 1974.

R. L. Charles, E. Schroder, G. May, P. Free, P. R. Gaffney et al., Protein Sulfenation as a Redox Sensor: Proteomics Studies Using a Novel Biotinylated Dimedone Analogue, Mol. Cell. Proteomics, vol.6, pp.1473-1484, 2007.

M. Crouzet, S. Claverol, A. M. Lomenech, C. Le-sénéchal, P. Costaglioli et al., Pseudomonas aeruginosa cells attached to a surface Evolution of Hydrogen Sulfide in Metabolism and Signaling, Physiology, vol.31, pp.60-72, 2017.

K. Ono, T. Akaike, T. Sawa, Y. Kumagai, D. A. Wink et al., Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility, 2014.

, Biol. Med, vol.77, pp.82-94

P. B. Palde and K. S. Carroll, A universal entropy-driven mechanism for thioredoxintarget recognition, Proc. Natl. Acad. Sci, vol.112, pp.7960-7965, 2015.

J. Pan and K. S. Carroll, Persulfide reactivity in the detection of protein S-sulfhydration, 2013.

, ACS Chem. Biol, vol.8, pp.1110-1116

E. M. Pasini, M. Kirkegaard, P. Mortensen, H. U. Lutz, A. W. Thomas et al., , 2006.

, In-depth analysis of the membrane and cytosolic proteome of red blood cells, Blood, vol.108, pp.791-801

B. H. Patel, C. Percivalle, D. J. Ritson, C. D. Duffy, and J. D. Sutherland, Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism, Nat. Chem, vol.7, pp.301-307, 2015.

B. D. Paul and S. H. Snyder, H2S signalling through protein sulfhydration and beyond, 2012.

, Nat. Rev. Mol. Cell Biol, vol.13, pp.499-507

B. D. Paul and S. H. Snyder, H2S: A Novel Gasotransmitter that Signals by Sulfhydration, Trends Biochem. Sci, vol.40, pp.687-700, 2015.

B. D. Paul, J. I. Sbodio, R. Xu, M. S. Vandiver, J. Y. Cha et al.,

, Cystathionine ?-lyase deficiency mediates neurodegeneration in Huntington's disease, Nature, vol.509, pp.96-100

C. E. Paulsen and K. S. Carroll, Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery, Chem. Rev, vol.113, pp.4633-4679, 2013.

C. E. Paulsen, T. H. Truong, F. J. Garcia, A. Homann, V. Gupta et al., Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity, Nat. Chem. Biol, vol.8, pp.57-64, 2011.

A. Pol, G. H. Renkema, A. Tangerman, E. G. Winkel, U. F. Engelke et al., Mutations in, p.35, 2018.

, SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis

, Genet, vol.50, pp.120-129

L. B. Poole, P. A. Karplus, C. , and A. , Protein sulfenic acids in redox signaling, 2004.

, Annu. Rev. Pharmacol. Toxicol, vol.44, pp.325-347

L. M. Redman, S. R. Smith, J. H. Burton, C. K. Martin, D. Il'yasova et al., , 2018.

, Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of, Aging. Cell Metab, vol.27, pp.805-815

J. A. Reisz, E. Bechtold, S. B. King, L. B. Poole, and C. M. Furdui, Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids, FEBS J, vol.280, pp.6150-6161, 2013.

J. I. Sbodio, S. H. Snyder, and B. D. Paul, Transcriptional control of amino acid homeostasis is disrupted in Huntington's disease, Proc. Natl. Acad. Sci, vol.113, pp.8843-8848, 2016.

J. I. Sbodio, S. H. Snyder, and B. D. Paul, Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington's disease, Proc. Natl. Acad. Sci. U S A, vol.115, pp.780-785, 2018.

Y. H. Seo and K. S. Carroll, Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.16163-16168, 2009.

N. Shibuya, S. Koike, M. Tanaka, M. Ishigami-yuasa, Y. Kimura et al., A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells, Nat. Commun, vol.4, p.1366, 2013.

P. M. Snijder, M. Baratashvili, N. A. Grzeschik, H. G. Leuvenink, L. Kuijpers et al., , 2015.

T. Stiernagle, Maintenance of C. elegans. WormBook 1-11, 2006.

J. Sulston and J. Hodgkin, Methods, The Nematode Caenorhabditis elegans, Cold Spring Harbor Monograph Archive, pp.587-606, 1988.

M. Sundaresan, Z. Yu, V. J. Ferrans, K. Irani, and T. Finkel, Requirement for Generation of H2O2 for Platelet-Derived Growth Factor Signal Tran sduction, 1995.

Q. Zhang, Adaptive Posttranslational Control in Cellular Stress Response Pathways and 384 Its Relationship to Toxicity Testing and Safety Assessment, Toxicol Sci, vol.147, issue.2, p.16, 2015.

J. Liu, C. Qian, and X. Cao, Post-Translational Modification Control of Innate Immunity. 387 Immunity, vol.45, pp.15-30, 2016.

O. Kabil and R. Banerjee, Enzymology of H2S biogenesis, decay and signaling. Antioxid 389 Redox Signal, vol.20, pp.770-82, 2014.

O. Kabil, N. Motl, and R. Banerjee, H2S and its role in redox signaling, Biochim Biophys Acta, issue.8, pp.1355-66, 1844.

B. D. Paul and S. H. Snyder, H2S: A Novel Gasotransmitter that Signals by Sulfhydration

, Trends Biochem Sci, vol.40, issue.11, pp.687-700, 2015.

A. K. Mustafa, H2S signals through protein S-sulfhydration, Sci Signal, vol.2, issue.96, pp.395-72, 2009.

M. R. Filipovic, Chemical Biology of H2S Signaling through Persulfidation, Chem Rev, vol.118, issue.3, pp.1253-1337, 2017.

D. Zhang, H2S-Induced Sulfhydration: Biological Function and Detection Methodology. 399 Front Pharmacol, vol.8, p.608, 2017.

K. Shatalin, H2S: a universal defense against antibiotics in bacteria, Science, vol.401, issue.6058, pp.986-90, 2011.

T. Toliver-kinsky, H2S, a Bacterial Defense Mechanism against the Host Immune 403 Response, Infect Immun, vol.87, issue.1, 2019.

S. Nakamura, Porphyromonas gingivalis hydrogen sulfide enhances methyl 405 mercaptan-induced pathogenicity in mouse abscess formation. Microbiology, vol.164, p.12, 2018.

H. Peng, Hydrogen Sulfide and Reactive Sulfur Species Impact Proteome S-408 Sulfhydration and Global Virulence Regulation in Staphylococcus aureus, ACS Infect Dis, vol.3, issue.10, pp.744-755, 2017.

P. D. Barnes and K. A. Marr, Aspergillosis: spectrum of disease, diagnosis, and treatment. 411 Infect Dis Clin North Am, vol.20, p.14, 2006.

C. Kosmidis, D. W. Denning-;-amich, and J. , Risk assessment on the impact of environmental usage of triazoles on the development and 415 spread of resistance to medical triazoles in Aspergillus species. European Centre for Disease 416 Prevention and Control, Infect Immun, vol.70, issue.3, pp.917-946, 2013.

J. Zivanovic, Selective persulfide detection reveals evolutionarily conserved anti-aging 421 effects of S-sulfhydration, Cell Metabolism, p.423, 2019.

, Aspergillus nidulans genes using the heterokaryon rescue technique, Nature Protocols, vol.424, issue.5, p.19, 2006.

Z. Z. Xie, Y. Liu, and J. S. Bian, Hydrogen Sulfide and Cellular Redox Homeostasis, Oxid Med 426 Cell Longev, vol.427, issue.20, p.6043038, 2016.

X. H. Gao, Improved tag-switch method reveals that thioredoxin acts as 430 depersulfidase and controls the intracellular levels of protein persulfidation, Chem Sci, vol.4, issue.5, p.22, 2015.

F. Hillmann, The Crystal Structure of Peroxiredoxin Asp f3 Provides Mechanistic Insight 433 into Oxidative Stress Resistance and Virulence of Aspergillus fumigatus, vol.6, p.23, 2016.

N. Grahl, In vivo hypoxia and a fungal alcohol dehydrogenase influence the 436 pathogenesis of invasive pulmonary aspergillosis, PLoS Pathog, vol.7, issue.7, p.24, 2011.

K. J. Nelson, D. Parsonage-;-poynton, R. A. , and M. B. Hampton, Measurement of peroxiredoxin activity, Peroxiredoxins as biomarkers of oxidative stress, vol.439, pp.7-10, 2011.

, Biochimica Et Biophysica Acta-General Subjects, vol.1840, issue.2, p.26, 2014.

P. Wang, Age-Dependent Allergic Asthma Development and Cystathionine Gamma-442

L. Deficiency, ;. Bazhanov, and N. , Hydrogen Sulfide: A Novel Player in Airway Development, 444 Pathophysiology of Respiratory Diseases, and Antiviral Defenses, Am J Respir Cell Mol Biol, vol.27, issue.13, pp.403-410, 2017.

G. Zhang, The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and 447 inflammation in a mouse model of asthma, Polymorphisms in Host Immunity-Modulating Genes and Risk, vol.182, issue.4, p.449, 2013.

, Invasive Aspergillosis: Results from the AspBIOmics Consortium, Infect Immun, vol.84, issue.3, 2015.

I. Thomas and B. Gregg, Metformin; a review of its history and future: from lilac to longevity, Pediatric Diabetes, vol.18, pp.10-16, 2017.

I. Pernicova and M. Korbonits, Metformin-Mode of action and clinical implications for diabetes and cancer, Nature Reviews Endocrinology, vol.10, pp.143-156, 2014.

N. Barzilai, J. P. Crandall, S. B. Kritchevsky, and M. A. Espeland, Metformin as a Tool to Target Aging, Cell Metabolism, vol.23, pp.1060-1065, 2016.

V. Nair, Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer, J. Biol. Chem, vol.289, pp.27692-27701, 2014.

C. Batandier, The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin, J. Bioenerg. Biomembr, vol.38, pp.33-42, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00388702

W. De-haes, Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2, Proc. Natl. Acad. Sci. U. S. A, vol.111, 2014.

F. A. Duca, Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats, Nat. Med, vol.21, pp.506-511, 2015.

G. Zhou, Role of AMP-activated protein kinase in mechanism of metformin action, J. Clin. Invest, vol.108, pp.1167-1174, 2001.

C. Algire, Metformin reduces endogenous reactive oxygen species and associated DNA damage, Cancer Prev. Res, vol.5, pp.536-543, 2012.

F. Cabreiro, Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism, Cell, vol.153, pp.228-239, 2013.

A. Martin-montalvo, Metformin improves healthspan and lifespan in mice, Nat. Commun, vol.4, 2013.

A. Tyshkovskiy, Identification and Application of Gene Expression Signatures Associated with Lifespan Extension, Cell Metab, vol.30, pp.573-593, 2019.

J. Zivanovic, Selective Persulfide Detection Reveals Evolutionarily Conserved Anti-Aging Effects of S-Sulfhydration, 2019.

B. D. Paul, Cystathionine ?-lyase deficiency mediates neurodegeneration in Huntington's disease, Nature, vol.509, pp.96-100, 2014.

J. I. Sbodio, S. H. Snyder, and B. D. Paul, Transcriptional control of amino acid homeostasis is disrupted in Huntington's disease, Proc. Natl. Acad. Sci, vol.113, pp.8843-8848, 2016.

J. I. Sbodio, S. H. Snyder, and B. D. Paul, Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington's disease, Proc. Natl. Acad. Sci. U. S. A, vol.115, pp.780-785, 2018.

M. T. Lin and M. F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, vol.443, pp.787-795, 2006.

, PDK1 (Phospho-Ser241)

, Raf1 (Phospho-Ser259)

, MEK2 (Phospho-Thr394)

, STAT1 (Phospho-Tyr701)

, STAT3 (Phospho-Tyr705)

, STAT3 (Phospho-Ser727)

, AKT (Phospho-Ser473

, AKT (Phospho-Thr308)

, FAK (Phospho-Tyr861)

, HER2 (Phospho-Tyr877)

, HER2 (Phospho-Tyr1221/Tyr1222)

, HER2 (Phospho-Tyr1248)

, EGFR (Phospho-Ser1070)

, EGFR (Phospho-Tyr1092)

. Paxillin,

, Caveolin-1 (Phospho-Tyr14)

, Src (Phospho-Tyr418)

, Catenin beta (Phospho-Thr41/Ser45)

, FAK (Phospho-Tyr925)

. Ikk-alpha,

, VAV1 (Phospho-Tyr174)

, MKK3 (Phospho-Ser189)

, JAK1 (Phospho-Tyr1022)

, JAK2 (Phospho-Tyr221)

, JAK2 (Phospho-Tyr1007)

, Src (Phospho-Tyr529)

, MEK1 (Phospho-Ser221)

, STAT1 (Phospho-Ser727)

, SEK1/MKK4

, SEK1/MKK4

. Paxillin,

, Rac1/cdc42 (Phospho-Ser71)

, Raf1 (Phospho-Ser338)

, MEK1 (Phospho-Ser217)

, Catenin beta (Phospho-Ser33)

, Catenin beta (Phospho-Ser37)

, EGFR (Phospho-Tyr1172)

, EGFR (Phospho-Tyr1197)

, EGFR (Phospho-Tyr869)

. Sapk/jnk,

. Sapk/jnk,

, EGFR (Phospho-Tyr1110)

, Dok-2 (Phospho-Tyr299)

, Gab1 (Phospho-Tyr627)

, MEK1 (Phospho-Thr291)

, EGFR (Phospho-Thr678)

, Shc (Phospho-Tyr349)

. Shc,

, AKT (Ab-473)

, AKT (Ab-308)

, EGFR (Ab-1070)

, EGFR (Ab-1092)

. Sapk/jnk,

. Sapk/jnk,

, EGFR (Ab-1110)

, Dok-2 (Ab-299)

. Gab1, Ab-627)

, EGFR (Ab-678)

, EGFR (Ab-693)

. Shc, Ab-349)

, MKK6 (Phospho-Ser207)

, FAK (Phospho-Tyr397)

, EGFR (Phospho-Thr693)

, FAK (Phospho-Tyr576)

, IKK-alpha/beta (Phospho-Ser180/181)

. Ikk-beta,

. Ikk-gamma,

, EGFR (Phospho-Tyr1016)

, FAK (Phospho-Tyr407)

. Ikk-beta,

, PAK1 (Phospho-Thr212)

, Raf1 (Phospho-Tyr341)

, Raf1(Phospho-Ser621)

R. ,

, MEK1 (Phospho-Ser298)

, MEK1 (Phospho-Thr286)

. Ras-grf1,

, Gab1 (Phospho-Tyr659)

, PKC pan activation site (Phospho)

, AKT (Phospho-Tyr326)

, Catenin beta (Phospho-Tyr654)

R. ,

, EGFR (Phospho-Tyr1069)

, ERK3 (Phospho-Ser189)

, ERK8 (Phospho-Thr175/Tyr177)

, FAK (Phospho-Ser910)

, PAK1/2 (Phospho-Ser199)

, IKK gamma (Phospho-Ser85)

, PI3-kinase p85-subunit alpha/gamma (Phospho-Tyr467/Tyr199)

, PI3-kinase p85-alpha

, Rho/Rac guanine nucleotide exchange factor 2 (Phospho-Ser885)

, VAV2 (Phospho-Tyr142)

, Catenin beta (Phospho-Tyr489)

, MAP3K1/MEKK1 (Phospho-Thr1381)

, MKK3/MAP2K3

. Mkk7/map2k7,

. Mkk7/map2k7,

, PAK1 (Phospho-Ser204)

, Src (Phospho-Ser75)

, Src (Phospho-Tyr216)

, GAB2 (Phospho-Ser159)

, PLCG1 (Phospho-Tyr771)

, PLCG1 (Phospho-Tyr783)

, PLCG2 (Phospho-Tyr753)

, CBL (Phospho-Tyr774)

, CBL (Phospho-Tyr700)

, PLCG1 (Phospho-Tyr1253)

, PLCG2 (Phospho-Tyr1217)

, SEK1/MKK4/JNKK1

, SEK1/MKK4/JNKK1 (Ab-257)

. E-cadherin,

, EGF-Like Module-Containing Mucin-Like Receptor, vol.1, issue.EMR1

, EGF-Like Module-Containing Mucin-Like Receptor, vol.2

, EGF-Like Module-Containing Mucin-Like Receptor, vol.3