. Le-cas-consiste-À-Étudier-l'écoulement-d'air-autour-d'un-cylindre, Le nombre de Reynolds de cet écoulement basé sur le diamètre d du cylindre et la vitesse à l'infini U ? vaut : Re = 3900, Le nombre de Mach basé sur U ? vaut : M = 0.1. Les valeurs de U ? et d sont : U ? = 34 m.s ?1 et d = 1, 7 × 10 ?3 m. La littérature montre que pour un tel nombre de Reynolds

. Dans, Près du cylindre, les pas d'espaces dans les direction x et y valent : ?x = ?y = 0.003 d. Les bords x et y du maillage sont situés à une distance égale à 1000d du centre du cylindre. A proximité de ces bords, les pas d'espace valent : ?x = ?y = 6.0 d. Le pas d'espace dans la direction z est uniforme et vaut toujours : ?z = 0.03 d, les auteurs précisent que dans ces conditions, des lâchers tourbillonnaires en aval du tourbillon sont effectués à la fréquence f = 0.2 × U ? /d, vol.117

, Il est obtenu en deux temps : -Une première simulation RANS est effectuée pour obtenir le champ moyen en régime établi -A partir de cette solution moyennée, Des conditions de périodicité sont utilisées dans la direction z

X. Ma, Y. Guo, G. Shi, and Y. Yu, Numerical simulation of global temperature change during the 20th century with the iap/lasg goals model, Advances in Atmospheric Sciences, vol.21, issue.2, pp.227-235, 2004.

S. Bondevik, F. Løvholt, C. Harbitz, J. Mangerud, A. Dawson et al., The storegga slide tsunami-comparing field observations with numerical simulations, Marine and Petroleum Geology, vol.22, issue.1, pp.195-208, 2005.

R. Glatzmaier, Rotation and magnetism of earth's inner core, Science, vol.274, pp.1887-91, 1996.

N. Alferez, Simulation des grandes échelles du processus de décrochage par éclatement de bulbe de décollement laminaire, 2014.

L. Sanders, E. Manoha, S. B. Khelil, and C. Francois, Lagoon : Cfd/caa coupling for landing gear noise and comparison with experimental database, 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference)

P. Sagaut, Large-eddy simulation for incompressible flows, 2001.

G. Pont, Self adaptive turbulence models for unsteady compressible flows, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01310365

F. Bassi, A. Crivellini, S. Rebay, and M. Savini, Discontinuous galerkin solution of the reynolds-averaged navier-stokes and k-turbulence model equations, Residual Distribution Schemes, Discontinuous Galerkin Schemes and Adaptation, vol.34, pp.507-540, 2005.

P. Persson, J. Bonet, and J. Peraire, Discontinuous galerkin solution of the navier-stokes equations on deformable domains, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.17, pp.1585-1595, 2009.

J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis, Cfd vision 2030 study : A path to revolutionary computational aerosciences, NASA report, 2014.

L. Muscat, G. Puigt, M. Montagnac, and P. Brenner, A coupled implicit-explicit time integration method for compressible unsteady flows, Journal of Computational Physics, vol.398, p.108883, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02299026

. Per-olof-persson, High-Order LES Simulations using Implicit-Explicit Runge-Kutta Schemes

B. C. Vermeire and S. Nadarajah, Adaptive imex schemes for high-order unstructured methods, Journal of Computational Physics, vol.280, pp.261-286, 2015.

M. Shoeybi, M. Svärd, F. E. Ham, and P. Moin, An adaptive implicit-explicit scheme for the dns and les of compressible flows on unstructured grids, Journal of Computational Physics, vol.229, issue.17, pp.5944-5965, 2010.

M. Shoeybi, M. Svärd, F. E. Ham, and P. Moin, An adaptive implicit-explicit scheme for the dns and les of compressible flows on unstructured grids, Journal of Computational Physics, vol.229, issue.17, pp.5944-5965, 2010.

E. M. Constantinescu and A. Sandu, Multirate timestepping methods for hyperbolic conservation laws, Journal of Scientific Computing, vol.33, issue.3, pp.239-278, 2007.

M. Schlegel, O. Knoth, M. Arnold, and R. Wolke, Multirate runge-kutta schemes for advection equations, Journal of Computational and Applied Mathematics, vol.226, issue.2, pp.345-357, 2009.

Y. A. Omelchenko and H. Karimabadi, Self-adaptive time integration of fluxconservative equations with sources, Journal of Computational Physics, vol.216, issue.1, pp.179-194, 2006.

T. Unfer, An asynchronous framework for the simulation of the plasma/flow interaction, Journal of Computational Physics, vol.236, pp.229-246, 2013.

C. Dawson and R. Kirby, High resolution schemes for conservation laws with locally varying time steps, SIAM J. Sci. Comput, vol.22, issue.6, pp.2256-2281, 2000.

H. Tang and G. Warnecke, A class of high resolution schemes for hyperbolic conservation laws and convection-diffusion equations with varying time and space grids, Journal of Scientific Computing, vol.24, issue.2, pp.121-140, 2005.

A. Sandu and E. Constantinescu, Multirate explicit adams methods for time integration of conservation laws, Journal of Scientific Computing, vol.38, issue.2, pp.229-249, 2009.

Z. Tan, Z. Zhang, Y. Huang, and T. Tang, Moving mesh methods with locally varying time steps, Journal of Computational Physics, vol.200, issue.1, pp.347-367, 2004.

B. Seny, J. Lambrechts, R. Comblen, V. Legat, and J. Remacle, Multirate time stepping for accelerating explicit discontinuous galerkin computations with application to geophysical flows, International Journal For Numerical Mehtods In Fluids, vol.71, issue.41, pp.41-64, 2007.

E. Itam, Simulation numérique d'écoulements autour de corps non profilés par des modèles de turbulence hybrides et un schéma multirate, 2017.

N. Takemitsu, Finite difference method to solve incompressible fluid flow, Journal of Computational Physics, vol.61, issue.3, pp.499-518, 1985.

M. Li, T. Tang, and B. Fornberg, A compact fourth-order finite difference scheme for the steady incompressible navier-stokes equations, International Journal for Numerical Methods in Fluids, vol.20, issue.10, pp.1137-1151, 1995.

R. J. Leveque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, 2002.

J. Padet, Fluides en Ecoulement -Méthodes et Modèles. 2 Edition, 2011.

P. Moin and K. Mahesh, Direct numerical simulation : A tool in turbulence research, Annual Review of Fluid Mechanics, vol.30, issue.1, pp.539-578, 1998.

R. Manceau, Modélisation statistique de la turbulence. 10ème école de Printemps mécanique des fluides numérique du CNRS

E. Hairer, G. Wanner, and S. P. Norsett, Solving ordinary differential equations I : Nonstiff Problems, 1993.

S. Bayyuk, K. Powell, and B. Va, A simulation technique for 2-D unsteady inviscid flows around arbitrarily moving and deforming bodies of arbitrary geometry

P. S. Lowery and W. C. Reynolds, Numerical simulation of a spatially-developping, forced, plane mixing layer, vol.26, 1986.

J. Williamson, Low-storage runge-kutta schemes, Journal of Computational Physics, vol.35, issue.1, pp.48-56, 1980.

I. Bennaceur, D. C. Mincu, I. Mary, M. Terracol, L. Larchevêque et al., Numerical simulation of acoustic scattering by a plane turbulent shear layer : Spectral broadening study, Computers Fluids, vol.138, pp.83-98, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455168

I. Bennaceur, Etude numérique de la diffusion d'une onde acoustique par une couche de cisaillement turbulente à l'aide d'une simulation aux grandes échelles, 2017.

D. Drikakis, M. Hahn, A. Mosedale, and B. Thornber, Large eddy simulation using high-resolution and high-order methods, Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.367, pp.2985-2997, 1899.

M. Pino-martín and G. V. Candler, A parallel implicit method for the direct numerical simulation of wall-bounded compressible turbulence, Journal of Computational Physics, vol.215, issue.1, pp.153-171, 2006.

H. Kawamura, K. Ohsaka, H. Abe, and K. Yamamoto, Dns of turbulent heat transfer in channel flow with low to medium-high prandtl number fluid, International Journal of Heat and Fluid Flow, vol.19, issue.5, pp.482-491, 1998.

H. Kawamura, H. Abe, and Y. Matsuo, Dns of turbulent heat transfer in channel flow with respect to reynolds and prandtl number effects, International Journal of Heat and Fluid Flow, vol.20, issue.3, pp.196-207, 1999.

X. Zhou, K. H. Luo, and J. J. Williams, Large-eddy simulation of a turbulent forced plume, European Journal of Mechanics -B/Fluids, vol.20, issue.2, pp.233-254, 2001.

W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, 2003.

C. Hirsch, Numerical computation of internal and external flow, 1988.

H. Bijl, M. H. Carpenter, N. Veer, C. A. Vatsa, and . Kennedy, Implicit time integration schemes for the unsteady compressible navier-stokes equations : Laminar flow, Journal of Computational Physics, vol.179, issue.1, p.214, 2002.

R. Van-buuren, H. Kuerten, and B. J. Geurts, Implicit time accurate simulation of unsteady flow, International Journal for Numerical Methods in Fluids, vol.35, issue.6, pp.687-720, 2001.

C. Weber and F. Ducros, Large eddy and reynolds-averaged navier -stokes simulations of turbulent flow over an airfoil, International Journal of Computational Fluid Dynamics -INT J COMPUT FLUID DYNAMICS, vol.13, pp.327-355, 2000.

M. Crouzeix, Sur l'approximation des équations différentielles operationnelles linéaires par des méthodes de Runge-Kutta, 1975.

J. C. Butcher, Implicit runge-kutta processes, Mathematics of Computation, vol.18, issue.85, pp.50-64, 1964.

C. A. Kennedy and M. H. Carpenter, Diagonally implicit Runge-Kutta methods for ordinary differential equations, a review

H. Bijl, Iterative methods for unsteady flow computations using implicit Runge-Kutta integration schemes

R. Hixon and M. Visbal, Comparison of High-Order Implicit Time Marching Schemes for Unsteady Flow Calculations

L. Wang and D. J. Mavriplis, Implicit solution of the unsteady euler equations for high-order accurate discontinuous galerkin discretizations, J. Comput. Phys, vol.225, issue.2, pp.1994-2015, 2007.

C. W. Gear, Numerical initial value problems in ordinary differential equations, 1971.

F. Daude, Méthode d'intégration temporelle implicite pour la Simulation des Grandes Échelles : application à la réduction du bruit de cavité, 2007.

M. Rai, T. Gatski, and G. Erlebacher, Direct simulation of spatially evolving compressible turbulent boundary layers, 1995.

, Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer, Journal of Computational Physics, vol.109, issue.2, pp.169-192, 1993.

D. P. Rizzetta and M. R. Visbal, Large-eddy simulation of supersonic boundarylayer flow by a high-order method, International Journal of Computational Fluid Dynamics, vol.18, issue.1, pp.15-27, 2004.

D. P. Rizzetta, M. R. Visbal, and G. A. Blaisdell, A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation, International Journal for Numerical Methods in Fluids, vol.42, issue.6, pp.665-693, 2003.

A. Jameson and S. Yoon, Lower-upper implicit schemes with multiple grids for the euler equations, AIAA Journal, vol.25, issue.7, pp.929-935, 1987.

F. Daude, I. Mary, and P. Comte, Self-adaptive newton-based iteration strategy for the les of turbulent multi-scale flows, Computers and Fluids, vol.100, pp.278-290, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01228473

N. Alkishriwi, M. Meinke, and W. Schröder, A large-eddy simulation method for low mach number flows using preconditioning and multigrid, Computers Fluids, vol.35, issue.10, pp.1126-1136, 2006.

H. Dong and X. Zhong, Aiaa 2000-0275 a parallel high-order implicit algorithm for compressible navier-stokes equations, 2000.

H. Choi and P. Moin, Effects of the computational time step on numerical solutions of turbulent flow, Journal of Computational Physics, vol.113, issue.1, pp.1-4, 1994.

B. Lessani, J. Ramboer, and C. Lacor, Efficient large-eddy simulations of low mach number flows using preconditioning and multigrid, International Journal of Computational Fluid Dynamics, vol.18, issue.3, pp.221-233, 2004.

M. J. Wright, G. V. Candler, and M. Prampolini, Data-parallel lower-upper relaxation method for the navier-stokes equations, AIAA Journal, vol.34, issue.7, pp.1371-1377, 1996.

M. H. Carpenter, C. A. Kennedy, H. Bijl, S. A. Viken, and V. N. Vatsa, Fourthorder runge-kutta schemes for fluid mechanics applications, Journal of Scientific Computing, vol.25, issue.1, pp.157-194, 2005.

C. Völcker, J. B. , P. G. Thomsen, and E. H. Stenby, Adaptive stepsize control in implicit runge-kutta methods for reservoir simulation, 9th IFAC Symposium on Dynamics and Control of Process Systems, vol.43, pp.523-528, 2010.

A. Kanevsky, M. H. Carpenter, D. Gottlieb, and J. S. Hesthaven, Application of implicit-explicit high order runge-kutta methods to discontinuous-galerkin schemes, Journal of Computational Physics, vol.225, issue.2, pp.1753-1781, 2007.

A. Toumi, G. Dufour, R. Perrussel, and T. Unfer, Asynchronous numerical scheme for modeling hyperbolic systems, Comptes Rendus Mathematique, vol.353, issue.9, pp.843-847, 2015.

V. A. Semiletov and S. A. Karabasov, Cabaret scheme for computational aero acoustics : Extension to asynchronous time stepping and 3d flow modelling, International Journal of Aeroacoustics, vol.13, issue.3-4, pp.321-336, 2014.

A. Kvaerno and P. Rentrop, Low order multirate runge-kutta methods in electric circuit simulation, 1999.

S. Osher and R. Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Mathematics of computation, vol.41, issue.164, 1983.

W. Hundsdorfer, A. Mozartova, and V. Savcenco, Analysis of explicit multirate and partitioned Runge-Kutta schemes for conservation laws, CWI report. MAS-E. Centrum voor Wiskunde en Informatica, 2007.

C. Mikida, A. Klöckner, and D. Bodony, Multi-rate time integration on overset meshes, 2018.

B. Seny, Development and implementation of a parallel explicit multirate time stepping strategy for accelerating discontinuous Galerkin computations, 2014.

M. Jean, D. Sexton, and . Reynolds, Relaxed multirate infinitesimal step methods. Preprint submitted to, Journal of Computational and Applied Mathematics, 2018.

A. Sandu, A class of multirate infinitesimal gark methods. Technical report of the computational science laboratory (Virginia Tech), vol.08, p.2019

O. Knoth and R. Wolke, Implicit-explicit runge-kutta methods for computing atmospheric reactive flows, Applied Numerical Mathematics, vol.28, issue.2, pp.327-341, 1998.

B. Seny, J. Lambrechts, T. Toulorge, V. Legat, and J. Remacle, An efficient parallel implementation of explicit multirate runge-kutta schemes for discontinuous galerkin computations, Journal of Computational Physics, vol.256, pp.135-160, 2014.

M. Günther, A. Kvaernø, and P. Rentrop, Multirate partitioned runge-kutta methods, BIT Numerical Mathematics, vol.41, issue.3, pp.504-514, 2001.

C. Bogey, Grid sensitivity of flow field and noise of high-reynolds-number jets computed by large-eddy simulation, International Journal of Aeroacoustics, vol.17, pp.399-424, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02085845

L. Liu, X. Li, and F. Q. Hu, Nonuniform time-step runge-kutta discontinuous galerkin method for computational aeroacoustics, Journal of Computational Physics, vol.229, issue.19, pp.6874-6897, 2010.

L. Liu, X. Li, and F. Q. Hu, Nonuniform-time-step explicit runge-kutta scheme for high-order finite difference method. Computers and Fluids, vol.105, pp.166-178, 2014.

T. Renaud, C. Benoit, S. Peron, I. Mary, and N. Alferez, Validation of an immersed boundary method for compressible flows, AIAA Scitech, p.2179, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02020483

L. Krivodonova, An efficient local time-stepping scheme for solution of nonlinear conservation laws, Journal of Computational Physics, vol.229, issue.22, pp.8537-8551, 2010.

I. Mary, Méthode de Newton approchée pour le calcul d'écoulements instationnaires comportant des zones à très faible nombre de Mach, 1999.

I. Mary and P. Sagaut, Large eddy simulation of flow around an airfoil near stall, AIAA Journal, vol.40, issue.6, pp.1139-1145, 2002.

C. Laurent, Étude d'écoulements transitionnels et hors équilibre par des approches DNS et RANS, 2012.

J. R. Edwards and M. Liou, Low-diffusion flux-splitting methods for flows at all speeds, AIAA Journal, vol.36, issue.9, pp.1610-1617, 1998.

N. Alferez, I. Mary, and E. Lamballais, Study of stall development around an airfoil by means of high fidelity large eddy simulation. Flow, Turbulence and Combustion, vol.91, pp.623-641, 2013.

B. Van-leer, Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method, Journal of Computational Physics, vol.32, issue.1, pp.101-136, 1979.

M. Meinke, W. Schröder, E. Krause, and T. Rister, A comparison of second-and sixth-order methods for large-eddy simulations, Computers Fluids, vol.31, issue.4, pp.695-718, 2002.

P. Roe, Approximate riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol.43, issue.2, pp.357-372, 1981.

S. Chakravarthy, High resolution upwind formulation for the navier-stokes equations, Von Karman Institute Lecture Series, vol.32, issue.1, pp.101-136, 1988.

C. Hu and C. Shu, Weighted essentially non-oscillatory schemes on triangular meshes, Journal of Computational Physics, vol.150, issue.1, pp.97-127, 1999.

A. Gary and . Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of Computational Physics, vol.27, issue.1, pp.1-31, 1978.

, international workshop on high order cfd methods, AIAA SciTech Conference, 2018.

J. R. Debonis, Solutions of the taylor-green vortex problem using high-resolution explicit finite difference methods, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.

M. Galbraith and M. Visbal, Implicit Large Eddy Simulation of Low-Reynolds-Number Transitional Flow Past the SD7003 Airfoil

A. Uranga, P. O. Persson, M. Drela, and J. Peraire, Implicit large eddy simulation of transition to turbulence at low reynolds numbers using a discontinuous galerkin method, International Journal for Numerical Methods in Engineering, vol.87, issue.1-5, pp.232-261, 2011.

A. Ducoin and J. C. Robinet, Etude numérique de la transition laminaire turbulent sur un profil d'aile. 21eme congrès français de mécanique, 2013.

O. Marxen and D. S. Henningson, The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble, Journal of Fluid Mechanics, vol.671, pp.1-33, 2011.

C. Laurent, I. Mary, V. Gleize, A. Lerat, and D. , Dns database of a transitional separation bubble on a flat plate and application to rans modeling validation, Computers and Fluids, vol.61, pp.21-30, 2012.

W. Kevin and . Thompson, Time dependent boundary conditions for hyperbolic systems, Journal of Computational Physics, vol.68, issue.1, pp.1-24, 1987.

J. Dandois, I. Mary, and V. Brion, Large-eddy simulation of laminar transonic buffet, Journal of Fluid Mechanics, vol.850, pp.156-178, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833195

L. Larchevêque, P. Sagaut, I. Mary, O. Labbé, and P. Comte, Large-eddy simulation of a compressible flow past a deep cavity, Physics of Fluids, vol.15, issue.1, pp.193-210, 2003.

M. Rietmann, D. Peter, O. Schenk, B. Uçar, and M. J. Grote, Load-balanced local time stepping for large scale wave propagation, IEEE International Parallel and Distributed Processing Symposium, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01159687

C. Benoit, S. Péron, and S. Landier, Cassiopee : A cfd pre-and post-processing tool, Aerospace Science and Technology, vol.45, pp.272-283, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01141585

, Rapport final prf champion. Communication interne ONERA, 2019.

S. Péron and C. Benoit, Automatic off-body overset adaptive cartesian mesh method based on an octree approach, Journal of Computational Physics, vol.232, issue.1, pp.153-173, 2013.

S. Péron, C. Benoit, V. Gleize, I. Mary, and M. Terracol, A mixed overset grid/immersed boundary approach for CFD simulations of complex geometries

. Charles-s-peskin, Flow patterns around heart valves : A numerical method, Journal of Computational Physics, vol.10, issue.2, pp.252-271, 1972.

E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-yusof, Combined immersedboundary finite-difference methods for three-dimensional complex flow simulations, Journal of Computational Physics, vol.161, issue.1, pp.35-60, 2000.

Y. Tseng and J. H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, Journal of Computational Physics, vol.192, issue.2, pp.593-623, 2003.

A. J. Musker, Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer, AIAA Journal, vol.17, issue.6, pp.655-657, 1979.

A. G. Kravchenko and P. Moin, Numerical studies of flow over a circular cylinder at Re=3900, Physics of Fluids, vol.12, issue.2, pp.403-417, 2000.

L. M. Lourenco and C. Shih, Characteristics of the plane turbulent near wake of a circular cylinder. a particle image velocimetry study (communication privée, donnés publiées dans "Numerical experiments on the flow past a circular cylinder at subcritical reynolds number, 1994.