, Global Cancer Observatory

, Les sarcomes des tissus mous et des viscères | Fondation ARC pour la recherche sur le cancer

, Les sarcomes osseux | Fondation ARC pour la recherche sur le cancer

L. Lichtenstein and H. L. Jaffe, Chondrosarcoma of Bone, Am J Pathol, vol.19, issue.4, pp.553-89, 1943.

A. Redondo, S. Bagué, D. Bernabeu, E. Ortiz-cruz, C. Valverde et al., Malignant bone tumors (other than Ewing's): clinical practice guidelines for diagnosis, treatment and follow-up by Spanish Group for Research on Sarcomas (GEIS), Cancer Chemother Pharmacol, vol.80, issue.6, pp.1113-1144, 2017.

F. Limaiem, K. L. Sticco, and C. Cancer, , 1920.

H. L. Evans, A. G. Ayala, and M. M. Romsdahl, Prognostic factors in chondrosarcoma of bone: a clinicopathologic analysis with emphasis on histologic grading, Cancer, vol.40, issue.2, pp.818-849, 1977.

P. Thanindratarn, D. C. Dean, S. D. Nelson, F. J. Hornicek, and Z. Duan, Advances in immune checkpoint inhibitors for bone sarcoma therapy, Journal of Bone Oncology, vol.15, p.100221, 2019.

H. Douis and A. Saifuddin, The imaging of cartilaginous bone tumours, II. Chondrosarcoma. Skeletal Radiol, vol.42, issue.5, pp.611-637, 2013.

A. P. Stout and E. W. Verner, Chondrosarcoma of the extraskeletal soft tissues, Cancer, 1953.

F. M. Enzinger and M. Shiraki, Extraskeletal myxoid chondrosarcoma. An analysis of 34 cases, Hum Pathol, vol.3, issue.3, pp.421-456, 1972.

T. Aigner, A. M. Oliveira, and A. G. Nascimento, Extraskeletal myxoid chondrosarcomas do not show a chondrocytic phenotype, Mod Pathol, vol.17, issue.2, pp.214-235, 2004.

A. Yoshida, N. Makise, S. Wakai, A. Kawai, and N. Hiraoka, INSM1 expression and its diagnostic significance in extraskeletal myxoid chondrosarcoma, Mod Pathol, vol.31, issue.5, pp.744-52, 2018.

L. Zhang, R. Wang, R. Xu, G. Qin, and L. Yang, Extraskeletal Myxoid Chondrosarcoma: A Comparative Study of Imaging and Pathology, Biomed Res Int, vol.7, p.9684268, 2018.

L. A. Doyle, Sarcoma classification: an update based on the 2013 World Health Organization Classification of Tumors of Soft Tissue and Bone. Cancer, vol.120, pp.1763-74, 2014.

E. J. Davis, Y. Wu, D. Robinson, S. M. Schuetze, L. H. Baker et al., Next generation sequencing of extraskeletal myxoid chondrosarcoma, Oncotarget, vol.8, issue.13, pp.21770-21777, 2017.

L. Paoluzzi and M. Ghesani, Extraskeletal myxoid chondrosarcoma with massive pulmonary metastases, Clin Sarcoma Res, 1920.

S. Labonté, Les tumeurs myxoïdes des tissus mous profonds, Annales de Pathologie

J. Bovée, A. Cleton-jansen, A. Taminiau, and P. Hogendoorn, Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment, Lancet Oncol, vol.6, issue.8, pp.599-607, 2005.

J. Bovée, P. Hogendoorn, J. S. Wunder, and B. A. Alman, Cartilage tumours and bone development: molecular pathology and possible therapeutic targets, Nat Rev Cancer, vol.10, issue.7, pp.481-489, 2010.

M. Kim, K. Cho, A. G. Ayala, J. Y. Ro, and . Chondrosarcoma, With Updates on Molecular Genetics. Sarcoma. 2011 e405437 22. Chow WA. Chondrosarcoma: biology, genetics, and epigenetics. F1000Res, vol.7, p.1826, 2018.

V. Y. Jo and L. A. Doyle, Refinements in Sarcoma Classification in the Current 2013 World Health Organization Classification of Tumours of Soft Tissue and Bone, Surgical Oncology Clinics, vol.25, issue.4, pp.621-664, 2016.

H. Gelderblom, P. Hogendoorn, S. D. Dijkstra, C. S. Rijswijk, . Van et al., The Clinical Approach Towards Chondrosarcoma. The Oncologist, vol.13, pp.320-329, 2008.

C. R. Antonescu, P. Argani, R. A. Erlandson, J. H. Healey, M. Ladanyi et al., Skeletal and extraskeletal myxoid chondrosarcoma: a comparative clinicopathologic, ultrastructural, and molecular study. Cancer, vol.83, pp.1504-1525, 1998.

J. N. Primrose, 284 × 220 mm. Pp. 1120. Illustrated. 1995. St Louis, Missouri: Mosby-Year-Book, £160. BJS, vol.82, issue.10, pp.1437-1437, 1995.

J. Coindre, Grading of Soft Tissue Sarcomas: Review and Update. Archives of Pathology & Laboratory Medicine, vol.130, pp.1448-53, 2006.

A. M. Samuel, J. Costa, and D. M. Lindskog, Genetic alterations in chondrosarcomas -keys to targeted therapies? Cell Oncol (Dordr), vol.37, pp.95-105, 2014.

F. R. Evola, L. Costarella, V. Pavone, G. Caff, L. Cannavò et al., Biomarkers of Osteosarcoma, Chondrosarcoma, and Ewing Sarcoma, Front Pharmacol, vol.8, p.150, 2017.

F. M. Speetjens, Y. De-jong, H. Gelderblom, and J. Bovée, Molecular oncogenesis of chondrosarcoma: impact for targeted treatment, Curr Opin Oncol, vol.28, issue.4, pp.314-336, 2016.

G. Azzi, M. Velez, and M. Mc, Isocitrate dehydrogenase mutations in chondrosarcoma: the crossroads between cellular metabolism and oncogenesis, Curr Opin Oncol, vol.26, issue.4, pp.403-410, 2014.

I. Sulzbacher, P. Birner, K. Trieb, M. Mühlbauer, S. Lang et al., Platelet-derived growth factor-alpha receptor expression supports the growth of conventional chondrosarcoma and is associated with adverse outcome, Am J Surg Pathol, vol.25, issue.12, pp.1520-1527, 2001.

R. Rupaimoole and F. J. Slack, MicroRNA therapeutics: towards a new era for the management of cancer and other diseases, Nat Rev Drug Discov, vol.16, issue.3, pp.203-225, 2017.

J. Sui, Q. Liu, H. Zhang, and Y. Kong, Deep integrative analysis of microRNA-mRNA regulatory networks for biomarker and target discovery in chondrosarcoma, J Cell Biochem, vol.120, issue.6, pp.9631-9639, 2019.

Y. Dobashi, H. Sugimura, A. Sato, T. Hirabayashi, H. Kanda et al., Possible association of p53 overexpression and mutation with high-grade chondrosarcoma, Diagn Mol Pathol, vol.2, issue.4, pp.257-63, 1993.

C. Fisher, The diversity of soft tissue tumours with EWSR1 gene rearrangements: a review, Histopathology, vol.64, issue.1, pp.134-50, 2014.

C. Filion and Y. Labelle, Identification of genes regulated by the EWS/NR4A3 fusion protein in extraskeletal myxoid chondrosarcoma, Tumour Biol, vol.33, issue.5, pp.1599-605, 2012.

M. A. Swartz, N. Iida, E. W. Roberts, S. Sangaletti, M. H. Wong et al., Tumor microenvironment complexity: emerging roles in cancer therapy, Cancer Res, vol.72, issue.10, pp.2473-80, 2012.

C. A. Hamm, J. W. Stevens, H. Xie, E. F. Vanin, J. A. Morcuende et al., Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors, BMC Cancer, vol.10, p.471, 2010.

A. Roy and S. Li, Modifying the tumor microenvironment using nanoparticle therapeutics

, Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol.8, issue.6, pp.891-908, 2016.

Y. Yuan, Y. Jiang, C. Sun, and Q. Chen, Role of the tumor microenvironment in tumor progression and the clinical applications (Review), Oncology Reports, vol.35, issue.5, pp.2499-515, 2016.

F. A. Simard, I. Richert, A. Vandermoeten, A. Decouvelaere, J. Michot et al., Description of the immune microenvironment of chondrosarcoma and contribution to progression, Oncoimmunology, vol.6, issue.2, p.1265716, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01795707

M. Kostine, A. H. Cleven, N. De-miranda, A. Italiano, A. Cleton-jansen et al., Analysis of PD-L1, T-cell infiltrate and HLA expression in chondrosarcoma indicates potential for response to immunotherapy specifically in the dedifferentiated subtype, Mod Pathol, vol.29, issue.9, pp.1028-1065, 2016.

A. Torabi, C. N. Amaya, F. H. Wians, and B. A. Bryan, PD-1 and PD-L1 expression in bone and soft tissue sarcomas, Pathology, vol.49, issue.5, pp.506-519, 2017.

X. Yang, G. Zhu, Z. Yang, K. Zeng, F. Liu et al., Expression of PD-L1/PD-L2 is associated with high proliferation index of Ki-67 but not with TP53 overexpression in chondrosarcoma, Int J Biol Markers, vol.33, issue.4, pp.507-520, 2018.

S. M. Willems, M. Wiweger, J. Van-roggen, and P. Hogendoorn, Running GAGs: myxoid matrix in tumor pathology revisited, Virchows Arch, vol.456, issue.2, pp.181-92, 2010.

C. Chantrain and Y. A. Declerck, Les métalloprotéases matricielles et leurs inhibiteurs synthétiques dans la progression tumorale, vol.18, pp.565-575, 2002.

W. Zeng, R. Wan, Y. Zheng, S. R. Singh, and W. Y. Hypoxia, Cancer Lett, vol.313, issue.2, pp.129-165, 2011.

X. Sun, L. Wei, Q. Chen, and R. M. Terek, CXCR4/SDF1 mediate hypoxia induced chondrosarcoma cell invasion through ERK signaling and increased MMP1 expression. Mol Cancer, vol.9, p.17, 2010.

X. Jiang, C. M. Dutton, W. Qi, J. A. Block, N. Garamszegi et al., siRNA mediated inhibition of MMP-1 reduces invasive potential of a human chondrosarcoma cell line, J Cell Physiol, vol.202, issue.3, pp.723-753, 2005.

M. Gebauer, J. Saas, F. Sohler, J. Haag, S. Söder et al., Comparison of the chondrosarcoma cell line SW1353 with primary human adult articular chondrocytes with regard to their gene expression profile and reactivity to IL-1beta. Osteoarthritis Cartil, vol.13, pp.697-708, 2005.

M. Yao, X. Wang, Y. Zhao, X. Wang, and F. Gao, Expression of MMPs is dependent on the activity of mitogen-activated protein kinase in chondrosarcoma, Mol Med Rep, vol.15, issue.2, pp.915-936, 2017.

K. A. Boehme, S. B. Schleicher, F. Traub, and B. Rolauffs, Chondrosarcoma: A Rare Misfortune in Aging Human Cartilage? The Role of Stem and Progenitor Cells in Proliferation, Malignant Degeneration and Therapeutic Resistance, Int J Mol Sci, vol.19, issue.1, 2018.

H. Tzeng, C. Tang, S. Wu, H. Chen, Y. Fong et al., CCN6-mediated MMP-9 activation enhances metastatic potential of human chondrosarcoma, Cell Death Dis, vol.9, issue.10, p.955, 2018.

N. Jamil, A. Azfer, H. Worrell, and D. M. Salter, Functional roles of CSPG4/NG2 in chondrosarcoma, Int J Exp Pathol, vol.97, issue.2, pp.178-86, 2016.

N. Venkatesan, J. Magdalou, P. Netter, S. Fournel-gigleux, and M. Ouzzine, Stimulation de la biosynthèse des protéoglycanes : une nouvelle stratégie pour la réparation du cartilage articulaire, MS, vol.21, issue.5, pp.471-474, 2005.

F. Lamoureux, M. Baud'huin, L. Duplomb, D. Heymann, and F. Rédini, Proteoglycans: key partners in bone cell biology, Bioessays, vol.29, issue.8, pp.758-71, 2007.

H. Sugita, S. Osaka, M. Toriyama, E. Osaka, Y. Yoshida et al., Correlation between the histological grade of chondrosarcoma and the expression of MMPs, ADAMTSs and TIMPs, Anticancer Res, vol.24, issue.6, pp.4079-84, 2004.

T. Kalinski, S. Krueger, S. Sel, K. Werner, M. Röpke et al., ADAMTS1 is regulated by interleukin-1beta, not by hypoxia, in chondrosarcoma, Hum Pathol, vol.38, issue.1, pp.86-94, 2007.

S. Matsuura, Y. Oda, H. Matono, T. Izumi, H. Yamamoto et al., Overexpression of A disintegrin and metalloproteinase 28 is correlated with high histologic grade in conventional chondrosarcoma, Hum Pathol, vol.41, issue.3, pp.343-51, 2010.

L. Schaefer and R. M. Schaefer, Proteoglycans: from structural compounds to signaling molecules, Cell Tissue Res, vol.339, issue.1, pp.237-283, 2010.

X. Chevalier and P. Richette, Cartilage articulaire normal : anatomie, physiologie, métabolisme, vieillissement, EMC. Appareil locomoteur, pp.1-12, 2005.

A. D. Theocharis, S. S. Skandalis, G. N. Tzanakakis, and N. K. Karamanos, Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting, FEBS J, vol.277, pp.3904-3927, 2010.

T. Aigner, S. Müller, D. Neureiter, D. M. Illstrup, T. Kirchner et al., Prognostic relevance of cell biologic and biochemical features in conventional chondrosarcomas Cancer, vol.94, pp.2273-81, 2002.

J. Herwig, A. Roessner, and E. Buddecke, Isolation and characterization of proteoglycans and glycosaminoglycans from human chondrosarcoma, Exp Mol Pathol, vol.45, issue.2, pp.118-145, 1986.

M. Toriyama, A. E. Rosenberg, H. J. Mankin, T. Fondren, B. V. Treadwell et al., Matrix metalloproteinase digestion of aggrecan in human cartilage tumours, Eur J Cancer, vol.34, issue.12, pp.1969-73, 1998.

J. Wasa, Y. Nishida, T. Shinomura, Z. Isogai, N. Futamura et al., Versican V1 isoform regulates cell-associated matrix formation and cell behavior differentially from aggrecan in Swarm rat chondrosarcoma cells, Int J Cancer, vol.130, issue.10, pp.2271-81, 2012.

P. A. Mourão, Y. M. Michelacci, and O. M. Toledo, Sweet MB, Thonar EM, Immelman AR. Glycosaminoglycans and proteoglycans of human chondrosarcoma, Biochim Biophys Acta, vol.39, issue.7, pp.71-86, 1976.

E. J. Thonar, M. B. Sweet, A. R. Immelman, and G. Lyons, Structural studies on proteoglycan from human chondrosarcoma, Arch Biochem Biophys, vol.194, issue.1, pp.179-89, 1979.

C. Fede, C. Stecco, A. Angelini, C. Fan, E. Belluzzi et al., Variations in contents of hyaluronan in the peritumoral micro-environment of human chondrosarcoma, J Orthop Res, vol.37, issue.2, pp.503-512, 2019.

T. Aigner, S. Dertinger, S. I. Vornehm, J. Dudhia, V. Der-mark et al., Phenotypic diversity of neoplastic chondrocytes and extracellular matrix gene expression in cartilaginous neoplasms, Am J Pathol, vol.150, issue.6, pp.2133-2174, 1997.

S. Subramanian, R. B. West, R. J. Marinelli, T. O. Nielsen, B. P. Rubin et al., The gene expression profile of extraskeletal myxoid chondrosarcoma, J Pathol, 2005.

S. M. Willems, Y. M. Schrage, J. J. Baelde, I. Briaire-de-bruijn, A. Mohseny et al.,

, Myxoid tumours of soft tissue: the so-called myxoid extracellular matrix is heterogeneous in composition, Histopathology, vol.52, issue.4, pp.465-74, 2008.

O. Trédan, C. M. Galmarini, K. Patel, and I. F. Tannock, Drug resistance and the solid tumor microenvironment, J Natl Cancer Inst, vol.99, pp.1441-54, 2007.

C. Lin, R. Mcgough, B. Aswad, J. A. Block, and R. Terek, Hypoxia induces HIF-1alpha and VEGF expression in chondrosarcoma cells and chondrocytes, J Orthop Res, vol.22, issue.6, pp.1175-81, 2004.

P. Vaupel and A. Mayer, Tumor Oxygenation Status: Facts and Fallacies, Adv Exp Med Biol, vol.977, pp.91-100, 2017.

M. Y. Koh and G. Powis, Passing the baton: the HIF switch, Trends Biochem Sci, 2012.

C. E. Yellowley and D. C. Genetos, Hypoxia Signaling in the Skeleton: Implications for Bone Health, Curr Osteoporos Rep, vol.17, issue.1, pp.26-35, 2019.

E. Gothié and J. Pouysségur, HIF-1 : régulateur central de l'hypoxie, Med Sci, 2002.

I. Mylonis, G. Simos, and E. Paraskeva, Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells, vol.8, 2019.

C. Chen, H. Zhou, F. Wei, L. Jiang, X. Liu et al., Increased levels of hypoxia-inducible factor-1? are associated with Bcl-xL expression, tumor apoptosis, and clinical outcome in chondrosarcoma, J Orthop Res, vol.29, issue.1, pp.143-51, 2011.

C. Chen, Q. Ma, X. Ma, Z. Liu, and X. Liu, Association of elevated HIF-2? levels with low Beclin 1 expression and poor prognosis in patients with chondrosarcoma, Ann Surg Oncol, 2011.

T. Kubo, T. Sugita, S. Shimose, T. Matsuo, K. Arihiro et al., Expression of hypoxiainducible factor-1alpha and its relationship to tumour angiogenesis and cell proliferation in cartilage tumours, J Bone Joint Surg Br, vol.90, issue.3, pp.364-70, 2008.

M. G. Vander-heiden, L. C. Cantley, and C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, vol.324, issue.5930, pp.1029-1062, 2009.

M. Cordier-bussat, C. Thibert, P. Sujobert, L. Genestier, É. Fontaine et al., Même l'effet Warburg est oxydable -Coopération métabolique et développement tumoral, Med Sci, vol.34, issue.8-9, pp.701-709, 2018.

W. Wu and S. Zhao, Metabolic changes in cancer: beyond the Warburg effect, Acta Biochim Biophys Sin (Shanghai), vol.45, issue.1, pp.18-26, 2013.

Y. Song, K. Zhang, D. Liu, Y. Guo, D. Wang et al., Inhibition of EGFR-induced glucose metabolism sensitizes chondrosarcoma cells to cisplatin, Tumour Biol, vol.35, issue.7, pp.7017-7041, 2014.

B. Altenberg and K. O. Greulich, Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes, Genomics, vol.84, issue.6, pp.1014-1034, 2004.

L. B. Rozeman, L. Hameetman, T. Van-wezel, A. Taminiau, A. M. Cleton-jansen et al., cDNA expression profiling of chondrosarcomas: Ollier disease resembles solitary tumours and alteration in genes coding for components of energy metabolism occurs with increasing grade, J Pathol, vol.207, issue.1, pp.61-71, 2005.

G. Hua, Y. Liu, X. Li, P. Xu, and Y. Luo, Targeting glucose metabolism in chondrosarcoma cells enhances the sensitivity to doxorubicin through the inhibition of lactate dehydrogenase-A, Oncol Rep, vol.31, issue.6, pp.2727-2761, 2014.

M. Damaghi, J. W. Wojtkowiak, and R. J. Gillies, pH sensing and regulation in cancer, Front Physiol, vol.4, p.370, 2013.

I. N. Mistry, M. Thomas, E. Calder, S. J. Conway, and E. M. Hammond, Clinical Advances of Hypoxia-Activated Prodrugs in Combination With Radiation Therapy, Int J Radiat Oncol Biol Phys, vol.98, issue.5, pp.1183-96, 201701.

S. Boeuf, J. Bovée, B. Lehner, P. Hogendoorn, and W. Richter, Correlation of hypoxic signalling to histological grade and outcome in cartilage tumours, Histopathology, vol.56, issue.5, pp.641-51, 2010.

W. Jeong, H. Kim, . Biomarkers, and . Chondrosarcoma, J Clin Pathol, vol.71, issue.7, pp.579-83, 2018.

J. Qin, I. Shaukat, D. Mainard, P. Netter, L. Barré et al., Constitutive activation of EGFR is associated with tumor progression and plays a prominent role in malignant phenotype of chondrosarcoma, Oncotarget, vol.10, issue.34, pp.3166-82, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02321757

X. Liang, D. Wang, Y. Wang, Z. Zhou, J. Zhang et al., Expression of aurora kinase A and B in chondrosarcoma and its relationship with the prognosis, Diagn Pathol, vol.7, p.84, 2012.

Z. Lin, C. Chung, Y. Liu, T. Chen, Y. Yu et al., FOXA1 transcriptionally up-regulates cyclin B1 expression to enhance chondrosarcoma progression, Am J Cancer Res, vol.8, issue.10, pp.1989-2004, 2018.

R. Ding, X. Cai, F. Xu, H. Wang, and B. Zhang, p63 protects chondrosarcoma malignancies mainly by enhancing the expression of PTEN, Pharmazie, vol.72, issue.7, pp.414-422, 2017.

Y. Lin, N. Seger, Y. Chen, A. C. Hesla, J. Wejde et al., hTERT promoter mutations in chondrosarcomas associate with progression and disease-related mortality, Mod Pathol, vol.31, issue.12, pp.1834-1875, 2018.

J. A. Martin, E. Forest, J. A. Block, A. J. Klingelhutz, B. Whited et al., Malignant transformation in human chondrosarcoma cells supported by telomerase activation and tumor suppressor inactivation, Cell Growth Differ, vol.13, issue.9, pp.397-407, 2002.

A. T. Meram, Y. Alzubaidi, J. Cotelingam, G. Ghali, L. Lopez et al., Nicotinamide Phosphoribosyl Transferase Is Increased in Osteosarcomas and Chondrosarcomas Compared to Benign Bone and Cartilage, Anticancer Res, vol.39, issue.4, pp.1761-1766, 2019.

D. Luo, H. Ren, W. Zhang, H. Xian, K. Lian et al., Clinicopathological and prognostic value of hypoxia-inducible factor-1? in patients with bone tumor: a systematic review and metaanalysis, J Orthop Surg Res, vol.14, issue.1, p.56, 2019.

X. Lu and Y. Kang, Hypoxia and hypoxia-inducible factors: master regulators of metastasis, Clin Cancer Res, vol.16, issue.24, pp.5928-5963, 2010.

Z. Wang, G. Chen, X. Chen, X. Huang, M. Liu et al., Predictors of the survival of patients with chondrosarcoma of bone and metastatic disease at diagnosis, J Cancer, vol.10, issue.11, pp.2457-63, 2019.

B. Emon, J. Bauer, Y. Jain, B. Jung, and T. Saif, Biophysics of Tumor Microenvironment and Cancer Metastasis -A Mini Review, Computational and Structural Biotechnology Journal, 2018.

C. Tsai, Y. Lin, C. Chen, T. Tang, C. Huang et al., Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression, Mol Oncol, vol.11, issue.10, pp.1380-98, 2017.

H. Feng, J. Wang, J. Xu, C. Xie, F. Gao et al., The expression of SIRT1 regulates the metastaticplasticity of chondrosarcoma cells by inducing epithelial-mesenchymal transition. Sci Rep, vol.7, p.41203, 201723.

X. Sun, L. Wei, Q. Chen, and R. M. Terek, MicroRNA Regulates Vascular Endothelial Growth Factor Expression in Chondrosarcoma Cells, Clin Orthop Relat Res, vol.473, issue.3, pp.907-920, 2015.

X. Sun, C. Charbonneau, L. Wei, Q. Chen, and R. M. Terek, miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis, Mol Cancer Res, vol.13, issue.9, pp.1347-57, 2015.

S. Chen, C. Tang, M. Chie, C. Tsai, Y. Fong et al., Resistin facilitates VEGF-A-dependent angiogenesis by inhibiting miR-16-5p in human chondrosarcoma cells, Cell Death Dis, vol.10, issue.1, p.31, 2019.

H. Lee, C. Lin, J. Shih, Y. Fong, S. Wang et al., Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-? pathway, Oncotarget, vol.6, issue.34, pp.36746-61, 2015.

L. Forker, P. Gaunt, S. Sioletic, P. Shenjere, R. Potter et al., The hypoxia marker CAIX is prognostic in the UK phase III VorteX-Biobank cohort: an important resource for translational research in soft tissue sarcoma, Br J Cancer, vol.118, issue.5, pp.698-704, 201806.

L. Yang, L. Forker, J. J. Irlam, N. Pillay, A. Choudhury et al., Validation of a hypoxia related gene signature in multiple soft tissue sarcoma cohorts, Oncotarget, 2009.

T. Soldatos, E. F. Mccarthy, S. Attar, J. A. Carrino, and L. M. Fayad, Imaging features of chondrosarcoma, J Comput Assist Tomogr, vol.35, issue.4, pp.504-515, 2011.

C. S. Lisson, C. G. Lisson, K. Flosdorf, R. Mayer-steinacker, M. Schultheiss et al., Diagnostic value of MRI-based 3D texture analysis for tissue characterisation and discrimination of low-grade chondrosarcoma from enchondroma: a pilot study, Eur Radiol, vol.28, issue.2, pp.468-77, 2018.

D. G. Varma, A. G. Ayala, C. H. Carrasco, S. Q. Guo, R. Kumar et al., MR imaging with pathologic correlation, Radiographics, vol.12, issue.4, pp.687-704, 1992.

H. Douis, S. L. James, R. J. Grimer, and M. A. Davies, Is bone scintigraphy necessary in the initial surgical staging of chondrosarcoma of bone? Skeletal Radiol, vol.41, pp.429-465, 2012.

S. Miwa and T. Otsuka, Practical use of imaging technique for management of bone and soft tissue tumors, J Orthop Sci, vol.22, issue.3, pp.391-400, 2017.

W. Brenner, E. U. Conrad, and J. F. Eary, FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients, Eur J Nucl Med Mol Imaging, vol.31, issue.2, pp.189-95, 2004.

G. C. Kaya, Y. Demir, S. Ozkal, T. Sengoz, M. Manisali et al., Tumor grade-related thallium-201 uptake in chondrosarcomas, Ann Nucl Med, vol.24, issue.4, pp.279-86, 2010.

P. F. Choong, T. Kunisada, J. Slavin, S. Schlicht, and R. Hicks, The role of thallium-201 and pentavalent dimercaptosuccinic acid for staging cartilaginous tumours, Int Semin Surg Oncol, vol.1, p.10, 2004.

J. Taki, H. Sumiya, N. Asada, Y. Ueda, H. Tsuchiya et al., Assessment of P-glycoprotein in patients with malignant bone and soft-tissue tumors using technetium-99m-MIBI scintigraphy, J Nucl Med, vol.39, issue.7, pp.1179-84, 1998.

S. K. Vadi, B. R. Mittal, A. Gorla, A. Sood, R. K. Basher et al., 18F-FDG PET/CT in Diagnostic and Prognostic Evaluation of Patients With Suspected Recurrence of Chondrosarcoma, Clin Nucl Med, vol.43, issue.2, pp.87-93, 2018.

L. Salamanca-cardona, H. Shah, A. J. Poot, F. M. Correa, D. Gialleonardo et al., In Vivo Imaging of Glutamine Metabolism to the Oncometabolite 2-Hydroxyglutarate in IDH1/2 Mutant Tumors, Cell Metab, vol.26, issue.6, pp.830-841, 2017.

A. Gutteridge, V. M. Rathbone, R. Gibbons, M. Bi, N. Archard et al., Digital PCR analysis of circulating tumor DNA: a biomarker for chondrosarcoma diagnosis, prognostication, and residual disease detection, Cancer Med, vol.6, issue.10, pp.2194-202, 2017.

N. Kapoor, A. B. Shinagare, J. P. Jagannathan, S. H. Shah, K. M. Krajewski et al., Clinical and radiologic features of extraskeletal myxoid chondrosarcoma including initial presentation, local recurrence, and metastases, Radiol Oncol, vol.48, issue.3, pp.235-277, 2014.

H. Douis, L. Jeys, R. Grimer, S. Vaiyapuri, and A. M. Davies, Is there a role for diffusion-weighted MRI (DWI) in the diagnosis of central cartilage tumors? Skeletal Radiol, vol.44, pp.963-972, 2015.

H. Douis, M. Parry, S. Vaiyapuri, and A. M. Davies, What are the differentiating clinical and MRIfeatures of enchondromas from low-grade chondrosarcomas?, Eur Radiol, 2018.

M. Hisaoka and H. Hashimoto, Extraskeletal myxoid chondrosarcoma: updated clinicopathological and molecular genetic characteristics, Pathol Int, vol.55, issue.8, pp.453-63, 2005.

G. Powathil, M. Kohandel, M. Milosevic, and S. Sivaloganathan, Modeling the spatial distribution of chronic tumor hypoxia: implications for experimental and clinical studies, Comput Math Methods Med, p.410602, 2012.

A. Borthakur and R. Reddy, Imaging cartilage physiology. Top Magn Reson Imaging, vol.21, pp.291-297, 2010.

K. M. Jones, A. C. Pollard, and M. D. Pagel, Clinical applications of chemical exchange saturation transfer (CEST) MRI, J Magn Reson Imaging, vol.47, issue.1, pp.11-27, 2018.

G. Redler, B. Epel, and H. J. Halpern, EPR image based oxygen movies for transient hypoxia

, Adv Exp Med Biol, vol.812, pp.127-160, 2014.

Z. Liu, M. Au, X. Wang, P. Chan, P. Lai et al., Photoacoustic imaging of synovial tissue hypoxia in experimental post-traumatic osteoarthritis, Prog Biophys Mol Biol, 2018.

C. Preibisch, K. Shi, A. Kluge, M. Lukas, B. Wiestler et al., Characterizing hypoxia in human glioma: A simultaneous multimodal MRI and PET study, NMR Biomed, vol.30, issue.11, 2017.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O'sullivan, A. E. Cerussi et al., Predicting Responses to Neoadjuvant Chemotherapy in Breast Cancer: ACRIN 6691 Trial of Diffuse Optical Spectroscopic Imaging (DOSI), Cancer Res, vol.76, issue.20, pp.5933-5977, 2016.

S. Pastorekova and R. J. Gillies, The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond, Cancer Metastasis Rev, vol.38, issue.1-2, pp.65-77, 2019.

A. Bashir, M. L. Gray, J. Hartke, and D. Burstein, Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI, Magn Reson Med, vol.41, issue.5, pp.857-65, 1999.

P. L. Choyke, A. J. Dwyer, and M. V. Knopp, Functional tumor imaging with dynamic contrastenhanced magnetic resonance imaging, J Magn Reson Imaging, vol.17, issue.5, pp.509-529, 2003.

C. P. Lee, G. S. Payne, A. Oregioni, R. Ruddle, S. Tan et al., A phase I study of the nitroimidazole hypoxia marker SR4554 using 19F magnetic resonance spectroscopy, Br J Cancer, vol.101, issue.11, pp.1860-1868, 2009.

E. Miot-noirault, F. Gouin, A. Vidal, M. Rapp, J. Maublant et al., First preclinical imaging of primary cartilage neoplasm and its local recurrence using 99mTc-NTP 15-5 radiotracer, J Nucl Med, vol.50, issue.9, pp.1541-1548, 2009.

Y. Masaki, Y. Shimizu, T. Yoshioka, Y. Tanaka, K. Nishijima et al., The accumulation mechanism of the hypoxia imaging probe "FMISO" by imaging mass spectrometry: possible involvement of low-molecular metabolites, Scientific Reports, vol.5, p.16802, 2015.

L. J. Dubois, N. G. Lieuwes, M. Janssen, W. Peeters, A. D. Windhorst et al., Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging, Proc Natl Acad Sci, vol.108, issue.35, pp.14620-14625, 2011.

C. S. Dence, D. E. Ponde, M. J. Welch, and J. S. Lewis, Autoradiographic and Small-Animal PET Comparisons Between 18F-FMISO, 18F-FDG, 18F-FLT and the Hypoxic Selective 64Cu-ATSM in a Rodent Model of Cancer, Nucl Med Biol, vol.35, issue.6, pp.713-733, 2008.

B. Turkbey, M. L. Lindenberg, S. Adler, K. A. Kurdziel, Y. L. Mckinney et al., PET/CT imaging of renal cell carcinoma with (18)F-VM4-037: a phase II pilot study, Abdom Radiol (NY)

F. Li, K. E. Lee, and M. C. Simon, Detection of Hypoxia and HIF in Paraffin-Embedded Tumor Tissues, Methods Mol Biol, vol.1742, pp.277-82, 2018.

P. Bonnitcha, S. Grieve, and G. Figtree, Clinical imaging of hypoxia: Current status and future directions, Free Radic Biol Med, vol.126, pp.296-312, 2018.

H. Noguchi, T. Mitsuhashi, K. Seki, N. Tochigi, M. Tsuji et al., Fluorescence in situ hybridization analysis of extraskeletal myxoid chondrosarcomas using EWSR1 and NR4A3 probes, Hum Pathol, vol.41, issue.3, pp.336-378, 2010.

F. Santos, C. Martins, and M. M. Lemos, Fine-needle aspiration features of extraskeletal myxoid chondrosarcoma: A study of cytological and molecular features, Diagn Cytopathol, vol.46, issue.11, pp.950-957, 2018.

M. Rutgers, L. W. Bartels, A. I. Tsuchida, R. M. Castelein, W. J. Dhert et al., dGEMRIC as a tool for measuring changes in cartilage quality following high tibial osteotomy: a feasibility study, Osteoarthritis and Cartilage, vol.20, issue.10, pp.1134-1175, 2012.

H. Shindo, I. Takahashi, and E. Nakajima, Autoradiographic Studies on the Distribution of Quaternary Ammonium Compounds. II. Distribution of <SUP>1</SUP>4C-Labeled Decamethonium, Hexamethonium and Dimethonium in Mice, Chemical & Pharmaceutical Bulletin, vol.19, issue.9, pp.1876-85, 1971.

N. Korn, C. C. Huang, R. H. Seevers, C. Rothwell, and R. E. Counsell, Bisquaternary ammonium compounds as potential tumor imaging agents, International Journal of Nuclear Medicine and Biology, vol.6, issue.3, pp.153-61, 1979.

W. K. Yu, S. M. Shaw, J. M. Bartlett, D. C. Van-sickle, and B. H. Mock, The biodistribution of [75Se]bis-[beta-(N,N,N-trimethylamino)ethyl]selenide diiodide in adult guinea pigs, Int J Rad Appl Instrum B, vol.16, issue.3, pp.255-264, 1989.

S. W. Yu, S. M. Shaw, and D. C. Van-sickle, Radionuclide studies of articular cartilage in the early diagnosis of arthritis in the rabbit, Ann Acad Med Singap, vol.28, issue.1, pp.44-52, 1999.

J. C. Maurizis, M. Rapp, C. Nicolas, M. Ollier, M. Verny et al., Disposition in rats of N-pyridinium-propyl-cyclam, N-triethylammonium-propyl-cyclam, and N-[Triethylammonium]-3-propyl-[15]ane-N5, potential cartilage imaging agents, Drug Metab Dispos, vol.28, issue.4, pp.418-440, 2000.

M. Ollier, J. Maurizis, N. C. Bonafous, J. Latour-m-de, and A. Veyre, Joint Scintigraphy in Rabbits with 99mTc-N-[3-(triethylammonio)propyl]-15ane-N5, a New Radiodiagnostic Agent for Articular Cartilage Imaging, J Nucl Med, vol.42, issue.1, pp.141-146, 2001.

E. Miot-noirault, D. E. Vidal, A. Peyrode, C. Besse, S. Dauplat et al., 99mTc-NTP 15-5 assessment of the early therapeutic response of chondrosarcoma to zoledronic acid in the Swarm rat orthotopic model. EJNMMI Res, vol.3, p.40, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00827007

J. C. Walsh, A. Lebedev, E. Aten, K. Madsen, L. Marciano et al., The Clinical Importance of Assessing Tumor Hypoxia: Relationship of Tumor Hypoxia to Prognosis and Therapeutic Opportunities, Antioxid Redox Signal, vol.21, issue.10, pp.1516-54, 2014.

A. Mayer and P. Vaupel, Hypoxia, lactate accumulation, and acidosis: siblings or accomplices driving tumor progression and resistance to therapy?, Adv Exp Med Biol, vol.789, pp.203-212, 2013.

F. Kogan, H. Hariharan, and R. Reddy, Chemical Exchange Saturation Transfer (CEST) Imaging: Description of Technique and Potential Clinical Applications. Curr Radiol Rep, vol.1, pp.102-116, 2013.

J. Fromm, A. Klein, A. Baur-melnyk, T. Knösel, L. Lindner et al., Survival and prognostic factors in conventional central chondrosarcoma, BMC Cancer, vol.18, issue.1, p.849, 2018.

Z. Nie, Q. Lu, and H. Peng, Prognostic factors for patients with chondrosarcoma: A survival analysis based on the Surveillance, Epidemiology, and End Results (SEER) database (1973-2012), Journal of Bone Oncology, vol.13, pp.55-61, 2018.

F. Fiorenza, A. Abudu, R. J. Grimer, S. R. Carter, R. M. Tillman et al., Risk factors for survival and local control in chondrosarcoma of bone, J Bone Joint Surg Br, vol.84, issue.1, pp.93-102, 2002.

I. Lugowska, P. Teterycz, M. Mikula, M. Kulecka, A. Kluska et al.,

, Mutations Predict Shorter Survival in Chondrosarcoma, J Cancer, vol.9, issue.6, pp.998-1005, 2018.

D. Andreou, S. Ruppin, S. Fehlberg, D. Pink, M. Werner et al., Survival and prognostic factors in chondrosarcoma, Acta Orthop, vol.82, issue.6, pp.749-55, 2011.

R. F. Riedel, N. Larrier, L. Dodd, D. Kirsch, S. Martinez et al., The clinical management of chondrosarcoma, 168. Journeau P. Référentiel «Chondrosarcome, vol.10, issue.1-2, pp.94-106, 2009.

S. S. Shemesh, J. Pretell-mazzini, P. Quartin, T. F. Rutenberg, and S. A. Conway, Surgical treatment of low-grade chondrosarcoma involving the appendicular skeleton: long-term functional and oncological outcomes, Arch Orthop Trauma Surg, 2019.

E. F. Dierselhuis, J. Overbosch, T. C. Kwee, A. Suurmeijer, J. Ploegmakers et al., Radiofrequency ablation in the treatment of atypical cartilaginous tumours in the long bones: lessons learned from our experience, Skeletal Radiol, issue.6, pp.881-888, 2019.

Q. Fan, Y. Zhou, M. Zhang, B. Ma, T. Yang et al., Microwave Ablation of Primary Malignant Pelvic Bone Tumors, Front Surg, vol.6, p.5, 2019.

X. Deloin, V. Dumaine, D. Biau, M. Karoubi, A. Babinet et al., Pelvic chondrosarcomas: Surgical treatment options, Orthopaedics & Traumatology: Surgery & Research, vol.95, issue.6, pp.393-401, 2009.

Q. Le, B. , V. Blitterswijk, C. , D. Boer et al., An Approach to In Vitro Manufacturing of Hypertrophic Cartilage Matrix for Bone Repair. Bioengineering (Basel), vol.4, 2017.

F. Moussavi-harami, A. Mollano, J. A. Martin, A. Ayoob, F. E. Domann et al., Intrinsic radiation resistance in human chondrosarcoma cells, Biochem Biophys Res Commun, vol.346, issue.2, pp.379-85, 2006.

A. C. Onishi, A. M. Hincker, and F. Y. Lee, Surmounting chemotherapy and radioresistance in chondrosarcoma: molecular mechanisms and therapeutic targets, Sarcoma, 2011381564.

K. De-amorim-bernstein and T. Delaney, Chordomas and chondrosarcomas-The role of radiation therapy, J Surg Oncol, vol.114, issue.5, pp.564-573, 2016.

J. Thariat, T. Tessonnier, S. Bonvalot, D. Lerouge, H. Mammar et al., La protonthérapie comme modalité d'irradiation dans les sarcomes des os ou cartilage et des tissus mous, état des lieux en, Bull Cancer, vol.105, issue.9, pp.830-838, 2018.

D. H. Hamdi, S. Barbieri, C. F. Groetz, J. Legendre, F. Demoor et al., In vitro engineering of human 3D chondrosarcoma: a preclinical model relevant for investigations of radiation quality impact, BMC Cancer, vol.15, p.579, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01315021

C. Lepleux, M. -. Brasset, A. Temelie, M. Boulanger, M. Brotin et al., Bystander effectors of chondrosarcoma cells irradiated at different LET impair proliferation of chondrocytes, J Cell Commun Signal, vol.13, issue.3, pp.343-356, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02125509

R. Imai, T. Kamada, N. Araki, W. Group-for, S. Bone et al., Clinical Efficacy of Carbon Ion Radiotherapy for Unresectable Chondrosarcomas, Anticancer Res, vol.37, issue.12, pp.6959-64, 2017.

H. Outani, K. Hamada, Y. Imura, K. Oshima, T. Sotobori et al., Comparison of clinical and functional outcome between surgical treatment and carbon ion radiotherapy for pelvic chondrosarcoma, Int J Clin Oncol, vol.21, issue.1, pp.186-93, 2016.

R. F. Palm, D. E. Oliver, G. Q. Yang, Y. Abuodeh, A. O. Naghavi et al., The role of dose escalation and proton therapy in perioperative or definitive treatment of chondrosarcoma and chordoma: An analysis of the National Cancer Data Base. Cancer, vol.125, pp.642-51, 2019.

D. Schulz-ertner, A. Nikoghosyan, H. Hof, B. Didinger, S. E. Combs et al., Carbon ion radiotherapy of skull base chondrosarcomas, Int J Radiat Oncol Biol Phys, vol.67, issue.1, pp.171-178, 2007.

J. G. Van-oosterwijk, B. Herpers, D. Meijer, I. H. Briaire-de-bruijn, A. M. Cleton-jansen et al., Restoration of chemosensitivity for doxorubicin and cisplatin in chondrosarcoma in vitro: BCL-2 family members cause chemoresistance, Ann Oncol, vol.23, issue.6, pp.1617-1643, 2012.

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-74, 2011.

N. Jamil, S. Howie, and D. M. Salter, Therapeutic molecular targets in human chondrosarcoma, Int J Exp Pathol, vol.91, issue.5, pp.387-93, 2010.

G. Polychronidou, V. Karavasilis, S. M. Pollack, P. H. Huang, A. Lee et al., Novel therapeutic approaches in chondrosarcoma, Future Oncol, vol.13, issue.7, pp.637-685, 2017.

V. T. Campbell, P. Nadesan, S. A. Ali, C. Wang, H. Whetstone et al., Hedgehog pathway inhibition in chondrosarcoma using the smoothened inhibitor IPI-926 directly inhibits sarcoma cell growth, Mol Cancer Ther, vol.13, issue.5, pp.1259-69, 2014.

A. Italiano, L. Cesne, A. Bellera, C. Piperno-neumann, S. Duffaud et al., GDC-0449 in patients with advanced chondrosarcomas: a French Sarcoma Group/US and French National Cancer Institute Single-Arm Phase II Collaborative Study, Ann Oncol, vol.24, issue.11, pp.2922-2928, 2013.

B. Fan, I. K. Mellinghoff, P. Y. Wen, M. A. Lowery, L. Goyal et al., Clinical pharmacokinetics and pharmacodynamics of ivosidenib, an oral, targeted inhibitor of mutant IDH1, in patients with advanced solid tumors, Invest New Drugs, 2019.

R. L. Jones, D. Katz, E. T. Loggers, D. Davidson, E. T. Rodler et al., Clinical benefit of antiangiogenic therapy in advanced and metastatic chondrosarcoma, Med Oncol, vol.34, issue.10, p.167, 2017.

W. Chow, P. Frankel, C. Ruel, D. M. Araujo, M. Milhem et al., Results of a prospective phase 2 study of pazopanib in patients with surgically unresectable or metastatic chondrosarcoma. Cancer, 2019.

D. R. Camidge, R. S. Herbst, M. S. Gordon, S. G. Eckhardt, R. Kurzrock et al., A phase I safety and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients with advanced malignancies, Clin Cancer Res, vol.16, issue.4, pp.1256-63, 2010.

J. Perez, A. V. Decouvelaere, T. Pointecouteau, D. Pissaloux, J. P. Michot et al., Inhibition of Chondrosarcoma Growth by mTOR Inhibitor in an In Vivo Syngeneic Rat Model, PLoS One, vol.7, issue.6, p.32458, 2012.

P. A. Jones, J. Issa, and S. Baylin, Targeting the cancer epigenome for therapy, Nat Rev Genet, vol.15, issue.10, pp.630-671, 2016.

R. Sakimura, K. Tanaka, S. Yamamoto, T. Matsunobu, X. Li et al., The effects of histone deacetylase inhibitors on the induction of differentiation in chondrosarcoma cells, Clin Cancer Res, vol.13, issue.1, pp.275-82, 2007.

F. Gouin, B. Ory, F. Rédini, and D. Heymann, Zoledronic acid slows down rat primary chondrosarcoma development, recurrent tumor progression after intralesional curretage and increases overall survival, Int J Cancer, vol.119, issue.5, pp.980-984, 2006.

J. E. Otero, J. W. Stevens, A. E. Malandra, D. C. Fredericks, P. R. Odgren et al., Osteoclast inhibition impairs chondrosarcoma growth and bone destruction, J Orthop Res, vol.32, issue.12, pp.1562-71, 2014.

L. Montella, R. Addeo, V. Faiola, G. Cennamo, R. Guarrasi et al., Zoledronic acid in metastatic chondrosarcoma and advanced sacrum chordoma: two case reports, J Exp Clin Cancer Res, vol.28, issue.1, p.7, 2009.

H. A. Tawbi, M. Burgess, V. Bolejack, B. A. Van-tine, S. M. Schuetze et al., Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial, Lancet Oncol, vol.18, issue.11, pp.1493-501, 2017.

A. G. Elsayed, L. Al-qawasmi, H. Katz, and Y. Lebowicz, Extraskeletal Chondrosarcoma: Longterm Follow-up of a Patient with Metastatic Disease. Cureus, vol.10, p.2709, 2018.

S. Kawaguchi, T. Wada, S. Nagoya, T. Ikeda, K. Isu et al., Extraskeletal myxoid chondrosarcoma: a Multi-Institutional Study of 42 Cases in Japan, Cancer, vol.97, issue.5, pp.1285-92, 2003.

E. J. Kemmerer, E. Gleeson, J. Poli, R. T. Ownbey, L. W. Brady et al., Benefit of Radiotherapy in Extraskeletal Myxoid Chondrosarcoma: A Propensity Score Weighted Population-based Analysis of the SEER Database, Am J Clin Oncol, vol.41, issue.7, pp.674-80, 2018.

K. Ogura, T. Fujiwara, Y. Beppu, H. Chuman, A. Yoshida et al., Extraskeletal myxoid chondrosarcoma: a review of 23 patients treated at a single referral center with longterm follow-up, Arch Orthop Trauma Surg, vol.132, issue.10, pp.1379-86, 2012.

A. D. Drilon, S. Popat, G. Bhuchar, D. &apos;adamo, D. R. Keohan et al., Extraskeletal myxoid chondrosarcoma: a retrospective review from 2 referral centers emphasizing longterm outcomes with surgery and chemotherapy. Cancer, vol.113, pp.3364-71, 2008.

S. Stacchiotti, G. P. Dagrada, R. Sanfilippo, T. Negri, I. Vittimberga et al.,

, Anthracycline-based chemotherapy in extraskeletal myxoid chondrosarcoma: a retrospective study, Clin Sarcoma Res, vol.3, p.16, 2013.

H. Morioka, S. Takahashi, N. Araki, H. Sugiura, T. Ueda et al., Results of subanalysis of a phase 2 study on trabectedin treatment for extraskeletal myxoid chondrosarcoma and mesenchymal chondrosarcoma, BMC Cancer, vol.16, p.479, 201614.

S. Stacchiotti, M. A. Pantaleo, A. Astolfi, G. P. Dagrada, T. Negri et al., Activity of sunitinib in extraskeletal myxoid chondrosarcoma, Eur J Cancer, vol.50, issue.9, pp.1657-64, 2014.

S. Stacchiotti, S. Ferrari, A. Redondo, N. Hindi-muniz, E. Palmerini et al., Pazopanib for treatment of advanced extraskeletal myxoid chondrosarcoma: a multicentre, single-arm, phase 2 trial, The Lancet Oncology, vol.20, issue.9, pp.1252-1262, 2019.

A. D. Theocharis, C. Gialeli, P. Bouris, E. Giannopoulou, S. S. Skandalis et al., Cellmatrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer, FEBS J, vol.281, issue.22, pp.5023-5065, 2014.

M. Galli, M. Chatterjee, M. Grasso, G. Specchia, H. Magen et al., Phase I study of the heparanase inhibitor roneparstat: an innovative approach for ultiple myeloma therapy, Haematologica, vol.103, issue.10, pp.469-72, 2018.

C. Liu, C. J. Lee, P. Lin, D. Wu, C. Jeng et al., Adjuvant heparanase inhibitor PI-88 therapy for hepatocellular carcinoma recurrence, World J Gastroenterol, vol.20, issue.32, pp.11384-93, 2014.

C. J. Malavaki, A. E. Roussidis, C. Gialeli, D. Kletsas, T. Tsegenidis et al., Imatinib as a key inhibitor of the platelet-derived growth factor receptor mediated expression of cell surface heparan sulfate proteoglycans and functional properties of breast cancer cells, FEBS J, vol.280, issue.10, pp.2477-89, 2013.

C. Wigerup, S. Påhlman, and D. Bexell, Therapeutic targeting of hypoxia and hypoxiainducible factors in cancer, Pharmacol Ther, vol.164, pp.152-69, 2016.

C. Rousseau, A. L. Ruellan, K. Bernardeau, F. Kraeber-bodéré, S. Gouard et al., Syndecan-1 antigen, a promising new target for triple-negative breast cancer immuno-PET and radioimmunotherapy. A preclinical study on MDA-MB-468 xenograft tumors, EJNMMI Res, vol.1, p.20, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00626326

D. Bhattarai, X. Xu, and K. Lee, Hypoxia-inducible factor-1 (HIF-1) inhibitors from the last decade, Med Res Rev, vol.38, issue.4, pp.1404-1446, 2007.

J. Kim and J. Lee, Targeting Tumor Adaption to Chronic Hypoxia: Implications for Drug Resistance, and How It Can Be Overcome, Int J Mol Sci, vol.18, issue.9, 2017.

K. A. Thornton, A. R. Chen, M. M. Trucco, P. Shah, B. A. Wilky et al., A dose-finding study of temsirolimus and liposomal doxorubicin for patients with recurrent and refractory bone and soft tissue sarcoma, Int J Cancer, vol.133, issue.4, pp.997-1005, 2013.

S. Kummar, M. Raffeld, L. Juwara, Y. Horneffer, A. Strassberger et al.,

. Multihistology, target-driven pilot trial of oral topotecan as an inhibitor of hypoxia-inducible factor-1? in advanced solid tumors, Clin Cancer Res, vol.17, issue.15, pp.5123-5154, 2011.

F. Kosova, Z. Kasar, I. Tuglu, O. Kurt, F. Gok et al., Apoptosis of colon cancer cells under the effect of geldanamycin derivate, Bratisl Lek Listy, vol.118, issue.5, pp.288-91, 2017.

J. Fan, X. Yang, and Z. Bi, Acriflavine suppresses the growth of human osteosarcoma cells through apoptosis and autophagy, Tumour Biol, vol.35, issue.10, pp.9571-9577, 2014.

D. H. Shin, Y. Chun, D. S. Lee, L. E. Huang, and J. Park, Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood, vol.111, pp.3131-3137, 2008.

W. R. Schelman, A. M. Traynor, K. D. Holen, J. M. Kolesar, S. Attia et al., A phase I study of vorinostat in combination with bortezomib in patients with advanced malignancies, Invest New Drugs, vol.31, issue.6, pp.1539-1585, 2013.

A. Staab, J. Loeffler, H. M. Said, D. Diehlmann, A. Katzer et al., Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells. BMC Cancer, vol.7, p.213, 2007.

D. Kong, E. J. Park, A. G. Stephen, M. Calvani, J. H. Cardellina et al., Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity, Cancer Res, vol.65, issue.19, pp.9047-55, 2005.

Y. Wang, Y. Liu, F. Tang, K. M. Bernot, R. Schore et al., Echinomycin protects mice against relapsed acute myeloid leukemia without adverse effect on hematopoietic stem cells, Blood, vol.124, issue.7, pp.1127-1162, 2014.

A. B. Stillebroer, O. C. Boerman, I. Desar, M. J. Boers-sonderen, C. Van-herpen et al., Phase 1 radioimmunotherapy study with lutetium 177-labeled anticarbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma, Eur Urol, vol.64, issue.3, pp.478-85, 2013.

R. Assi, H. M. Kantarjian, T. M. Kadia, N. Pemmaraju, E. Jabbour et al., Final results of a phase 2, open-label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer, vol.124, pp.2758-65, 2018.

R. M. Phillips, Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs, Cancer Chemother Pharmacol, vol.77, issue.3, pp.441-57, 2016.

V. S. Hughes, J. M. Wiggins, and D. W. Siemann, Tumor oxygenation and cancer therapy-then and now, Br J Radiol, vol.92, p.20170955, 1093.

M. J. Mckeage, Y. Gu, W. R. Wilson, A. Hill, K. Amies et al., A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients, BMC Cancer, vol.11, p.432, 2011.

G. K. Abou-alfa, S. L. Chan, C. Lin, E. G. Chiorean, R. F. Holcombe et al., PR-104 plus sorafenib in patients with advanced hepatocellular carcinoma, Cancer Chemother Pharmacol, vol.68, issue.2, pp.539-584, 2011.

M. J. Mckeage, M. B. Jameson, R. K. Ramanathan, J. Rajendran, Y. Gu et al., PR-104 a bioreductive pre-prodrug combined with gemcitabine or docetaxel in a phase Ib study of patients with advanced solid tumours, BMC Cancer, vol.12, p.496, 2012.

M. Konopleva, P. F. Thall, C. A. Yi, G. Borthakur, A. Coveler et al., Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia, Haematologica, vol.100, issue.7, pp.927-961, 2015.

N. Baran and M. Konopleva, Molecular Pathways: Hypoxia-Activated Prodrugs in Cancer Therapy, Clin Cancer Res, vol.23, issue.10, pp.2382-90, 2017.

F. Meng, J. W. Evans, D. Bhupathi, M. Banica, L. Lan et al., Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302, Mol Cancer Ther, vol.11, issue.3, pp.740-51, 2012.

J. K. Saggar and I. F. Tannock, Activity of the hypoxia-activated pro-drug TH-302 in hypoxic and perivascular regions of solid tumors and its potential to enhance therapeutic effects of chemotherapy, Int J Cancer, vol.134, issue.11, pp.2726-2760, 2014.

V. Liapis, A. Zysk, M. Denichilo, I. Zinonos, S. Hay et al., Anticancer efficacy of the hypoxia-activated prodrug evofosfamide is enhanced in combination with proapoptotic receptor agonists against osteosarcoma, vol.6, pp.2164-76, 2017.

C. Hajj, J. Russell, C. P. Hart, K. A. Goodman, M. A. Lowery et al., A Combination of Radiation and the Hypoxia-Activated Prodrug Evofosfamide (TH-302) is Efficacious against a Human Orthotopic Pancreatic Tumor Model, Transl Oncol, vol.10, issue.5, pp.760-765, 2017.

S. Peeters, C. Zegers, R. Biemans, N. G. Lieuwes, R. Van-stiphout et al., TH-302 in Combination with Radiotherapy Enhances the Therapeutic Outcome and Is Associated with Pretreatment [18F]HX4 Hypoxia PET Imaging, Clin Cancer Res, vol.21, issue.13, pp.2984-92, 2015.

G. J. Weiss, J. R. Infante, E. G. Chiorean, M. J. Borad, J. C. Bendell et al., Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies, Clin Cancer Res, vol.17, issue.9, pp.2997-3004, 2011.

S. P. Chawla, L. D. Cranmer, B. A. Van-tine, D. R. Reed, S. H. Okuno et al., Phase II Study of the Safety and Antitumor Activity of the Hypoxia-Activated Prodrug TH-302 in Combination With Doxorubicin in Patients With Advanced Soft Tissue Sarcoma, J Clin Oncol, vol.32, issue.29, pp.3299-306, 2014.

M. J. Borad, S. G. Reddy, N. Bahary, H. E. Uronis, D. Sigal et al., Randomized Phase II Trial of Gemcitabine Plus TH-302 Versus Gemcitabine in Patients With Advanced Pancreatic Cancer, J Clin Oncol, vol.33, issue.13, pp.1475-81, 2015.

W. D. Tap, Z. Papai, B. Tine, S. Attia, K. N. Ganjoo et al., Doxorubicin plus evofosfamide versus doxorubicin alone in locally advanced, unresectable or metastatic softtissue sarcoma (TH CR-406/SARC021): an international, multicentre, open-label, randomised phase 3 trial. The Lancet Oncology, vol.18, pp.1089-103, 2017.

J. D. Sun, Q. Liu, J. Wang, D. Ahluwalia, D. Ferraro et al., Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer, Clin Cancer Res, vol.18, issue.3, pp.758-70, 2012.

C. R. Hong, W. R. Wilson, and K. O. Hicks, An Intratumor Pharmacokinetic/Pharmacodynamic Model for the Hypoxia-Activated Prodrug Evofosfamide (TH-302): Monotherapy Activity is Not Dependent on a Bystander Effect, Neoplasia, vol.21, issue.2, pp.159-71, 2019.

C. Peyrode, V. Weber, E. David, A. Vidal, P. Auzeloux et al., Quaternary ammonium-melphalan conjugate for anticancer therapy of chondrosarcoma: in vitro and in vivo preclinical studies, Invest New Drugs, vol.30, issue.4, pp.1782-90, 2012.

C. Peyrode, V. Weber, A. Voissière, A. Maisonial-besset, A. Vidal et al., Proteoglycans as Target for an Innovative Therapeutic Approach in Chondrosarcoma: Preclinical Proof of Concept, Mol Cancer Ther, vol.15, issue.11, pp.2575-85, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01636341

A. Voissiere, V. Weber, Y. Gerard, F. Rédini, F. Raes et al., Proteoglycantargeting applied to hypoxia-activated prodrug therapy in chondrosarcoma: first proof-ofconcept, Oncotarget, vol.8, issue.56, pp.95824-95864, 2017.

A. Voissiere, E. Jouberton, E. Maubert, F. Degoul, C. Peyrode et al., Development and characterization of a human three-dimensional chondrosarcoma culture for in vitro drug testing, PLOS ONE, vol.12, issue.7, p.181340, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01647014

D. Ghedira, A. Voissière, C. Peyrode, J. Kraiem, Y. Gerard et al., Structureactivity relationship study of hypoxia-activated prodrugs for proteoglycan-targeted chemotherapy in chondrosarcoma, European Journal of Medicinal Chemistry, vol.158, pp.51-67, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01926337

P. G. Casali, S. Bielack, N. Abecassis, H. T. Aro, S. Bauer et al., Bone sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for diagnosis

, Ann Oncol, vol.29, issue.Supplement_4, pp.79-95, 2018.

B. Mery, S. Espenel, J. Guy, C. Rancoule, A. Vallard et al., Biological aspects of chondrosarcoma: Leaps and hurdles, Crit Rev Oncol Hematol, vol.126, pp.32-38, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01867855

G. Yeldag and A. Rice, Del Río Hernández A. Chemoresistance and the Self-Maintaining Tumor Microenvironment. Cancers (Basel), vol.10, 2018.

J. Clark, C. R. Dass, and P. Choong, Development of chondrosarcoma animal models for assessment of adjuvant therapy, ANZ J Surg, vol.79, issue.5, pp.327-363, 2009.

J. F. Eary, J. M. Link, M. Muzi, E. U. Conrad, D. A. Mankoff et al., Multiagent PET for risk characterization in sarcoma, J Nucl Med, vol.52, issue.4, pp.541-547, 2011.

H. C. Maibenco, R. H. Krehbiel, and D. Nelson, Transplantable osteogenic tumor in the rat, Cancer Res, vol.27, issue.2, pp.362-368, 1967.

J. C. Clark, T. Akiyama, C. R. Dass, and P. F. Choong, New clinically relevant, orthotopic mouse models of human chondrosarcoma with spontaneous metastasis, Cancer Cell Int, vol.10, p.20, 2010.

I. Barbosa, S. Garcia, V. Barbier-chassefière, J. Caruelle, I. Martelly et al., Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies, Glycobiology, vol.13, issue.9, pp.647-53, 2003.

C. Peyrode, F. Gouin, A. Vidal, P. Auzeloux, S. Besse et al., Proteoglycan Targeting Strategy" for the Scintigraphic Imaging and Monitoring of the Swarm Rat Chondrosarcoma Orthotopic Model, Sarcoma, p.691608, 2011.

I. Lohse, J. Rasowski, P. Cao, M. Pintilie, T. Do et al., Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302, Oncotarget, vol.7, issue.23, pp.33571-80, 2016.

Y. De-jong, D. Monderer, E. Brandinelli, M. Monchanin, . Van-den-akker et al., Bcl-xl as the most promising Bcl-2 family member in targeted treatment of chondrosarcoma. Oncogenesis, vol.7, p.74, 2018.

R. N. Rosier, R. J. O&apos;keefe, L. A. Teot, E. J. Fox, T. A. Nester et al., P-glycoprotein expression in cartilaginous tumors, J Surg Oncol, vol.65, issue.2, pp.95-105, 1997.

R. K. Jackson, L. P. Liew, and M. P. Hay, Overcoming Radioresistance: Small Molecule Radiosensitisers and Hypoxia-activated Prodrugs, Clin Oncol (R Coll Radiol, p.2019

N. Foray, C. Colin, and M. Bourguignon, Radiosensibilité -L'évidence d'un facteur individuel, Med Sci, vol.29, issue.4, pp.397-403, 2013.

K. J. Nytko, I. Grgic, S. Bender, J. Ott, M. Guckenberger et al., The hypoxiaactivated prodrug evofosfamide in combination with multiple regimens of radiotherapy, Oncotarget, vol.8, issue.14, pp.23702-23714, 2017.

A. Purkayastha, N. Sharma, and V. Dutta, Extraskeletal Myxoid Chondrosarcoma of Nasopharynx: An Oncologic Entity Rarely Reported, Oman Med J, vol.33, issue.2, pp.159-62, 2018.

Z. Liu, C. Li, X. Meng, Y. Bai, J. Qi et al., Hypoxia-inducible factor-l? mediates aggrecan and collagen ? expression via NOTCH1 signaling in nucleus pulposus cells during intervertebral disc degeneration, Biochem Biophys Res Commun, vol.488, issue.3, pp.554-61, 201701.

S. Choi, H. Chung, H. Hong, S. Y. Kim, S. Kim et al., Inflammatory hypoxia induces syndecan-2 expression through IL-1?-mediated FOXO3a activation in colonic epithelia, FASEB J, vol.31, issue.4, pp.1516-1546, 2017.

S. Yodmuang, I. Gadjanski, P. G. Chao, and G. Vunjak-novakovic, Transient hypoxia improves matrix properties in tissue engineered cartilage, J Orthop Res, vol.31, issue.4, pp.544-53, 2013.

S. Reynolds, S. Metcalf, E. J. Cochrane, R. C. Collins, S. Jones et al., Direct arterial injection of hyperpolarized 13C-labeled substrates into rat tumors for rapid MR detection of metabolism with minimal substrate dilution, Magn Reson Med, vol.78, issue.6, pp.2116-2142, 2017.

J. Jung, H. S. Seol, and S. Chang, The Generation and Application of Patient-Derived Xenograft Model for Cancer Research, Cancer Res Treat, vol.50, issue.1, pp.1-10, 2018.

W. Meohas, R. A. Granato, J. Guimarães, R. B. Dias, A. Fortuna-costa et al.,

P. Bone and . Sarcomas, Acta Ortop Bras, vol.26, issue.2, pp.98-102, 2018.

D. Monderer, A. Luseau, A. Bellec, E. David, S. Ponsolle et al., New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance, Lab Invest, vol.93, issue.10, pp.1100-1114, 2013.

Y. De-jong, M. Ingola, I. H. Briaire-de-bruijn, A. B. Kruisselbrink, S. Venneker et al., Radiotherapy resistance in chondrosarcoma cells; a possible correlation with alterations in cell cycle related genes, Clin Sarcoma Res, vol.9, p.9, 2019.

V. Liapis, A. Labrinidis, I. Zinonos, S. Hay, V. Ponomarev et al., HYPOXIA-ACTIVATED PRO-DRUG TH-302 EXHIBITS POTENT, TUMOUR SUPPRESSIVE ACTIVITY AND COOPERATES WITH CHEMOTHERAPY AGAINST OSTEOSARCOMA. Cancer Lett, 2015.

P. Michl and T. M. Gress, Improving drug delivery to pancreatic cancer: breaching the stromal fortress by targeting hyaluronic acid, Gut, vol.61, issue.10, pp.1377-1386, 2012.

Z. Liu, G. L. Semenza, and H. Zhang, Hypoxia-inducible factor 1 and breast cancer metastasis, J Zhejiang Univ Sci B, 2015.

, Cependant, elles possèdent un microenvironnement similaire, plus ou moins riche en Protéoglycanes (PG) et hypoxique. À l'heure actuelle, il n'existe pas d'outil de diagnostic spécifique de ces pathologies qui sont de surcroit toutes deux décrites comme étant à la fois chimio-et radio-résistantes, faisant de la chirurgie le seul traitement efficace. Fort de ce constat, l'UMR 1240 IMoST INSERM/UCA développe depuis plusieurs années des stratégies permettant l'adressage spécifique de molécules diagnostiques ou thérapeutiques vers les charges négatives des PG, grâce à la présence d'un vecteur ammonium quaternaire chargé positivement. Cette stratégie a également été conjuguée au concept de prodrogue activable en hypoxie afin de permettre l'activation sélective de l'agent thérapeutique au sein des zones tumorales hypoxiques. La prodrogue hit, dénommée ICF05016, a préalablement démontré son efficacité anti-tumorale in vivo sur un modèle murin de CHS-MES, Les Chondrosarcomes Squelettiques (CHS-S) et Myxoïdes Extrasquelettiques (-MES) sont deux pathologies tumorales distinctes de par leurs étiologies et leurs localisations anatomiques

, Le premier objectif de ce travail de thèse fut de caractériser la teneur en PG et le statut hypoxique de deux modèles de CHS-S (SWARM, JJ012) ainsi que du modèle de CHS-MES inoculé en paratibial. Pour cela des techniques d'imagerie fonctionnelle