N. C. Berchtold and C. W. Cotman, Evolution in the conceptualization of dementia and alzheimer's disease: Greco-roman period to the 1960s, Neurobiology of Aging, vol.19, issue.3, pp.173-189, 1998.

C. Ballard, S. Gauthier, A. Corbett, C. Brayne, D. Aarsland et al., Alzheimer's disease, Lancet, vol.377, pp.1019-908

H. Förstl and A. Kurz, Clinical features of alzheimer's disease. European archives of psychiatry and clinical neuroscience, vol.249, pp.288-290, 1999.

V. Taler and N. A. Phillips, Language performance in alzheimer's disease and mild cognitive impairment: a comparative review, Journal of clinical and experimental neuropsychology, vol.30, issue.5, pp.501-556, 2008.

, Association Alzheimer's. 2015 alzheimer's disease facts and figures

, Alzheimer's & dementia: the journal of the, Alzheimer's Association, vol.11, issue.3, p.332, 2015.

L. E. Hebert, J. Weuve, P. A. Scherr, and D. A. Evans, Alzheimer disease in the united states (2010-2050) estimated using the 2010 census, Neurology, vol.80, issue.19, pp.1778-1783, 2013.

M. Prince, A. Comas-herrera, M. Knapp, M. Guerchet, and M. Karagiannidou, World alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future, 2016.

R. A. Sperling, P. S. Aisen, L. A. Beckett, D. A. Bennett, S. Craft et al., Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimer's & dementia, vol.7, issue.3, pp.280-292, 2011.

M. S. Albert, S. T. Dekosky, D. Dickson, B. Dubois, H. H. Feldman et al., The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimer's & dementia, vol.7, issue.3, pp.270-279, 2011.

G. M. Mckhann, D. S. Knopman, H. Chertkow, B. T. Hyman, C. R. Jack et al., The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimer's & dementia, vol.7, issue.3, pp.263-269, 2011.

G. Mckhann, D. Drachman, M. Folstein, R. Katzman, D. Price et al., Clinical diagnosis of alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease, Neurology, vol.34, issue.7, pp.939-939, 1984.

D. C. Delis, CVLT-C: California verbal learning test. Psychological Corporation, Harcourt Brace Corporation, 1994.

E. Kaplan, H. Googlass, and S. Weintrab, Boston naming test. Philadelphia: Lea and Febiger, Dement Geriatr Cogn Disord, vol.20, pp.198-208, 1983.

C. A. Lynch, C. Walsh, A. Blanco, M. Moran, R. F. Coen et al., The clinical dementia rating sum of box score in mild dementia, Dementia and geriatric cognitive disorders, vol.21, issue.1, pp.40-43, 2006.

C. Jack, D. S. Knopman, W. J. Jagust, L. M. Shaw, P. S. Aisen et al.,

R. C. Weiner, J. Q. Petersen, and . Trojanowski, Hypothetical model of dynamic biomarkers of the alzheimer's pathological cascade, The Lancet Neurology, vol.9, issue.1, pp.119-128, 2010.

R. Sperling, Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and alzheimer's disease, Annals of the New York Academy of Sciences, vol.1097, issue.1, pp.146-155, 2007.

J. S. Damoiseaux, Resting-state fMRI as a biomarker for alzheimer's disease? Alzheimer's research & therapy, vol.4, 2012.

S. Teipel, A. Drzezga, M. J. Grothe, H. Barthel, G. Chételat et al., Multimodal imaging in Alzheimer's disease: validity and usefulness for early detection, The Lancet Neurology, vol.14, issue.10, pp.1037-1053, 2015.

P. Selnes, D. Aarsland, A. Bjørnerud, L. Gjerstad, A. Wallin et al., Diffusion tensor imaging surpasses cerebrospinal fluid as predictor of cognitive decline and medial temporal lobe atrophy in subjective cognitive impairment and mild cognitive impairment, Journal of Alzheimer's disease, vol.33, issue.3, pp.723-736, 2013.

E. Scola, M. Bozzali, F. Agosta, G. Magnani, M. Franceschi et al., A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up, Neurosurgery & Psychiatry, vol.81, issue.7, pp.798-805, 2010.

A. Fellgiebel, P. R. Dellani, D. Greverus, A. Scheurich, P. Stoeter et al., Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus, Psychiatry Research: Neuroimaging, vol.146, issue.3, pp.283-287, 2006.

D. L. Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata et al., Diffusion tensor imaging: concepts and applications, Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol.13, issue.4, pp.534-546, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00349820

U. Saeed, W. Swardfager, S. E. Black, and M. Masellis, Biomarkers of Alzheimer's disease. Mental Health and Illness of the Elderly, pp.105-139, 2017.

G. B. Saha, W. J. Macintyre, and R. T. Go, Radiopharmaceuticals for brain imaging, Seminars in nuclear medicine, vol.24, issue.4, pp.324-349, 1994.

R. Ceravolo, D. Volterrani, G. Gambaccini, C. Rossi, C. Logi et al., Dopaminergic degeneration and perfusional impairment in Lewy body dementia and Alzheimer's disease, Neurological Sciences, vol.24, issue.3, pp.162-163, 2003.

S. J. Colloby, J. D. Fenwick, D. E. Williams, S. M. Paling, K. Lobotesis et al., A comparison of 99m Tc-HMPAO SPET changes in dementia with lewy bodies and Alzheimer's disease using statistical parametric mapping, European journal of nuclear medicine and molecular imaging, vol.29, issue.5, pp.615-622, 2002.

W. Jagust, R. Thisted, M. D. Devous, R. Van-heertum, H. Mayberg et al., SPECT perfusion imaging in the diagnosis of

, Alzheimer's disease: a clinical-pathologic study, Neurology, vol.56, issue.7, pp.950-956, 2001.

E. Guedj, E. J. Barbeau, M. Didic, O. Felician, C. De-laforte et al., Identification of subgroups in amnestic mild cognitive impairment, Neurology, vol.67, issue.2, pp.356-358, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00111068

D. L. Bailey, M. N. Maisey, D. W. Townsend, and P. E. Valk, Positron emission tomography, 2005.

M. J. Pontecorvo and M. A. Mintun, PET amyloid imaging as a tool for early diagnosis and identifying patients at risk for progression to Alzheimer's disease, vol.3, p.11, 2011.

A. M. Catafau and S. Bullich, Amyloid PET imaging: applications beyond Alzheimer's disease, Clinical and translational imaging, vol.3, issue.1, pp.39-55, 2015.

R. E. Coleman, Positron emission tomography diagnosis of Alzheimer's disease, Neuroimaging Clinics, vol.15, issue.4, pp.837-846, 2005.

W. Jagust, B. Reed, D. Mungas, W. Ellis, and C. Decarli, What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology, vol.69, pp.871-877, 2007.

A. Drzezga, T. Grimmer, M. Riemenschneider, N. Lautenschlager, H. Siebner et al., Prediction of individual clinical outcome in MCI by means of genetic assessment and 18F-FDG PET, Journal of Nuclear Medicine, vol.46, issue.10, pp.1625-1632, 2005.

R. K. Brown, N. I. Bohnen, K. K. Wong, S. Minoshima, and K. A. Frey, Brain PET in suspected dementia: patterns of altered FDG metabolism, Radiographics, vol.34, issue.3, pp.684-701, 2014.

N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, international Conference on computer vision & Pattern Recognition (CVPR'05), vol.1, pp.886-893, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00548512

R. Vandenberghe, N. Nelissen, E. Salmon, A. Ivanoiu, S. Hasselbalch et al., Binary classification of 18f-flutemetamol pet using machine learning: comparison with visual reads and structural mri, NeuroImage, vol.64, pp.517-525, 2013.

R. Katherine, P. Gray, R. A. Aljabar, A. Heckemann, D. Hammers et al., Alzheimer's Disease Neuroimaging Initiative, et al. Random forest-based similarity measures for multi-modal classification of alzheimer's disease, NeuroImage, vol.65, pp.167-175, 2013.

T. Tong, K. Gray, Q. Gao, L. Chen, and D. Rueckert, Alzheimer's Disease Neuroimaging Initiative, et al. Multi-modal classification of alzheimer's disease using nonlinear graph fusion, Pattern recognition, vol.63, pp.171-181, 2017.

N. Tzourio-mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard et al., Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain, Neuroimage, vol.15, issue.1, pp.273-289, 2002.

T. Edmund, M. Rolls, N. Joliot, and . Tzourio-mazoyer, Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas, Neuroimage, vol.122, pp.1-5, 2015.

W. David, M. Shattuck, V. Mirza, C. Adisetiyo, G. Hojatkashani et al.,

W. Arthur and . Toga, Construction of a 3d probabilistic atlas of human cortical structures, Neuroimage, vol.39, issue.3, pp.1064-1080, 2008.

A. Hammers, R. Allom, M. J. Koepp, S. L. Free, R. Myers et al., Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe, Human brain mapping, vol.19, issue.4, pp.224-247, 2003.

S. Ioannis, D. Gousias, R. A. Rueckert, L. E. Heckemann, J. P. Dyet et al., Automatic segmentation of brain mris of 2-year-olds into 83 regions of interest, Neuroimage, vol.40, issue.2, pp.672-684, 2008.

A. Rolf, J. V. Heckemann, P. Hajnal, D. Aljabar, A. Rueckert et al., Automatic anatomical brain mri segmentation combining label propagation and decision fusion, NeuroImage, vol.33, issue.1, pp.115-126, 2006.

I. Faillenot, R. A. Heckemann, M. Frot, and A. Hammers, Macroanatomy and 3d probabilistic atlas of the human insula, NeuroImage, vol.150, pp.88-98, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02472175

R. Li, R. Perneczky, I. Yakushev, S. Foerster, A. Kurz et al., Alzheimer's Disease Neuroimaging Initiative, et al. Gaussian mixture models and model selection for [18f] fluorodeoxyglucose positron emission tomography classification in alzheimer's disease, PloS one, vol.10, issue.4, p.122731, 2015.

J. Samper-gonzalez, N. Burgos, S. Bottani, S. Fontanella, P. Lu et al., Reproducible evaluation of classification methods in alzheimer's disease: Framework and application to mri and pet data, NeuroImage, vol.183, pp.504-521, 2018.

M. Pagani, ,. Carli, S. Morbelli, . Öberg, . Chincarini et al., Volume of interest-based [18f] fluorodeoxyglucose pet discriminates mci converting to alzheimer's disease from healthy controls. a european alzheimer's disease consortium (eadc) study, NeuroImage: Clinical, vol.7, pp.34-42, 2015.

M. Pagani, F. Nobili, S. Morbelli, D. Arnaldi, A. Giuliani et al., Early identification of mci converting to ad: a fdg pet study, European journal of nuclear medicine and molecular imaging, vol.44, issue.12, pp.2042-2052, 2017.

M. Pagani, A. Giuliani, J. Öberg, A. Chincarini, S. Morbelli et al., Predicting the transition from normal aging to alzheimer's disease: a statistical mechanistic evaluation of FDG-PET data, Neuroimage, vol.141, pp.282-290, 2016.

I. Garali, M. Adel, S. Bourennane, and E. Guedj, Brain region ranking for 18fdg-pet computer-aided diagnosis of alzheimer's disease

, Biomedical Signal Processing and Control, vol.27, pp.15-23, 2016.

I. Garali, M. Adel, S. Bourennane, and E. Guedj, Histogrambased features selection and volume of interest ranking for brain pet image classification, IEEE journal of translational engineering in health and medicine, vol.6, pp.1-12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02475762

Y. Li, J. Jiang, J. Lu, J. Jiang, H. Zhang et al., Radiomics: a novel feature extraction method for brain neuron degeneration disease using 18f-fdg pet imaging and its implementation for alzheimer's disease and mild cognitive impairment, Therapeutic Advances in Neurological Disorders, vol.12, p.1756286419838682, 2019.

K. R. Gray, R. Wolz, R. A. Heckemann, P. Aljabar, A. Hammers et al., Alzheimer's Disease Neuroimaging Initiative, et al. Multi-region analysis of longitudinal fdg-pet for the classification of alzheimer's disease, NeuroImage, vol.60, issue.1, pp.221-229, 2012.

K. Ota, N. Oishi, K. Ito, H. Fukuyama, -. Sead et al., Alzheimer's Disease Neuroimaging Initiative, et al. Effects of imaging modalities, brain atlases and feature selection on prediction of alzheimer's disease, Journal of neuroscience methods, vol.256, pp.168-183, 2015.

Y. Asim, B. Raza, A. K. Malik, and S. Rathore, Lal Hussain, and Mohammad Aksam Iftikhar. A multi-modal, multi-atlas-based approach for alzheimer detection via machine learning, International Journal of Imaging Systems and Technology, vol.28, issue.2, pp.113-123, 2018.

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of machine learning research, vol.3, pp.1157-1182, 2003.

J. L. Rodgers and W. Nicewander, Thirteen ways to look at the correlation coefficient, The American Statistician, vol.42, issue.1, pp.59-66, 1988.

H. Peng, F. Long, and C. Ding, Feature selection based on mutual information: criteria of max-dependency, max-relevance, and minredundancy, IEEE Transactions on Pattern Analysis & Machine Intelligence, issue.8, pp.1226-1238, 2005.

J. Stefan, J. Teipel, B. Kurth, . Krause, J. Michel et al., Alzheimer's Disease Neuroimaging Initiative, et al. The relative importance of imaging markers for the prediction of alzheimer's disease dementia in mild cognitive impairment-beyond classical regression, NeuroImage: Clinical, vol.8, pp.583-593, 2015.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), vol.58, issue.1, pp.267-288, 1996.

E. Arthur, R. W. Hoerl, and . Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, vol.12, issue.1, pp.55-67, 1970.

H. Zou and T. Hastie, Journal of the royal statistical society: series B (statistical methodology, vol.67, pp.301-320, 2005.

H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of educational psychology, vol.24, issue.6, p.417, 1933.

A. Peter, M. Lachenbruch, and . Goldstein, Discriminant analysis, Biometrics, pp.69-85, 1979.

M. Aleix, . Martínez, C. Avinash, and . Kak, Pca versus lda. IEEE transactions on pattern analysis and machine intelligence, vol.23, pp.228-233, 2001.

P. Padilla, M. López, J. M. Górriz, J. Ramirez, D. Salas-gonzalez et al., Nmf-svm based cad tool applied to functional brain images for the diagnosis of alzheimer's disease, IEEE Transactions on medical imaging, vol.31, issue.2, pp.207-216, 2012.

D. Salas-gonzalez, J. M. Górriz, . Ramírez, M. Ia-illán, . López et al., Alzheimer's Disease Neuroimage Initiative. Feature selection using factor analysis for alzheimer's diagnosis using pet images, Medical physics, vol.37, issue.11, pp.6084-6095, 2010.

C. Hinrichs, V. Singh, L. Mukherjee, G. Xu, K. Moo et al., Alzheimer's Disease Neuroimaging Initiative, et al. Spatially augmented lpboosting for ad classification with evaluations on the adni dataset, Neuroimage, vol.48, issue.1, pp.138-149, 2009.

C. Cabral, P. M. Morgado, D. Costa, and M. Silveira, Alzheimer's Disease Neuroimaging Initiative, et al. Predicting conversion from mci to ad with FDG-PET brain images at different prodromal stages. Computers in biology and medicine, vol.58, pp.101-109, 2015.

. Ia-illán, J. Manuel-górriz, D. Ramírez, . Salas-gonzalez, F. López et al., Alzheimer's Disease Neuroimaging Initiative, et al. 18f-fdg pet imaging analysis for computer aided alzheimer's diagnosis, Information Sciences, vol.181, issue.4, pp.903-916, 2011.

D. Zhang, Y. Wang, L. Zhou, H. Yuan, and D. Shen, Alzheimer's Disease Neuroimaging Initiative, et al. Multimodal classification of alzheimer's disease and mild cognitive impairment, Neuroimage, vol.55, issue.3, pp.856-867, 2011.

. Noor-jehan-kabani, J. David, C. J. Macdonald, A. C. Holmes, and . Evans, NeuroImage, vol.7, issue.4, p.717, 1998.

Y. Shi, H. Suk, Y. Gao, and D. Shen, Joint coupledfeature representation and coupled boosting for ad diagnosis, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2721-2728, 2014.

C. Zu, B. Jie, M. Liu, S. Chen, D. Shen et al., Alzheimer's Disease Neuroimaging Initiative, et al. Label-aligned multi-task feature learning for multimodal classification of alzheimer's disease and mild cognitive impairment, Brain imaging and behavior, vol.10, issue.4, pp.1148-1159, 2016.

X. Zhu, H. Suk, S. Lee, and D. Shen, Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification, IEEE Transactions on Biomedical Engineering, vol.63, issue.3, pp.607-618, 2015.

Y. Andrew and M. Ng, On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes, Advances in neural information processing systems, pp.841-848, 2002.

L. Breiman, Classification and regression trees. Routledge, 2017.

J. and R. Quinlan, Induction of decision trees, Machine learning, vol.1, issue.1, pp.81-106, 1986.

J. Quinlan, C4.5: programs for machine learning, 2014.

S. Warren, W. Mcculloch, and . Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, vol.5, issue.4, pp.115-133, 1943.

C. Cortes and V. Vapnik, Support-vector networks, Machine learning, vol.20, issue.3, pp.273-297, 1995.

I. Rish, An empirical study of the naive bayes classifier, IJCAI 2001 workshop on empirical methods in artificial intelligence, vol.3, pp.41-46, 2001.

P. Geladi and . Bruce-r-kowalski, Partial least-squares regression: a tutorial, Analytica chimica acta, vol.185, pp.1-17, 1986.

H. White, Maximum likelihood estimation of misspecified models. Econometrica, Journal of the Econometric Society, pp.1-25, 1982.

J. Platt, Sequential minimal optimization: A fast algorithm for training support vector machines, 1998.

E. Bernhard, I. M. Boser, V. N. Guyon, and . Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory, pp.144-152, 1992.

Z. Zhou, Ensemble methods: foundations and algorithms, 2012.

H. David and . Wolpert, Stacked generalization, Neural networks, vol.5, issue.2, pp.241-259, 1992.

L. Breiman, Stacked regressions. Machine learning, vol.24, pp.49-64, 1996.

E. Robert and . Schapire, The strength of weak learnability, Machine learning, vol.5, issue.2, pp.197-227, 1990.

L. Breiman, Bagging predictors. Machine learning, vol.24, pp.123-140, 1996.

Y. Freund and R. E. Schapire, A decision-theoretic generalization of online learning and an application to boosting, Journal of computer and system sciences, vol.55, issue.1, pp.119-139, 1997.

B. Efron, J. Robert, and . Tibshirani, An introduction to the bootstrap, 1994.

L. Breiman, Random forests. Machine learning, vol.45, pp.5-32, 2001.

K. Henning-brodersen,

M. Joachim and . Buhmann, The balanced accuracy and its posterior distribution, 20th International Conference on Pattern Recognition, pp.3121-3124, 2010.

. Ieee, , 2010.

A. Kent and . Spackman, Signal detection theory: Valuable tools for evaluating inductive learning, Proceedings of the sixth international workshop on Machine learning, pp.160-163, 1989.

G. Seymour, Predictive inference. 0412034719Chapman and Hall, 1993.

R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, Ijcai, vol.14, pp.1137-1145, 1995.

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., Imagenet: A large-scale hierarchical image database, 2009 IEEE conference on computer vision and pattern recognition, pp.248-255, 2009.

G. Thomas and . Dietterich, Approximate statistical tests for comparing supervised classification learning algorithms, Neural computation, vol.10, issue.7, pp.1895-1923, 1998.

R. Min, G. Wu, J. Cheng, and Q. Wang, Dinggang Shen, and Alzheimer's Disease Neuroimaging Initiative. Multi-atlas based representations for alzheimer's disease diagnosis, Human brain mapping, vol.35, issue.10, pp.5052-5070, 2014.

C. Möller, A. L. Yolande, . Pijnenburg, M. Wiesje, A. Van-der-flier et al., Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis, Radiology, vol.279, issue.3, pp.838-848, 2015.

M. Liu, D. Zhang, and D. Shen, Relationship induced multi-template learning for diagnosis of alzheimer's disease and mild cognitive impairment, IEEE transactions on medical imaging, vol.35, issue.6, pp.1463-1474, 2016.

B. Jie, D. Zhang, W. Gao, and Q. Wang, Chong-Yaw Wee, and Dinggang Shen. Integration of network topological and connectivity properties for neuroimaging classification, IEEE transactions on biomedical engineering, vol.61, issue.2, pp.576-589, 2014.

A. Khazaee, A. Ebrahimzadeh, and A. Babajani-feremi, Identifying patients with alzheimer's disease using resting-state fmri and graph theory, Clinical Neurophysiology, vol.126, issue.11, pp.2132-2141, 2015.

J. E. Talia-m-nir, G. Villalon-reina, N. Prasad, . Jahanshad, H. Shantanu et al.,

W. Michael, P. M. Weiner, and . Thompson, Diffusion weighted imagingbased maximum density path analysis and classification of alzheimer's disease, Neurobiology of aging, vol.36, pp.132-140, 2015.

G. Prasad, H. Shantanu, T. M. Joshi, A. W. Nir, . Toga et al., Alzheimer's Disease Neuroimaging Initiative (ADNI, et al. Brain connectivity and novel network measures for alzheimer's disease classification, Neurobiology of aging, vol.36, pp.121-131, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.

G. E. David-e-rumelhart, R. J. Hinton, and . Williams, Learning representations by back-propagating errors, Cognitive modeling, vol.5, issue.3, p.1, 1988.

T. Zhou, K. Thung, X. Zhu, and D. Shen, Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis, Human brain mapping, vol.40, issue.3, pp.1001-1016, 2019.

D. Lu, K. Popuri, G. W. Ding, and R. Balachandar, Alzheimer's Disease Neuroimaging Initiative, et al. Multiscale deep neural network based analysis of fdg-pet images for the early diagnosis of alzheimer's disease, Medical image analysis, vol.46, pp.26-34, 2018.

S. Liu, S. Liu, W. Cai, H. Che, S. Pujol et al., Multimodal neuroimaging feature learning for multiclass diagnosis of alzheimer's disease, IEEE Transactions on Biomedical Engineering, vol.62, issue.4, pp.1132-1140, 2014.

M. Liu, D. Cheng, and W. Yan, Classification of alzheimer's disease by combination of convolutional and recurrent neural networks using fdg-pet images, Frontiers in neuroinformatics, vol.12, p.35, 2018.

A. Gupta, A. Murat-ayhan, and . Maida, Natural image bases to represent neuroimaging data, International conference on machine learning, pp.987-994, 2013.

Y. Ding, J. H. Sohn, G. Michael, H. Kawczynski, R. Trivedi et al., A deep learning model to predict a diagnosis of alzheimer disease by using 18f-fdg pet of the brain, Radiology, vol.290, issue.2, pp.456-464, 2018.

Y. Huang, J. Xu, Y. Zhou, T. Tong, and X. Zhuang, Diagnosis of alzheimer's disease via multi-modality 3d convolutional neural network, 2019.

S. Spasov, L. Passamonti, A. Duggento, P. Lio, and N. Toschi, Alzheimer's Disease Neuroimaging Initiative, et al. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to alzheimer's disease, Neuroimage, vol.189, pp.276-287, 2019.

E. Hosseini-asl, R. Keynton, and A. El-baz, Alzheimer's disease diagnostics by adaptation of 3d convolutional network, 2016 IEEE International Conference on Image Processing (ICIP), pp.126-130, 2016.

C. Lian, M. Liu, J. Zhang, and D. Shen, Hierarchical fully convolutional network for joint atrophy localization and alzheimer's disease diagnosis using structural mri, 2018.

F. Li and M. Liu, Alzheimer's Disease Neuroimaging Initiative

, Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks, Computerized Medical Imaging and Graphics, vol.70, pp.101-110, 2018.

W. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, and T. E. Nichols, Statistical parametric mapping: the analysis of functional brain images. Elsevier, 2011.

M. Xia, J. Wang, and Y. He, Brainnet viewer: a network visualization tool for human brain connectomics, PloS one, vol.8, issue.7, p.68910, 2013.

M. Rubinov and O. Sporns, Complex network measures of brain connectivity: uses and interpretations, Neuroimage, vol.52, issue.3, pp.1059-1069, 2010.

F. Katelyn-l-arnemann, S. Stöber, . Narayan, D. Gil, W. J. Rabinovici et al., Metabolic brain networks in aging and preclinical alzheimer's disease, NeuroImage: Clinical, vol.17, pp.987-999, 2018.

J. Chung, K. Yoo, E. Kim, L. Duk, Y. Na et al., Glucose metabolic brain networks in early-onset vs. late-onset alzheimer's disease, Frontiers in aging neuroscience, vol.8, p.159, 2016.

C. Chang and C. Lin, Libsvm: A library for support vector machines, ACM transactions on intelligent systems and technology (TIST), vol.2, p.27, 2011.

R. Gilmore, P. , and M. Millones, Death to kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment, International Journal of Remote Sensing, vol.32, issue.15, pp.4407-4429, 2011.

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, The Journal of Machine Learning Research, vol.15, issue.1, pp.1929-1958, 2014.

F. Chollet, , 2015.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis et al., Tensorflow: A system for large-scale machine learning, 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pp.265-283, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, Proceedings of the IEEE international conference on computer vision, pp.1026-1034, 2015.

S. Boyd and L. Vandenberghe, Convex optimization, 2004.