J. Abraham, K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su et al., Tunable sieving of ions using graphene oxide membranes, Nat. Nanotechnol, vol.12, pp.546-550, 2017.

Y. Ai, M. Zhang, S. W. Joo, M. A. Cheney, and S. Qian, Effects of electroosmotic flow on ionic current rectification in conical nanopores, J. Phys. Chem. C, vol.114, pp.3883-3890, 2010.

A. Ajdari and L. Bocquet, Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond, Phys. Rev. Lett, p.96, 2006.

G. Algara-siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser et al., Square ice in graphene nanocapillaries, Nature, vol.519, pp.443-445, 2015.

J. L. Barrat and J. P. Hansen, Basic Concepts for Simple and Complex Liquids. 1 edn, 2003.

S. H. Behrens and D. G. Grier, The charge of glass and silica surfaces, J. Chem. Phys, vol.115, pp.6716-6721, 2001.

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev, vol.39, pp.1073-1095, 2010.

D. J. Bonthuis and R. Golestanian, Mechanosensitive channel activation by diffusio-osmotic force, Phys. Rev. Lett, vol.113, p.148101, 2014.

A. Campione, L. Gurreri, M. Ciofalo, G. Micale, A. Tamburini et al., Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications, Desalination, vol.434, pp.121-160, 2018.

J. Cervera, B. Schiedt, R. Neumann, S. Mafé, and P. Ramírez, Ionic conduction, rectification, and selectivity in single conical nanopores, J. Chem. Phys, vol.124, p.104706, 2006.

L. J. Cheng and L. J. Guo, Rectified ion transport through concentration gradient in homogeneous silica nanochannels, Nano Lett, vol.7, pp.3165-3171, 2007.

L. J. Cheng and L. J. Guo, Nanofluidic diodes, Chem. Soc. Rev, vol.39, pp.923-938, 2010.

L. Chua, Memristor, Hodgkin-Huxley, and edge of chaos, Nanotechnology, p.383001, 2013.

H. Chun and T. D. Chung, Iontronics. Annu. Rev. Anal. Chem, vol.8, pp.441-462, 2015.

D. Constantin and Z. S. Siwy, Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode, Phys. Rev. E, vol.76, p.41202, 2007.

B. Coste, B. Xiao, J. S. Santos, R. Syeda, J. Grandl et al., Piezo proteins are pore-forming subunits of mechanically activated channels, Nature, vol.483, pp.176-181, 2012.

S. Dal-cengio and I. Pagonabarraga, Confinement-controlled rectification in a geometric nanofluidic diode, J. Chem. Phys, vol.151, p.44707, 2019.

A. V. Delgado, F. Gonzàlez-caballero, R. J. Hunter, L. K. Koopal, and J. Lyklema, Measurement and Interpretation of Electrokinetic Phenomena, Pure Appl. Chem, vol.77, pp.1753-1805, 2005.

L. Dorwling-carter, M. Aramesh, H. Han, T. Zambelli, and D. Momotenko, Combined ion conductance and atomic force microscope for fast simultaneous topographical and surface charge imaging, Anal. Chem, vol.90, pp.11453-11460, 2018.

J. C. Eijkel, . Van-den, and A. Berg, Nanofluidics: what is it and what can we expect from it? Microfluid, Nanofluid, vol.1, pp.249-267, 2005.

A. Esfandiar, B. Radha, F. C. Wang, Q. Yang, S. Hu et al., Size effect in ion transport through angstrom-scale slits, Nature, vol.358, pp.511-513, 2017.

J. C. Fair and J. F. Osterle, Reverse electrodialysis in charged capillary membranes, J. Chem. Phys, vol.54, pp.3307-3316, 1971.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco et al., Single-layer MoS 2 nanopores as nanopower generators, Nature, vol.536, pp.197-200, 2016.

F. Fornasiero, H. G. Park, J. K. Holt, M. Stadermann, C. P. Grigoropoulos et al., Ion exclusion by sub-2-nm carbon nanotube pores, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.17250-17255, 2008.

C. M. Frament and J. R. Dwyer, Conductance-based determination of solid-state nanopore size and shape: An exploration of performance limits, J. Phys. Chem. C, vol.116, pp.23315-23321, 2012.

Y. M. Fu, C. J. Wan, L. Q. Zhu, H. Xiao, X. D. Chen et al., Hodgkin-Huxley artificial synaptic membrane based on protonic/electronic hybrid neuromorphic transistors, Adv. Biosyst, vol.2, p.1700198, 2017.

L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares et al., Anomalously low dielectric constant of confined water, Science, vol.360, pp.1339-1342, 2018.

S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton et al., Graphene as subnanometre trans-electrode membrane, Nature, p.467, 2010.

A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature, vol.499, pp.419-425, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01986052

C. Geismann, A. Yaroshchuk, and M. Ulbricht, Permeability and electrokinetic characterization of poly(ethylene terephthalate) capillary pore membranes with grafted temperatureresponsive polymers, Langmuir, vol.23, pp.76-83, 2007.

M. Graf, M. Lihter, D. Unuchek, A. Sarathy, J. Leburton et al., Light-enhanced blue energy generation using MoS 2 Nanopores, Joule, vol.3, pp.1549-1564, 2019.

P. K. Hansma, B. Drake, O. Marti, S. A. Gould, and C. B. Prater, The scanning ionconductance microscope, Science, vol.243, pp.641-643, 1989.

X. He, K. Zhang, T. Li, Y. Jiang, P. Yu et al., Micrometer-scale ion current rectification at polyelectrolyte brush-modified micropipets, J. Am. Chem. Soc, vol.139, pp.1396-1399, 2017.

S. Hong, C. Constans, M. V. Martins, Y. C. Seow, J. A. Carriò et al., Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity, Nano Lett, vol.17, pp.728-732, 2017.

S. Howorka and Z. Siwy, Nanopore analytics: sensing of single molecules, Chem. Soc. Rev, vol.38, pp.2360-2384, 2009.

R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. 1 edn, 1979.

T. Jain, B. C. Rasera, R. J. Boutilier, M. S. Guerrero, S. C. O'hern et al., Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores, Nat. Nanotechnol, vol.10, pp.1053-1057, 2015.

Z. Jiang and D. Stein, Charge regulation in nanopore ionic field-effect transistors, Phys. Rev. E, vol.83, p.31203, 2011.

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su et al., Precise and ultrafast molecular sieving through graphene oxide membranes, Science, vol.343, pp.752-754, 2014.

L. Jubin, A. R. Poggioli, A. Siria, and L. Bocquet, Dramatic pressure-sensitive ion conduction in conical nanopores, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.4063-4068, 2018.

R. Karnik and K. Castelino, Field-effect control of protein transport in a nanofluidic transistor circuit, Appl. Phys. Lett, vol.88, p.123114, 2006.

R. Karnik, K. Castelino, R. Fan, P. Yang, and A. Majumdar, Effects of biological reactions and modifications on conductance of nanofluidic channels, Nano Lett, vol.5, pp.1638-1642, 2005.

R. Karnik, C. Duan, K. Castelino, H. Daiguji, and A. Majumdar, Rectification of ionic current in a nanofluidic diode, Nano Lett, vol.7, pp.547-551, 2007.

A. Keerthi, A. K. Geim, A. Janardanan, A. P. Rooney, A. Esfandiar et al., Ballistic molecular transport through two-dimensional channels, Nature, vol.558, pp.420-424, 2018.

A. S. Khair and T. M. Squires, Surprising consequences of ion conservation in electro-osmosis over a surface charge discontinuity, J. Fluid Mech, vol.615, pp.323-334, 2008.

S. J. Kim, L. D. Li, and J. Han, Amplified electrokinetic response by concentration polarization near nanofluidic channel, Langmuir, vol.25, pp.7759-7765, 2009.

D. Klenerman, Y. E. Korchev, and S. J. Davis, Imaging and characterisation of the surface of live cells, Curr. Opin. Chem. Biol, vol.15, pp.696-703, 2011.

Y. E. Korchev, C. L. Bashford, M. Milovanovic, I. Vodyanoy, and M. J. Lab, Scanning ion conductance microscopy of living cells, Biophys. J, vol.73, pp.653-658, 1997.

M. L. Kovarik, K. Zhou, and S. C. Jacobson, Effect of conical nanopore diameter on ion current rectification, J. Phys. Chem. B, vol.113, pp.15960-15966, 2009.

C. Kubeil and A. Bund, The role of nanopore geometry for the rectification of ionic currents, J. Phys. Chem. C, vol.115, pp.7866-7873, 2011.

W. J. Lan, D. A. Holden, and H. S. White, Pressure-dependent ion current rectification in conical-shaped glass nanopores, J. Am. Chem. Soc, vol.133, pp.13300-13303, 2011.

N. Laohakunakorn and U. F. Keyser, Electroosmotic flow rectification in conical nanopores, Nanotechnology, vol.26, p.275202, 2015.

C. Lee, L. Joly, A. Siria, A. Biance, R. Fulcrand et al., Large Apparent Electric Size of Solid-State Nanopores Due to Spatially Extended Surface Conduction, Nano Lett, vol.12, pp.4037-4044, 2012.

C. Li, F. Ma, Z. Wu, H. Gao, W. Shao et al., Solution-pH-modulated rectification of ionic current in highly ordered nanochannel arrays patterned with chemical functional groups at designed positions, Adv. Funct. Mat, vol.23, pp.3836-3844, 2013.

C. Lin, L. Yeh, and . Siwy, Voltage-induced modulation of ionic concentrations and ion current rectification in mesopores with highly charged pore walls, J. Phys. Chem. Lett, vol.9, pp.393-398, 2018.

Q. Liu, Y. Wang, W. Guo, H. Ji, J. Xue et al., Asymmetric properties of ion transport in a charged conical nanopore, Phys. Rev. E, vol.75, p.51201, 2007.

M. Macha, S. Marion, V. V. Nandigana, and A. Radenovic, 2D materials as emerging platform for nanopore-based power generation, Nat. Rev. Mater, p.4, 2019.

F. M. Maddar, D. Perry, R. Brooks, A. Page, and P. R. Unwin, Nanoscale surface charge visualization of human hair, Anal. Chem, vol.91, pp.4632-4639, 2019.

P. Malgaretti, I. Pagonabarraga, and J. M. Rubi, Geometrically tuned channel permeability, Macromol. Symp, vol.357, pp.178-188, 2015.

P. Malgaretti, I. Pagonabarraga, and J. M. Rubi, Entropically induced asymmetric passage times of charged tracers across corrugated channels, J. Chem. Phys, vol.144, p.34901, 2016.

K. Mckelvey, S. L. Kinnear, D. Perry, D. Momotenko, and P. R. Unwin, Surface Charge Mapping with a Nanopipette, J. Am. Chem. Soc, vol.136, pp.13735-13744, 2014.

M. Misakian and J. J. Kasianowicz, Electrostatic influence on ion transport through the ?HL channel, J. Membrane Biol, vol.195, pp.137-146, 2003.

T. Mouterde, A. Keerthi, A. R. Poggioli, S. A. Dar, A. Siria et al., Molecular streaming and its voltage control inågnström-scale channels, Nature, vol.567, pp.87-90, 2019.

G. Nguyen, I. Vlassiouk, and Z. S. Siwy, Comparison of bipolar and unipolar ionic diodes, Nanotechnology, vol.21, p.265301, 2010.

H. Nitz, J. Kamp, and H. Fuchs, A Combined Scanning Ion-Conductance and Shear-Force Microscope, Probe Microscopy, vol.1, pp.187-200, 1998.

P. Pang, J. He, J. H. Park, P. S. Krstic, and S. Lindsay, Origin of giant ionic currents in carbon nanotube channels, ACS Nano, vol.5, pp.7277-7283, 2011.

E. Perozo, D. M. Cortes, P. Sompornpisut, A. Kloda, and B. Martinac, Open channel structure of MscL and the gating mechanism of mechanosensitive channels, Nature, vol.418, pp.942-948, 2002.

J. M. Perry, K. Zhou, Z. D. Harms, and S. C. Jacobson, Ion transport in nanofluidic funnels, ACS Nano, vol.4, pp.3897-3902, 2010.

C. B. Picallo, S. Gravelle, L. Joly, E. Charlaix, and L. Bocquet, Nanofluidic osmotic diodes: Theory and molecular dynamics simulations, Phys. Rev. Lett, vol.111, p.244501, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01087699

A. Plecis, R. B. Schoch, and P. Renaud, Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip, Nano Lett, vol.5, pp.1147-1155, 2005.

A. R. Poggioli, A. Siria, and L. Bocquet, Beyond the tradeoff: Dynamic selectivity in ionic transport and current selectivity, J. Phys. Chem. B, vol.123, pp.1171-1185, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02324647

J. D. Posner, Properties and electrokinetic behavior of non-dilute colloidal suspension, Mech. Res. Commun, vol.36, pp.22-32, 2009.

B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan et al., Molecular transport through capillaries made with atomic-scale precision, Nature, vol.538, pp.222-225, 2016.

D. J. Rankin and D. M. Huang, The effect of hydrodynamic slip on membrane-based salinity-gradient-driven energy harvesting, Langmuir, vol.32, pp.3420-3432, 2016.

Y. Ren and D. Stein, Slip-enhanced electrokinetic energy conversion in nanofluidic channels, Nanotechnology, vol.19, 2008.

N. Sa, W. Lan, W. Shi, and L. A. Baker, Rectification of ion current in nanopipettes by external substrates, ACS Nano, vol.7, pp.11273-11282, 2013.

R. B. Schasfoort, S. Schlautmann, J. Hendrikse, . Van-den, and A. Berg, Field-effect flow control for microfabricated fluidic networks, Science, vol.286, pp.942-945, 1999.

B. Schiedt, K. Healy, A. P. Morrison, R. Neumann, and Z. Siwy, Transport of ions and biomolecules through single asymmetric nanopores in polymer films, Nucl. Instr. Meth. Phys, 2005.

. Res, , vol.236, pp.109-116

A. Schlaich, E. W. Knapp, and R. R. Netz, Water dielectric effects in planar confinement, Phys. Rev. Lett, vol.117, p.48001, 2016.

R. B. Schoch, J. Han, and P. Renaud, Transport phenomena in nanofluidics, Rev. Mod. Phys, vol.80, pp.839-883, 2008.

E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria et al., Massive radiusdependent flow slippage in carbon nanotubes, Nature, vol.537, pp.210-213, 2016.

E. Secchi, A. Niguès, L. Jubin, A. Siria, and L. Bocquet, Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes, Phys. Rev. Lett, vol.116, p.154501, 2016.

W. Shockley, The theory of p-n junctions in semiconductors and p-n junction transistors, Bell Labs Tech. J, vol.28, pp.435-489, 1949.

A. Siria, P. Poncharal, A. L. Biance, R. Fulcrand, X. Blase et al., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, vol.494, pp.455-458, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00959984

A. Siria, L. Bocquet, and M. Bocquet, New avenues for the large-scale harvesting of blue energy, Nat. Rev. Chem, vol.1, p.91, 2017.

Z. Siwy and A. Fuli?ski, Fabrication of a synthetic nanopore ion pump, Phys. Rev. Lett, vol.89, 2002.

D. Stein, M. Kruithof, and C. Dekker, Surface-charge-governed ion transport in nanofluidic channels, Phys. Rev. Lett, vol.93, p.35901, 2004.

A. Sze, D. Erickson, L. Ren, and D. Li, Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow, J. Colloid Interface Sci, vol.261, pp.402-410, 2003.

R. Takasaki, T. Futamura, Y. Iiyama, Y. Gogotsi, M. J. Biggs et al., Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores, Nat. Mater, vol.16, pp.1225-1232, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02048141

G. Tocci, L. Joly, and A. Michaelides, Friction of water on graphene and hexagonal boron nitride from ab inition methods: very different slippage despite very similar interface structures, Nano Lett, vol.14, pp.6872-6877, 2014.

R. H. Tunuguntla, R. Y. Henley, Y. Yao, T. A. Pham, M. Wanunu et al., Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins, Science, p.357, 2017.

K. Tybrandt, Exploring the potential of ionic bipolar diodes for chemical neural interfaces, Soft Matter, vol.13, pp.8171-8177, 2017.

F. H. Van-der-heyden, D. J. Bonthuis, D. Stein, C. Meyer, and C. Dekker, Electrokinetic energy conversion efficiency in nanofluidic channels, Nano Lett, vol.6, pp.2232-2237, 2006.

V. Vásquez, M. Sotomayor, J. Cordero-morales, K. Schulten, and E. Perozo, A structural mechanism for MscS gating in lipid bilayers, Science, vol.321, pp.1210-1214, 2008.

I. Vlassiouk and Z. S. Siwy, Nanofluidic diode, Nano Lett, vol.7, pp.552-556, 2007.

I. Vlassiouk, S. Smirnov, and Z. Siwy, Ionic selectivity of single nanochannels, Nano Lett, vol.8, pp.1978-1985, 2008.

I. Vlassiouk, S. Smirnov, and Z. Siwy, Nanofluidic ionic diodes. Comparison of analytical and numerical solutions, ACS Nano, vol.2, pp.1589-1602, 2008.

I. Vlassiouk, T. R. Kozel, and Z. S. Siwy, Biosensing with nanofluidic diodes, J. Am. Chem. Soc, vol.131, pp.8211-8220, 2009.

X. Wang, J. Xue, L. Wang, W. Guo, W. Zhang et al., How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores, J. Phys. D: Appl. Phys, vol.40, pp.7077-7084, 2007.

H. S. White and A. Bund, Ion current rectification at nanopores in glass membranes, Langmuir, vol.24, pp.2212-2218, 2008.

R. J. White, B. Zhang, S. Daniel, J. M. Tang, E. N. Ervin et al., Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support, Langmuir, vol.22, pp.10777-10783, 2006.

D. Woermann, Electrochemical transport properties of a cone-shaped nanopore: high and low electrical conductivity states depending on the sign of an applied electrical potential difference, Phys. Chem. Chem. Phys, vol.5, pp.1853-1858, 2003.

J. Wu, A. H. Lewis, and J. Grandl, Touch, tension, and transduction-The function and regulation of piezo ion channels, Trends Biochem. Sci, vol.42, pp.57-71, 2017.

Q. Xie, M. A. Alibakhshi, S. Jiao, Z. Xu, M. Hempel et al., Fast water transport in graphene nanofluidic channels, Nat. Nanotechnol, vol.13, pp.238-245, 2018.

Y. Zhao, J. Janot, E. Balanzat, and S. Balme, Mimicking pH-gated ionic channels by polyelectrolyte complex confinement inside a single nanopore, Langmuir, vol.33, pp.3484-3490, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01675156

K. Zhou, J. M. Perry, and S. C. Jacobson, Transport and sensing in nanofluidic devices, 2011.

, Annu. Rev. Anal. Chem, vol.4, pp.321-341

, et par les applications qui en résultent comme la production d'énergie, le dessalement, l'analyse macromoléculaire et la microscopie. Deux points clés pour le développement de telles technologies sont : 1) le contrôle du transport ionique non-linéaire et 2) la caractérisation des propriétésélectrostatiques, frictionnelles et autres des interfaces solide-liquide avec des solutionsélectrolytiques. Dans ce manuscript, je m'intéresseà la sélectivité ionique ainsi qu'au transport non-linéaire des ions dans les nanopores, Je développe une théorie cohérente qui permet de rationaliser les travaux expérimentaux précédents et ouvre des nouvelles voies pour le dessalement et la génération d'énergie

, J'explore ensuite chacun des deux points clés cites précédemment. D'abord, j'étudie les limites de l'approche en milieu continuà travers l'exemple du couplage non-linéaire observé pour le transport dans des canaux qui font quelques angström d'épaisseur. Dans ce cadre, je montre que l'équation de Navier-Stokes ne permet plus de décrire correctement la dynamique des fluides (à cetteéchelle), et je mets enévidence l'importance des propriétés de friction du matériau qui confine le liquide. Enfin, j'explore l'effet des propriétés de surface sur le champélectrique appliqué en Microscopieà conductance ioniqueà balayage (Scanning Ion Conductance Microscopy). Je propose une nouvelle approche pour l'imagerie de la charge de surface qui