D. S. Price, Scientific American, pp.62-74, 0200.

T. Freeth and P. Commun, , vol.5, pp.1-12, 2019.

T. Freeth, PLOS One, vol.9, pp.1-15, 2014.

M. Burrows and G. Sutton, Science, vol.341, pp.1254-1256, 2013.

J. E. Walker, Angew. Chem. Int. Ed, vol.37, pp.2308-2319, 1998.

C. Mavroidis, A. Dubey, and M. L. Yarmush, Annu. Rev. Biomed. Eng, vol.6, pp.363-395, 2004.

S. Durot, F. Reviriego, and J. Sauvage, Dalton Trans, pp.39-10557, 2010.

M. C. Jiménez, C. Dietrich-buchecker, and J. Sauvage, Angew. Chem. Int. Ed, vol.39, pp.3284-3287, 2000.

J. Collin, C. Dietrich-buchecker, P. Gaviña, M. C. Jiménez-molero, and J. ,

. Sauvage, Acc. Chem. Res, vol.34, pp.477-487, 2001.

M. C. Jiménez-molero, C. Dietrich-buchecker, and J. Sauvage, Chem. Commun, pp.1613-1616, 2003.

J. Sauvage, Angew. Chem. Int. Ed, vol.56, pp.11080-11093, 2017.

R. A. Bissell, E. Córdova, A. E. Kaifer, and J. F. Stoddart, Nature, vol.369, pp.133-137, 1994.

J. F. Stoddart, Angew. Chem. Int. Ed, vol.56, pp.11094-11125, 2017.

Y. Liu, A. H. Flood, P. A. Bonvallet, S. A. Vignon, B. H. Northrop et al., J. Am. Chem. Soc, vol.127, pp.9745-9759, 2005.

P. L. Anelli, N. Spencer, and J. F. Stoddart, J. Am. Chem. Soc, vol.113, pp.5131-5133, 1991.

N. Koumura, R. W. Zijlstra, R. A. Van-delden, N. Haradaand, and B. L. Feringa, Nature, vol.401, pp.152-155, 1999.

D. Roke, S. J. Wezenberg, and B. L. Feringa, Proc. Natl. Acad. Sci. U. S. A, vol.115, pp.9423-9431, 2018.

S. Kassem, T. Van-leeuwen, A. S. Lubbe, M. R. Wilson, B. L. Feringa et al., Chem. Soc. Rev, vol.46, pp.2592-2621, 2017.

B. L. Feringa, Angew. Chem. Int. Ed, vol.56, pp.11060-11078, 2017.

R. Eelkema, M. M. Pollard, N. Katsonis, J. Vicario, D. J. Broer et al., J. Am. Chem. Soc, vol.128, pp.14397-14407, 2006.

J. Deng, C. Troadec, F. Ample, and C. Joachim, Nanotechnology, 2011.

J. Yang, J. Deng, C. Troadec, T. Ondarçuhu, and C. Joachim, Nanotechnology, p.465305, 2014.

W. D. Hounshell, C. A. Johnson, A. Guenzi, F. Cozzi, and K. Mislow, Proc. Nat. Acad. Sci, vol.77, pp.6961-6964, 1980.

Y. Kawada and H. J. Iwamura, Org. Chem, vol.45, pp.2547-2548, 1980.

H. Ube, Y. Yasuda, H. Sato, and M. Shionoya, Nat. Commun, pp.1-6, 2017.

K. Sanada, H. Ube, and M. Shionoya, J. Am. Chem. Soc, vol.138, pp.2945-2948, 2016.

H. Ube, R. Yamada, J. Ishida, H. Sato, M. Shiro et al., J. Am. Chem. Soc, vol.139, pp.16470-16473, 2017.

A. M. Stevens and C. J. Richards, Tetrahedron Lett, vol.38, pp.7805-7508, 1997.

A. A. Gakh, R. A. Sachleben, and J. C. Bryan, Chemtech, vol.27, pp.26-33, 1997.

J. C. Bryan, R. A. Sachleben, A. A. Gakh, and G. J. Bunick, J. Chem. Cryst, vol.29, pp.513-521, 1999.

D. K. Frantz, A. Linden, K. K. Baldridge, and J. S. Siegel, J. Am. Chem. Soc, vol.134, pp.1528-1535, 2012.

F. Huang, G. Wang, L. Ma, Y. Wang, X. Chen et al., J. Org. Chem, vol.82, pp.12106-12111, 2017.

B. C. Stipe, M. A. Rezaei, and W. Ho, Science, vol.279, pp.1907-1909, 1998.

B. C. Stipe, M. Stipe, A. Rezaei, and W. Ho, Phys. Rev. Lett, vol.81, pp.1263-1266, 1998.

Y. Shirai, A. J. Osgood, Y. M. Zhao, K. F. Kelly, and J. M. Tour, Nano Lett, vol.5, pp.2330-2334, 2005.

Y. Shirai, A. J. Osgood, Y. Zhao, Y. Yao, L. Saudan et al.,

J. M. Morin, K. F. Guerrero, J. M. Kelly, and . Tour, J. Am. Chem. Soc, vol.128, pp.4854-4864, 2006.

F. Chiaravalloti, L. Gross, K. Rieder, S. Stojkovic, A. Gourdon et al., Nat. Mater, vol.6, pp.30-33, 2007.

C. Manzano, W. H. Soe, H. S. Wong, F. Ample, A. Gourdon et al., Nat. Mater, vol.8, pp.576-579, 2009.

G. Vives, H. De-rouville, A. Carella, J. Launay, and G. Rapenne, Chem. Soc. Rev, vol.38, pp.1551-1561, 2009.

U. G. Perera, F. Ample, H. Kersell, Y. Zhang, G. Vives et al., Nature Nanotechnol, vol.8, pp.46-51, 2013.

, Résultats non publiés obtenus par Yohan Gisbert

G. Vives and G. Rapenne, Tetrahedron, vol.64, pp.11462-11468, 2008.

A. Carella, J. Launay, R. Poteau, and G. Rapenne, Chem. Eur. J, vol.14, pp.8147-8156, 2008.

N. G. Connelly and I. Manners, J. Chem. Soc, pp.283-288, 1989.

R. Stefak, P. Thèse-université, and . Sabatier, , pp.82-83, 2013.

A. Sirven, P. Thèse-université, and . Sabatier, , p.60, 2013.

C. Kammerer and G. Rapenne, Eur. J. Inorg. Chem, pp.2214-2226, 2016.

A. Carella, G. Vives, T. Cox, J. Jaud, G. Rapenne et al., Eur. J. Inorg. Chem, pp.980-987, 2006.

R. Huisgen and K. Bast, Org. Synth. 1973, Coll, vol.42, p.650, 1962.

C. Rüchardt, J. Sauer, and R. Sustmann, Helv. Chim. Acta, vol.88, pp.1154-1184, 2005.

A. M. Sirven, R. Stefak, and G. Rapenne, Heterocycl. Commun, vol.21, pp.5-8, 2015.

T. Miyazaki, S. Kasai, Y. Ogiwara, and N. Sakai, Eur. J. Org. Chem, pp.1043-1049, 2016.

N. Sakai, K. Fujii, and T. Konakahara, Tetrahedron Lett, vol.49, pp.6873-6875, 2008.

T. W. Greene and P. G. Wuts, Protective Groups in Organic Synthesis, pp.552-554, 1999.

H. De-rouville, D. Villenave, and G. Rapenne, Tetrahedron, vol.66, pp.1885-1891, 2010.

S. Trofimenko, Chem. Rev, vol.93, pp.943-980, 1993.

C. Santini, M. Pellei, G. Lobbia, and G. Papini, Mini-Rev. Org. Chem, vol.7, pp.84-124, 2010.

C. Janiak, L. Braun, and F. Girgsdies, J. Chem. Soc, pp.3133-3136, 1999.

C. Janiak, Main Group Met. Chem, vol.21, pp.33-49, 1998.

M. Kitamura, Y. Takenaka, T. Okuno, R. Holl, and B. Wünsch, Eur. J. Org. Chem, pp.1188-1192, 2008.

K. Tsuda, K. Miyata, T. Okuno, M. Yoshimura, S. Tanaka et al., Tetrahedron Lett, vol.49, pp.2990-2993, 2008.

G. Erbland, Y. Gisbert, G. Rapenne, and C. Kammerer, Eur. J. Org. Chem, pp.4731-4739, 2018.

D. Mössinger, D. Chaudhuri, T. Kudernac, S. Lei, S. De et al., J. Am. Chem. Soc, vol.132, pp.1410-1423, 2010.

K. Kobayashi, N. Kobayashi, M. Ikuta, B. Therrien, S. Sakamoto et al., J. Org. Chem, vol.70, pp.749-752, 2005.

W. Gong, G. Ning, X. Li, L. Wang, and Y. Lin, J. Org. Chem, vol.70, pp.5768-5770, 2005.

A. A. Bumber, G. A. Dushenko, I. A. Profatilova, A. A. Arutyunyants, and I. E. Mikhailov, Russ. J. Electrochem, vol.36, pp.553-556, 2000.

A. Klapars and S. L. Buchwald, J. Am. Chem. Soc, vol.124, pp.14844-14845, 2002.

A. Klapars, J. C. Antilla, X. Huang, and S. L. Buchwald, J. Am. Chem. Soc, vol.123, pp.7727-7729, 2001.

N. Miyaura, K. Yamada, and A. Suzuki, Tetrahedron Lett, vol.20, pp.3437-3440, 1979.

S. Kotha, K. Lahiri, and D. Kashinath, Tetrahedron, vol.58, pp.9633-9695, 2002.

A. A. Braga, N. H. Morgon, G. Ujaque, A. Lledos, and F. Maseras, J. Organomet. Chem, vol.691, pp.4459-4466, 2006.

A. J. Lennox and G. C. Lloyd-jones, Chem. Soc. Rev, vol.43, pp.412-443, 2014.

C. Amatore, A. Jutand, and G. L. Duc, Chem. Eur. J, vol.17, pp.2492-2503, 2011.

B. P. Carrow and J. F. Hartwig, J. Am. Chem. Soc, vol.133, pp.2116-2119, 2011.

A. F. Schmidt, A. A. Kurokhtina, E. V. Larina, and R. J. , Gen. Chem, vol.81, pp.1573-1574, 2011.

G. Vives, A. Gonzalez, J. Jaud, J. Launay, and G. Rapenne, Chem. Eur. J, vol.13, pp.5622-5631, 2007.

C. Adamo, C. Amatore, I. Ciofini, A. Jutand, and H. Lakmini, J. Am. Chem. Soc, vol.128, pp.6829-6836, 2006.

M. Kosugi, M. Kameyama, and T. Migita, Chem. Lett, vol.12, pp.927-928, 1983.

D. L. Boger and J. S. Panek, Tetrahedron Lett, vol.25, pp.3175-3178, 1984.

A. S. Guram and S. L. Buchwald, J. Am. Chem. Soc, vol.116, pp.7901-7902, 1994.

A. S. Guram, R. A. Rennels, and S. L. Buchwald, Angew. Chem. Int. Ed, vol.34, pp.1348-1350, 1995.

J. P. Wolfe, S. Wagaw, J. Marcoux, and S. L. Buchwald, Acc. Chem. Res, vol.31, pp.805-818, 1998.

J. Louie and J. F. Hartwig, Tetrahedron Lett, vol.36, pp.3609-3612, 1995.

P. Ruiz-castillo and S. L. Buchwald, Chem. Rev, vol.116, pp.12564-12649, 2016.

E. R. Strieter, B. Bhayana, and S. L. Buchwald, J. Am. Chem. Soc, vol.131, pp.78-88, 2009.

E. ,

G. P. Sperotto, G. Van-klink, J. G. Van-koten, and . De-vries, Dalton Trans, pp.39-10338, 2010.

G. O. Jones, P. Liu, K. N. Houk, and S. L. Buchwald, J. Am. Chem. Soc, vol.132, pp.6205-6213, 2010.

P. P. Bag, D. Wang, Z. Chen, and R. Cao, Chem. Commun, vol.52, pp.3669-3672, 2006.

Y. Lei, W. Xiaojun, G. Ting, Y. Wei, P. Junbiao et al., CN107365294 (A), 2017.

A. Loudet and K. Burgess, Chem. Rev, vol.107, pp.4891-493, 2007.

A. C. Benniston, G. Copley, K. J. Elliott, R. W. Harrington, and W. Clegg, Eur. J. Org. Chem, pp.2705-2713, 2008.

M. Wang, M. G. Vicente, D. Mason, and P. Bobadova-parvanova, ACS Omega, vol.3, pp.5502-5510, 2018.

Z. Yin, A. Y. Tam, K. M. Wong, C. Tao, B. Li et al., Dalton Trans, vol.41, pp.11340-11350, 2012.

A. A. Vladimir, A. Schlegel, and F. Diederich, Angew. Chem. Int. Ed, vol.44, pp.4635-4638, 2005.

A. Meares, A. Satraitis, N. Santhanam, Z. Yu, and M. Ptaszek, J. Org. Chem, vol.80, pp.3858-3869, 2015.

M. Benstead, G. A. Rosser, A. Beeby, G. H. Mehl, and R. W. Boyle, Photochem. Photobiol. Sci, vol.10, pp.992-999, 2011.

R. W. Wagner and J. S. Lindsey, Pure Appl. Chem, vol.68, pp.1373-1380, 1996.

S. L. Raut, J. D. Kimball, R. Fudala, I. Bora, R. Chib et al., Phys. Chem. Chem. Phys, vol.18, pp.4535-4540, 2016.

N. W. Smith, A. Alonso, C. M. Brown, and S. V. Dzyuba, Biochem. Biophys. Res. Commun, vol.391, pp.1455-1458, 2010.

E. Avellanal-zaballa, G. Durán-sampedro, A. Prieto-castañeda, A. R. Agarrabeitia, I. García-moreno et al., Phys. Chem. Chem. Phys, vol.19, pp.13210-13218, 2017.

E. Xochitiotzi-flores, A. A. Islas-mejía, H. García-ortega, M. Romero-Ávila, J. M. Mendez-stivalet et al., J. Organomet. Chem, vol.805, pp.148-157, 2016.

L. Cassar, J. Organomet. Chem, vol.93, pp.253-257, 1975.

H. A. Dieck and R. F. Heck, J. Organomet. Chem, vol.93, pp.259-263, 1975.

K. Sonogashira, Y. Tohda, and N. Hagihara, Tetrahedron Lett, vol.16, pp.4467-4470, 1975.

R. Chinchilla and C. Najera, Chem. Soc. Rev, vol.40, pp.5084-5121, 2011.

M. Gazvoda, M. Virant, B. Pinter, and J. Ko?mrlj, Nature Commun, vol.9, pp.1-9, 2018.

, Résultats non publiés obtenus par le Dr Seifallah Abid

J. Clayden, N. Greeves, S. Warren, and O. Chemisry, , 2000.

L. H. Davies, B. Stewart, R. W. Harrington, W. Clegg, and L. J. Higham, Angew. Chem. Int. Ed, vol.51, pp.4921-4924, 2012.

A. Sutter, M. Elhabiri, and G. Ulrich, Chem. Eur. J, vol.24, pp.11119-11130, 2018.

C. Goze, G. Ulrich, and R. Ziessel, J. Org. Chem, vol.72, pp.313-322, 2007.

Z. N. Zahran, E. A. Mohamed, and Y. Naruta, Scientific Reports, pp.1-12, 2016.

T. Osako and Y. Uozumi, Org. Lett, vol.16, pp.5866-5869, 2014.

D. B. Pacardo and M. R. Knecht, Catal. Sci. Technol, vol.3, pp.745-753, 2013.

X. Tan, Z. J. Zhou, J. X. Zhang, and X. H. Duan, Eur. J. Org. Chem, pp.5153-5157, 2014.

C. A. Merlic and W. M. Roberts, Tetrahedron Lett, vol.34, pp.7379-7382, 1993.

B. Betzemeier and P. Knochel, Angew. Chem. Int. Ed, vol.36, pp.2623-2624, 1997.

R. Martin and S. L. Buchwald, J. Am. Chem. Soc, vol.129, pp.3844-3845, 2007.

K. Lin, R. J. Wiles, C. B. Kelly, G. H. Davies, and G. A. Molander, , vol.7, pp.5129-5133, 2017.

C. C. Ho, A. Olding, J. A. Smith, and A. C. Bissember, Organomet, vol.37, pp.1745-1750, 2018.

J. Xie, K. Sekine, S. Witzel, P. Krämer, M. Rudolph et al., Angew. Chem. Int. Ed, vol.57, pp.16648-16653, 2018.

R. Kanazawa, M. Taguchi, T. Nakashima, and T. Kawai, ) ? 5 -1,2,3,4,5-Penta-(3,5-di-tert-butylbiphenyl)cyclopentadienyl hydrotris{6-[(ethylsulfanyl)methyl]indazol-1-yl}borate ruthenium (II) 3,5-Di-tert-butylphenylboronic acid (2 x 77 mg) was used as coupling partner. The crude product was purified by column chromatography (SiO2, cyclohexane/CH2Cl2 70:30), New J. Chem, vol.39, issue.22, pp.7397-7402, 2015.

C. Mhz, 25 °C): ? = 8.06 (br. s, ~3H, Ha), 7.93 (br. s, 3H, Hd), 7.62 (d, 3 J = 8.5 Hz, 10H, Hh), 7.39 (m, 25H, Hi, Hj and Hk), vol.7

, 01 (dd, 3 J = 8.4 Hz, 4 J = 1.4 Hz, 3H, Hc), 3.91 (s, 6H, He), 2.48 (q, 3 J = 7.4 Hz, 6H, Hf), 1.32 (s, 90H, Hl), 1.29 (t, 3 J = 7.4 Hz, 9H, Hg) ppm. 13 C{ 1 H} NMR (125 MHz, vol.2, p.25

, ? = 151.7 (C 18 ), vol.144, p.17

, 6-di-tert-butylcarbazol-9-yl)phenyl}cyclopentadienyl hydrotris{6-[(ethylsulfanyl)methyl]indazol-1-yl}borate ruthenium (II) Conditions A (starting from penta-arylbromide 2) In a dry Schlenk tube under argon, pentaarylbromide 2 (25 mg, 16 µmol, 1.0 equiv, vol.3, p.10

, CuI (3 mg, 16 µmol, 1.0 equiv, pp.3-4

, 33 µmol, 2.0 equiv.) were successively introduced and degassed anhydrous dioxane (2 mL) was added. The resulting suspension was stirred at 110 °C for 48 h in the dark and the completion of the reaction was monitored by TLC. The reaction mixture was cooled to room temperature, filtered through a celite pad (using CH2Cl2) and the solvents evaporated in vacuo. The residue was purified by column chromatography, (36.5 mg, 160 µmol, 10 equiv.) and (?)-trans-1,2-cyclohexanediamine (4 µL

. C135h159bn6rus3, , pp.2073-82

. C165h174bn11rus3, , pp.2519-2553

, Rf = 0.5 (cyclohexane/CH2Cl2 50:50) 1 H NMR (300 MHz, CD2Cl2, 25 °C): ? = 8.50 (br. s, 1H, NH), 8.21 (m, 6H, Hc and Hf), vol.7

, Hz, 4 J = 2.0 Hz, 2H, Hb), vol.7

, Hz, 5 J = 0.7 Hz, 4H, Hd), 1.48 (s, 36H, Hg) ppm. 13 C{ 1 H} NMR (125 MHz, CD2Cl2, 25 °C): ? = 143.0 (C 10 ), 140.6 (C 7 ), vol.139

, 7 mmol, 2.1 equiv.) in dry DMF (14 mL) was slowly added at 0 °C to a solution of carbazole (2 g, 11.6 mmol, 1.0 equiv.) in dry DMF (14 mL). The reaction mixture was stirred at 0 °C for 2 h and was then poured into ice water, 9H-carbazole In a dry Schlenk tube under argon, a solution of Nbromosuccinimide, p.27

, CD2Cl2, 25 °C): ? = 8.30 (br. s, 1H, NH), 8.15 (dt, 4 J = 2.0 Hz, 5 J = 0.6 Hz, vol.2

, 91 mmol, 3.0 equiv.) in acetone (6 mL) was slowly added to a solution of 3,6-dibromo-9H-carbazole 27 (1 g, 2.98 mmol, 1.0 equiv.) and KOH (0.590 g, 8.91 mmol, 3.0 equiv.) in acetone (10 mL) under argon. The reaction mixture was refluxed for 15, pp.p-toluenesulfonylchloride

, After cooling to room temperature, acetone was removed under vacuum. CH2Cl2 (25 mL) was added and the organic phase was washed with ice water (3x25 mL), dried over anhydrous Na2SO4, filtered and evaporated to dryness, p.28

P. Moonsin, N. Prachumrak, R. Rattanawan, T. Keawin, S. Jungsuttiwong et al., Chem. Commun, vol.48, pp.3382-3384, 2012.

P. P. Bag, D. Wang, Z. Chen, and R. Cao, Chem. Commun, vol.52, pp.3669-3672, 2006.

. C12h7br2n,

. C19h13br2no2s, , pp.419-438

, 65 (d, 3 J = 8.5 Hz, 2H, Hd), 7.62 (dd, 3 J = 8.9 Hz, 4 J = 2.0 Hz, 2H, Hb), 7.14 (d, 3 J = 8.5 Hz, 2H, He), 2.30 (s, 3H, Hf) ppm. The data match those reported in the literature. 51 (29) 3,6-Bis[3',6'-di-(tert-butyl)carbazo-9, Hz, 5 J = 0.5 Hz, 2H, Ha), 7.99 (dd, 4 J = 2.0 Hz, 5 J = 0.5 Hz, 2H, Hc), vol.7, p.4

, g, 6.26 mmol, 6.0 equiv.), K3PO4 (2.31 g, 10.89 mmol, 10.5 equiv.) and CuI (44 mg, 0.23 mmol, 0.2 equiv.) in dry toluene (15 mL) was degassed for 5, vol.3

, min. (±)-Trans-1

, The solvent was removed under vacuum. CH2Cl2 (25 mL) was added and the resulting organic phase was washed with water (25 mL). The aqueous phase was then extracted with dichloromethane (2 x 25 mL) and the combined organic phases were washed with brine (25 mL), dried over anhydrous Na2SO4, filtered and evaporated to dryness, mmol, 0.4 equiv.) was then added and the reaction mixture was heated at 110 °C for 48 h (the completion of the reaction was monitored by TLC)

, Rf = 0.66 (CH2Cl2/MeOH 30:70)

C. Mhz, 25 °C): ? = 8.59 (dd, 3 J = 8.9 Hz, 5 J = 0.6 Hz, 2H, Ha), vol.8

, 2H, Hc), 7.93 (d, 3 J = 8.4 Hz, 2H, Hh), 7.77 (dd, 3 J = 8.9 Hz, 4 J = 2.2 Hz, 2H, Hb), 7.47 (dd, 3 J = 8.7 Hz, 4 J = 2.0 Hz, 4H, He), vol.7

, 127.1 (C 16 ), vol.139, p.17

, 1 (C 14 ), 21.8 (C 19 ) ppm. The data match those reported in the literature, vol.32

S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee et al., Nature Materials, vol.14, pp.330-336, 2015.

P. Moonsin, N. Prachumrak, R. Rattanawan, T. Keawin, S. Jungsuttiwong et al., Chem. Commun, vol.48, pp.3382-3384, 2012.

, C59H61N3O2S, pp.527-60

H. 2h, 53 (s, 6H, Hf), 2.31 (q, 3 J = 7.6 Hz, 4H, Hd), 1.32 (s, 6H, Hc), 0.99 (t, 3 J = 7.6 Hz, 6H, He) ppm. The data match those reported in the literature, vol.2

, THF (10 mL) and ethynyltrimethylsilane (3.24 mL, 22.8 mmol, 1.2 equiv.). The system was then degassed and heated overnight at 45 o C. After evaporation, the residue was adsorbed onto silica and purified by column chromatography, mol%) and CuI (11 mg, 0.06 mmol, 0.3 mol%) were successively introduced, followed by NEt3 (10 mL)

A. C. Benniston, G. Copley, K. J. Elliott, R. W. Harrington, and W. Clegg, Eur. J. Org. Chem, pp.2705-2713, 2008.

. C23h26bbrf2, , pp.459-478

. C12h14sio, , pp.202-235

H. Nmr, 19 (s, 1H, Ha), 2.54 (s, 6H, Hd), 2.31 (q, 3 J = 7.6 Hz, 4H, He), 1.31 (s, 6H, Hg), 0.99 (t, 3 J = 7.6 Hz, 6H, Hf) ppm. 13 C{ 1 H} NMR (125 MHz, CDCl3, 25 °C): ? = 154.2 (C 11 ), 300 MHz, CDCl3, 25 °C): ? = 7.63 (d, 3 J = 8.4 Hz, 2H, Hb), 7.28 (d, 3 J = 8.4 Hz, 2H, Hc), vol.3

F. Nmr, 282 MHz, CD2Cl2, 25 °C): ? = -145.7 (q, J ( 11 B-19 F) = 33.1 Hz) ppm, vol.11

C. Mhz, 25 °C): ? = 30.7, 0.8 (t, J, pp.11-19

, 2-dioxaborolan-2-yl)phenyl]-4-bora-3a,4a-diaza-s-indacene To a solution of 4, vol.2, pp.5-6, 2004.

, CH2Cl2 (360 mL) under argon, trifluoroacetic acid (30 µL, 0.404 mmol, 0.1 equiv.) was added

, The solution immediately turned dark purple and was stirred for an additional 30 min at room temperature. Triethylamine (13 mL, 93.5 mmol, 21 equiv

, 6 equiv.). The resulting mixture was washed with water (3 x 500 mL), dried over Na2SO4, filtered and evaporated to afford a dark oil. The crude product was purified by column chromatography, BF3·OEt2 was then added dropwise until green reflects appeared in the solution (added volume: 9 mL, i.e. 71.7 mmol, p.16

H. Nmr, 31 (d, 3 J = 8.2 Hz, 2H, Hc), 2.49 (s, 6H, Hd), 2.32 (q, 3 J = 7.5 Hz, 4H, He), 1.38 (s, 12H, Ha), 300 MHz, CD2Cl2, 25 °C): ? = 7.88 (d, 3 J = 8.2 Hz, 2H, Hb), vol.7

, C{ 1 H} NMR (125 MHz, CD2Cl2, 25 °C): ? = 154.0 (C 11 ), vol.140

N. W. Smith, A. Alonso, C. M. Brown, and S. V. Dzyuba, Biochem. Biophys. Res. Commun, vol.391, pp.1455-1458, 2010.

M. Koepf, A. Trabolsi, M. Elhabiri, J. A. Wytko, D. Paul et al., Org. Lett, vol.7, pp.1279-1282, 2005.

, J ( 11 B-19 F) = 33.3 Hz) ppm. HRMS (ESI+): calcd. for C29H39B2F2N2O2

, 7-tetramethyl-4-bora-3a,4a-diaza-s-indacen-8-yl]-4,4'-biphenyl}cyclopentadienyl hydrotris{6-[(ethylsulfanyl)methyl]indazol-1-yl}borate ruthenium (II) C180H184B6F10N16RuS3, vol.5, pp.3023-70

, 33 µmol, 1.0 equiv.), palladium(II) acetate (2.5 mg, 11 µmol, 0.3 equiv.), K3PO4 (70 mg, 330 µmol, 10 equiv.), the arylboronic acid pinacol ester 38 (166 mg, 328 µmol, 10 equiv.) and 2-dicyclohexylphosphino-2?-6?-dimethoxybiphenyl (SPhos) (8 mg, 19.5 µmol, 0.6 equiv.) were successively

, The resulting suspension was stirred at 100 °C for 48 h and the completion of the reaction was monitored by TLC. The reaction mixture was cooled to room temperature, filtered through a celite pad (using ethyl acetate) and the solvents evaporated in vacuo. The crude product was purified by column chromatography (SiO2, CH2Cl2/MeOH 0-5%) followed by precipitation in a CH2Cl2

, Rf = 0.58 (CH2Cl2/CH3OH 95:5) 1 H NMR (500 MHz, CD2Cl2, 25 °C): ? = 8.09 (s, 3H, Ha), 7.97 (br. s, 3H, Hd), 7.76-7.67 (m, 20H, Hh and Hj), vol.7, p.3

3. Hz and ). Hc, 94 (s, 6H, He), 2.50 (q, 3 J = 7.4 Hz, 6H, Hf), 2.47 (s, 30H, Ho), vol.3

, C{ 1 H} NMR (125 MHz, CD2Cl2, 25 °C): ? = 154.1 (C 24 ), vol.144

, CD2Cl2, 25 °C): ? = 0.7 (t, J ( 11 B-19 F) = 33.3 Hz) ppm. UV/Vis (C6H12): ?max (?) = 280 (9900), 528 nm (15000 mol ?1 dm 3 cm ?1 ). HRMS (MALDI): calcd, = 33.3 Hz) ppm. 11 B NMR (96 MHz

, )phenyl)cyclopentadienyl hydrotris{6-[(ethylsulfanyl)methyl]indazol-1-yl}borate ruthenium (II) In a dry Schlenk tube under argon, penta-aryliodide 18 (20 mg, 11.4 ?mol, 1.0 equiv.), Pd(PPh3)2Cl2 (4 mg, 5.68 ?mol, 0.5 equiv.) and CuI (0.6 mg, 3.4 ?mol, 0.3 equiv.) were successively introduced and dry NEt3 (2 mL) was added followed by ethynyltrimethylsilane (16.2 µL, 0.114 mmol, 10 equiv.). The resulting mixture was degassed for 15 min and then heated for 24 h at 45 °C. After evaporation, the residue was purified by column chromatography

, ) was then directly dissolved in a MeOH/CH2Cl2 (3:1) solution (8 mL) and K2CO3 (15 mg, 46.5 µmol, 15 equiv.) was added. After stirring for 12 h at room temperature, the solution was quenched with H2O and the aqueous layer was extracted with CH2Cl2. The combined organic layers were then washed with brine

, µmol, 99%) as a yellow solid

, Rf = 0.56 (CH2Cl2/cyclohexane 1:1) 1 H NMR (300 MHz, CD2Cl2, 25 °C): ? = 7.88 (br. s, 3H, Hd), 7.83 (d, 4 J = 0.7 Hz, 3H, Ha)

1. Hz and ). Hi, , vol.7

, C{ 1 H} NMR (125 MHz, CD2Cl2, 25 °C): ? = 144.0 (C2), 140.7 (C1), 138.1 (C5), vol.134

, 133.8 (C13), 131.5 (C14), 122.7 (C4), 122.5 (C7), 121.6 (C15), 120.4 (C3), 111.3 (C6), vol.87

. C75h59bn6rus3, , pp.1252-1283

, H11), 7.89-7.86 (m, 6H, H5 + H5'), 7.81 (d, 3 J = 8.4 Hz, 2H, H12), 7.74-7.71 (m, 3H, H4 + H4'), 3.27 (s, 1H, H15), 1.48 (s, 54H, H1 + H1') ppm. 13 C{ 1 H} NMR (126 MHz, CDCl3, 25 °C): ? = 149.1 (C3 + C3'),143.0 (C?), vol.142

, 132.6 (C?), 132.5 (C?), 131.6 (C?), 130.8 (C12), vol.128, p.0

, found 1031.5498. The data match those reported in the literature, HRMS, vol.13, issue.45, p.15

, To a solution of freshly distilled pyrrole (1.0 mL, vol.14, p.31

, -dioxaborolan-2-yl)benzaldehyde (0.83 g, 3.58 mmol, 1.0 equiv.) and BF3?OEt2 (0.54 mL, 4.30 mmol, 1.2 equiv.) were added under argon. After stirring the reaction mixture, anhydrous CHCl3 (1.5 L), vol.3, p.82

, After cooling to room temperature, the crude product was washed with water and evaporated to dryness. Then, the residue was purified by column chromatography

, ) 1 H NMR (300 MHz, CDCl3, 25 °C): ? = 8.92-8.80 (m, 8H, H?), vol.8

, C{ 1 H} NMR (75 MHz, CDCl3, 25 °C): ? = 148, vol.8

M. M. Martin, M. Dill, J. Langer, and N. Jux, J. Org. Chem, vol.84, pp.1077-1113, 2019.

, Rf = 0.7 (heptane/CH2Cl2 2:1) 1 H NMR (300 MHz, CDCl3, 25 °C): ? = 8.98 (m, 6H, H?), vol.8, p.1

+. H1', 63 (s, 2H, HNH) ppm. 13 C{ 1 H} NMR (75 MHz, CDCl3, 25 °C): ? = 148, vol.9

S. Arora, R. Nagpal, P. Chauhan, and S. M. Chauhan, New J. Chem, vol.40, 2016.

. C405h429bn26ni5rus3, , pp.6162-6168

, In a dry Schlenk tube under argon, penta-arylbromide 2 (10 mg, 6.6 ?mol, 1.0 equiv.), nickel porphyrin 43 (56 mg

, 12 equiv.) were successively introduced in 2 mL of a preliminary degassed solution of DMF and water (99:1). The resulting mixture was heated for 48 h at 100 °C. The reaction mixture was then allowed to cool to room temperature and the solvents were evaporated in vacuo. The residue was adsorbed onto silica and further purified by column chromatography

, 36 (s, 3H, H1), 8.15 (s, 3H, H6), Rf = 0.5 (heptane/CH2Cl2 1:1) 1 H NMR (500 MHz, CD2Cl2, 25 °C): ? = 8.83-8.74 (m, 40H, H?), vol.8

2. Hz,

. Hz, 10H, H4'), 7.57 (d, 3 J = 8.5 Hz, 3H, H3), vol.7

, C6'), 140.1 (C13'), 140.0 (C15), 137.6 (C5), 135.1 (C13), 134.7 (C11'), 134.1 (C12),132.7 (C?), 132.6 (C?), 132.5 (C?), 132.1 (C?), 129.1 (C5'), 129.1 (C5''), 126.6 (C14), 125.8 (C12'), vol.140

. C415h429bn26ni5rus3, , pp.6282-71

, CuI (0.3 mg, 1.7 ?mol, 0.3 equiv.) were successively introduced and dry NEt3 (2 mL) was added. The resulting mixture was degassed for 15 min and then heated for, vol.24

, After evaporation, the residue was adsorbed onto silica and further purified by column chromatography (SiO2, cyclohexane/CH2Cl2 4:1) to afford molecular gear 49 (22 mg, vol.3

, µmol, 62%) as a red solid

, 1 H NMR (500 MHz, CD2Cl2, 25 °C): ? = 8.80-8.75 (m, 40H, H?), vol.8

, J = 8.3 Hz, 10H, H13), vol.7

, Lopez-Arbeloa et al. ont également décrit que le coefficient d'extinction molaire pour les molécules P2ArAc et P3ArAc ne comportant qu'un seul motif BODIPY est de 70 000 mol -1 .L.cm -1 et qu'il est quasiment doublé pour la molécule comportant deux motif BODIPY P3ArP. Cela montre que l'absorption des deux BODIPY de P3ArP est additive et donc qu'il n'y a aucune délocalisation de l'énergie d'excitation entre les deux BODIPY. 18 De manière intéressante notre engrenage penta-BODIPY montre un coefficient d'extinction molaire environs de, 6275.9507, found 6275.9233. En effet, Lopez-Arbeloa et al. ont décrit plusieurs BODIPY substitués par un groupement aryle (P2ArAc), deux aryles (P3ArAc) ou deux motif BODIPY avec un espaceur, vol.132, p.0

, Le coefficient d'extinction molaire est donc 17 fois moins important qu'attendu s'il n'y avait aucune délocalisation de l'énergie d'excitation entre les diffférents BODIPYs. Si l'on tient compte des conclusions de Lopez-Arbeloa et al., cette diminution drastique pourrait s'expliquer par une délocalisation de l

, En effet l'étude de Ziessel et al. sur des complexes de ruthénium avec des ligands bipyridines ou terpyridines fonctionnalisés par des BODIPYs montrent l'existence d'une absorption entre 430 et 510 nm qu'ils attribuent à un transfert de charge du ligand cyclopentadiène vers le centre métallique (LMCT). 19 Ce transfert de charge est à l'origine d'un phénomène de phosphorescence sur ces molécules. L'épaulement présent vers 497 nm (7 700 mol -1 .L.cm -1 )

M. Galletta, F. Puntoriero, S. Campagna, C. Chiorboli, M. Quesada et al., J. Phys. Chem. A, vol.110, pp.4348-4358, 2006.

, La première vague correspond donc à l'oxydation simultanée des ferrocènes avec un potentiel d, le rapport de 5:1 entre les deux vagues d'oxydations correspond bien au rapport fer -ruthénium dans la molécule, p.49

. V/ecs, Ce potentiel est en accord avec celui déjà observé avec la molécule analogue 19' ayant non pas un tripode fonctionnalisé par des groupements thioéther mais des groupements éthylester, p.47

. V/ecs, L'effet de la fonctionnalisation est davantage visible sur le potentiel rédox du ruthénium puisqu'il est plus proche, vol.19

. V/ecs, Les substituants présents sur les fragments indazoles du ligand tripode a donc un impact important sur le potentiel rédox du ruthénium. Notons que les groupements thioéther, puisque séparés des indazoles par un groupement CH2, n'ont pas d'influence sur le potentiel rédox. Celui-ci est, ce qui est beaucoup plus bas que celui observé dans le cas de 19' (0.89 V/ECS), p.78

. V/ecs,

. Dans-le, engrenage pentaéthynylporphyrine 49, le rapport entre les deux vagues d'oxydation est de 1:10. De manière similaire aux molécules 2, 2' et 19, p.78

V. Au, couple rédox du ruthénium et la seconde à 0,97 V/SCE, à l'oxydation à deux électrons de la porphyrine de nickel

, Seule l'engrenage comprenant cinq pales BODIPY périphériques présente en UV-Visible un effet non cumulatif des contributions des groupements BODIPYs. Une analyse photophysique plus poussée et une étude en voltamètrie cyclique devrait être réalisée afin de déterminer l'origine de ce phénomène, D'une manière générale les analyses UV-Visible et en voltamétrie cyclique sont en accord avec les observations déjà faites dans le groupe et sont conformes à la littérature

D. Chang, T. Malinski, A. Ulman, and K. M. Kadish, Inorg. Chem, vol.23, pp.817-824, 1984.