. Constantin-camelia, . Ryadh, . Grossetti-quentin, and . Du-mouza-cédric, Finding Users of Interest in Micro-blogging Systems, International Conference on Extending Database Technology, EDBT, 2016.

. Constantin-camelia, . Ryadh, D. U. Grossetti-quentin, and . Mouza,

. Grossetti-quentin, T. Cédric, . Nicolas, ;. Tweet, . Grossetti-quentin et al., TRAVERS Nicolas. An Homophily-based Approach for Fast Post Recommendation in Microblogging Systems, TRAVERS Nicolas. Community-based Recommendations on Twitter : Avoiding The Filter Bubble. Under Review : International Conference on Extending Database Technology, EDBT, 2016.

J. Ahn, P. Brusilovsky, and J. Grady, Daqing He, and Sue Yeon Syn. Open user profiles for adaptive news systems : help or harm ?, Proceedings of the 16th international conference on World Wide Web, pp.11-20, 2007.

W. Faiyaz-al-zamal, D. Liu, and . Ruths, Homophily and latent attribute inference : Inferring latent attributes of twitter users from neighbors, ICWSM, vol.270, 2012.

E. Bakshy, S. Messing, and . Adamic, Exposure to ideologically diverse news and opinion on facebook, Science, vol.348, issue.6239, pp.1130-1132, 2015.

P. Barberá, T. John, J. Jost, J. A. Nagler, R. Tucker et al., Tweeting from left to right : Is online political communication more than an echo chamber ? Psychological science, vol.26, pp.1531-1542, 2015.

P. Bhattacharya, M. Bilal-zafar, N. Ganguly, and S. Ghosh,

K. P. Gummadi, Inferring User Interests in the Twitter Social Network, Proc

. Intl and . Conf, on Recommender Systems (RECSYS), pp.357-360, 2014.

D. Billsus, J. Michael, and . Pazzani, User modeling and user-adapted interaction, vol.10, pp.147-180, 2000.

D. Vincent, J. Blondel, R. Guillaume, E. Lambiotte, and . Lefebvre, Fast unfolding of communities in large networks, Journal of statistical mechanics : theory and experiment, issue.10, p.10008, 2008.

L. Bohlin, D. Edler, A. Lancichinetti, and M. Rosvall, Community Detection and Visualization of Networks with the Map Equation Framework, pp.3-34

N. A. Bonafous, La Rhétorique d'Aristote. Traduite en français avec le texte en regard, et suivie de notes philologiques et littéraires par Norbert Bonafous. 1856

D. John-s-breese, C. Heckerman, and . Kadie, Empirical analysis of predictive algorithms for collaborative filtering, Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pp.43-52, 1998.

R. Burke, Hybrid recommender systems : Survey and experiments. User modeling and user-adapted interaction, vol.12, pp.331-370, 2002.

Ò. Celma and X. Serra, Foafing the music : Bridging the semantic gap in music recommendation, Web Semantics : Science, Services and Agents on the World Wide Web, vol.6, issue.4, pp.250-256, 2008.

Ò. Celma, M. Ramírez, and P. Herrera, Foafing the music : A music recommendation system based on rss feeds and user preferences, ISMIR. Citeseer, 2005.

S. Han-seng-chee, J. Han, and K. Wang, Rectree : An efficient collaborative filtering method, International Conference on Data Warehousing and Knowledge Discovery, pp.141-151, 2001.

. Cisco, The zettabyte era : Trends and analysis, 2017.

E. Colleoni, A. Rozza, and A. Arvidsson, Echo Chamber or Public Sphere ? Predicting Political Orientation and Measuring Political Homophily in Twitter Using Big Data, Jour. of Communication, vol.64, issue.2, pp.317-332, 2014.

M. Conover, J. Ratkiewicz, R. Matthew, B. Francisco, F. Gonçalves et al., Political polarization on twitter. Icwsm, vol.133, pp.89-96, 2011.

P. Covington, J. Adams, and E. Sargin, Deep neural networks for youtube recommendations, Proceedings of the 10th ACM Conference on Recommender Systems, pp.191-198, 2016.

L. Campos, J. M. Fernández-luna, J. F. Huete, and M. A. Rueda-morales, Combining content-based and collaborative recommendations : A hybrid approach based on bayesian networks, International Journal of Approximate Reasoning, vol.51, issue.7, pp.785-799, 2010.

P. Marco-de-gemmis, C. Lops, F. Musto, G. Narducci, and . Semeraro, Semantics-aware content-based recommender systems, Recommender Systems Handbook, pp.119-159, 2015.

M. Deshpande and G. Karypis, Item-based top-n recommendation algorithms, ACM Transactions on Information Systems (TOIS), vol.22, issue.1, pp.143-177, 2004.

S. Dieleman, Recommending music on spotify with deep learning, 2014.

D. Dinucci and . Fragmentedfuture, , vol.4, p.32, 1999.

E. Dubois and G. Blank, The echo chamber is overstated : the moderating effect of political interest and diverse media. Information, vol.21, pp.729-745, 2018.

A. Mamdouh-elkahky, Y. Song, and X. He, A multi-view deep learning approach for cross domain user modeling in recommendation systems, Proceedings of the 24th International Conference on World Wide Web, pp.278-288, 2015.

S. Flaxman, S. Goel, and J. M. Rao, Filter bubbles, echo chambers, and online news consumption, Public Opinion Quarterly, vol.80, issue.S1, pp.298-320, 2016.

S. Fortunato, Community detection in graphs, Physics reports, vol.486, issue.3-5, pp.75-174, 2010.

S. Funk, Netflix update : Try this at home

C. Gini, Variabilità e mutabilità. Libreria Eredi Virgilio Veschi, 1912.

S. Goel, W. Mason, and D. Watts, Real and perceived attitude agreement in social networks, Journal of personality and social psychology, vol.99, issue.4, p.611, 2010.

D. Goldberg, D. Nichols, M. Brian, D. Oki, and . Terry, Using collaborative filtering to weave an information tapestry, Communications of the ACM, vol.35, issue.12, pp.61-70, 1992.

Q. Grossetti and C. Constantin, Cédric du Mouza, and Nicolas Travers. Communitybased recommendations on twitter : Avoiding the filter bubble, Under Review

Q. Grossetti, Cédric Du Mouza, and Nicolas Travers. Tweet, retweet et follower : que recommander et à qui ? In AISR2017, 2017.

Q. Grossetti and C. Constantin, Cédric du Mouza, and Nicolas Travers. An homophily-based approach for fast post recommendation in microblogging systems, International Conference on Extending Database Technology, EDBT, pp.1-12, 2018.

. Grouplens,

A. Gunawardana and C. Meek, A unified approach to building hybrid recommender systems, Proceedings of the third ACM conference on Recommender systems, pp.117-124, 2009.

A. Gunawardana and G. Shani, A survey of accuracy evaluation metrics of recommendation tasks, Journal of Machine Learning Research, vol.10, pp.2935-2962, 2009.

P. Held, B. Krause, and R. Kruse, Dynamic clustering in social networks using louvain and infomap method, Third European Network Intelligence Conference, ENIC, pp.61-68, 2016.

L. Jonathan, J. A. Herlocker, A. Konstan, J. Borchers, and . Riedl, An algorithmic framework for performing collaborative filtering, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pp.230-237, 1999.

I. Himelboim, S. Mccreery, and M. Smith, Birds of a feather tweet together : Integrating network and content analyses to examine cross-ideology exposure on twitter, Journal of Computer-Mediated Communication, vol.18, issue.2, pp.154-174, 2013.

W. Huang, Z. Wu, L. Chen, P. Mitra, and C. Giles, A neural probabilistic model for context based citation recommendation, AAAI, pp.2404-2410, 2015.

Z. Huang, H. Chen, and D. Zeng, Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering, ACM Trans. Inf. Syst, vol.22, issue.1, pp.116-142, 2004.

K. Jeon-hyung-kang and . Lerman, Using Lists to Measure Homophily on Twitter, AAAI work. on Intelligent Techniques for Web Personalization and Recommendation, 2012. IBM. 10 key marketing trends for 2017 and ideas for exceeding customer expectations, 2017.

M. Jamali and M. Ester, A matrix factorization technique with trust propagation for recommendation in social networks, Proceedings of the fourth ACM conference on Recommender systems, pp.135-142, 2010.

G. Jawaheer, M. Szomszor, and P. Kostkova, Comparison of implicit and explicit feedback from an online music recommendation service, proceedings of the 1st international workshop on information heterogeneity and fusion in recommender systems, pp.47-51, 2010.

R. Jin, Y. Joyce, L. Chai, and . Si, An automatic weighting scheme for collaborative filtering, Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pp.337-344, 2004.

J. Karlgren, An algebra for recommendations : using reader data as a basis for measuring document proximity, 1990.

Y. Koren, R. Bell, and C. Volinsky, Matrix factorization techniques for recommender systems, Computer, vol.42, issue.8, 2009.

N. Koumchatzky and A. Andryeyev, Using deep learning at scale in twitter's timelines

H. Kwak, C. Lee, H. Park, and S. Moon, What is twitter, Proceedings of the 19th international conference on World wide web, pp.591-600, 2010.

G. Lekakos and P. Caravelas, A hybrid approach for movie recommendation. Multimedia tools and applications, vol.36, pp.55-70, 2008.

R. Lempel and S. Moran, The stochastic approach for link-structure analysis (salsa) and the tkc effect1, Computer Networks, vol.33, issue.1-6, pp.387-401, 2000.

K. Lerman, R. Ghosh, and T. Surachawala, Social Contagion : An Empirical Study of Information Spread on Digg and Twitter Follower Graphs, 2012.

H. Lieberman, An agent that assists web browsing. IJCAI (1), pp.924-929, 1995.

G. Linden, B. Smith, and J. York, Amazon. com recommendations : Item-to-item collaborative filtering, IEEE Internet computing, vol.7, issue.1, pp.76-80, 2003.

H. Ma, H. Yang, I. Michael-r-lyu, and . King, Sorec : social recommendation using probabilistic matrix factorization, Proceedings of the 17th ACM conference on Information and knowledge management, pp.931-940, 2008.

H. Ma, I. King, and M. R. Lyu, Learning to recommend with social trust ensemble, Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pp.203-210, 2009.

H. Ma, D. Zhou, C. Liu, I. Michael-r-lyu, and . King, Recommender systems with social regularization, Proceedings of the fourth ACM international conference on Web search and data mining, pp.287-296, 2011.

I. Mackenzie, How retailers can keep up with consumers, 2013.

C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard et al., The stanford corenlp natural language processing toolkit, Proceedings of 52nd annual meeting of the association for computational linguistics : system demonstrations, pp.55-60, 2014.

M. Mcpherson, L. Smith-lovin, and J. Cook, Birds of a feather : Homophily in social networks, Annual review of sociology, vol.27, issue.1, pp.415-444, 2001.

P. Melville, J. Raymond, R. Mooney, and . Nagarajan, Content-boosted collaborative filtering for improved recommendations, Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-2002, 2002.

T. Miranda, M. Claypool, A. Gokhale, T. Mir, P. Murnikov et al., Combining content-based and collaborative filters in an online newspaper, Proceedings of ACM SIGIR Workshop on Recommender Systems

. Citeseer, , 1999.

D. Mladenic, Text-learning and related intelligent agents : a survey. IEEE intelligent systems and their applications, vol.14, pp.44-54, 1999.

A. Narayanan and V. Shmatikov, How to break anonymity of the netflix prize dataset, 2006.

T. T. Nguyen, P. Hui, F. M. Harper, L. G. Terveen, and J. A. Konstan, Exploring the filter bubble : the effect of using recommender systems on content diversity, Proc. Intl. World Wide Web Conference (WWW), pp.677-686, 2014.

K. Oh, W. Lee, C. Lim, and H. Choi, Personalized news recommendation using classified keywords to capture user preference, Advanced Communication Technology (ICACT), pp.1283-1287, 2014.

, IEEE, 2014.

E. Pariser, Beware online "filter bubbles, 2011.

R. Bidyut-kr-patra, V. Launonen, S. Ollikainen, and . Nandi, A new similarity measure using bhattacharyya coefficient for collaborative filtering in sparse data. Knowledge-Based Systems, vol.82, pp.163-177, 2015.

J. Michael and . Pazzani, A framework for collaborative, content-based and demographic filtering, Artificial intelligence review, vol.13, issue.5-6, pp.393-408, 1999.

L. Plummer, This is how netflix's top-secret recommendation system works, 2017.

W. Quattrociocchi, A. Scala, and C. R. Sunstein, Echo chambers on facebook, 2016.

U. Nandini-raghavan, R. Albert, and S. Kumara, Near linear time algorithm to detect community structures in large-scale networks, Phys. Rev. E, vol.76, pp.36-47, 2007.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-thieme, Bpr : Bayesian personalized ranking from implicit feedback, Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pp.452-461, 2009.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, Grouplens : an open architecture for collaborative filtering of netnews, Proceedings of the 1994 ACM conference on Computer supported cooperative work, pp.175-186

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Application of dimensionality reduction in recommender system-a case study, 2000.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Item-based collaborative filtering recommendation algorithms, Proceedings of the 10th international conference on World Wide Web, pp.285-295, 2001.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Incremental singular value decomposition algorithms for highly scalable recommender systems, Fifth International Conference on Computer and Information Science, pp.27-28, 2002.

S. Schnettler, A structured overview of 50 years of small-world research, Social Networks, vol.31, issue.3, pp.165-178, 2009.

S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, Autorec : Autoencoders meet collaborative filtering, Proceedings of the 24th International Conference on World Wide Web, pp.111-112, 2015.

A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and J. L. Graphjet, Real-time Content Recommendations at Twitter. Proc. VLDB Endow, vol.9, pp.1281-1292, 2016.

A. Strehl and J. Ghosh, Cluster ensembles-a knowledge reuse framework for combining multiple partitions, Journal of machine learning research, vol.3, pp.583-617, 2002.

G. Takács and I. Pilászy, Bottyán Németh, and Domonkos Tikk. Major components of the gravity recommendation system, Acm Sigkdd Explorations Newsletter, vol.9, issue.2, pp.80-83, 2007.

D. Tang, B. Qin, T. Liu, and Y. Yang, User modeling with neural network for review rating prediction, IJCAI, pp.1340-1346, 2015.

A. Töscher, M. Jahrer, and R. Bell, The bigchaos solution to the netflix grand prize. Netflix prize documentation, pp.1-52, 2009.

A. Van-den-oord, S. Dieleman, and B. Schrauwen, Deep content-based music recommendation, Advances in neural information processing systems, pp.2643-2651, 2013.

H. Wang, N. Wang, and D. Yeung, Collaborative deep learning for recommender systems, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.1235-1244, 2015.

J. Wang, A. Vries, and . Reinders, Unifying user-based and item-based collaborative filtering approaches by similarity fusion, Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pp.501-508, 2006.

. Wearesocial, social media, mobile et e-commerce en 2018, 2017.

B. Wellman, The school child's choice of companions, The Journal of Educational Research, vol.14, issue.2, pp.126-132, 1926.

J. Weng, E. Lim, J. Jiang, and Q. He, TwitterRank : Finding Topic-sensitive Influential Twitterers, Proc. Intl. Conf. on Web Search and Data Mining (WSDM), pp.261-270, 2010.

B. Xu, M. Zhang, Z. Pan, and H. Yang, Content-based recommendation in e-commerce, International Conference on Computational Science and Its Applications, pp.946-955, 2005.

X. Yang, H. Steck, Y. Guo, and Y. Liu, On top-k recommendation using social networks, Proceedings of the sixth ACM conference on Recommender systems, pp.67-74, 2012.

X. Yang, H. Steck, and Y. Liu, Circle-based recommendation in online social networks, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.1267-1275, 2012.

X. Yang, Y. Guo, and Y. Liu, Bayesian-inference-based recommendation in online social networks, IEEE Transactions on Parallel and Distributed Systems, vol.24, issue.4, pp.642-651, 2013.

Q. Zhao, M. Harper, G. Adomavicius, and J. Konstan, Explicit or Implicit Feedback ? Engagement or Satisfaction ?, 2018.