M. Ney, Simulation électromagnétique -Modèles et optimisation

H. A. Mendez, « Shielding theory of enclosures with apertures

H. A. Bethe, Theory of Diffraction by Small Holes

W. Wallyn, « Fast shielding effectiveness prediction for realistic rectangular enclosures

C. Liang, « EM fields coupled into a cavity with a slot-aperture under resonant conditions

S. A. Schelkunoff, « Some Equivalence Theorems of EMs and Their Application to Radiation Problems

R. Harrington, « A generalized network formulation for aperture problems

M. Edrisi, Simple Methodology for Electric and Magnetic Shielding Effectiveness Computation of Enclosures for Electromagnetic Compatibility use

H. A. Bethe, Theory of Diffraction by Small Holes

H. W. Ott, Noise reduction techniques in electronic systems

S. Celozzi, Electromagnetic shielding

J. R. Solin, « Formula for the Field Excited in a Rectangular Cavity With a Small Aperture

R. E. Collin, Field theory of guided waves

M. P. Robinson, « SE of a rectangular enclosure with a rectangular aperture

H. A. Mendez, « Shielding theory of enclosures with apertures

, Cette corrélation entre le guide et la cavité est discutée entre autre au deuxième chapitre

J. D. Turner, « Characterisation of the SE of equipment cabinets containing Apertures

M. P. Robinson, « Analytical formulation for the SE of enclosures with apertures

R. Azaro, « Evaluation of the effects of an external incident electromagnetic wave on metallic enclosures with rectangular apertures

J. Van-bladel and I. Flintoft, Flintoft, I. « Fast and accurate intermediate-level modelling approach for EMC analysis of enclosures », « A fast and accurate intermediate level modelling approach for electromagnetic compatibility analysis of enclosures, Intermediate level tools for Emissions and Immunity, vol.68

T. Konefal, Improved aperture model for shielding prediction

T. Konefal, « A Fast Multiple Mode Intermediate Level Circuit Model for the Prediction of Shielding Effectiveness of a Rectangular Box Containing a Rectangular Aperture

T. Konefal, « A Fast Circuit Model Description of the Shielding Effectiveness of a Box With Imperfect Gaskets or Apertures Covered by Thin Resistive Sheet Coatings

L. C. Chirwa, « An Efficient and Reliable Shielding Effectiveness Evaluation of a Rectangular Enclosure With Numerous Apertures », « Fast calculation of the shielding effectiveness for a rectangular enclosure of finite wall thickness and with numerous small apertures, vol.37

D. Ren, « A Fast Calculation Approach for the SE of an Enclosure With Numerous Small Apertures

B. Nie, « An Improved Circuital Method for the Prediction of Shielding Effectiveness of an Enclosure With Apertures Excited by a Plane Wave

B. Nie, « An Efficient and Reliable Circuit Model for the SE Prediction of an Enclosure With an Aperture

X. Mao, An improved model of Robinson equivalent circuit analytical model

J. Shim, « Circuital Modeling and Measurement of Shielding Effectiveness Against Oblique Incident Plane Wave on Apertures in Multiple Sides of Rectangular Enclosure

C. Hao, Simplified Model of SE of a Cavity with Apertures on Different Sides

A. Shourvarzi, Using Aperture Impedance for Shielding Effectiveness Estimation of a Metallic Enclosure With Multiple Apertures on Different Walls Considering Higher Order Modes

M. Pedram, « Shielding Effectiveness of a Lossy Metallic Enclosure

B. Nie, « An Improved Thickness Correction Method of Analytical Formulations for SE Prediction

M. C. Yin, « An Improved Circuit Model for the Prediction of the Shielding Effectiveness and Resonances of an Enclosure With Apertures

A. Shourvarzi, « SE Estimation of a Metallic Enclosure With an Aperture Using S-Parameter Analysis

A. Shourvarzi, « SE estimation of an enclosure with an arbitrary shape aperture

L. Hongyi, Analytically calculate SE of enclosure with horizontal curved edges aperture ». 4.5.1 Cas d'un caisson contenant une seule ouverture rectangulaire

, Cas d'un caisson contenant plusieurs ouvertures de formes différentes, p.139

. .. Conclusion,

, D'autres types de pertes peuvent intervenir dans le cas où la cavité contient un équipement ou des sources internes qui constituent un point de fuite

V. Gobin, Diffraction par des ouvertures et par des objets tridimensionnels. Application à la mesure des impédances de surface des matériaux bons conducteurs

M. S. Sarto, A new model for the FDTD analysis of the shielding performances of thin composite structures

V. Preault, « Effective Permittivity of Shielding Composite Materials for Microwave Frequencies

P. Besnier, Electromagnetic reverberation chambers
URL : https://hal.archives-ouvertes.fr/hal-00640424

C. Jiao, Analysis of shielding effectiveness of enclosure with an aperture using FDTD method

F. Olyslager, « Numerical and experimental study of the shielding effectiveness of a metallic enclosure

M. Li, « EMI reduction from airflow aperture arrays using dual-perforated screens and loss

B. Ma,

C. Liang, « EM fields coupled into a cavity with a slot-aperture under resonant conditions

, Yeqin Huang « Equivalent circuit of an aperture-coupled lossy cavity

A. Gifuni, Relation Between the Shielding Effectiveness of an Electrically Large Enclosure and the Wall Material Under Uniform and Isotropic Field Conditions

D. A. Hill, « Aperture excitation of electrically large, lossy cavities

M. Pedram, « Shielding Effectiveness of a Lossy Metallic Enclosure

R. E. Collin, Field theory of guided waves

J. R. Solin, « Formula for the Field Excited in a Rectangular Cavity With a Small Aperture

H. A. Bethe, Theory of Diffraction by Small Holes

J. R. Solin, « Formula for the Field Excited in a Rectangular Cavity With an Aperture and Lossy Walls

P. Bonnet, « Numerical simulation of a Reverberation Chamber with a stochastic collocation method

I. D. Flintoft, Representative Contents Design for Shielding Enclosure Qualification From 2 to 20 GHz

W. Li, « A Fast FDTD Simulation Method for the Source-Stirring Reverberation Chamber

M. Pedram, « Shielding Effectiveness of a Lossy Metallic Enclosure

M. P. Robinson, « Analytical formulation for the SE of enclosures with apertures

J. R. Solin, « Formula for the Field Excited in a Rectangular Cavity With an Aperture and Lossy Walls ». Modélisation d'ouvertures de formes complexes

, Les boitiers de blindage réels comportent souvent des orifices de forme non rectangulaire

C. Dans-ce-chapitre, Dans ce chapitre, nous nous intéressons principalement à la modélisation de l'ouverture afin de tenir compte au mieux des phénomènes liés à sa présence sur la paroi frontale de l'enceinte. 5.1 Introduction, nous proposons une nouvelle formulation du modèle ILCM incluant les pertes de façon à prendre en compte différentes formes d'ouvertures. Nous abordons en particulier le cas d'ouvertures de forme complexes comme les ellipses ou encore les ouvertures rectangulaires avec des extrémités arrondies

. .. Forme-des-ouvertures,

. .. Autres-formes-d'ouvertures,

. .. Conclusion,

C. A. Balanis, Antenna theory

H. G. Booker, « Slot aerials and their relation to complementary wire aerials (Babinet's principle)

H. A. Bethe, Theory of Diffraction by Small Holes

T. Konefal, « A Fast Multiple Mode Intermediate Level Circuit Model for the Prediction of Shielding Effectiveness of a Rectangular Box Containing a Rectangular Aperture

S. B. Cohn, « Electrolytic-Tank Measurements for Microwave Metallic Delay-Lens Media

S. B. Cohn, « Determination of aperture parameters by electrolytic-tank measurements

K. Casey and . Low, Frequency Electromagnetic Penetration of Loaded Apertures

J. R. Mautz, Electromagnetic transmission through a rectangular aperture in a perfectly conducting plane

J. R. Mautz, « An admittance solution for electromagnetic coupling through a small aperture

R. A. Stoneback, The Dipole Impedance of an Aperture

S. B. Cohn, « Determination of aperture parameters by electrolytic-tank measurements

S. B. Cohn, « The electric polarizability of apertures of arbitrary shape

H. A. Bethe, Theory of Diffraction by Small Holes

C. D. Taylor, Electromagnetic pulse penetration through small apertures

F. De-meulenaere, « Polarizability of some small apertures

N. Mcdonald, Polynomial Approximations for the Electric Polarizabilities of Some Small Apertures

S. B. Cohn, « The electric polarizability of apertures of arbitrary shape

N. Mcdonald, Simple approximations for the longitudinal magnetic polarizabilities of some small apertures

N. Mcdonald, Polynomial Approximations for the Transverse Magnetic Polar. of Some Small Apertures

R. De-smedt, « Magnetic polarizability of some small apertures

, Illustration des techniques de blindage pour (a) contenir ou (b) exclure les émissions rayonnées

, Champ électrique total en un point de la cavité électromagnétique perforée

, Champ électrique total en un point de la cavité dont la paroi frontale contient une ouverture circulaire de diamètre d ouv , puis 2d ouv

, Plan de coupes suivant x0z du champ électrique tangentiel au plan x0y pour le mode TE 104 dans une cavité électromagnétique (a) lorsqu'elle ne contient aucune ouverture et (b) lorsqu'elle contient une ouverture de largeur l, p.11

, Plan de coupes suivant x0z du champ électrique pour deux cavités de dimensions et ouverture différentes au même mode de résonance TE 202

, Structure d'une cavité électromagnétique perforée agressée par une onde plane, vol.12

.. .. Mécanisme-du-blindage-Électromagnétique,

. Se-e and . Se-h-d, une enceinte de blindage perforée excitée par un dipôle magnétique

, 38 2.2 Cavité formée par un guide d'onde métallique creux terminé par des parois métalliques, Modèle ILCM pour la modélisation cavités électromagnétiques 2.1 Configuration de la cavité électromagnétique

, Coupes transversale et longitudinale d'un guide à section rectangulaire, p.46

, Circuit équivalent d'un tronçon de ligne de transmission

, Représentation schématique des lignes de courant sur une plaque métallique munie pour quatre cas, (a) sans ouvertures, (b) munie d'une ouverture rectangulaire parallèle aux lignes de courant, (c) munie d'une ouverture rectangulaire perpendiculaire aux lignes de courant et (d) munie d'une grille d'ouvertures circulaires de petites dimensions électriques

, Représentation schématique de (a) l'ouverture sur la paroi conductrice, (b) la ligne microruban coplanaire et (c) la ligne de transmission coplanaire qui modélise l'ouverture

. .. Paramètres, , p.52

, Comportement des impédances caractéristiques symétriques et asymétriques en fonction de la dimension w de l'ouverture et de sa position sur la face avant

. .. , Comparaison d'efficacité de blindage d'une enceinte contenant (1) une ouverture centrée puis (2) une ouverture décentrée de mêmes dimensions, p.54

, Structure générale du problème et sa représentation circuit équivalente proposée par Robinson

, Étapes circuit jusqu'à obtention de l'impédance équivalente à l'ouverture Z ap

, Efficacité de blindage électrique au point P (15; 6; 27)cm obtenu à l'aide du modèle de Robinson et de la simulation numérique

, Efficacité de blindage électrique calculée via le modèle de Yin et comparé au logiciel commercial cst studio suite dans le cas d'une ouverture rectangulaire décentrée, p.64

, Efficacité de blindage électrique calculée via le modèle de Yin et comparé au logiciel commercial cst studio suite dans le cas d'une ventilation centrée de 4£4 ouvertures carrées

, Efficacité de blindage électrique d'une enceinte munie d'une grille de ventilation 4*4 calculée via les modèles de Yin et la version reformulée du modèle en champ électrique

, Efficacité de blindage électrique d'une enceinte munie d'une grille de ventilation 3*3 calculée via les modèles de Yin et la version reformulée du modèle en champ électrique

, Histogrammes de confiance obtenus par évaluation FSV pour (a) la reformulation du modèle en champ électrique et (b) le modèle de Yin dans la configuration de la figure 2

, Modélisation du couplage avec une ligne de transmission 3.2 Courants induits aux extrémités y 0 et y L pour une configuration où Z L º Z 0 º Z c

, Représentation schématique d'un tronçon de ligne de transmission agressée par une onde électromagnétique non uniforme

, Représentation schématique du couplage champ-fil par le modèle de Taylor, p.83

, Courant induit en y L estimé par le modèle 1 et CST MWS pour le cas 1, p.93

, Courant induit en y L estimé par les modèles 1 et 2 et CST MWS pour le cas 2, p.94

, Courant induit en y L estimé par le modèle 2 et CST MWS pour le cas 3, p.96

, Courant induit en y L estimé par le modèle 2 et CST MWS pour le cas 4, p.97

. .. , Description du problème de couplage entre une onde plane et une ligne de transmission inclinée protégée par une cavité électromagnétique, p.99

. .. Coordonnées-d'un, , p.100

, Courant induit en y L obtenu à l'aide du modèle et de la simulation numérique pour quatre angles d'inclinaison µ = 5 ± , 15 ± , 20 ± ,45 ±

.. .. Dispositif,

, Mesure en quatre points, estimation de l'homogénéité du champ et, (b) Mesure au centre de l'ouverture, vérification de la polarisation

±. .. , Courant induit en y L normalisé par rapport au champ incident obtenu par le modèle et la mesure pour quatre angles d'inclinaison µ = 5 ± ,10 ± , 15 ± ,20, p.105

, Courant induit mesuré en y L normalisé par rapport au champ incident pour µ = 5 ± ,10 ± , 15 ± ,20 ± et 45 ±

. Bibliographie,

A. K. Agrawal, H. J. Price, and S. H. Gurbaxani, « Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field, IEEE Transactions on electromagnetic compatibility, vol.2, p.81, 1980.

R. Araneo, G. Lovat, and S. Celozzi, « Shielding effectiveness evaluation and optimization of resonance damping in metallic enclosures, Electromagnetic Compatibility (APEMC)

, Asia-Pacific Symposium on. IEEE, p.22, 2010.

B. Audone and M. Balma, « Shielding effectiveness of apertures in rectangular cavities, IEEE Transactions on Electromagnetic Compatibility, vol.31, p.22, 1989.

R. Azaro, S. Caorsi, M. Donelli, and G. L. Gragnani, « Evaluation of the effects of an external incident electromagnetic wave on metallic enclosures with rectangular apertures, Microwave and Optical Technology Letters, vol.28, issue.5, p.31, 2001.

M. Bahadorzadeh-ghandehari, M. Naser-moghadasi, and A. R. Attari, « Improving of shielding effectiveness of a rectangular metallic enclosure with aperture by using extra wall, Progress In Electromagnetics Research Letters, vol.1, pp.45-50, 2008.

D. Bailin-ma and . Cheng, « Resonant electromagnetic field coupled into a lossy cavity through a slot aperture, IEEE Transactions on Antennas and Propagation, vol.35, issue.9, p.111, 1987.

C. A. Balanis, Antenna theory : analysis and design, p.146, 1997.

M. Besacier, « Adaptation de la méthode PEEC à la représentation électrique des structures de l'électronique de puissance, p.25, 2001.

P. Besnier and B. Démoulin, Electromagnetic reverberation chambers, p.110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00640424

H. A. Bethe, Theory of Diffraction by Small Holes, vol.66, pp.163-182, 1944.

P. Bonnet, R. Vernet, S. Girard, and F. Paladian, « FDTD modelling of reverberation chamber, Electronics Letters, vol.41, p.19, 2005.

P. Bonnet, « Résolution des équations de Maxwell instationnaires et harmoniques par une technique de volumes finis, p.21, 1998.

P. Bonnet, F. Diouf, C. Chauvière, S. Lalléchère, M. Fogli et al., « Numerical simulation of a Reverberation Chamber with a stochastic collocation method, Comptes Rendus Physique, vol.10, issue.1, p.121, 2009.

H. G. Booker, « Slot aerials and their relation to complementary wire aerials (Babinet's principle), Journal of the Institution of Electrical Engineers-Part IIIA : Radiolocation, vol.93, p.146, 1946.

A. Boutar, A. Reineix, C. Guiffaut, and G. Andrieu, « An Efficient Analytical Method for Electromagnetic Field to Transmission Line Coupling Into a Rectangular Enclosure Excited by an Internal Source, IEEE Trans. Electromagn. Compat, vol.57, issue.3, p.77, 2015.

F. Cajori, A history of mathematical notations, Repr. [der Ausg. Chicago, p.45, 1928.

W. Carpes, L. Pichon, and A. Razek, « Analysis of the coupling of an incident wave with a wire inside a cavity using an FEM in frequency and time domains, IEEE Transactions on Electromagnetic Compatibility, vol.44, issue.3, p.22, 2002.

K. Casey, « Low-Frequency Electromagnetic Penetration of Loaded Apertures, IEEE Transactions on Electromagnetic Compatibility EMC-23.4 (nov. 1981), vol.168, p.148

S. Celozzi, R. Araneo, and G. Lovat, Electromagnetic shielding, vol.28, p.20, 2008.

G. Cerri, R. Leo, V. Primiani, and M. Righetti, « Field penetration into metallic enclosures through slots excited by ESD, IEEE Transactions on Electromagnetic Compatibility, vol.36, issue.2, p.20, 1994.

G. Cerri and R. D. Leo, « Theoretical and Experimental Evaluation of the Electromagnetic Radiation From Apertures in Shielded Enclosures, nov. 1992, p.22

C. Liang and D. Cheng, « Electromagnetic fields coupled into a cavity with a slotaperture under resonant conditions, IEEE Transactions on Antennas and Propagation, vol.30, p.27

C. Jiao and L. Li, « Analysis of shielding effectiveness of enclosure with an aperture using FDTD method, vol.1, p.111, 2003.

L. C. Chirwa, J. F. Dawson, and M. P. Robinson, « An Investigation on ILCMS for Coupling of Fields Into a Generic Missile Body through Apertures, Electromagnetic Compatibility, p.32, 2007.

C. Christopoulos, « The application of the TLM method to electromagnetic compatibility studies of systems, p.21, 1997.

S. Cohn, « Microwave Coupling by Large Apertures, Proceedings of the IRE 40.6 (juin 1952), p.168

S. B. Cohn, « Determination of aperture parameters by electrolytic-tank measurements, Proceedings of the IRE, vol.39, p.148, 1951.

S. B. Cohn, « Electrolytic-Tank Measurements for Microwave Metallic Delay-Lens Media, Journal of Applied Physics, vol.21, p.148

S. B. Cohn, « The electric polarizability of apertures of arbitrary shape, Proceedings of the IRE, vol.40, p.154, 1952.

R. E. Collin, Field theory of guided waves. second, Inst. of Electrical et Electronics Engineers, vol.42, p.28, 1991.

T. Cvetkovic, V. Milutinovic, N. Doncov, and B. Milovanovic, « Numerical calculation of shielding effectiveness of enclosure with apertures based on EM field coupling with wire structures, Facta universitatis -series : Electronics and Energetics, vol.28, p.21, 2015.

J. F. Dawson, T. Konefal, A. C. Marvin, S. J. Porter, M. P. Robinson et al., « Intermediate level tools for Emissions and Immunity : Enclosure contents to Aperture coupling, Electromagnetic Compatibility, vol.95, p.77, 2001.

J. F. Dawson, A. C. Marvin, M. Robinson, and I. D. Flintoft, « On the Meaning of Enclosure Shielding Effectiveness, p.17, 2018.

F. De-meulenaere and J. Van-bladel, « Polarizability of some small apertures, IEEE Trans. Antennas and Prop, vol.25, p.154, 1977.

R. De-smedt and J. Van-bladel, « Magnetic polarizability of some small apertures, IEEE Transactions on Antennas and Propagation, vol.28, p.157

P. Dehkhoda, A. Tavakoli, and M. Azadifar, « Shielding Effectiveness of an Enclosure With Finite Wall Thickness and Perforated Opposing Walls at Oblique Incidence and Arbitrary Polarization by GMMoM, IEEE Transactions on Electromagnetic Compatibility, vol.54, issue.4, p.22, 2012.

P. Dehkhoda, A. Tavakoli, and R. Moini, « An Efficient and Reliable Shielding Effectiveness Evaluation of a Rectangular Enclosure With Numerous Apertures, IEEE Transactions on Electromagnetic Compatibility, vol.50, p.32, 2008.

P. Dehkhoda, A. Tavakoli, and R. Moini, « An Efficient Shielding Effectiveness Calculation (A Rectangular Enclosure with Numerous Square Apertures) ». In : Electromagnetic Compatibility, IEEE International Symposium on. IEEE, p.97, 2007.

P. Dehkhoda, A. Tavakoli, and R. Moini, « Fast calculation of the shielding effectiveness for a rectangular enclosure of finite wall thickness and with numerous small apertures, Progress In Electromagnetics Research, vol.86, p.97, 2008.

M. Edrisi and A. Khodabakhshian, « Simple Methodology for Electric and Magnetic Shielding Effectiveness Computation of Enclosures for Electromagnetic Compatibility use, Journal of Electromagnetic Waves and Applications, vol.20, p.28, 2006.

J. Fang, Q. Liu, J. Wang, and W. Yin, « Transient analysis of external field coupling to a cabin with thin-slots and transmission lines loaded by arbitrary nonlinear devices, Microwave Conference, p.20, 2009.

I. Flintoft, « A fast and accurate intermediate level modelling approach for electromagnetic compatibility analysis of enclosures, IEE, p.31, 2002.

I. Flintoft, N. Whyman, J. Dawson, and T. Konefal, « Fast and accurate intermediate-level modelling approach for EMC analysis of enclosures, IEE Proceedings -Science, Measurement and Technology 149.5 (sept. 2002), p.31

I. D. Flintoft, S. J. Bale, A. C. Marvin, M. Ye, J. F. Dawson et al., « Representative Contents Design for Shielding Enclosure Qualification From 2 to 20 GHz, IEEE Transactions on Electromagnetic Compatibility, p.121, 2017.

F. Gardiol and J. Neirynck, XIII Hyperfréquences. T. XIII. Lausanne : Presses polytechniques et universitaires romandes, vol.42, p.43, 1987.

A. Gifuni, « Relation Between the Shielding Effectiveness of an Electrically Large Enclosure and the Wall Material Under Uniform and Isotropic Field Conditions, IEEE Transactions on Electromagnetic Compatibility 55.6 (déc. 2013), p.111

R. Gluckstern and J. Diamond, « Penetration of fields through a circular hole in a wall of finite thickness, IEEE Transactions on Microwave Theory and Techniques, vol.39, p.159, 1991.

R. L. Gluckstern, R. Li, and R. K. Cooper, « Electric polarizability and magnetic susceptibility of small holes in a thin screen, IEEE transactions on microwave theory and techniques, vol.38, p.150, 1990.

V. Gobin, « Diffraction par des ouvertures et par des objets tridimensionnels. Application à la mesure des impédances de surface des matériaux bons conducteurs ». Electronique, p.110

K. C. Gupta, Microstrip lines and slotlines. second. Boston : Artech House, 1996 (cf, vol.52, p.51

C. Hao and D. Li, « Simplified Model of Shielding Effectiveness of a Cavity with Apertures on Different Sides, IEEE Transactions on Electromagnetic Compatibility 56.2 (avr. 2014), vol.55, p.32

J. Hao, Y. Gong, L. Jiang, and J. Fan, « Analytical Formulation for Electromagnetic Leakage Field to Transmission Line Coupling through Covered Apertures of Multiple Enclosures, Advances in Materials Science and Engineering, p.78, 2017.

J. Hao, L. Jiang, Y. Gong, and J. Fan, « Analytical method for load response of a transmission line in a double-enclosure with multiple covered apertures, Journal of Electromagnetic Waves and Applications, vol.31, p.78, 2017.

J. Hao, P. Qi, J. Fan, and Y. Guo, « Analysis of shielding effectiveness of enclosures with apertures and inner windows with TLM, Progress In Electromagnetics Research M, vol.32, p.174, 2013.

R. Harrington and J. Mautz, « A generalized network formulation for aperture problems, IEEE Transactions on Antennas and Propagation, vol.24, p.28, 1976.

R. F. Harrington, Field computation by moment methods. IEEE Press series on electromagnetic waves, p.22, 2000.

D. A. Hill, Electromagnetic fields in cavities : deterministic and statistical theories, vol.168, p.24, 2009.

D. A. Hill, M. T. Ma, A. R. Ondrejka, B. F. Riddle, M. L. Crawford et al., « Aperture excitation of electrically large, lossy cavities, IEEE Trans. Electromagn. Compat, vol.36, issue.3, pp.169-178, 1994.

L. Hongyi, D. Su, C. Yao, and Z. Zihua, « Analytically calculate shielding effectiveness of enclosure with horizontal curved edges aperture, Electronics Letters, vol.53, p.145, 2017.

T. Hussain, Q. Cao, and I. Majid, « Shielding effectiveness of enclosure with unconventional aperture array, p.21, 2015.

«. Ieee, Standard for validation of computational electromagnetics computer modeling and simulations, IEEE Std, p.127, 1597.

, IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures, Rapp. tech. IEEE, p.16, 2007.

P. Johns and R. Beurle, « Numerical solution of 2-dimensional scattering problems using a transmission-line matrix, Proceedings of the Institution of Electrical Engineers, vol.118, p.21, 1971.

I. Junqua, Pénétration des ondes électromagnétiques haute fréquence dans des systèmes : Analyse et évaluation par l'approche Power Balance ». Electronique

K. Yee, « Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, vol.14, issue.3, p.20, 1966.

Z. Khan, C. Bunting, and M. Deshpande, « Shielding Effectiveness of Metallic Enclosures at Oblique and Arbitrary Polarizations, IEEE Transactions on Electromagnetic Compatibility 47.1 (fév. 2005), p.22

L. Klinkenbusch, On the Shielding Effectiveness of Enclosures, IEEE Transactions on Electromagnetic Compatibility, vol.47, issue.3, p.17, 2005.

T. Konefal, J. F. Dawson, A. Denton, T. M. Benson, C. Christopoulos et al., « Electromagnetic field predictions inside screened enclosures containing radiators, Electromagnetic Compatibility, 1999. EMC York 99. International Conference and Exhibition on, vol.77, p.31, 1999.

T. Konefal, J. F. Dawson, and A. C. Marvin, « Improved aperture model for shielding prediction, Electromagnetic Compatibility, p.32, 2003.

T. Konefal, J. Dawson, A. Marvin, M. Robinson, and S. Porter, « A Fast Circuit Model Description of the Shielding Effectiveness of a Box With Imperfect Gaskets or Apertures Covered by Thin Resistive Sheet Coatings, IEEE Transactions on Electromagnetic Compatibility, vol.48, issue.1, p.32

T. Konefal, J. Dawson, A. Marvin, M. Robinson, and S. Porter, « A Fast Multiple Mode Intermediate Level Circuit Model for the Prediction of Shielding Effectiveness of a Rectangular Box Containing a Rectangular Aperture, IEEE Trans. Electromagn. Compat, vol.47, p.95, 2005.

T. Konefal, J. F. Dawson, A. C. Denton, T. M. Benson, C. Christopoulos et al., « Electromagnetic fields produced by PCB stripline and microstrip inside a screened rectangular enclosure, p.31

T. Konefal, J. F. Dawson, A. C. Denton, T. M. Benson, C. Christopoulos et al., « Electromagnetic coupling between wires inside a rectangular cavity using multiple-mode-analogous-transmission-line circuit theory, IEEE transactions on electromagnetic compatibility, vol.43, p.31, 2001.

G. Kron, Tensor analysis of networks, p.26, 1939.

J. H. Kwon, H. Choi, H. H. Park, and J. G. Yook, « Numerical modeling and measurements on the shielding effectiveness of enclosure with apertures, Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, p.20, 2008.

M. Larbi, P. Besnier, and B. Pecqueux, « The Adaptive Controlled Stratification Method Applied to the Determination of Extreme Interference Levels in EMC Modeling With Uncertain Input Variables, IEEE Transactions on Electromagnetic Compatibility, vol.58, issue.2, p.175, 2016.

K. S. Lee, EMP Interaction : Principles, Techniques and Reference Data (A Compleat concatenation of Technology from the EMP Interaction Notes). EMP Interaction 2-1, Rapp. tech. Dikewood Albuquerque, vol.158, p.156, 1980.

M. Leontovich, Investigations of Propagation of Radio Waves, On the approximate boundary conditions for the electromagnetic field on the surface of well conducting bodies, p.113, 1948.

H. Leroux, , p.1

M. Li, J. L. Drewniak, T. H. Hubing, R. E. Dubroff, and T. P. Vandoren, « Slot and aperture coupling for airflow aperture arrays in shielding enclosure designs, Electromagnetic Compatibility, pp.35-39, 1999.

M. Li, J. Nuebel, J. L. Drewniak, T. H. Hubing, R. E. Dubroff et al., « EMI reduction from airflow aperture arrays using dual-perforated screens and loss, IEEE Transactions on Electromagnetic Compatibility, vol.42, p.111, 2000.

P. Li, F. R. Yang, and W. Xu, « An Efficient Approach for Analyzing Shielding Effectiveness of Enclosure With Connected Accessory Based on Equivalent Dipole Modeling, IEEE Transactions on Electromagnetic Compatibility 58.1 (fév. 2016), p.25

W. Li, C. Yue, and A. Elsherbeni, « A Fast Finite-Difference Time Domain Simulation Method for the Source-Stirring Reverberation Chamber, International Journal of Antennas and Propagation, vol.2017, p.121, 2017.

Q. Liu, W. Yin, J. Mao, and Z. Chen, « Accurate Characterization of Shielding Effectiveness of Metallic Enclosures With Thin Wires and Thin Slots, IEEE Transactions on Electromagnetic Compatibility, vol.51, issue.2, p.20, 2009.

X. Mao and P. A. Du, « An improved model of Robinson equivalent circuit analytical model, Science China Technological Sciences 53.7 (juil. 2010), p.32

N. Marcuvitz, Waveguide Handbook. Radioation Laboratory Series 10, vol.115, p.49, 2009.

O. Maurice, La Compatibilité électromagnétique des systèmes complexes, p.26, 2007.

J. R. Mautz and R. F. Harrington, « An admittance solution for electromagnetic coupling through a small aperture, Applied Scientific Research, vol.40, issue.1, p.148, 1983.

J. R. Mautz and R. F. Harrington, Electromagnetic transmission through a rectangular aperture in a perfectly conducting plane, Rapp. tech. SYRACUSE UNIV NY DEPT OF ELECTRI-CAL et COMPUTER ENGINEERING, p.148, 1976.

J. C. Maxwell, A treatise on electricity and magnetism, p.45

J. C. Maxwell, A treatise on electricity and magnetism, Volume two, p.45, 1891.

N. Mcdonald, « Polynomial Approximations for the Electric Polarizabilities of Some Small Apertures, IEEE Transactions on Microwave Theory and Techniques, vol.33, p.154, 1985.

N. Mcdonald, « Polynomial Approximations for the Transverse Magnetic Polarizabilities of Some Small Apertures, IEEE Transactions on Microwave Theory and Techniques, vol.35, issue.1, p.155, 1987.

N. Mcdonald, « Simple approximations for the longitudinal magnetic polarizabilities of some small apertures, IEEE Transactions on Microwave Theory and Techniques, vol.36, p.155, 1988.

H. A. Mendez, « Shielding theory of enclosures with apertures, IEEE Transactions on Electromagnetic Compatibility, vol.2, p.27, 1978.

P. Mengtao-yuan, . Van-den, T. Berg, and . Sarkar, « Direct extrapolation of a causal signal using low-frequency and early-time data, IEEE Transactions on Antennas and Propagation 53.7 (juil. 2005), p.20

I. Nathan, S. Yuferev, and R. Di, « A systematic approach to the concept of surface impedance boundary conditions, Facta universitatis -series : Electronics and Energetics, vol.22, p.114, 2009.

R. Nevels, . Chang-seok-shin, and . Lorenz, Lorentz, and the gauge, IEEE Antennas and Propagation Magazine, vol.43, p.44, 2001.

M. Ney, « Simulation électromagnétique -Modèles et optimisation, Techniques de l'ingénieur. Electronique E1031, p.27, 2013.

B. Nie and P. Du, « An Efficient and Reliable Circuit Model for the Shielding Effectiveness Prediction of an Enclosure With an Aperture, IEEE Transactions on Electromagnetic Compatibility, vol.57, issue.3, p.32, 2015.

B. Nie, P. Du, and P. Xiao, « An Improved Circuital Method for the Prediction of Shielding Effectiveness of an Enclosure With Apertures Excited by a Plane Wave, IEEE Transactions on Electromagnetic Compatibility, vol.60, issue.5, p.32, 2018.

B. Nie, P. Du, Y. Yu, and Z. Shi, « Study of the Shielding Properties of Enclosures With Apertures at Higher Frequencies Using the Transmission-Line Modeling Method, IEEE Transactions on Electromagnetic Compatibility 53.1 (fév. 2011), pp.73-81

B. Nie, Q. Liu, and P. Du, « An Improved Thickness Correction Method of Analytical Formulations for Shielding Effectiveness Prediction, IEEE Transactions on Electromagnetic Compatibility, vol.58, issue.3, p.33, 2016.

F. Olyslager, E. Laermans, D. De, S. Zutter, R. Criel et al., « Numerical and experimental study of the shielding effectiveness of a metallic enclosure, IEEE transactions on Electromagnetic Compatibility, vol.41, p.111, 1999.

S. J. Orfanidis, Electromagnetic Waves and Antennas, p.115, 2016.

H. W. Ott, Noise reduction techniques in electronic systems. 2, vol.28, p.14, 1988.

C. R. Paul, Analysis of multiconductor transmission lines, p.57, 2008.

C. R. Paul, Introduction to electromagnetic compatibility. 2. ed. Wiley series in microwave and optical engineering, vol.50, p.15, 2006.

M. Pedram, P. Dehkhoda, H. Sadeghi, and R. Moini, « Shielding Effectiveness of a Lossy Metallic Enclosure, Amirkabir Int. Jour. (AIJ-IEEE), vol.45, p.127, 2013.

D. M. Pozar, Microwave engineering, vol.40, p.62, 2012.

V. Preault, R. Corcolle, L. Daniel, and L. Pichon, « Effective Permittivity of Shielding Composite Materials for Microwave Frequencies, IEEE Transactions on Electromagnetic Compatibility 55.6 (déc. 2013), p.110

A. Rabat, P. Bonnet, K. E. Drissi, and S. Girard, « Modèle analytique du couplage d'une onde plane sur une ligne dans un caisson de blindage -Comparaison numérique et expérimentale, Compatibilité Electromagnetique (CEM), p.171, 2018.

A. Rabat, P. Bonnet, K. E. Drissi, and S. Girard, « Analytical formulation for shielding effectiveness calculation of a lossy enclosure containing holes, Electromagnetic Compatibility-EMC EUROPE, 2017 International Symposium on, p.171

A. Rabat, P. Bonnet, K. E. Drissi, and S. Girard, « Analytical Formulation for Shielding Effectiveness of a Lossy Enclosure Containing Apertures, IEEE Transactions on Electromagnetic Compatibility, vol.60, issue.5, p.171, 2018.

A. Rabat, P. Bonnet, K. E. Drissi, and S. Girard, « Analytical Models for Electromagnetic Coupling of an Open Metallic Shield Containing a Loaded Wire, IEEE Trans. Electromagn. Compat, vol.59, p.171, 2017.

A. Rabat, P. Bonnet, K. E. Drissi, and S. Girard, « Modèles analytiques pour l'évaluation du couplage entre une onde plane et une ligne de transmission dans une cavité munie d'ouvertures, p.171, 2017.

A. Rabat, P. Bonnet, K. E. Drissi, S. Girard, and I. Pascal, « Novel Analytical Formulation for Shielding Effectiveness Calculation of Lossy Enclosures Containing Elliptical Apertures, Electromagnetic Compatibility, p.172, 2018.

F. Rachidi, « Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation field, IEEE Transactions on Electromagnetic Compatibility, vol.35, p.81, 1993.

R. Rambousky, S. Tkachenko, and J. Nitsch, « Calculation of currents induced in a long transmission line placed symmetrically inside a rectangular cavity, 2013 IEEE International Symposium on, p.77, 2013.

N. Raveu and O. Pigaglio, Résolution de problèmes Hautes Fréquences par les schémas équivalents, Cépaduès Editions, p.48, 2012.

D. Ren, P. Du, Y. He, K. Chen, J. Luo et al., « A Fast Calculation Approach for the Shielding Effectiveness of an Enclosure With Numerous Small Apertures, IEEE Transactions on Electromagnetic Compatibility, vol.58, issue.4, p.32, 2016.

M. P. Robinson, T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley et al., « Analytical formulation for the shielding effectiveness of enclosures with apertures, IEEE Trans. Electromagn. Compat, vol.40, issue.3, pp.240-248, 1998.

M. P. Robinson, J. D. Turner, D. W. Thomas, J. F. Dawson, M. D. Ganley et al., « Shielding effectiveness of a rectangular enclosure with a rectangular aperture, Electronics Letters, vol.32, p.37, 1996.

A. Ruehli, « Equivalent Circuit Models for Three-Dimensional Multiconductor Systems, IEEE Transactions on Microwave Theory and Techniques, vol.22, issue.3, p.25, 1974.

A. Ruehli, « Partial element equivalent circuit (PEEC) method and its application in the frequency and time domain, Electromagnetic Compatibility, 1996. Symposium Record. IEEE 1996 International Symposium on, p.25, 1996.

P. Russer, « The Transmission Line Matrix Method, New Trends and Concepts in Microwave Theory and Technics. Research Signpost, p.21, 2004.

M. S. Sarto, A new model for the FDTD analysis of the shielding performances of thin composite structures, IEEE Transactions on Electromagnetic Compatibility, vol.41, p.110, 1999.

S. A. Schelkunoff, « Some Equivalence Theorems of Electromagnetics and Their Application to Radiation Problems, Bell System Technical Journal, vol.15, issue.1, p.27, 1936.

J. Shim, D. G. Kam, J. H. Kwon, and J. Kim, « Circuital Modeling and Measurement of Shielding Effectiveness Against Oblique Incident Plane Wave on Apertures in Multiple Sides of Rectangular Enclosure, IEEE Trans. Electromagn. Compat, vol.52, issue.3, p.32, 2010.

A. Shourvarzi and M. Joodaki, « Shielding Effectiveness Estimation of a Metallic Enclosure With an Aperture Using S-Parameter Analysis : Analytic Validation and Experiment, IEEE Transactions on Electromagnetic Compatibility, vol.59, issue.2, p.33

A. Shourvarzi and M. Joodaki, « Shielding effectiveness estimation of an enclosure with an arbitrary shape aperture, p.33, 2017.

A. Shourvarzi and M. Joodaki, Using Aperture Impedance for Shielding Effectiveness Estimation of a Metallic Enclosure With Multiple Apertures on Different Walls Considering Higher Order Modes, IEEE Transactions on Electromagnetic Compatibility, vol.60, issue.3, p.32, 2018.

T. Soeun, B. Ravelo, I. G. Hallo, and F. D. Daran, « Analyse théorique d'une cavité avec ouverture sous un formalisme de guide d'onde sous le modèle de Kron-Branin, Compatibilité Electromagnetique (CEM), pp.6-26, 2018.

J. R. Solin, « Formula for the Field Excited in a Rectangular Cavity With an Electrically Large Aperture, IEEE Transactions on Electromagnetic Compatibility, vol.54, issue.1, p.29

J. R. Solin, « Formula for the Field Excited in a Cavity Sealed by a Plate Backed With a Conductive Elastomer, IEEE Transactions on Electromagnetic Compatibility 58.1 (fév. 2016), p.29

J. R. Solin, « Formula for the Field Excited in a Rectangular Cavity With a Small Aperture, IEEE Trans. Electromagn. Compat. 53.1 (fév. 2011), vol.111, p.28

J. R. Solin, « Formula for the Field Excited in a Rectangular Cavity With an Aperture and Lossy Walls, IEEE Trans. Electromagn. Compat, vol.57, p.127

G. Spadacini, S. Pignari, and F. Marliani, « Closed-Form Transmission Line Model for Radiated Susceptibility in Metallic Enclosures, IEEE Transactions on Electromagnetic Compatibility, vol.47, p.77, 2005.

R. Stoneback, « Applications of the electromagnetic helmholtz resonator, Physics, issue.2, 2009.

R. Stoneback, The Electromagnetic Helmholtz Resonator : Transferring Power from the Sun to the Earth

R. A. Stoneback, « The Dipole Impedance of an Aperture, Progress In Electromagnetics Research B, vol.26, p.156, 2010.

D. G. Swanson and W. J. Hoefer, Microwave circuit modeling using electromagnetic field simulation. Artech House microwave library, p.19, 2003.

A. Taflove, Computational Electrodynamics : The Finite Difference Time Domain Method. The Artech House antenna library, p.20, 1995.

C. D. Taylor, R. Satterwhite, and C. Harrison, « The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field, IEEE Trans. Antennas and Prop, vol.13, issue.6, p.81, 1965.

C. D. Taylor, « Electromagnetic pulse penetration through small apertures, IEEE Trans. Electromagn. Compat, vol.1, p.154, 1973.

W. Teulings, Prise en Compte du Câblage dans la Conception et la Simulation des Convertisseurs de Puissance : Performances CEM, p.25, 1997.

S. V. Tkachenko, R. Rambousky, and J. B. Nitsch, « Electromagnetic Field Coupling to a Thin Wire Located Symmetrically Inside a Rectangular Enclosure, IEEE Transactions on Electromagnetic Compatibility 55.2 (avr. 2013), p.77

J. D. Turner, T. M. Benson, C. Christopoulos, and D. W. Thomas, « Characterisation of the Shielding Effectiveness of equipment cabinets containing Apertures, Electromagnetic Compatibility, vol.57, p.31, 1996.

J. Van-bladel, Electromagnetic fields. 2. ed. IEEE Press series on electromagnetic wave theory, p.31, 2007.

W. Wallyn, D. Zutter, and E. Laermans, « Fast shielding effectiveness prediction for realistic rectangular enclosures, IEEE Transactions on Electromagnetic Compatibility, vol.45, p.27, 2003.

P. J. Walsh and V. P. Tomaselli, « Theory of microwave surface impedance in superconductors and normal metals, American Journal of Physics, vol.58, p.113, 1990.

T. Weiland, A discretization model for the solution of Maxwell's equations for six-component fields, Archiv fuer Elektronik und Uebertragungstechnik 31 (mar. 1977), p.21

W. Cheng, A. Fedotov, and R. Gluckstern, « Frequency dependence of the polarizability and susceptibility of a circular hole in a thick conducting wall, vol.168, p.159, 1995.

Y. Huang, « Equivalent circuit of an aperture-coupled lossy cavity, vol.2, p.111, 2004.

M. C. Yin and P. A. Du, « An Improved Circuit Model for the Prediction of the Shielding Effectiveness and Resonances of an Enclosure With Apertures, IEEE Trans. Electromagn. Compat, vol.58, issue.2, p.95, 2016.

C. Zhou and L. Tong, « The Effect of Apertures Position on Shielding Effectiveness of Metallic Enclosures based on Modal Method of Moments, Research Journal of Applied Sciences, Engineering and Technology, vol.6, p.22