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Titre: Sur les constructions des représentations supercuspidales
Résumé: Nous commençons par comparer les constructions des représen-

tations supercuspidales de Bushnell-Kutzko [13] et Yu [41]. Nous associons
de manière explicite, sous une hypothèse nécessaire de modération, à chaque
étape de la construction de Bushnell-Kutzko une partie d'une donnée de Yu.
Nous obtenons ainsi �nalement un lien entre les deux constructions dans le
cas où les constructions sont toutes les deux dé�nies: GLN dans une situation
modérée. Dans une seconde partie, G désigne un groupe réductif connexe
dé�ni sur un corps p-adique k, nous dé�nissons pour chaque point rationnel
x dans l'immeuble de Bruhat-Tits de G et chaque nombre rationnel positif r,
un sous-groupe k-a�noïde Gx,r de l'analyti�é (au sens de Bekovich) Gan de
G. Le bord de Shilov de Gx,r est un singleton remarquable dans Gan. Nous
obtenons alors un cône dans l'analyti�é Gan de G paramétrisant les groupes
k-a�noides Gx,r. Nous dé�nissons aussi des �ltrations pour l'algèbre de Lie
de G. Nous énonçons et prouvons plusieurs propriétés des �ltrations analy-
tiques et produisons une comparaison avec les �ltrations de Moy-Prasad.

Mots clefs: Représentations des groupes réductifs p-adiques, théorie des
types, comparaison des constructions de représentations supercuspidales de
Bushnell-Kutzko et J.-K. Yu, �ltrations de Moy-Prasad, profondeur, espaces
de Berkovich, immeubles de Bruhat-Tits, analyti�é d'un schéma en groupe
réductif p-adique, �ltrations analytiques, plongement canonique de Rémy-
Thuillier-Werner, cône, groupe k-a�noïde, bord de Shilov.

Title: On the constructions of supercuspidal representations
Abstract: In a �rst part, we compare Bushnell-Kutzko's [13] and Yu's

[41] constructions of supercuspidal representations. In a tame situation, at
each step of Bushnell-Kutzko's construction, we associated a part of a Yu
datum. We �nally get a link between these constructions when they are
both de�ned: GLN in the tame case. In a second part we de�ne analytic
�ltrations. For any rational point x in the reduced Bruhat-Tits building of
G and any positive rational number r, we introduce a k-a�noid group Gx,r
contained in the Berkovich analyti�cation Gan of G. The Shilov boundary
of Gx,r is a singleton. In this way we obtain a topological cone, whose basis
is the reduced Bruhat-Tits building and vertex the neutral element, inside
Gan parametrizing the k-a�noid groups Gx,r. We also de�ne �ltrations for
the Lie algebra. We state and prove various properties of analytic �ltrations
and compare them with Moy-Prasad ones.

Keywords: Representations of reductive p-adic groups, types theory,
comparison of Bushnell-Kutzko and J.-K. Yu's construction of supercuspidal
representations, Moy-Prasad �ltrations, depth, Berkovich k-analytic spaces,
Bruhat-Tits buildings, analyti�cation of a p-adic reductive group scheme,
analytic �ltrations, canonical Rémy-Thuillier-Werner embedding, cone, k-
a�noid group, Shilov boundary.
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Introduction

This thesis consists of two chapters. The goal of the �rst one is to produce an
explicit link between Bushnell-Kutzko's construction of supercuspidal rep-
resentations for GLN (F ) and Yu's construction of tamely rami�ed super-
cuspidal representations of the F -points of an arbitrary connected reductive
group G. Here F is a non archimedean local �eld. In both Bushnell-Kutzko's
and Yu's constructions, the authors construct a compact modulo the center
subgroup K of G(F ), and a certain irreducible representation ρ of K. The

compactly induced representation c− ind
G(F )
K (ρ) is irreducible and super-

cuspidal. Given a collection of objects called a Yu datum, Yu constructs one
supercuspidal representation. In the �rst chapter of this thesis, assuming
a tameness hypothesis, we associate at various steps of the construction of
Bushnell-Kutzko, parts of a Yu datum. At the end, we get a complete Yu
datum. Moreover, the supercuspidal representation obtained at the end of
Bushnell-Kutzko's construction is equal to the supercuspidal representation
associated to the obtained Yu datum. Let us describe this process. Let V
be an F -vector space of dimension N , A = EndF (V ) and G = AutF (V ).
Bushnell and Kutzko introduce the notion of a simple stratum. This con-
sists in a 4-uple [A, n, r, β] where A is a hereditary oF -order in A, n and r
are integers and β is an element in A. This 4-uple is submitted to strong
conditions, in particular the algebra generated by F and β in A has to be
a �eld; we denote this �eld by E. To a simple stratum are attached two
compact open subgroups H1 ⊂ J0 of G and a set of characters of H1, called
the simple characters. Let θ be a simple character, a β-extension of θ is a
certain representation κ of J0 whose restriction to H1 contains θ. Fix such a
κ. To [A, n, r, β] is attached an oE-order Bβ , it is equal to A∩B where B is
the centralizer of E in A. We assume that this oE-order is maximal. Let σ
be an irreducible cuspidal representation of GL N

[E:F ]
(kE), where kE denotes

the residual �eld of E. The representation σ extends to J0 by in�ation (see
section 1.2), we still denote σ this in�ation. Let Λ be an extension to E×J0

of σ ⊗ κ. Then the representation c− indG
E×J0Λ of A× = G obtained by

compact induction is irreducible and supercuspidal. Moreover all the irre-
ducible supercuspidal representations of G are obtained in this way. In this
thesis we say that ([A, n, r, β], θ, κ, σ,Λ) is a Bushnell-Kutzko datum. A Yu
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datum for a connected reductive group G de�ned over F consists in a 5-tuple
(
−→
G, y,−→r , ρ,

−→
Φ). Let us explain roughly what is such a 5-uple (a precise def-

inition will be given in section 1.3). First,
−→
G is a strictly increasing tower

of reductive F -group schemes
−→
G = (G0 ⊂ G1 ⊂ . . . Gd = G) de�ned over

F such that their exists a �nite Galois tamely rami�ed extension E/F such
that

(G0 ×F E ⊂ G1 ×F E ⊂ . . . ⊂ Gd ×F E)

is a split Levi sequence. Secondly, y is a vertex in the Bruhat-Tits build-
ing ([8], [9]) of G0. Thirdly, −→r is an increasing sequence (r0, . . . , rd) of
real numbers. Fourthly, ρ is an irreducible representation of G0(F )[y] such
that its compact induction to G0(F ) is irreducible supercuspidal of depth
zero. Here G0(F )[y] is the stabilizer in G0(F ) of the image of y in the re-
duced Bruhat-Tits building of G0, it is an open subgroup of G0(F ) compact

modulo the center. Fifthly,
−→
Φ is a sequence Φ0, . . . ,Φd of characters such

that Φi is a character of Gi(F ) which is Gi+1-generic of depth ri. Here,
the depth is the notion introduced by Moy and Prasad [29]. The notion of
generic characters will be recalled in section 1.8. To each Yu datum, Yu has
associated a representation ρd of a subgroup Kd of G(F ) such that the com-

pactly induced representation c− ind
G(F )

Kd ρd is irreducible and supercuspidal.
We explain this construction in the section 1.3. In this text, we start with a
Bushnell-Kutzko datum ([A, n, r, β], θ, κ, σ,Λ) satisfying that the �eld exten-
sion F [β]/F is tamely rami�ed. We then explain that we can �nd a de�ning
sequence {[A, n, ri, βi], 0 ≤ i ≤ s} (β0 = β) such that F [βi+1] ⊂ F [βi] for
all 0 ≤ i ≤ s − 1; this result is due to Bushnell-Henniart. We then show
that this implies an other important property (see Proposition 1.4.3 and
Proposition 1.4.4). As we will explain in section 1.2 a de�ning sequence is
needed to de�ne the simple characters attached to a simple stratum. In
the previous tame situation, the properties of the choosen de�ning sequence
imply that a simple character θ attached to the simple stratum [A, n, r, β]
factors as a product of s characters θi, 0 ≤ i ≤ s. We introduce an integer
d depending on s and on the condition βs ∈ F or βs 6∈ F . We introduce
a strictly increasing tower of reductive algebraic group

−→
G , using the de�n-

ing sequence and putting Gi = ResF [βi]/FAutF [βi](V ). We explain that the

sequence
−→
G satis�es Yu's conditions. Thanks to the work of Bruhat-Tits

[10] and Broussous-Lemaire [7], we show that Bβ induces a point y in the
building of G0. We also introduce in this context an increasing sequence
−→r of real numbers. Moreover, we can attach to each θi a character Φi of
Gi(F ), we prove that theses characters satisfy Yu's condition. Then, using
κ, σ and Λ, we introduce a representation ρ of G0(F )[y]. Finally, the 5-tuple

(
−→
G, y,−→r , ρ,

−→
Φ) forms a Yu datum. Moreover the representation ρd asso-

ciated to this Yu datum is isomorphic to Λ, in particular Kd = F [β]×J0.
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This implies that the associated supercuspidal representations c− ind(Λ)
and c− ind(ρd) are isomorphic.

Let us describe the structure of the �rst chapter. The section 1.1 presents
the de�nition of a supercuspidal representation. It also presents a basic re-
sult which is at the root of these two constructions. Given an open subgroup
K of G(F ) compact modulo the center, and an irreducible representation ρ
of K, it gives a criterion for the compactly induced representation from ρ
to G(F ) to be irreducible and supercuspidal. The section 1.2 presents the
construction of Bushnell-Kutzko [13]. The section 1.3 presents the construc-
tion of Yu [41]. The section 1.4 contains the de�nition of tame pure strata
and tame simple strata. It contains the Bushnell-Henniart result which al-
lows to choose an approximation γ of a tame pure stratum [A, n, r, β] inside
the �eld F [β]. In section 1.4, we also prove a technical result (proposition
1.4.4) which is crucial in the proof that the characters Φi, 0 ≤ i ≤ s are
Gi+1-generic. In section 1.5 we recall the notion of a standard representative
introduced by Howe [25] and prove a proposition which links tame minimal
elements of Bushnell-Kutzko and the notion of standard representative of
Howe (proposition 1.5.8). The proposition 1.5.8 is also crucial in our proof
that the characters Φi, 0 ≤ i ≤ s are Gi+1-generic. In section 1.6, we as-
sociate to each tame minimal element a generic element. In section 1.7 we
show that a tame simple character factors as a product of s characters, where
s is the length of a de�ning sequence. In section 1.8, we construct generic
characters Φi, 0 ≤ i ≤ s. In section 1.9, we complete the Yu datum and
state the �nal result of our comparison. Readers are advised to read Theo-
rem 1.9.3 and others results mentioned in Theorem 1.9.3 before reading all
the details of chapter 1.

Before explaining the content of chapter 2, let us explain one motivation.
In chapter 1 we have compared two developements wich can be regarded as
formalisms, theories or constructions. One conclusion of chapter 1 is that
these theories are compatible where they are both de�ned. One can naturally
ask if there exists an other construction of supercuspidal representations
containing both Yu's construction and Bushnell-Kutzko's construction. As
chapter 1 shows, one needs �rstly a formalism for some �ltrations by compact
open subgroups.

The goal of chapter 2 of this thesis is to de�ne a �ltration, natural after
the work [33]. These �ltrations are de�ned and studied using Berkovich's k-
analytic spaces [3] and Berkovich's point of view on Bruhat-Tits buildings [3,
chapter 5] [33]. V. Berkovich in the split case [3, Chapter 5], and B. Rémy, A.
Thuillier, and A. Werner (RTW) [33] have proved that the reduced Bruhat-
Tits Building of G embbeds canonically and continuously in Gan. To each
rational1 point x ∈ BTR(G, k), and to each positive number r we de�ne a
k-a�noid groups Gx,r. The Shilov boundary of Gx,r is a singleton θ(x, r) in

1See De�nition 2.3.1 for our de�nition of rational points.
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Gan. Finally we get a continous and injective map

θ : BTR
rat(G, k)×Q≥0 → Gan.

Let us explain these constructions. Let x be a rational point in the re-
duced Bruhat-Tits building of G and r be a positive rational number, there
exists a �nite Galois extension K/k satisfying the following three conditions.
Firstly, G is split over K. Secondly, the image of x in the reduced Bruhat-
Tits building of G over K is special. Thirdly, the rational number r is
contained in ordk(K) where ordk is the unique valuation on �nite extensions
extending the valuation on k. By the two �rst conditions, we obtain a K◦-
Demazure group scheme G. Since ordk(K) = 1

e(K,k)Z (where e(K, k) is the
rami�cation index), the third condition implies that the number e(K, k)× r
is a positive integer. We consider Γe(K,k)r(G), the e(K, k)r-th congruence
K◦-subgroup of G de�ned by J.-K. Yu [43]. It is a smooth K◦-group
scheme satisfying Γe(K,k)r(G)(K◦) = ker(G(K◦)→ G(K◦/πK

e(K,k)r)). Now

we can consider ̂Γe(K,k)r(G)
η
the generic �ber of the formal completion of

Γe(K,k)r(G) along its special �ber. Finally we de�ne Gx,r to be the projection

prK/k(
̂Γe(K,k)r(G)

η
), we explain that it is a k-a�noid subgroup of Gan. We

show that Gx,r is well-de�ned, i.e. that it does not depend on the choice of
K. In chapter 2, we prove the following result:

Theorem. 1. The Shilov boundary of Gx,r is a singleton denoted θ(x, r),
it is a norm on Hopf(G) (see Proposition 2.5.3).

2. If r = 0, then Gx,r = Gx where Gx is Rémy-Thuillier-Werners's k-
a�noid group [33]. (see Proposition 2.5.3)

3. The holomorphically convex envelope of θ(x, r) is egal to Gx,r (see
Proposition 2.5.3).

4. If we can choose the extension K/k tamely rami�ed in order to de�ne
Gx,r, then Gx,r(k) is egal to the coresponding normalized Moy-Prasad
groups (see Proposition 2.5.9).

5. The map θ is injective and continuous (see Proposition 2.5.7).

We also prove, among others things, that compatibility by base change
holds (see Proposition 2.5.7).

The image of θ union the neutral element of Gan forms a topological
cone in Gan. If G = GL1, BTR(G, k) = {x} is a singleton and Gan embbeds
in (A1

k)
an and corresponds to (A1

k)
an \ 0. In this case θ(x, r) is the norm

| |1,e−r ∈ (A1
k)
an. In this case, if r = 0, θ(x, r) corresponds to the Gauss point

and to the reduced Bruhat-Tits building via [33]. In the case G = GL1, the
topological cone is a segment (see 2.5.6).

In this text we also de�ne �ltrations for the Lie algebra (see 2.4.3).
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Let us describe the structure of the second chapter. In section 2.1, we
recall some results about schemes, we also introduce schematic congruence
groups following [43], [32] and [6]. In section 2.2, we introduce Berkovich's
theory of k-analytic spaces following closely main steps of [3]. In section 2.3,
we recall some facts about Bruhat-Tits buildings and Moy-Prasad �ltrations.
In section 2.4, we de�ne analytic �ltrations, in a natural and general context
of potentially Demazure objects (see 2.4), and prove various properties about
them. In section 2.5, we apply the results obtained in section 2.4 in special
cases: we obtain analytic �ltrations for points in the Bruhat-Tits building
and properties about them.

At the end of the second chapter, the appendix A is part of a work in
progress about Moy-Prasad isomorphism for analytic �ltrations. Appendix B
is a discussion about notions of rational points in Bruhat-Tits buildings: we
compare there the notion introduced by Broussous-Lemaire with the notion
introduced in the chapter 2 of this text, we show that both notions are
equivalent for GLN .
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Chapter 1

Comparison of constructions of
supercuspidal representations:
from Bushnell-Kutzko's
construction to Yu's
construction

Notations and conventions for chapter 1

F = a �xed non archimedean local �eld

oF = ring of integer of F

pF = maximal ideal of oF
kF = residual �eld of F

πF = a �xed uniformizer of F

e(E | F ) = rami�cation index of a �nite extension E/F

πE = a uniformizer of an extension E of F

νE = unique valuation on a �nite

extension E/F such that νE(πE) = 1

ord = unique valuation on algebraic

extensions of F such that ord(πF ) = 1

If k is a �eld and if G is a k-group scheme, we denote by Lie(G) the Lie
algebra functor and Lie(G) the usual Lie algebra Lie(G)(k). The Lie algebra
functor, of a k-group scheme denoted with a big capital letter G, is denoted
by the same small gothic letter g. If G is a connected reductive group
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de�ned over F , we denote by BTE(G,F ) and BTr(G,F ) the enlarged and
reduced Bruhat-Tits buildings of G over F [8], [9]. In this situation, if y
is a point of BTE(G,F ), we denote [y] the image of y via the canonical
projection BTE(G,F )→ BTR(G,F ). The group G(F ) acts on BTE(G,F )
and BTR(G,F ). We denote by G(F )y and G(F )[y] the stabilizers in G(F )
of y and [y]. If G splits over a tamely rami�ed extension, we consider the
so called Moy-Prasad �ltration1 de�ned by Moy and Prasad [29] [30]. This
is the �ltration used by Yu [41]. We use Yu's notations. So for each real
number r ≥ 0 and each y in BTE(G,F ), we have some groups G(F )y,r
and G(F )y,r+. As in [29] and [41], we have a �ltration of the Lie algebra
Lie(G) = g(F ) and of the dual of the Lie algebra g∗(F ). So for each y in
BTE(G,F ) and each real number y ≥ 0, the notations g(F )y,r , g(F )y,r+,
g∗(F )y,r and g∗(F )y,r+ are well de�ned. Let us recall here the de�nition of
g∗(F )y,r and g∗(F )y,r+, due to Moy-Prasad [29, page 400]. We have

g∗(F )y,−r = {X ∈ g∗(F ) | X(Y ) ∈ pF for all Y ∈ g(F )y,r+},

and

g∗(F )y,(−r)+ =
⋃
s<r

g∗(F )y,−s.

If s < r, we denote by G(F )y,s:r the quotient G(F )y,s/G(F )y,r. If G is a torus
we can avoid the symbol y, we write for examples G(F )r and Lie∗(G)−r. If
H ⊂ G are groups and ρ is a representation of H, we denote by IG(ρ) the
intertwining of ρ in G, i.e. the set

IG(ρ) = {g ∈ G | HomgH∩H(gρ, ρ) 6= 0}

1.1 Intertwining, compact induction and supercus-
pidal representations

Let G be a connected reductive group de�ned over F and let P = MN be a
parabolic subgroup of G. As usual in the litterature, the notation P = MN
means that M is a Levi subgroup of P and N is the unipotent radical of P .
Let rGP denote the normalized parabolic restriction functor from the category
M(G) of smooth representations of G(F ) to the categoryM(M)of smooth
representations of M(F ).

Let recall the de�nition of a supercuspidal representation.

De�nition 1.1.1. A representation π ∈M(G) is supercuspidal if rGP (π) = 0
for all proper parabolic subgroups P of G.

The following lemma is an important characterization of supercuspidal
representations.

1This �ltration is de�ned without the tameness hypothesis.
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Lemma 1.1.2. [34] A representation π ∈M(G) is supercuspidal if and only
if its matrix coe�cients are compactly supported modulo the center of G(F ).

If K is an open subgroup of G(F ), we denote by the symbol c− indGK
the compact induction functor. The lemma 1.1.2 allows one to prove the
following proposition.

Proposition 1.1.3. [14] Let K be an open subgroup of G(F ) which is com-
pact modulo the center of G(F ). Let ρ be a smooth irreducible representation
of K and let π = c− indGK(ρ) be the compactly induced representation of ρ
on G(F ). The following assertions are equivalent.

(i) The intertwining IG(ρ) of ρ is reduced to K.

(ii) The representation π is irreducible and supercuspidal.

This observation (proposition 1.1.3) is absolutely fundamental and both
constructions of supercuspidal representations studied in this paper are based
on this fact.

1.2 Bushnell-Kutzko's construction of supercuspi-
dal representations for GLN

Bushnell and Kutzko [13] have constructed for each irreducible supercuspi-
dal representation π of GLN (F ), an open subgroup K, compact modulo the
center of GLN (F ), and a smooth irreducible representation Λ of K such that

π = c− ind
GLN (F )
K (Λ). There are several texts which resume this construc-

tion (for example see [11]). In this section we give an other overview of this
construction.

In the following we describe the construction of Bushnell and Kutzko, as
in their book [13]. We follow very closely Bushnell and Kutzko and most
parts of this section are copies of the original book [13]. We give almost all
the de�nitions and recall the main step of the construction, we add some
comments to help the reader. We want to insist that almost everything in
this section is extracted from Bushnell-Kutzko's book. The reader is welcome
to read at the same time [13].

1.2.1 Simple strata

Let V be an F -vector space of dimension N . Let A be the algebra EndF (V ).
If A is a hereditary oF -order in A, we denote by P its Jacobson radical and
by νA the valuation on A given by νA(x) = max{k ∈ Z | x ∈ Pk}. A stratum
in A is a quadruple [A, n, r, β] where A is a hereditary oF -order, n > r are
integers and β is an element in A such that νA(β) ≥ −n. Let e(A | oF )
denote the period of an oF -lattice chain associated to A. Let K(A) be the
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normalizer of A in G = A×.

Before giving the de�nition of a pure stratum let us prove an elementary
lemma which will be used often in others sections of this paper.

Lemma 1.2.1. Let A be an hereditary oF -order in A, and let E be a �eld
in A such that E× ⊂ K(A). Let β be an element in E, then

νA(β)e(E | F ) = e(A | oF )νE(β). (1.1)

Proof. Let πE denote a uniformizer element in E. Since E× ⊂ K(A), the
elements πE , πF and β are in K(A). Thus the equality [13, 1.1.3] is valid for
these elements. We use it in the following equalities.

On the one hand

βe(E|F )A = π
νE(β)e(E|F )
E A = π

νE(β)
F A. (1.2)

On the other hand

βe(E|F )A = PνA(β)e(E|F ). (1.3)

Moreover by de�nition of e(A | oF ) (see [13, 1.1.2]), we have

π
νE(β)
F A = Pe(A|oF )νE(β). (1.4)

The equalities 1.2 , 1.3 and 1.4 show that

PνA(β)e(E|F ) = Pe(A|oF )νE(β). (1.5)

Consequently νA(β)e(E | F ) = e(A | oF )νE(β) and the equality 1.1 holds
as required.

De�nition 1.2.2. [13, 1.5.5] A stratum is pure if the following conditions
hold.

(i) The F -algebra E = F [β], generated by F and β in A, is a �eld.

(ii) E× is included in K(A).

(iii) The equality νA(β) = −n holds.

Let [A, n, r, β] be a pure stratum, for each k ∈ Z let Nk(β,A) be the set
[13, 1.4.3]

Nk(β,A) := {x ∈ A | βx− xβ ∈ Pk}.

Put B = EndF [β](V ) and B = B∩A. We can de�ne the following critical
exponent k0(β,A) [13, 1.4.5]:
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k0(β,A) :=

{
−∞ if E = F
max{k ∈ Z | Nk(β,A) 6⊂ B + P} if E 6= F.

De�nition 1.2.3. [13, 1.5.5] A stratum [A, n, r, β] is simple if it is pure and
r < −k0(β,A).

The simple stratum are constructed inductively from minimal elements,
through a process which is the object of the section 2.2 of Bushnell-Kutzko
's work [13, 2.2]. The following is the de�nition of a minimal element giving
birth to a stratum with just one iteration.

De�nition 1.2.4. [13, 1.4.14] Let E/F be a �nite extension. An element
β ∈ E is minimal relatively to E/F if the following three conditions are
satis�ed.

(i) The �eld F [β] is equal to the �eld E.

(ii) The integer gcd(νE(β), e(E | F )) is equal to 1.

(iii) The element π−νE(β)
F βe(E|F ) + pE generates the residual �eld kE over

kF .

An element β in F is minimal over F if it is minimal relatively to the
extension F [β]/F .

Proposition 1.2.5. Let [A, n, n − 1, β] be a pure stratum in the algebra
EndF (V ). The following assertions are equivalent.

(i) The element β is minimal over F .

(ii) The critical exponent k0(β,A) is equal to −n or is equal to −∞.

(iii) The stratum [A, n, n− 1, β] is simple.

Proof. This is a direct consequence of [13, 1.4.15]. Indeed, assume that β ∈
F , then β is clearly minimal over F , moreover k0(β,A) = −∞ by de�nition,
and thus k0(β,A) < −(n− 1), so the stratum [A, n, n− 1, β] is simple. The
three properties, being always satis�ed in this case, are equivalent. Assume
now that β 6∈ F , by [13, 1.4.15] (i) and (ii) are equivalent, moreover it is clear
that (ii) implies (iii). If (iii) is true then k0(β,A) < −(n− 1) by de�nition
of a simple stratum, moreover [13, 1.4.15] shows that −n ≤ k0(β,A). So
k0(β,A) = −n and the assertion (ii) holds.

We need, for the rest of the paper, to de�ne the notion of a tame core-
striction [13, 1.3]. Let E/F be a �nite extension of F contained in A. Let
B denote EndE(V ), the centralizer of E in A.
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De�nition 1.2.6. [13, 1.3.3] A tame corestriction on A relatively to E/F
is a (B,B)-bimodule homomorphism s : A→ B such that s(A) = A ∩B for
every hereditary oF -order A normalized by E×.

The following proposition shows that such maps exist.

Proposition 1.2.7. [13, 1.3.4, 1.3.8 (ii)] With the same notations as before,
the following holds.

(i) Let ψE, ψF be complex, smooth, additive characters of E,F with con-
ductor pE, pF respectively. Let ψB and ψA the additive characters
de�ned by ψB = ψE ◦ TrB/E and ψA = ψF ◦ TrA/F . There exists a
unique map s : A → B such that ψA(ab) = ψB(s(a)b), a ∈ A, b ∈ B.
The map s is a tame corestriction on A relatively to E/F .

(ii) If the �eld extension E/F is tamely rami�ed, there exists a tame core-
striction s such that s |B= IdB.

1.2.2 Simple characters

To each simple stratum [A, n, r, β] is associated a group H1(β,A) and a set
of characters C(β, 0,A) of H1(β,A) whose intertwining in G is remarkable.
This is the object of this section.

De�nition 1.2.8. Two strata [A, n, r, β1] and [A, n, r, β2] are equivalent if
β1−β2 ∈ P−r. The notation [A, n, r, β1] ∼ [A, n, r, β2] means that [A, n, r, β1]
and [A, n, r, β2] are equivalent.

The following theorem is fundamental for the construction of the group
H1(β,A).

Theorem 1.2.9. [13, 2.4.1]

(i) Let [A, n, r, β] be a pure stratum in the algebra A. There exists a simple
stratum [A, n, r, γ] in A equivalent to [A, n, r, β], i.e. such that

[A, n, r, γ] ∼ [A, n, r, β].

Moreover, for any simple stratum [A, n, r, γ] satisfying this condition,
e(F [γ] | F ) divides e(F [β] | F ) and f(F [γ] | F ) divides f(F [β] | F ).
Moreover, among all pure strata [A, n, r, β′] equivalent to the given pure
stratum [A, n, r, β], the simple ones are precisely those for which the
�eld extension F [β′]/F has minimal degree.

(ii) Let [A, n, r, β] be a pure stratum in A with r = −k0(β,A). Let [A, n, r, γ]
be a simple stratum in A which is equivalent to [A, n, r, β], let sγ
be a tame corestriction on A relative to F [γ]/F , let Bγ be the A-
centralizer of γ, i.e Bγ = EndF [γ](V ), and Bγ = A ∩ Bγ . Then
[Bγ , r, r − 1, sγ(β − γ)] is equivalent to a simple stratum in Bγ.
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Remark 1.2.10. Let [A, n, r, β] be a pure stratum which is not simple and
let [A, n, r, γ] be a simple stratum equivalent to [A, n, r, β], by 1.2.9 (i) the
degree [F [β] : F ] is strictly bigger than the degree [F [γ] : F ].

Corollary 1.2.11. [13, 2.4.2] Given a pure stratum [A, n, r, β], the previ-
ous theorem and remark allow us to associate an integer s and a family
{[A, n, ri, βi], 0 ≤ i ≤ s} such that

(i) [A, n, ri, βi] is a simple stratum for 0 ≤ i ≤ s,

(ii) [A, n, r0, β0] ∼ [A, n, r, β],

(iii) r = r0 < r1 < . . . < rs < n and [F [β0] : F ] > [F [β1] : F ] > . . . > [F [βs] : F ],

(iv) ri+1 = −k0(βi,A), and [A, n, ri+1, βi+1] is equivalent to [A, n, ri+1, βi]
for 0 ≤ i ≤ s− 1,

(v) k0(βs,A) = −n or −∞,

(vi) Let Bβi be the centralizer of βi in A and si a tame corestrition on A rel-
ativelty to F [βi]/F . The derived stratum [Bβi+1

, ri+1, ri+1−1, si+1(βi−
βi+1)] is equivalent to a simple stratum for 0 ≤ i ≤ s− 1.

This family is not unique and is called a de�ning sequence for [A, n, r, β].

In order to help the reader, we give an explanation for this corollary.

Proof. • If [A, n, r, β] is a simple stratum, put [A, n, r0, β0] = [A, n, r, β] (re-
mark that r0 < −k0(β0,A)). We now have an algorithm. If β0 is minimal
over F , put s = 0. Then (i) and (ii) are obviously sati�ed, r = r0 < n is sat-
is�ed by de�nition of a simple stratum and because the rest of condition (iii)
is empty. Condition (iv) is empty in this case so is satis�ed. Condition (v) is
satis�ed by proposition 1.2.9. The condition (vi) is empty in this case and so
is satis�ed. If β0 is not minimal, consider the stratum [A, n,−k0(β0,A), β0],
it is pure but not simple. We now have a general process: the theorem 1.2.9
shows that there exists a simple stratum [A, n,−k0(β0,A), β1] equivalent to
[A, n,−k0(β0,A), β0] (remark that [F [β0] : F ] > [F [β1] : F ] by 1.2.10) such
that for any tame corestriction sβ1 the stratum [Bβ0 , r, r − 1, sβ1(β0 − β1)]
is simple. Put r1 = −k0(β0,A). If β1 is minimal over F , put s = 1. The
condition (i), (ii), (iii), (iv) are now obviously satis�ed. The condition (v)
is also satis�ed by proposition 1.2.5 and because β1 is minimal over F . The
condition (vi) is now obviously satis�ed. If β1 is not minimal over F . Con-
sider the stratum [A, n,−k0(β1,A), β1], it is pure but not simple. As before,
we apply the process to get a stratum [A, n,−k0(β1,A), β2] equivalent to
[A, n,−k0(β1,A), β1]. Put r2 = −k0(β1,A). If β2 is minimal, put s = 2. As
before, the conditions (i) to (vi) are easily satis�ed. If β2 is not minimal,
we can apply the process and get a simple stratum [A, n,−k0(β2,A), β3], if
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β3 is minimal we put s = 3 and r3 = −k0(β2,A). If β3 is not minimal, we
apply the process and get a new stratum and an element β4 and so on. We
claim that there exists an integer s such that this algorithm stops, i.e βs is
minimal. Assume the contrary, then we have an in�nite strictly increasing
sequence of numbers between r and n

r = r0 < r1 = −k0(β0,A) < r2 = −k0(β1,A) < . . . < ri+1 = −k0(βi,A) < . . . < n

this is a contradiction. This concludes the proposition in this case.
• If [A, n, r, β] is pure but not simple, there exists a simple stratum

[A, n, r, β0] equivalent to it and the previous case complete the proof.

Fix a simple stratum [A, n, r, β], and let r be the integer −k0(β,A).
The following is the de�nition of various groups and orders associated to
[A, n, r, β]. Choose and �x a de�ning sequence {[A, n, ri, βi], 0 ≤ i ≤ s} of
[A, n, r, β] (we thus have β = β0). If s > 0, the element β1 is often denoted
γ. We now de�ne by induction on the length of the de�ning sequence various
objects.

De�nition 1.2.12. [13, 3.1.7 ,3.1.8, 3.1.14]

(i) Suppose that β is minimal over F . Put

(a) H(β,A) = Bβ + P[n
2

]+1,

(b) J(β,A) = Bβ + P[n+1
2

].

(ii) Suppose that r < n, and let [A, n, r, γ] be the simple stratum equivalent
to [A, n, r, β] chosen in the previously �xed de�ning sequence. Put

(a) H(β,A) = Bβ + H(γ,A) ∩P[ r
2

]+1,

(b) J(β,A) = Bβ + J(γ,A) ∩P[ r+1
2

].

(iii) For k ≥ 0, put

(a) Hk(β,A) = H(β,A) ∩Pk,

(b) Jk(β,A) = J(β,A) ∩Pk.

(iv) Finally, put Um(A) = (1 + Pm) if m > 0 and Um(A) = A× if m = 0
and put

(a) Hm(β,A) = H(β,A) ∩ Um(A),

(b) Jm(β,A) = J(β,A) ∩ Um(A).

The set Hm(β,A) and Jm(β,A) are groups. The group J0(β,A)
is also denoted J(β,A).
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Remark 1.2.13. In the case r < n, H(β,A) is de�ned inductively: the order
H(βs,A) is well-de�ned since βs is minimal, then H(βs−1,A) is well de�ned
and so on. The same remark occurs for J(β,A).

Remark 1.2.14. By [13, 3.1.7, 3.1.9 (v)], Jk(β,A) and Hk(β,A) are well-
de�ned, they do not depend on the choice of a de�ning sequence. So the same
is true for Hm(β,A) and Jm(β,A).

Proposition 1.2.15. [13, 3.1.15] Let m ≥ 0 be an integer then the following
assertions hold.

(i) The groups Hm(β,A) and Jm(β,A) are normalized by K(Bβ), so in
particular by F [β]×.

(ii) The group Hm(β,A) is included in Jm(β,A).

(iii) The group Hm+1(β,A) is a normal subgroup of J0(β,A).

The following is devoted to the de�nition of the so called simple charac-
ters. Let Ψ be an additive character of F with conductor pF . Let ψA be the
function on A de�ned by ψA(x) = ψ ◦TrA/F (x). To any b ∈ A is associated
a function ψb on A given by

ψb(x) = ψA(b(x− 1)).

De�nition 1.2.16. (i) Suppose that β is minimal over F .

For 0 ≤ m ≤ n− 1, let C(A,m, β) denote the set of characters θ of
Hm+1(β) such that:

(a) θ |
Hm+1(β)∩U [n2 ]+1(A)

= ψβ,

(b) θ |Hm+1(β)∩B×β
factors through detBβ : B×β → F [β]×.

(ii) Suppose that r < n. For 0 ≤ m ≤ r − 1, let C(A,m, β) be the set of
characters θ of Hm+1(β) such that the following conditions hold.

(a) θ | Hm+1(β) ∩B×β factors through detBβ

(b) θ is normalised by K(Bβ)

(c) if m′ = max{m, [ r2 ]}, the restriction θ | Hm′+1(β) is of the form
θ0ψc for some θ0 ∈ C(A,m′, γ) where c = β − γ and γ is the �rst
element of the �xed de�ning sequence.

Remark 1.2.17. In the second case, C(A,m, β) is de�ned by induction:
recall that we have �xed a de�ning sequence {[A, n, ri, βi], 0 ≤ i ≤ s} of
[A, n, 0, β], the last term of the de�ning sequence is such that βs is minimal
over F and by the �rst case, there is a set of character attached. Then, those
attached to [A, n, rs−1, βs−1] are de�ned, and by iteration the set C(A,m, β)
is de�ned.
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Remark 1.2.18. [13, 3.2] The set C(A,m, β) de�ned above is independent
of the choice of the de�ning sequence.

Proposition 1.2.19. [13, 3.3.2] Let [A, n, 0, β] be a simple stratum in the
algebra A. Put r = −k0(β,A). For 0 ≤ m ≤ [ r2 ] and θ ∈ C(A,m, β), the
intertwining of θ in G is given by

IG(θ) = J [ r+1
2

](β,A)B×β J
[ r+1

2
](β,A).

1.2.3 Simple types and representations

This section is devoted to the de�nition of simple types and to one of the
main theorems of Bushnell-Kutzko's theory.

Let [A, n, 0, β] be a simple stratum and let θ ∈ C(β, 0,A) be a simple
character attached to this stratum. There exists a unique, up to isomor-
phism, irreducible representation η of J1(β,A) containing θ [13, 5.1.1]. The
dimension of η is equal to [J1(β,A) : H1(β,A)]

1
2 .

De�nition 1.2.20. [13, 5.2.1] A β-extension of η is a representation κ of
J0(β,A) such that the following conditions hold.

(i) κ |J1(β,A)= η

(ii) κ is intertwined by the whole of B×.

We say that κ is a β-extension of θ if there exists an irreducible repre-
sentation η of J1(β,A) containing θ such that κ is a β-extension of η.

Proposition 1.2.21. Let κ be an irreducible representation of J0(β,A). The
following assertions are equivalent.

(i) The representation κ is a β−extension of θ.

(ii) The representation κ satis�es the following three conditions.

(a) κ contains θ

(b) κ is intertwined by the whole of B×

(c) dim(κ) = [J1(β,A) : H1(β,A)]
1
2 .

Proof. If κ is a β − extension, κ satis�es (a), (b), (c). Indeed, by de�nition
κ restricted to J1(β,A) is equal to an irreducible representation η which
contains θ, thus κ contains θ and dim(κ) = dim(η) = [J1(β,A) : H1(β,A)]

1
2 .

By de�nition, κ is intertwined by the whole of B×. Reciprocally, if κ satis�es
(a), (b), (c) then (κ |J1(β,A)) |H1(β,A) contains θ, so κ |J1(β,A) contains an
irreducible representation η which contains θ, and the equality on dimension
thus shows κ |J1(β,A)= η. Thus κ is a β−extension as required.
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Proposition 1.2.22. Let κ1 and κ2 be two β-extension of θ. There ex-
ists a character χ : U0(oE)/U1(oE) → C× such that κ1 is isomorphic to
κ2 ⊗ χ ◦ detB.

Proof. There exists η1 and η2, irreducible representations containing θ, such
that κ1 is a β-extension of η1 and κ2 is a β-extension of η2. The representa-
tion η1 is isomorphic to η2. The proposition 1.2.22 is now a consequence of
[13, 5.2.2].

De�nition 1.2.23. A simple type in G is one of the following (a) or (b).

(a) An irreducible representation λ = κ⊗ σ of J(β,A) where:

(i) A is a principal oF -order in A and [A, n, 0, β] is a simple stratum;

(ii) κ is a β − extension of a character θ ∈ C(A, 0, β);

(iii) if we write E = F [β],B = A ∩ EndE(V ), so that

J(β,A)/J1(β,A) ' U(B)/U1(B) ' GLf (kE)e

for certain integers e, f , then σ is the in�ation of a representation
σ0 ⊗ · · · ⊗ σ0 where σ0 is an irreducible cuspidal representation of
GLf (kE),

(b) An irreducible representation σ of U(A) where:

(i) A is a principal oF−order in A,
(ii) if we write U(A)/U1(A) ' GLf (kF )e, for certain integers e, f , then

σ is the in�ation of a representation σ0 ⊗ · · · ⊗ σ0, where σ0 is an
irreducible cuspidal representation of GLf (kF ).

The following theorem is one of the main theorem of Bushnell-Kutzko
theory [13].

Theorem 1.2.24. [13, 8.4.1] Let π be an irreducible supercuspidal represen-
tation of G = AutF (V ) ' GLN (F ). There exists a simple type (J, λ) in G
such that π | J contains λ. Further,

(i) the simple type (J, λ) is uniquely determined up to G-conjugacy,

(ii) if (J, λ) is given by a simple stratum [A, n, 0, β] in A = EndF (V ) with
E = F [β], there is a a uniquely determined representation Λ of E×J
such that Λ |J= λ and π = c− ind(Λ), in this case A ∩ EndE(V ) is a
maximal oE-order EndE(V ).

(iii) if (J, λ) is of the form (b) , i.e if J = U(A) for some maximal oF -
order A and λ is trivial on U1(A), then there is a uniquely determined
representation Λ of F×U(A) such that Λ |U(A)= λ and π = c− ind(Λ).
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Let us now introduce a terminology speci�c to the purpose of this text.

De�nition 1.2.25. A Bushnell-Kutzko datum in A is one of the following
sequence.

(a) A uple of the form ([A, n, 0, β], θ, κ, σ,Λ) such that:

(i) [A, n, 0, β] is a simple stratum in A such that Bβ is a maximal
oE-order,

(ii) θ ∈ C(A, 0, β) is a simple character attached to [A, n, 0, β],

(iii) κ is a β-extension of θ,

(iv) σ is an irreducible cuspidal representation of U0(Bβ)/U1(Bβ),

(v) Λ is an extension to E×J0(β,A) of κ⊗ σ.

(b) A uple of the form (A, σ,Λ) where A is a maximal oF -order in A, σ
is a cuspidal representation of U0(A)/U1(A) and Λ is an extension to
F×U0(A) of σ.

Remark 1.2.26. As in de�nition [13, 5.5.10], this distinction (a) and (b)
is quite super�cial (see the remark after [13, 5.5.10]).

Remark 1.2.27. As we have explained in this section, in order to construct
one supercuspidal representation, Bushnell and Kutzko do some choices of
objects at various steps of the construction. These choices of objects may
depend on previously considered and choosen other objects. The "notion"
of Bushnell-Kutzko datum takes into account this. In the Bushnell-Kutzko
datum ([A, n, 0, β], θ, κ, σ,Λ), θ depends on [A, n, 0, β], κ depends on θ, and Λ
depends on κ and σ. In Yu's construction, as we will see in the next section,
all the choices are done at the beginning.

In this chapter we are going to associate to each Bushnell-Kutzko datum
satisfying a tameness condition a Yu datum. The following is the de�nition
of a tame Bushnell-Kutzko datum.

De�nition 1.2.28. A tame Bushnell-Kutzko datum is a Bushnell-Kutzko
datum ([A, n, 0, β], θ, κ, σ,Λ) of type (a) such that [A, n, 0, β] is a tame simple
stratum (see 1.4.1 for the de�nition of a tame simple stratum) or a Bushnell-
Kutzko datum of type (b).

1.3 Yu's construction of tame supercuspidal repre-
sentations

Given a connected reductive algebraic F -group G, Yu [41] constructs irre-
ducible supercuspidal representations of G(F ), these representations are said
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to be tame. Adler's work [1] has inspired parts of Yu's construction. Kim
[27] has proved that when the residual characteristic of F is su�ciently big,
the construction of Yu is exhaustive. Fintzen has recently posted online a
better exhaustion result [20].

In the following we describe the construction of Yu, as in Yu's paper
[41]. We follow very closely Yu and most parts of this section are copies of
original Yu's paper. We give almost all de�nitions and recall the main steps
of the construction, we add some comments to help the reader. Chapter 3 of
Hakim-Murnaghan's paper [24] should also be helpful for this section. We use
some of Hakim-Murnaghan's notations, in particular we use the notations
π−1, and κi. We want to insist that almost everything in this section is
extracted from Yu's article [41]. The reader is welcome to read at the same
time [41]. In particular, the reader who knows Yu's construction does not
have to read this part except for notations.

We start by recalling some facts on tame twisted Levi sequences (1.3.1).
We then introduce the de�nition of generic characters (1.3.2). This allows
us to introduce the de�nition of a generic supercuspidal Yu datum. We also
use the simpler expression "Yu datum" in this text. The notion of (non-
necessary supercuspidal) generic Yu datum exists [28] and generalize the
notion of supercuspidal Yu datum. Now in this text Yu datum will always
mean supercuspidal generic Yu datum.

1.3.1 Tamely rami�ed twisted Levi sequences and groups

In this section we introduce some notations and facts relative to them used
in Yu's construction. We refer to the sections 1 and 2 of [41] for proofs.

We refer the reader to [8, 6.4.1] for the de�nition of the totally ordered
commutative monoid R̃ = R t R + t ∞.

De�nition 1.3.1. A tame twisted Levi sequence
−→
G in G is a sequence

(G0 ⊂ G1 ⊂ . . . ⊂ Gd = G)

of reductive F -subgroups of G such that there exists a tamely rami�ed �nite
Galois extension E/F such that Gi ×spec(F ) spec(E) is a split Levi subgroup
of G×spec(F ) spec(E), for 0 ≤ i ≤ d.

Let
−→
G be a tame twited Levi sequence, there exists a maximal torus

T ⊂ G0 de�ned over F such that T ×spec(F ) spec(E) is split. For each
0 ≤ i ≤ d, let Φi be the union of the set of roots Φ(Gi, T, E) and {0}, i.e
Φi = Φ(Gi, T, E) ∪ {0}. For each a ∈ Φd \ {0}, let Ga ⊂ G = Gd the root
subgroup corresponding to a, and let Ga be T if a = 0. Let g(E) be the
Lie algebra of G over E, and and let g∗(E) be the dual of g(E). For each
a ∈ Φd let ga(E) (resp g∗a(E) ) be the a-eigenspace of g(E) (resp g∗(E)) as a
rational representation of T . Then ga(E) is the Lie algebra of Ga, and g∗a(E)
is the dual of g−a(E).
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If 0 ≤ i ≤ j ≤ d, we have a natural inclusion of roots: Φi ⊂ Φj .
Let −→r = (r0, . . . , ri, . . . , rd) be a sequence of numbers in R̃, we introduce

a function f−→r from Φ(Gd, T, E) to R̃ as follows: f(a) = r0 if a ∈ Φ0,
f(a) = rk if a ∈ Φk \ Φk−1.

By de�nition, a sequence −→r = (r0, r1, . . . , rd) of numbers in R̃ is admis-
sible if there exists ν ∈ Z such that 0 ≤ ν ≤ d and

0 ≤ r0 = . . . = rν ,
1
2rν ≤ rν+1 ≤ . . . ≤ rd.

Let y be in the appartement A(G,T,E) ⊂ BTE(G,E).
The point y determines �ltration subgroups {Ga(E)y,r}r∈R̃,r≥0 of Ga(E),

lattices {ga(E)y,r}r∈R̃ and latttices {g∗a(E)y,r}r∈R̃ in g∗a(E)y,r, for each a ∈
Φd. If a 6= 0, the �ltration of Ga(E) can be extended to a �ltration
{Ga(E)y,r}r∈R̃ indexed by the whole of R̃. For any R̃-valued function f on
Φd such that f(0) ≥ 0, let G(E)y,f be the subgroup generated by Ga(E)y,f(a)

for all a ∈ Φd, and let g(E)y,f (resp g∗(E)y,f ) be the lattice generated by
ga(E)y,f(a) (resp g∗a(E)y,f(a)) for all a ∈ Φd. We will denote G(E)y,f−→r by
−→
G(E)y,−→r , and g(E)y,f−→r (resp g∗(E)y,f−→r ) by

−→g (E)y,−→r (resp −→g ∗(E)y,−→r ). Let
−→r ,−→s be two admissible sequences of elements in R̃. We write −→r < −→s (resp
−→r ≤ −→s ) if ri < si (resp ri ≤ si) for 0 ≤ i ≤ d. If −→r < −→s , to simplify the
notation, we put

−→
G(E)y,−→r :−→s =

−→
G(E)y,−→r /

−→
G(E)y,−→s and −→g (E)y,−→r :−→s = −→g (E)y,−→r /

−→g (E)y,−→s .

We have assumed that y ∈ A(G,T,E) ⊂ BTE(G,E). Therefore, y
determines a valuation of the root datum of (G,T,E) in the sense of [8].
This valuation restricted on the root datum of (Gi, T, E), is a valuation
there. Therefore, it determines a point yi in A(Gi, T, E) modulo the ac-
tion of X∗(Z(Gi), E) ⊗Z R. A choice of yi determines an embedding ji :
BTE(Gi, E) → BTE(G,E), which is Gi(E)-equivariant and maps yi to y.
We now �x yi for 0 ≤ i ≤ d and identify BTE(Gi, E) with its image in
BTE(G,E) under ji. We thus identify yi with y.

The following is an important proposition.

Proposition 1.3.2. [41] The following assertions hold.

(i)
−→
G(E)y,−→r ,

−→g (E)y,−→r and −→g (E)y,−→r are independent of the choice of T .

(ii) If −→r ,−→s are two admissible sequences such that

0 < ri ≤ si ≤ min(ri, . . . , rd) + min(−→r ) for 0 ≤ i ≤ d

then
−→
G(E)y,−→r :−→s is abelian and isomorphic to −→g (E)y,−→r :−→s .

(iii) If −→r is an admissible increasing sequence, we have
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−→
G(E)y,−→r = G0(E)y,r0G

1(E)y,r1 . . . G
d(E)y,rd

where Gi(E)y,ri , 0 ≤ i ≤ d, are Moy-Prasad's groups (see Notation).

The sets A(G,T,E) and BTE(G,F ) are both subsets of BTE(G,E). We
put A(G,T, F ) = A(G,T,E)∩BTE(G,F ), it does not depend on the choice

of the splitting �eld E. Since T (hence
−→
G) has a tamely rami�ed Galois

splitting �eld E, Gal(E/F ) acts on A(G,T,E) by a�ne automorphisms.
The center of mass of a Gal(E/F )-orbit in A(G,T,E) is �xed by Gal(E/F ),
and is a point of A(G,T, F ) by a result of Rousseau. This observation has
been used by Adler in [1]. Let y ∈ A(G,T, F ) ⊂ A(G,T,E), and let −→r be

an (R̃-valued) admissible sequence of length d + 1. We de�ne
−→
G(F )y,−→r to

be
−→
G(E)y,−→r ∩ G(F ), it does not depend on the choice of E. Recall that

we have assumed E/F to be a Galois extension. The group
−→
G(E)y,−→r is

Galois stable and
−→
G(F )y,−→r =

−→
G(E)y,−→r

Gal(E/F )
. The lattices −→g (F )y,−→r and

−→g ∗(F )y,−→r are de�ned in the same fashion. Again we de�ne
−→
G(F )y,−→r :−→s =

−→
G(F )y,−→r /

−→
G(F )y,−→s and de�ne −→g (F )y,−→r :−→s and −→g ∗(F )y,−→r :−→s similarly.

The following is an important proposition.

Proposition 1.3.3. Let 0 ≤ −→r ≤ −→s and −→s > 0. Then

(i) The natural morphisms of groups

−→
G(F )y,−→r :−→s →

−→
G(E)y,−→r :−→s

Gal(E/F )

and

−→g (F )y,−→r :−→s →
−→g (E)y,−→r :−→s

Gal(E/F )

are surjective

(ii) If 0 < −→r < −→s , si ≤ min(ri, . . . , rd) + min(−→r ) for all i, and E/F is
a splitting �eld of

−→
G which is Galois and tamely rami�ed, then the

isomorphism
−→
G(E)y,−→r :−→s →

−→g (E)y,−→r :−→s induces an isomorphism

−→
G(F )y,−→r :−→s →

−→g (F )y,−→r :−→s .

We have assumed that y ∈ BTE(G,E) ∩ A(G,T,E). We may assume
that yi is �xed by Gal(E/F ) . Then yi is a point in BTE(Gi, F ) by a
result of Rousseau. The embedding ji : BTE(Gi, E)→ BTE(G,E) is Galois
equivariant, hence induces an embeddings BTE(Gi, F ) → BTE(G,F ) by
an other result of Rousseau. We identify BTE(Gi, F ) with its image in
BTE(G,F ). Therefore, we identify yi with y.

We now have an other important proposition
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Proposition 1.3.4. [41, 2.10] If −→r is increasing with r0 > 0, we have
−→
G(F )y,−→r = G0(F )y,r0G

1(F )y,r1 . . . G
d(F )y,rd

where Gi(F )y,ri , 0 ≤ i ≤ d, are Moy-Prasad's groups (see Notation).

1.3.2 Generic elements and generic characters

Recall that if L is a lattice in an F -vector space V , the dual lattice L∗ is
de�ned to be

{x ∈ V ∗ | x(L) ⊂ oF }.

Put L• = L∗ ⊗oF pF . If L ⊂ M are lattices in V , then the Pontrjagin
dual of M/L can be identi�ed with L•/M• via an additive character ψF of
conductor pF . Explicitly, every element a ∈ L• de�nes a character χ = χa
on M by χa(m) = ψF (a(m)). Clearly, χa factors through M → M/L and
χa depends on a mod M• only. We say that a realizes the character χ.

If −→r = (r0, . . . , rd) is an R-valued sequence, we de�ne −→r + to be the
sequence (r0+, . . . , rd+). Then g∗(F )y,−→r is equal to g(F )∗

y,(−−→r )+
⊗oF pF and

g∗(F )y,−→r + is equal to g(F )∗
y,−−→r ⊗oF pF .

Let r > 0 and let S be any group lying between G(F )y,(r/2)+ and G(F )y,r.
Then S/G(F )y,r+ ' s/g(F )y,r+, where s is a lattice between g(F )y,(r/2)+ and
g(F )y,r.

De�nition 1.3.5. A character of S/G(F )y,r+ is said to be realized by an
element a ∈ g∗(F )y,−r = (g(F )y,r+)• if it is egal to the composition

S/G(F )y,r+
∼ // s/g(F )y,r+

χa // C×.

We now introduce the notion of generic element, a generic character will
be de�ned as certain characters whose restrictions are realized by generic
elements. Let G′ ⊂ G be a tamely rami�ed twisted Levi sequence. Let Z ′ de
the center of G′, and let T be a maximal torus of G′. The space Lie∗((Z ′)◦)
can be regard as a subspace of Lie∗(G′) in a canonical way: let V be the
subspace of Lie∗(G′) �xed by the coadjoint action of G′. Each element of
V induces a linear function on Lie((Z ′)◦) ⊂ Lie(G′) by restriction. This
gives a linear bijection from V to Lie∗((Z ′)◦). We identify Lie∗((Z ′)◦) with
V ⊂ Lie∗(G′). The space Lie∗(G′) can also be regarded as a subspace of
Lie∗(G) in a canonical way: if we consider the action of (Z ′)◦ on Lie∗(G), then
the subspace �xed by (Z ′)◦ can be identi�ed with Lie∗(G′). The connected
center (Z ′)◦ is a torus which split over a tamely rami�ed extension, so the
set (Z ′)◦(F ),Lie((Z ′)◦ and Lie∗((Z ′)◦) carry canonical �ltrations.

An element X∗ of (Lie∗(Z ′)◦)−r is called G-generic of depth r ∈ R if two
conditions GE1 and GE2 hold. Let us explain GE1. Let a denote a root
in Φ(G,T, F ), let a∨ be the coroot of a, and let da∨ denote the di�erential
of a∨. Let Ha denote the element da∨(1).
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Remark 1.3.6. In the following de�nition of Yu, it is implicit that we see
X∗ canonically as an element in Lie∗(Z ′◦ ×spec(F ) spec(F )). This is done
remarking two elementary facts valid for every reductive F -group scheme G.
First, Lie(G◦ ×spec(F ) spec(F )) is canonically isomorphic to Lie(G◦) ⊗F F
since F is a �eld, and theirs duals are thus canonically isomorphic. The
canonical injective map

Lie∗(G◦)→ (Lie(G◦)⊗F F )∗

f 7→ (z ⊗ λ 7→ f(z)λ)

ends this remark.

De�nition 1.3.7. An element X∗ of (Lie∗(Z ′)◦)−r satis�es GE1 with depth
r if ord(X∗(Ha)) = −r for all root a ∈ Φ(G,T, F ) \ Φ(G,T, F ).

We refer to section 8 of [41] for the de�nition of the condition GE2. In
general, the condition GE2 is implied by the condition GE1 in most cases.
In particular, in this paper the condition GE2 will always hold as soon as
the condition GE1 will hold thank to the following propositions. We refer to
the section 7 of [41], or [37] for the notion of torsion prime for a root datum.

Proposition 1.3.8. [41, 8.1] If the residual characteristic of F is not a
torsion prime for the root datum (X,Φ(G,T, F ), X∨,Φ∨(G,T, F ), then GE1

implies GE2.

Proposition 1.3.9. [37] Let (X,Φ, X∨,Φ∨) be a root datum of type A.
Then, the set of torsion prime for (X,Φ, X∨,Φ∨) is empty.

As announced before, the de�nition of a generic element is the following.

De�nition 1.3.10. An element X∗ of (Lie∗(Z ′)◦)−r is called G-generic of
depth r ∈ R if the conditions GE1 and GE2 hold.

We can now give Yu's de�nition of generic characters.

De�nition 1.3.11. (i) A character χ of G′(F ) is called G-generic if it is
realized (in the sense of de�nition 1.3.5) by an element X∗ in

(Lie∗(Z ′)◦)−r ⊂ (Lie∗G′)y,−r which is G-generic of depth r.

(ii) A character Φ of G′(F ) is called G-generic (relative to y) of depth r if
Φ is trivial on G′(F )y,r+, non-trivial on G′(F )y,r and Φ restricted to
G′(F )y,r:r+ is G-generic of depth r in the sense of (i).
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1.3.3 Yu data

The following is the list of objects in a Yu datum.

De�nition 1.3.12. A Yu datum consists in the following objects.

(
−→
G) An anisotropic tame twisted Levi sequence in G, i.e

G0 ⊂ · · · ⊂ Gi ⊂ · · · ⊂ Gd = G

such that

(a) there exists a �nite tamely rami�ed Galois extension E/F
such that Gi ×spec(F ) spec(E) is a split Levi subgroup of
G×spec(F ) spec(E),

(b) Z(G0)/Z(G) is anisotropic.

(y) A point y ∈ BTE(G0, F ) ∩ A(G,T,E) where T is a maximal torus of
G0, such that T ×spec(F ) spec(E) is split and A(G,T,E) denotes the
appartement associated to T over E,

(−→r ) A sequence of real numbers 0 < r0 < r1 < ... < rd−1 ≤ rd if d > 0 ,
0 ≤ r0 if d = 0,

(ρ) An irreducible representation ρ of K0 = G0
[y] such that ρ |G0(F )y,0+

= 1

and such that π−1 := c− ind
G0(F )
K0 (ρ) is irreducible and supercuspidal.

(
−→
Φ) A sequence Φ0, . . . ,Φd of characters of G0(F ), . . . , Gd(F ). We assume

that Φi is trivial on Gi(F )y,ri+ but not on Gi(F )y,ri for 0 ≤ i ≤ d− 1.
If rd−1 < rd, we assume Φd is trivial on Gd(F )y,rd+ but not on
Gd(F )y,rd . If rd−1 = rd, we assume that Φd = 1. The characters
are assumed to satisfy the generic condition of Yu: Φi is Gi+1-generic
of depth ri for 0 ≤ i ≤ d− 1.

1.3.4 Yu's construction

We �x in the rest of this section a generic Yu datum. The three �rst ob-
jects (

−→
G, y,−→r ) allow to de�ne various groups. The point y can be seen as a

point in the enlarged Bruhat-Tits Building of Gi for each i using embeddings
BTE(G0, F ) ↪→ BTE(G1, F ) ↪→ . . . ↪→ BTE(Gd, F ) as explained in the sec-
tion 2 of Yu's paper [41, �2 , page 589 line 5]. We �x, for the rest of this
section, such embeddings. The following is the de�nition of three groups.

De�nition 1.3.13. [41, �3, 15.3] Put si = ri
2 for 0 ≤ i ≤ d.

For i = 0, put

(i) K0
+ = G0(F )y,0+
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(ii) ◦K0 = G0(F )y

(iii) K0 = G0(F )[y].

For 1 ≤ i ≤ d, put

(i)

Ki
+ = G0(F )y,0+G

1(F )y,s0+ · · ·Gi(F )y,si−1+

= (G0, G1, . . . , Gi)(F )y,(0+,s0+,...,si−1+)

(ii)

◦Ki = G0(F )yG
1(F )y,s0 · · ·Gi(F )y,si−1

= G0(F )y(G
0, G1, . . . , Gi)(F )y,(0,s0,...,si−1)

(iii)

Ki = G0(F )[y]G
1(F )y,s0 · · ·Gi(F )y,si−1

= G0(F )[y](G
0, G1, . . . , Gi)(F )y,(0,s0,...,si−1).

Proposition 1.3.14. [41] Let 0 ≤ i ≤ d.

(i) The three objects Ki
+,
◦Ki, Ki de�ned precedently are groups.

(ii) They do not depend on the choice of the embeddings

BTE(G0, F ) ↪→ BTE(G1, F ) ↪→ . . . ↪→ BTE(Gi, F ).

(iii) There are inclusions Ki
+ ⊂ ◦Ki ⊂ Ki.

(iv) The groups Ki
+ and ◦Ki are compact and Ki is compact modulo the

center. Moreover ◦Ki is the maximal compact subgroup of Ki.

Yu also de�ne groups J i and J i+ for 1 ≤ i ≤ d as follows. For 1 ≤ i ≤ d
, (ri−1, si−1) and (ri−1, si−1+) are admissible sequence

De�nition 1.3.15. Let J i be the group (Gi−1, Gi)(F )(ri−1,si−1) and J i+ be
the group (Gi−1, Gi)(F )(ri−1,si−1+).

Proposition 1.3.16. Let 0 ≤ i ≤ d − 1. The following equalities of groups
hold:

(i) Ki−1J i = Ki

(ii) Ki−1
+ J i+ = Ki

+.
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Thanks to
−→
Φ , Yu de�nes a character

d∏
i=1

Φ̂i on Kd
+. Then, he constructs

a representation ρd = ρd(
−→
G, y,−→r , ρ,

−→
Φ) on Kd [41, �4]. Let us explain the

construction of these objects.
Let 0 ≤ i ≤ d− 1.
Put T i = (Z(Gi))◦, let us consider the adjoint action of T i on g, the

space gi = Lie(Gi) is the maximal subspace on which T i acts trivialy. Let
ni be the sum of the remaining isotypic subspaces. Let s ≥ 0 ∈ R̃, then
g(F )s = gi(F )s ⊕ ni(F )s where ni(F )s ⊂ ni(F ). There exists a sequence of
morphisms as follows (see [41, section 4]).

Gi(F )si+:ri+ ' gi(F )si+:ri+ ⊂ gi(F )si+:ri+ ⊕ ni(F )si+:ri+ ' G(F )si+:ri+

(1.6)
The character Φi of Gi(F ) is of depth ri. Thus it induces, thanks to the
isomorphism (1.6) , a character on gi(F )si+:ri+ . We extend the latter to
gi(F )si+:ri+ ⊕ ni(F )si+:ri+ by decreting that it is 1 on ni(F )si+:ri+ . We ob-
tain thanks to the last isomorphim in 1.6 a character on G(F )si+ that Yu
denotes by Φ̂i. By construction, the following equality holds Φ̂i |Gi(F )si+

=

Φi |Gi(F )si+
. There exists a unique character on G0(F )[y]G

i(F )0G(F )si+

which extends Φi and Φ̂i. Yu denote this character also by the symbol Φ̂i.
Remark that Kd

+ ⊂ G0(F )[y]G
i(F )0G(F )si+ , in particular we have de�ned

a character Φ̂i on Kd
+. The character Φ̂i depends only on (

−→
G, y,−→r ,Φi),

we sometimes denote it Φ̂i = Φ̂i(
−→
G, y,−→r ,Φi). Let θ(

−→
G, y,−→r ,

−→
Φ) be the

character
d∏
i=0

Φ̂i |Kd
+
. We put Φ̂d = Φd.

Then Yu constructs for 0 ≤ j ≤ d a representation ρj of Kj . The com-

pactly induced representation c− ind
Gj(F )

Kj (ρj) is an irreducible and super-
cuspidal representation of Gj(F ). However, we are mainly interested in the

case j = d, i.e in the representation ρd, since ρd depends on
−→
G, y,−→r ,

−→
Φ , ρ,

we also write ρd = ρd(
−→
G, y,−→r ,

−→
Φ , ρ). We will use similar notations in the

following. For each j, the representation ρj of Kj is naturally expressed as
a tensor product of representations.

Lemma 1.3.17. [41, �4]Let 0 ≤ i ≤ d−1, there exists a canonical irreducible
representation Φ̃i of Ki o J i+1 such that the following conditions hold.

(i) The restriction of Φ̃i to 1 n J i+1
+ is (Φ̂i |Ji+1

+
)−isotypic.

(ii) The restriction of Φ̃i to Ki
+ n 1 is 1−isotypic.

Lemma 1.3.18. Let 0 ≤ i ≤ d− 1. Let inf(Φi) be the in�ation of Φi |Ki to
Ki n J i+1. Let Φ̃i be the canonical irreducible representation introduced in
lemma 1.3.17. Then inf(Φi)⊗ Φ̃i factors through the map
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Ki n J i+1 → KiJ i+1 = Ki+1.

Proof. This is easy and proved in section 4 of [41].

De�nition 1.3.19. Let us denote by Φ′i the representation of Ki+1 whose
in�ation to Ki n J i+1 is inf(Φi)⊗ Φ̃i.

Lemma 1.3.20. [24, page 50] The following assertions hold.

(i) If µ is a representation of Ki which is 1-isotypic on Ki ∩ J i+1 =
Gi(F )y,ri then there is a unique extension of µ to a representation,

denoted infK
i+1

Ki (µ), of Ki+1 which is 1-isotypic on J i+1. If i < d− 1,
this in�ated representation is 1-isotypic on Ki+1 ∩ J i+2.

(ii) We may repeatedly in�ate µ. More precisely, if 0 ≤ i ≤ j ≤ d then we
may de�ne infK

j

Ki (µ) = infK
j

Kj−1 ◦ . . . ◦ infK
i+1

Ki (µ).

De�nition 1.3.21. Let 0 ≤ j ≤ d. Let 0 ≤ i < j. Let κji be the in�ation of

Φ′i to K
j, i.e κji = infK

j

Ki+1(Φ′i). Let κjj be Φj |Kj . Let κj−1 be the in�ation

of ρ to Kj, i.e κj−1 = infK
j

K0(ρ).

If j = d and −1 ≤ i ≤ d, we also denote κdi by κi. This notation and the
statement of the following proposition is due to Hakim-Murnaghan.

Proposition 1.3.22. The representation ρj constructed by Yu is isomorphic
to

κj−1 ⊗ κ
j
0 ⊗ . . .⊗ κ

j
j.

In particular, the representation ρd constructed by Yu is isomorphic to

κ−1 ⊗ κ0 ⊗ . . .⊗ κd.

Proof. The representation ρj is constructed in [41] at page 592. Yu con-
structs inductively two representations ρj and ρj ′.

Let us show by induction on j that ρj ′ = κj−1 ⊗ κ
j
0 ⊗ . . .⊗ κ

j
j−1 and

ρj = κj−1 ⊗ κ
j
0 ⊗ . . .⊗ κ

j
j If j = 0, then by de�nition, the represen-

tation ρ′0 constructed by Yu is ρ and ρ0 is ρ′0 ⊗ (Φ0 |K0). We have
κ0
−1 = ρ and κ0

0 = Φ0 |K0 . So the case j = 0 is complete. Assume that

ρ′j−1 = κj−1
−1 ⊗ κ

j−1
0 . . .⊗ κj−1

j−2 and ρj−1 = κj−1
−1 ⊗ κ

j−1
0 ⊗ . . .⊗ κj−1

j−1. Then

by de�nition ρ′j is equal to infK
j

Kj−1(ρ′j−1)⊗Φ′j−1. By de�nition Φ′j−1 is

equal to κjj−1. Moreover

infK
j

Kj−1(ρ′j−1) = infK
j

Kj−1(κj−1
−1 ⊗ κ

j−1
0 ⊗ . . .⊗ κj−1

j−2)

= infK
j

Kj−1(κj−1
−1 )⊗ infK

j

Kj−1(κj−1
0 )⊗ . . . infK

j

Kj−1(κj−1
j−2)

= κj−1 ⊗ κ
j
0 ⊗ . . .⊗ κ

j
j−2
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Consequently ρj
′ = κj−1 ⊗ κ

j
0 ⊗ . . .⊗ κ

j
i ⊗ . . .⊗ κ

j
j−1. Finally, by Yu's

de�nition, ρj is equal to ρ′j ⊗Φj |Kj , and thus ρj = κj−1 ⊗ κ
j
0 ⊗ . . .⊗ κ

j
j , as

required.

Proposition 1.3.23. Let 0 ≤ j ≤ d. Let 0 ≤ i < j. The dimension of κji is

equal to the dimension of Φ′i. The dimension of Φ′i is equal to [J i+1 : J i+1
+ ]

1
2 .

Proof. By de�nition κji is an in�ation of Φi, consequently theses representa-
tions have equal dimensions. The representation Φ′i is the unique represen-
tation of Ki + 1 whose in�ation to Ki n J i+1 is Φ̃i. Thus, the dimension of
Φ′i is equal to Φ̃i. The representation Φ̃i is constructed in [41, 11.5] and is
the pull back of the Weil representation of Sp(J i+1/J i+1

+ ) n (J i+1/Ni) where

Ni = ker(Φ̂i) (see [41]). Thus, the dimension of Φ̃i is [J i+1 : J i+1
+ ]

1
2 .

Theorem 1.3.24. (Yu) [41, 4.6 , �15] The representation c− ind
G(F )

Kd ρd is
irreducible and supercuspidal.

We now introduce some notations that we will use later in chapter 1.
Put ◦ρd = ◦ρd(

−→
G, y,−→r , ρ,

−→
Φ) = ρd |◦Kd . Put also ◦κi = κi |◦Kd and λ◦ =◦

κ0 ⊗ . . .⊗◦ κd.
The following theorem shows that the construction of Yu is exhaustive

when the residual characteristic is su�ciently large.

Theorem 1.3.25. (Kim) [27] Let G be a connected reductive F group, if
the residue characteristic p of F is su�ciently large, for each irreducible
supercuspidal representation π of G(F ), there exists (

−→
G, y,−→r , ρ,

−→
Φ), such

that π = c− ind
G(F )

Kd ρd(
−→
G, y,−→r , ρ,

−→
Φ).

Fintzen has recently ameliorated this exhaustion result [20].

1.4 Tame simple strata

In this section, the main object of study is the approximation process for
simple strata [A, n, r, β] described previously in section 1.2, when the �eld
extension F [β]/F is tamely rami�ed. It is a well-known result that in this
situation, an approximation element γ can be chosen inside the �eld F [β].
We will refer to Bushnell-Henniart for this fact which will be recalled as
proposition 1.4.3 in this section. The main new result in this section is
proposition 1.4.4, the proposition 1.4.2 is used to prove proposition 1.4.4.

De�nition 1.4.1. A pure (resp simple) stratum [A, n, r, β] is a tame pure
(resp tame simple) stratum if the �eld extension F [β]/F is tamely rami�ed.
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Let [A, n, r, β] be a tame pure stratum in the algebra A = EndF (V ),
set E = F [β]. Set also BE = EndE(V ). Let s : A → BE be the tame
corestriction which is the identity on BE , we recall that such map exists by
1.2.7. The element s(b) is denote by "b" when b is in BE . Let P be the
Jacobson radical of A. Set BE = A ∩ BE and QE = P ∩BE . Thus BE is
an oE-hereditary order in BE and QE is the Jacobson radical of BE .

The following is a analogous to [13, 2.2.3], the di�erence is that the
tameness condition is supposed and a maximality one removed.

Proposition 1.4.2. Let [A, n, r, β] be a tame simple stratum. Let b ∈ Q−rE ,
and suppose that the stratum [BE , r, r − 1, b] is simple. Then

(i) The stratum [A, n, r − 1, β + b] is simple

(ii) The �eld F [β + b] is equal to the �eld F [β, b]

(iii) We have

k0(β + b,A) =

{
−r = k0(b,BE) if b 6∈ E
k0(β,A) if b ∈ E

Proof. Let L = {Li}i∈Z be an oF -lattice chain such that

A = {x ∈ A | x(Li) ⊂ Li, i ∈ Z}.

By de�nition [13, 2.2.1],

K(A) = {x ∈ G | x(Li) ∈ L, i ∈ Z}

and

K(BE) = {x ∈ GE | x(Li) ∈ L, i ∈ Z}.

Thus
K(BE) ⊂ K(A). (1.7)

The stratum [BE , r, r−1, b] is simple, thus the de�nition of a simple stratum
shows that

E[b]× ⊂ K(BE). (1.8)

Put E1 = E[b] = F [β, b]. Equations 1.7 and 1.8 imply that E×1 ⊂ K(A).
This allows us to use the machinery of [13, 1.2] for A and E1.

Set BE1 = EndE1(V ) and BE1 = A ∩ EndE1(V ). The proposition [13,
1.2.4] implies that BE1 is an oE1-hereditary order in BE1 . Let A(E1) be
the algebra EndF (E1) and let A(E1) be the oF -hereditary order in A(E1)
de�ned by A(E1) = {x ∈ EndF (E1) | x(piE1

) ⊂ piE1
, i ∈ Z}. Let W be the

F -span of an oE1-basis of the oE1-lattice chain L. The proposition [13, 1.2.8]
shows that the (W,E1)-decomposition of A restricts to an isomorphism A '
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A(E1)⊗oE1
B of (A(E1),BE1)-bimodules. Similarly we have a decomposition

BE ' BE(E1)⊗oE1
BE1

.
Set BE(E1) = EndE(E1) and BE(E1) = BE(E1) ∩ A(E1). Set also

n(E1) =
n

e(BE1 | oE1)
and r(E1) =

r

e(BE1 | oE1)
. Let us prove that the

following two equalities hold.

νA(E1)(β) = −n(E1) (1.9)

νBE(E1)(b) = −r(E1) (1.10)

Let us prove that the equation 1.9 holds. By de�nition of E1, the element
β is inside E1 and thus νA(E1)(β) = νE1(β). The lemma 1.2.1 thus shows that

νA(β)e(E1 | F ) = e(A | oF )νA(E1)(β). (1.11)

The proposition [13, 1.2.4] give us the equality

e(BE1 | oE1) =
e(A | oF )

e(E1 | F )
. (1.12)

Since [A, n, r, β] is a simple stratum, n is equal to −νA(β), consequently
using equations 1.11 and 1.12, the following sequence of equality holds.

νA(E1)(β) =
νA(β)e(E1 | F )

e(A | oF )
=

νA(β)

e(BE1 | oE1)
=

−n
e(BE1 | oE1)

= −n(E1)

This concludes the proof of the equality 1.9 and the equality 1.10 is easily
proved in the same way.

The proposition [13, 1.4.13] gives
k0(β,A(E1)) =

k0(β,A)

e(BE1 | oE1)

k0(b,BE(E1)) =
k0(b,BE)

e(BE1 | oE1)

.

Consequently [A(E1), n(E1), r(E1), β] and [BE(E1), r(E1), r(E1) − 1, b]
are simple strata and satisfy the hypothesis of the proposition [13, 2.2.3].
Consequently [A(E1), n, r− 1, β + b] is simple and the �eld F [β + b] is equal
to the �eld F [β, b]. Moreover [13, 2.2.3] implies that

k0(β + b,A(E1)) =

{
−r(E1) = k0(b,BE(E1)) if b 6∈ E
k0(β,A(E1)) if b ∈ E

The valuation νA(E1)(β + b) is equal to −n(E1) and the same argument
as before shows that νA(β + b) = −n. The proposition [13, 1.4.13] shows
that k0(β + b,A) = k0(β + b,A(E1))e(BE1 | oE1).

Thus
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k0(β + b,A) =

{
−r = k0(b,BE) if b 6∈ E
k0(β,A) if b ∈ E

This completes the proof.

Given a, non necessary tame, pure stratum [A, n, r, β], the existence of a
simple stratum [A, n, r, γ] equivalent to [A, n, r, β] is a fundamental theorem
in Bushnell-Kutzko's theory. Given such [A, n, r, β] and [A, n, r, γ], there
is no, in general, inclusion between the �eld F [β] and F [γ], however the
following arithmetical properties are always true.

e(F [γ] | F ) | e(F [β] | F ) (1.13)

f(F [γ] | F ) | f(F [β] | F ) (1.14)

Moreover if [A, n, r, β] is not simple, then the degree [F [β] : F ] is strictly
bigger than [F [γ] : F ] by 1.2.9.

In the tame situation, a new property is always true. Given a tame
pure stratum [A, n, r, β] such that r = −k0(β,A), there is an equivalent tame
simple stratum [A, n, r, γ] such that the �eld F [γ] is included in the �eld F [β].
We refer to Bushnell-Henniart for the proof of this fact. This property is the
following proposition.

Proposition 1.4.3. [12, 3.1 Corollary] Let [A, n, r, β] be a tame pure stra-
tum in the algebra A = EndF (V ) such that r = −k0(β,A). There is an
element γ in the �eld F [β] such that the stratum [A, n, r, γ] is simple and
equivalent to [A, n, r, β]

In order to make an explicit link between Bushnell-Kutzko and Yu's
formalisms, the following proposition is used crucialy in the section 1.8 of
this paper.

Proposition 1.4.4. Let [A, n, r, β] be a tame pure stratum such that

r = −k0(β,A).

For all elements γ in the �eld F [β] such that [A, n, r, γ] is a simple stratum
equivalent to [A, n, r, β], the stratum [Bγ , r, r−1, β−γ] is simple, here Bγ =
EndF [γ](V ) ∩ A.

Proof. Using a similar argument than in the proposition 1.4.2, it is enough
to prove the proposition in the case where F [β] is a maximal sub�eld of the
algebra A = EndF (V ). So let [A, n, r, β] be a tame pure stratum such that
F [β] is a maximal sub�eld of A and k0(β,A) = −r. Let γ be in F [β] such that
[A, n, r, γ] is simple. The stratum [Bγ , r, r − 1, β − γ] is pure in the algebra
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EndF [γ](V ), because it is equivalent to a simple one by [13, 2.4.1]. Moreover
[Bγ , r, r − 1, β − γ] is tame pure so the proposition 1.4.3 shows that there
exists a simple stratum [Bγ , r, r−1, α] equivalent to [Bγ , r, r−1, β−γ], such
that F [γ][α] ⊂ F [γ][β− γ]. By proposition 1.4.2, [A, n, r− 1, γ+α] is simple
and F [γ + α] is equal to the �eld F [γ, α]. Set Qγ = rad(Bγ) = Bγ ∩ P.
The equivalence [Bγ , r, r− 1, α] ∼ [Bγ , r, r− 1, β − γ] shows that α ≡ β − γ
( mod Q

−(r−1)
γ ). This implies γ + α ≡ β ( mod P−(r−1)). We deduce

that [A, n, r − 1, γ + α] and [A, n, r − 1, β] are two simple strata equivalent.
Indeed, the �rst is simple by construction, and the second by hypothesis,
since k0(β,A) = −r. The de�nitions shows that F [γ + α] ⊂ F [β], and 1.2.9
shows that [F [γ + α] : F ] = [F [β] : F ]. Thus F [γ + α] = F [β]. The trivial
inclusions F [γ + α] ⊂ F [γ, α] ⊂ F [β] then shows that F [γ + α] = F [γ, α] =
F [β].

We have thus obtained that the three assertions hold.
- The stratum [Bγ , r, r − 1, α] is a simple stratum in EndF [γ](V ).
- The �eld F [γ][α] is a maximal sub�eld of the F [γ]-algebra EndF [γ](V ).
-[Bγ , r, r − 1, α] ∼ [Bγ , r, r − 1, β − γ]
Consequently, by [13, 2.2.2], [Bγ , r, r − 1, β − γ] is simple as required.

1.5 Minimal elements and standard representatives

Recall that we have �xed a non-archimedean local �eld F and a uniformizer
πF of F . In this section we prove some properties relying minimal elements of
Bushnell-Kutzko and standard representative elements introduced by Howe
[25]. We recall that Howe's construction of supercuspidal representations
should be considered as the common ancestor of [13] and [41] and Moy's
presentation of Howe's construction has been an hint in our work. The main
result of this section is the proposition 1.5.8.

The following describes the multiplicative group of a non archimedean
local �eld.

Proposition 1.5.1. [31, Chapter 2 Proposition 5.7]
Let K be a non archimedean local �eld and q = pf the number of elements

in the residue �eld of K. Let µq−1 denote the group of (q − 1)-th roots of
unity in K. Let πK be a uniformizer in K. Then the following hold.

(i) If K has characteristic 0, then one has the following isomorphisms of
topological groups

K× ' πZK×o×K ' πZK×µq−1× (1+pK) ' Z×Z/(q−1)Z×Z/paZ×Zdp

where a ≥ 0 and d = [K : Qp].

The �rst three groups are denoted multipticatively and the last one ad-
ditively.
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(ii) If K has characteristic p, then one has the following isomorphisms of
topological groups:

K× ' πZK × o×K ' πZK × µq−1 × 1 + pK ' Z× Z/(q − 1)Z× ZN
p .

The �rst three groups are denoted multipticatively and the last one ad-
ditively.

The previous proposition allows us to deduce the following corollary
which is a well-know result. Recall that we have a �xed uniformizer πF .

Corollary 1.5.2. Let E denote a tamely rami�ed extension of F . There
exists a uniformizer πE of E and a root of unity z ∈ E, of order prime to p,
such that πeEz = πF .

Proof. Let π be a uniformizer of E. The proposition 1.5.1 shows that there
exist an isomorphism f : E× ' πZ × µq−1 × G′ where G′ = 1 + pE is
a multiplicatively denoted group. Each element of G′ have an e-th root.
Indeed, the proposition 1.5.1 shows that 1 +pE is isomorphic to the additive
group Z/paZ × Zdp or to the additive group ZN

p . The image of πF by f is
(e, z, g) where (e, z, g) ∈ πZE × µq−1 ×G′, i.e πF = πezg. Let r be in G′ such
that re = g. Then rπ is a uniformizer of E and πF = (rπ)ez. So πE = rπ
has the required property.

De�nition 1.5.3. Let E/F and πE as in the previous corollary, i.e such
that πF = πeEz with z a root of unity of order prime to p. Let CE be the
group generated by πE and the roots of unity of order prime to p in E×.

Proposition 1.5.4. The group CE is independent of the choice of πE used
in 1.5.3 to de�ne it.

Proof. Let π1 and π2 be two uniformizers of E and z1 , z2 be two roots of
unity of order prime to p such that πez1 = πF and πe2z2 = πF . Let C1 be
the group generated by π1 and the root of unity of order prime to p. Let
C2 be the group generated by π2 and the root of unity of order prime to p.
By symmetry, it is enough show that C1 ⊂ C2. It is also enough to show
that π1 ∈ C2. The equation πe1z1 = πF implies that πe1 ∈ C2, thus there
exists a root of unity z of order prime to p such that πe1 = πe2z. We have
(π1π

−1
2 )e = z. Let oz be the order of z, it is an integer prime to p. We

have (π1π
−1
2 )eoz = 1. The integer eoz is prime to p, indeed e = e(E | F ) is

prime to p since E/F is a tamely rami�ed extension and oz is prime to p.
Consequently π1π

−1
2 is a root of unity of order prime to p. This implies that

π1 ∈ C2 as required.
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We have �xed at the beginning of the text a uniformizer πF . So to each
tamely rami�ed extension E/F , the group CE is well-de�ned and does not
depend on any choice.

Proposition 1.5.5. Let E/F be a tamely rami�ed extension. Let c be an
element in E×. The following holds.

(i) There exists a unique element sr(c) ∈ CE, called the standard repre-
sentative of c and a unique element x ∈ 1 + pE such that c = sr(c)×x.

(ii) The element sr(c) is the unique element in CE such that νE(sr(c)−c) >
νE(c)

Proof. (i) The proposition 1.5.1 shows that E× ' CE × (1 + pE) and (i)
is a consequence.

(ii) The element sr(c) is the unique element in CE such that c = sr(c) ×
(1 + y) with y ∈ pE . Thus sr(c) is the unique element in CE such that
c − sr(c) ∈ sr(c)pE . Thus (ii) holds remarking that sr(c) and c have
the same valuation.

Proposition 1.5.6. Let E′/E/F be a tower of �nite tamely rami�ed exten-
sions. The following assertions hold.

(i) The group CE is included in the group CE′.

(ii) If E/F is a Galois extension, then CE is stable under the Galois action
of Gal(E/F ) on E. Moreover, if σ1 and σ2 are elements in Gal(E/F )
and s is an element in CE such that σ1(s) 6= σ2(s), then

νE(σ1(s)− σ2(s)) = νE(s) .

Proof. (i) Recall that the group CE and CE′ are independent of the choices
of uniformizers used to de�ne them by 1.5.4. Let πE be a uniformizer of E
and z a root of unity of order prime to p in E such that πe(E|F )

E z = πF . Since
E′/E is tamely rami�ed, there exists a uniformizer πE′ ∈ E′ and a root of

unity w of order prime to p in E′ such that πe(E
′|E)

E′ w = πE . Elevating to

the power e(E | F ) we have πe(E
′|E)e(E|F )

E′ we(E|F ) = π
e(E|F )
E . We thus get

π
e(E|F )
E′ we(E|F )z = πF . The element we(E|F )z is a root of unity of order prime

to p. Consequently CE′ is the group generated by πE′ and the roots of unity
of order prime to p in E′. The equation πe(E

′|E)
E′ w = πE shows that πE is

inside CE′ . Trivially, the roots of unity of order prime to p in E are inside
the roots of unity of order prime to p in E′. Consequently CE is inside CE′
as required.
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(ii) Let σ ∈ Gal(E/F ), and let πE be an element such that πeEz = πF
for z a root of unity in E of order prime to p. Let oz the order of z. It
is enough to show that z and πE are mapped in CE by σ. The equality
(σ(z))oz = 1 shows that σ(z) is a root of unity of order prime to p and thus
inside CE . The equality σ(πE)eσ(z) = πF together with 1.5.4 show that we
can use σ(πE) to de�ne CE , and thus σ(πE) is inside CE . This proves the
�rst part of the assertion.

The element σ1(s) is in CE so sr(σ1(s)) = σ1(s). Consequently
νE(σ1(s) − σ2(s)) = νE(σ1(s)), indeed assume

νE(σ1(s)− σ2(s)) 6= νE(σ1(s)), then νE(σ1(s) − σ2(s)) > σ1(s), and
so σ2(s) = sr(σ1(s)) = σ1(s) by 1.5.5, this is a contradiction. This
completes the second part of the assertion and the proof of the proposition.

We need to remark an elementary lemma in order to prove the proposition
1.5.8 which is the main result of this section.

Lemma 1.5.7. Let E/F be a �nite unrami�ed extension. Let z ∈ E be a
root of unity of order prime to p. Then z generates E/F if and only if z+pE
generates the residual �eld extension kE/kF .

Proof. If z generates E over F , then z generates oE over oF by [31, 7.12].
Thus z generates the residual �eld extension kE/kF . Let us check the reverse
implication. Assume z + pE generates kE/kF . The �eld extension E/F is
unrami�ed, so [kE : kF ] = [E : F ]. Let Pz ∈ F [X] be the minimal polynomial
of z and d its degree, clearly Pz is in oF [X]. It is enough to show that
d = [E : F ]. We have d ≤ [E : F ]. The reduction mod pE of Pz is of degree
d and annihilates z + pE , a generator of kE/kF , and thus [kE : kF ] ≤ d. So
[kE : kF ] ≤ d ≤ [E : F ]. So d = [E : F ], and this concludes the proof.

Proposition 1.5.8. Let E/F be a �nite tamely rami�ed extension, let β be
an element in E such that E = F [β], the following assertions are equivalent.

(i) The element β is minimal over F .

(ii) The standard representative element of β generates the �eld extension
E/F , i.e. F [sr(β)] = E.

Proof. Let us prove that (i) implies (ii). Assume β is minimal over F . Let
us remark that the de�nition of sr(β) implies trivially that F [sr(β)] ⊂ E.
Let Enr denote the maximal unrami�ed extension contained in E. In order
to prove the opposite inclusion E ⊂ F [sr(β)], it is enough to show that
Enr ⊂ F [sr(β)] and E ⊂ Enr[sr(β)]. Put ν = νE(β), e = e(E | F ). The val-
uation of π−νF βe is equal to 0, consequently by 1.5.5 we have νE(sr(π−νF βe)−
π−νF βe) > 0, and so sr(π−νF βe) + pE = π−νF βe + pE . We have sr(π−νF βe) =

39



π−νF sr(β)e, and this is a root of unity of order prime to p. The de�nition of
being minimal implies that π−νF sr(β)e + pE generates kE/kF . So π

−ν
F sr(β)e

generates Enr by 1.5.7. So Enr ⊂ F [sr(β)]. We have νE(β) = νE(sr(β)), so
gcd(νE(sr(β)), e) = 1. Let a and b be integers such that aνE(sr(β))+be = 1.
Thus νE(sr(β)aπbF ) = 1 and so Enr[sr(β)aπbF ] = E since a �nite totaly ram-
i�ed extension is generated by an arbitrary uniformizer. So Enr[sr(β)] = E
and (i) hold. We have thus show that Enr ⊂ F [sr(β)] and E ⊂ Enr[sr(β)]
and so (i) implies (ii).

Let us prove that (ii) implies (i). Assume F [sr(β)] = E. We start
by showing that e is prime to ν. The �eld Enr is generated over F by
the roots of unity of order prime to p contained in E. Let d = gcd(ν, e)
and b = e

d . Let πE be a uniformizer in E such that πeEz = πF with z
a root of unity of order prime to p. The element sr(β) is in CE and so
sr(β) = πνEw with w a root of unity of order prime to p in E. The equalities

sr(β)b = (πeE)
ν

pgcd(ν,e)wb = (πF z
−1)

ν
pgcd(ν,e)wb shows that sr(β)b is contained

in Enr. By hypothesis, the element sr(β) generates E over F and so generates
E over Enr. Consequently the �eld E is generated by an element whose
b-th power is in Enr. Consequently, the inequality [E : Enr] ≤ b holds.
The extension Enr is the maximal unrami�ed extension contained in E, so
[E : Enr] = e. Thus the inequality e ≤ b ≤ e

d holds. This implies d = 1 and
so ν is prime to e. Let us prove that π−νF βe + pE generates the residue �eld
extension kE over kF . Since π

−ν
F βe+pE = π−νF sr(β)e+pE , it is equivalent to

show that x+ pE generates kE over kF , where x = π−νF sr(β)e. The element
sr(β) generates E over F by hypothesis, i.e E = F [sr(β)]. So the inequality
[E : F [x]] ≤ e holds, indeed E is generated over F [x] by the element sr(β)
whose e-th power is in F [x]. Since x is a root of unity of order prime to p,
the �eld F [x] is include in Enr, so [E : Enr] ≤ [E : F [x]]. Consequently,
the identity e = [E : Enr] ≤ [E : F [x]] ≤ e holds. Since F [x] ⊂ Enr, the
previous identity implies that F [x] = Enr. Thus by 1.5.7 the element x+ pE
generates kE over kF . So β is minimal over F .

This �nish the proof of the proposition 1.5.8.

Remark 1.5.9. The implication (ii) implies (i) is analogous to [39, page
11].

1.6 Twisted Levi sequences in GLN and generic el-
ements associated to minimal elements

In this section, we give an example of tamely rami�ed twisted Levi sequence
and an example of generic element. This generic element comes from a
minimal element relatively to a �nite tamely rami�ed �eld extension. More
precisely, let E′/E/F be a tower of tamely rami�ed �eld extensions and let
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V be an E′-vector space of dimension d. We are going to de�ne and describe
explicitly the groups scheme H ′ = ResE′/FAutE′(V ), H = ResE/FAutE(V )
and G = AutF (V ). We will show that the sequence (H ′, H,G) forms a
tamely rami�ed twisted Levi sequence in G. The choice of an E′-maximal
decomposition D, V = (V1⊕. . .⊕Vd), of V in 1-dimensional E′-vector spaces
gives birth to a maximal torus TD of AutE′(V ). By restriction of scalar, we
get a maximal torus T = ResE′/E(TD) of H ′. We are going to describe the
set over F of roots of H ′ and H with respect to T . Moreover we will describe
the condition GE1 in this situation. Finally, given c ∈ E′ minimal over E,
we will introduce an element X∗sr(c) ∈ Lie∗(Z(H ′)) and prove that it satis�es
GE1 and is H-generic.

1.6.1 The group schemes of automorphisms of a free A-module

of �nite rank

Let A be a commutative ring and M be a free A-module of rank r. The
functor

{A− algebra} → Gp

B 7→ AutB(M⊗A B)

is representable by and a�ne A-scheme that we denote AutA(M). This
scheme is isomorphic to the group scheme GLN over A, with N = r. Let D
be a decomposition M = M1 ⊕ . . .⊕Mr of M in submodule of rank 1. Let
us de�ne a maximal split torus of AutA(M). The functor

{A− algebra} → Gp

B 7→

{
x ∈ AutB(M⊗A B)

∥∥∥∥∥For all i ∈ {1, . . . , r}, there exists λi(x) ∈ B×

such that x(vi ⊗ 1) = λi(x)(vi ⊗ 1) for all vi ∈Mi

}
is representable by and a�ne A-scheme that we denote TD, this is a closed
a�ne subscheme of AutA(M). The A-scheme TD is canonicaly isomorphic

to
r∏
i=1

AutA(Mi). Let us give an explicit expression of the set of roots

Φ(AutA(M), TD) in this functorial point of view. The notation 0 ≤ i 6= i′ ≤ r
means that 1 ≤ i ≤ r, 1 ≤ i′ ≤ r and that i 6= i′. The set of root of AutA(M)
relatively to TD is the set

Φ(AutA(M), TD) = {αii′ | 1 ≤ i 6= i′ ≤ r}

where αii′ is the morphism of algebraic group TD → Gm characterized
by the formula,
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for all A-algebras B, for all x ∈ TD(B) , αii′(x) = λi(x)(λi
′
(x))−1.

For each root α, let α∨ : Gm → TD be the coroot of α and let dα∨ be
the derivative of α. Finally let Hα be the element dα∨(1) ∈ Lie(TD)(A).

Let us make these objects explicit in our functorial point of view.
Let 1 ≤ i 6= i′ ≤ r , the coroot α∨ii′ is the morphism of algebraic group

Gm → TD characterized by the formula,

for all A-algebras B, for all λ ∈ B× ,


α∨ii′(λ)(vi ⊗ 1) = λ(vi ⊗ 1) ∀vi ∈Mi

α∨ii′(λ)(vi′ ⊗ 1) = λ−1(vi′ ⊗ 1) ∀vi′ ∈Mi′

α∨ii′(λ)(vk ⊗ 1) = (vk ⊗ 1) ∀vk ∈Mk, k 6= i, i′

The derivative of α∨ii′ is the di�erential morphism dα∨ii′ : Ga → Lie(TD),
it is characterized by the formula (see [2, 3.9.4]),

for all A-algebra B, for all h ∈ B ,


dα∨ii′(h)(vi ⊗ 1) = h(vi ⊗ 1) ∀vi ∈Mi

dα∨ii′(h)(vi′ ⊗ 1) = −h(vi′ ⊗ 1) ∀vi′ ∈Mi′

dα∨ii′(h)(vk ⊗ 1) = 0 ∀vk ∈Mk ∀k 6= i, i′.

Consequently the element Hαii′ which is by de�nition
dα∨ii′(1) ∈ Lie(TD)(A) = EndA(M) is the element sending each element
vi ∈ Mi to vi, each element vi′ ∈ Mi′ to −vi′ and, for all k di�erent of i, i′,
each element vk ∈Mk to 0.

1.6.2 Trace of endomorphisms and base change

In this paragraph we give the intrinsic de�nition of the trace and give a
formula.

Let A be a commutative ring and let M be a free A-module of rank N .
As usual let EndA(M) be the A-algebra of A-linear maps HomA(M,M).
The A-linear map

M⊗A HomA(M,A)
∼ // EndA(M)

m⊗ f � // (m′ 7→ f(m′).m)

is a canonical isomorphism.
The A-linear map

M⊗A HomA(M,A) // A

m⊗ f � // f(m)

induces a A-linear map EndA(M)→ A, this map is called the trace map
and is usually denoted Tr or TrA or TrEndA(M) or TrEndA(M)/A.

Let B be a commutative A-algebra. The B-linear map

G : EndA(M)⊗A B
∼ // EndB(M⊗A B)

F ⊗ b � // ((m⊗ c) 7→ F (m)⊗ bc)
is a canonical isomorphism.
The following is a lemma which give a compatibility of Tr under base

change.
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Lemma 1.6.1. The following triangle of B-linear maps is commutative.

EndA(M)⊗A B

TrA⊗IdB

&&
G

��

B

EndB(M ⊗A B)

TrB

88

Proof. It is equivalent to prove that the following triangle of B-linear map
is commutative.

(M⊗A HomA(M,A))⊗A B

TrA⊗IdB

))
G

��

B

(M ⊗A B)⊗B HomB(M ⊗A B,B)

TrB

55

It is enough to compute the image of (m⊗f)⊗b ∈ (M⊗AHomA(M,A))⊗A

B by the map TrA ⊗ IdB and by TrB◦G and to show that they are equal. By
de�nition of TrA, TrA ⊗ IdB((m⊗f)⊗b) = f(m)b. The map G is explicitely
given by ((m ⊗ f) ⊗ b) 7→ (m ⊗ b) ⊗ (m′ ⊗ c 7→ f(m′)c). Consequently
TrB ◦ G((m ⊗ f) ⊗ b) = TrB((m ⊗ b) ⊗ (m′ ⊗ c 7→ f(m′)c) = f(m)b. This
concludes the proof of lemma 1.6.1.

1.6.3 Abstract twisted Levi sequences

In this subsection, we prove algebraic facts that will be applied to the follow-
ing subsections. We start with a very easy and well-known lemma. Let f be
commutative ring and B be a commutative f -algebra, C be an B-algebra.
Let A be an f -algebra. In this situation A ⊗f B is an B-algebra and C is
naturally an f -algebra.

Lemma 1.6.2. With the previous notations, the C-algebra (A⊗f B)⊗B C
is canonically isomorphic to A⊗f C. Explicitly, the isomorphism is given by

(A⊗f B)⊗B C → A⊗f C
(a⊗ b)⊗ c 7→ a⊗ bc.

The inverse is explicitly given by

A⊗f C → (A⊗f B)⊗B C
a⊗ c 7→ (a⊗ 1)⊗ c.
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Proof. The two maps are morphisms of C-algebras and one composed with
the other is equal to the identity map.

We now �x in the rest of this subsection a tower of �nite separable
extensions of �elds l′/l/f . In the next subsection, we will apply this to
l′ = E′, l = E and f = F , where E′/E/F is a tower of �nite tamely
rami�ed extensions. Let V be an l′-vector space of dimension d. Let
D:V = (D1 ⊕ . . . ⊕ Dd)), be an l′-decomposition of V in subspaces of di-
mension 1.

In a previous subsection we have introduced an l′-group scheme Autl′(V ),
and a maximal split torus TD of Autl′(V ). Let H ′ be the restriction of scalar
from l′ to f of Autl′(V ). Also, let T be Resl′/f (TD).

Thus H ′ represents the functor

{f − algebra} → Gp

A 7→ Autl′(V )(A⊗f l′).

For each f -algebra A the group H ′(A) is thus equal to the group

AutA⊗f l′ (V ⊗l′ (A⊗f l′)).

Since l ⊂ l′, V is an l−space and, we have a group Autl(V ) and its
restriction of scalar H. So that for each f -algebra A the group H(A) is
equal to the group AutA⊗f l (V ⊗l (A⊗f l)). Let also G be Autf (V ).

For each f -algebra A, the canonical morphism A⊗f l→ A⊗f l′ induces
a canonical morphism of groups

AutA⊗f l′ (V ⊗l′ (A⊗f l′))→ AutA⊗f l (V ⊗l (A⊗f l))

, which is functorial in A. We thus get a canonical morphism of f -group
scheme H ′ → H. This morphism is a closed immersion. We also have a
canonical morphism of F -group schemes H → G.

We are interested in Condition GE1, it is related to the extension of
scalar from f to f , the algebraic closure of f . So let us compute

T ×spec(f) spec(f), H ′ ×spec(f) spec(f) and H ×spec(f) spec(f).

Let A be an f -algebra, by de�nition H ×spec(f) spec(f)(A) = H(A). We
have seen that it is equal to AutA⊗f l (V ⊗l (A⊗f l)). We need to study the
algebra A⊗f l.

We know that there exists σ1, . . . , σi, . . . , σ[l:f ], distincts morphisms of f -
algebra from l to the Galois closure of l. We also know that for 0 ≤ i ≤ [l : f ],
there exists [l′ : l] morphisms of f -algebra from l′ to the Galois closure of l′

extending σi, we denote them σi1, . . . , σij , . . . , σi[l′:l]. We write
∏
i

instead

of
[l:f ]∏
i=1

and
⊕
i

⊕
j

instead of
[l:f ]⊕
i=1

[l′:l]⊕
j=1

, we use others "abuses of notation" of

this nature.
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Proposition 1.6.3. Let f be a �eld, let l′/l/f be a tower of �nite separable
extensions. Let K ′ be the Galois closure of l′ and let K be the Galois closure
of l. Let σ1, . . . , σi, . . . , σ[l:f ] be the distinct morphisms of f -algebra from l to
K. For 1 ≤ i ≤ [l : f ], let σi1, . . . , σij , . . . , σi[l′:l] be the distinct morphisms of
f -algebra from l′ to K ′ which extend σi. Let A be a K ′-algebra. Let A→ B
be a morphism of K ′-algebra. The following assertions holds.

(i) The A-algebra A⊗f l is canonicaly isomorphic to
∏
i

Ai, where Ai = A

for each i. Moreover this isomorphism is explicitely given as follow.

A⊗f l
∼ //

∏
i

Ai

a⊗ e � //
∏
i

aσi(e)

(ii) The A-algebra A ⊗f l′ is canonicaly isomorphic to
∏
i

∏
j

Aij, where

Aij = A for each i, j. Moreover this isomorphism is explicitely given
as follow.

A⊗f l′
∼ //

∏
i

∏
j

Aij

a⊗ e � //
∏
i

∏
j

aσij(e)

(iii) The A-algebra A⊗f l′ is canonicaly an A⊗f l-algebra. The ring
∏
i

∏
j

Aij

is canonicaly an
∏
i

Ai-algebra and the structure is given by

(
∏
i

λi).(
∏
i

∏
j

aij) =
∏
i

∏
j

λiaij.

(iv) There is a canonical commutative diagram of A-algebras
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A⊗f l′ B ⊗f l′

∏
i

∏
j

Aij
∏
i

∏
j

Bij

A⊗f l B ⊗f l

∏
i

Ai
∏
i

Bi.

Proof. (i) The �eld l is a �nite separable extension of f and thus there
exists an element α ∈ l such that l = f [α]. Thus l is isomorphic to
the quotient ring f [X]/(P ) where P is the minimal polynomial of α.
Since K is the Galois closure of l, the polynomial P (X) split over l

and the formula P =
∏
i

(X − σi(α)) holds. We have some elementary

isomorphisms f1, f2, f3, f4, f5 of A-algebras.

A⊗f l
∼
f1

// A⊗f f [X]/(P )
∼
f2

// A[X]/(P )

f3

��∏
i

A
∏
i

A[X]/(X − σi(α))
∼
f5

oo A[X]/
∏
i

(X − σi(α)).
f4

∼oo

The map f1 is the isomorphism associating a ⊗ e to a ⊗ e(X) where
e(X) is a polynomial such that e(α) = e. The map f2 is the one which
associate to a ⊗ Q the polynomial aQ. The map f3 is obvious. The
map f4 is the product of projection maps and is an isomorphism by
the chinese remainder theorem. The map f5 is the product of the map
sending X to σi(α). The required map is the map f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1.
This map does not depend on the choice of α, and so it is canonical.

(ii) This is a direct consequence of (i).

(iii) Since l′/l is an extension of �eld, l′ is canonically an l-algebra and thus
there is a canonical morphism of rings g from A ⊗f l to A ⊗f l′. So
A⊗f l′ is canonically an A⊗f l-algebra.
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It is enough to show that the square A⊗f l′
S′ //

∏
i

∏
j

Aij

A⊗f l
S //

g

OO

∏
i

Ai

h

OO

is com-

mutative, where g is the canonical map introduced above, S and S′ are
the maps introduced in (i) and (ii), and h is the map sending (

∏
i

λi)

to (
∏
i

∏
j

λij), where λij = λi for all i, j. Let a⊗ e ∈ A⊗f l. We have

S′ ◦ g(a⊗ e) = S′(a⊗ e) =
∏
i

∏
j

σij(e)a.

We have

h ◦ S(a⊗ e) = h(
∏
i

σi(e)a) =
∏
i

∏
j

σi(e)a.

We have σij(e) = σi(e), since by de�nition the restriction to l of σij is
equal to σi. This concludes the proof of (iii).

(iv) The square relative to A on the left is introduced in the proof of (iii),
the square relative to B on the right is the analogue for B, the hor-
izontal arrow are canonicaly induced by the morphism A → B. It is
easy to prove that this is commutative.

Let A be a commutative ring, let A1 and A2 be two commutative A-
algebras. Let B1 be an A1-algebra and let B2 be an A2-algebra. Let M be a
free A-module of rank r.

The canonical projections and injections

B1 ×B2 → B1

B1 ×B2 → B2

B1 → B1 ×B2

B2 → B1 ×B2
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induce canonical maps

p1 : M ⊗A (B1 ×B2)→M ⊗A B1

p2 : M ⊗A (B1 ×B2)→M ⊗A B2

i1 : M ⊗A B1 →M ⊗A (B1 ×B2)

i2 : M ⊗A B2 →M ⊗A (B1 ×B2).

Theses maps satisfy various relations, for example, we have

p1 ◦ i1 = Id

p2 ◦ i2 = Id

p2 ◦ i1 = 0

p1 ◦ i2 = 0

We have canonical and well-de�ned maps

F : EndA1×A2(M ⊗A (B1 ×B2))→ EndA1(M ⊗A B1)× EndA2(M ⊗A B2)

L 7→ (p1 ◦ L ◦ i1), (p2 ◦ L ◦ i2)

and

G : EndA1(M ⊗A B1)× EndA2(M ⊗A B2)→ EndA1×A2(M ⊗A (B1 ×B2))

L1, L2 7→ (i1 ◦ L1 ◦ p1 + i2 ◦ L2 ◦ p2),

the previously mentioned relations shows that F and G are groups homo-
morphisms. It is easy to show that F ◦G = Id and G◦F = Id by direct com-
putations. Moreover F and G induce by restriction a canonical isomorphism
between AutA1×A2(M⊗A (B1×B2)) and AutA1(M⊗AB1)×AutA2(M⊗AB2).

We thus get an explicit and canonical isomorphism of groups

AutA1×A2(M⊗A (B1×B2)) ' AutA1(M⊗A B1)×AutA2(M⊗A B2). (1.15)

The isomorphism (1.15) induces the following lemma.

Lemma 1.6.4. Let A be a commutative ring, let Ai , 0 ≤ i ≤ d, be some
commutative A-algebras. For 0 ≤ i ≤ d, let Bi be an Ai-algebra. Let M
be a free A-module of �nite rank. Then we have a canonical and explicit
isomorphism of groups

Aut∏d
i=1 Ai

(M⊗A
∏d
i=1 Bi) '

d∏
i=1

AutAi(M⊗A Bi).
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Let us use the notation of proposition 1.6.3. Let i, j, k be integers as
above and let C/K ′ be a �eld extension (K ′ is the Galois closure of l′). We
put Vij = V ⊗l′ Cij (Cij = C is introduced in proposition 1.6.3). We put
also Dijk = Dk ⊗l′ Cij .

Proposition 1.6.5. With the previously introduced notations, the following
assertions hold.

(i) There is a canonical commutative diagram of f -schemes

T ×f C
h1 //

v1

��

H′ ×f C
h2 //

v2

��

H ×f C
h3 //

v3

��

G×f C

v4

��∏
i

∏
j

∏
k

AutC(Dijk)
f1 //

∏
i

∏
j

AutC(Vij)
f2 //

∏
i

AutC(
⊕
j

Vij)
f3 // AutC(

⊕
i

⊕
j

Vij).

(ii) There is a canonical commutative diagram of k-spaces

Lie(T ) //

��

Lie(H′) //

��

Lie(H) //

��

Lie(G)

��
Lie(T ×f C) //

��

Lie(H′ ×f C) //

��

Lie(H ×f C) //

��

Lie(G×f C)

��∏
i

∏
j

∏
k

EndC(Dijk) //
∏
i

∏
j

EndC(Vij) //
∏
i

EndC(
⊕
j

Vij) // EndC(
⊕
i

⊕
j

Vij).

(iii) Let s be an element in l′. Let ms be the element of Lie(T ) which send
an element h to sh. Let ms,C be the element in EndC(

⊕
i

⊕
j

Vij)

characterized by the formula,

for all i, j, for all vij ∈ Vij, ms,C(vij) = σij(s)vij.

Then the image of ms in EndC(
⊕
i

⊕
j

Vij) through the diagram intro-

duced in (ii) is ms,C .

Remark 1.6.6. In the next sections we will apply this proposition with C =
F or C a �nite extension of K ′.

Proof. (i) The upper horizontal line is induced by the previously intro-
duced morphisms T → H ′ → H → G. We thus get some maps h1, h2
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and h3. Let A be a C-algebra. In the rest of this proof, we still denote
h1(A) by h1, we do the same for h2 and h3. We have

(
T ×spec(f) spec(C)

)
(A) '

(
Resl′/f

∏
k

Autl′(Dk)

)
(A)

By properties of Res '

(∏
k

Resl′/fAutl′(Dk)

)
(A)

'
∏
k

(
Resl′/fAutl′(Dk)(A)

)
By de�nition of Res '

∏
k

Autl′(Dk)(A⊗f l′)

By de�nition of Aut '
∏
k

AutA⊗f l′(Dk ⊗l′ (A⊗f l′))

By proposition 1.6.3 '
∏
k

Aut∏
i

∏
j Aij

(Dk ⊗l′ (
∏
i

∏
j

Aij))

By proposition 1.6.4 '
∏
k

∏
i

∏
j

AutAij (Dk ⊗l′ Aij)

'
∏
i

∏
j

∏
k

AutAij (Dk ⊗l′ Aij)

'
∏
i

∏
j

∏
k

AutAij (Dijk)

We thus get an isomorphism(
T ×spec(f) spec(C)

)
(A)→

∏
i

∏
j

∏
k

AutAij (Dijk),

let us denote it v1. We have(
H ′ ×spec(f) spec(C)

)
(A) '

(
Resl′/fAutl′(V )

)
(A)

'Autl′(V )(A⊗f l′)
'AutA⊗f l′(V ⊗l′ (A⊗f l

′))

'Aut∏
i

∏
j Aij

(V ⊗f (
∏
i

∏
j

Aij))

'
∏
i

∏
j

AutAij (V ⊗Aij)

'
∏
i

∏
j

AutAij (Vij).

We thus get an isomorphism
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(
H ′ ×spec(F ) spec(C)

)
(A)→

∏
i

∏
j

AutAij (Vij),

let us denote it v2. We have(
H ×spec(f) spec(C)

)
(A) '

(
Resl/fAutl(V )

)
(A)

'Autl(V )(A⊗f l)
'AutA⊗f l(V ⊗l (A⊗f l)).

As an A⊗f l-module, V ⊗l (A⊗f l) is isomorphic to V ⊗l′ (A⊗f l′). So

(
H ×spec(f) spec(C)

)
(A) 'AutA⊗f l(V ⊗l′ (A⊗f l

′))

'Aut∏
i Ai

(V ⊗l′ (
∏
i

∏
j

Aij))

By proposition 1.6.4 '
∏
i

AutAi(V ⊗l′ (
∏
j

Aij)

'
∏
i

AutAi(
⊕
j

V ⊗l′ Aij)

'
∏
i

AutAi(
⊕
j

Vij).

We thus get an isomorphism(
H ×spec(f) spec(C)

)
(A)→

∏
i AutAi(

⊕
j Vij),

let us denote it v3. We have(
G×spec(f) spec(C)

)
(A) '(Autf (V ))(A)

'AutA(V ⊗f A)

'AutA(V ⊗l′ (l′ ⊗f A))

'AutA(V ⊗l′ (
∏
i

∏
j

Aij))

'AutA(
⊕
i

⊕
j

V ⊗l′ Aij)

'AutA(
⊕
i

⊕
j

Vij)

We thus get an isomorphism
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(
G×spec(f) spec(C)

)
(A) ' (Autf (V ))(A)→ AutA(

⊕
i

Vij),

let us denote it v4.

Let us recall that for all i, j, Vij =
⊕
k

Dijk. In the following vijk

denotes an arbitrary vector in Dijk, and vij denote an arbitrary vector
in Vij .

Let f1 be the canonical morphism∏
i

∏
j

∏
k

AutAij (Dijk)→
∏
i

∏
j

AutAij (
⊕
k

Dijk)

sending
∏
i

∏
j

∏
k(Lijk) to

∏
i

∏
j (
∑

k vijk 7→
∑

k Lijk(vijk)). It is a
formal computation to verify that the morphism v2 ◦ h1 is equal to
f1 ◦ v1. Let f2 be the canonical morphism∏

i

∏
j

AutAij (Vij)→
∏
i

AutAi(
⊕
j

Vij)

sending
∏
i

∏
j Lij to

∏
i

(∑
j vij 7→

∏
i

∑
j Lij(vij)

)
. It is a formal

computation to verify that the morphism v3 ◦ h2 is equal to f2 ◦ v2.

Let f3 be the canonical morphism∏
i

AutAi(
⊕
j

Vij)→ AutA(
⊕
i

⊕
j

vij)

sending
∏
i Li to

(∑
i

∑
j vij 7→

∑
i Li(

∑
j vij)

)
. It is a formal compu-

tation to verify that v4 ◦ h3 is equal to f3 ◦ v3.

The previous isomorphisms are functorial in A and form a canonical
diagram, thus induce the required diagram at the level of C-algebraic
groups. This concludes the proof of (i)

(ii) This is a consequence of (i), taking the Lie algebra of all objects.

(iii) The image of ms in Lie(G) = Endf (V ) is the map sending v to sv. The
map Lie(G)→ Lie(G×spec(f) spec(C)) is the map

Endf (V )→ EndC(V ⊗f C)

sending a f -linear map L to the C-linear map (v ⊗ λ 7→ L(v)⊗ λ)
so the image of ms in Lie(G ×spec(F ) spec(F ) is the map (v ⊗ λ 7→

52



sv ⊗ λ), let still denote it ms. Consider the diagram of C-linear maps

V ⊗f C
ms //

c

��

V ⊗f C

c

��
V ⊗l′ (l′ ⊗f C)

i

��

V ⊗l′ (l′ ⊗f Cij)

i

��

V ⊗
∏
i

∏
j

Cij

b
��

V ⊗
∏
i

∏
j

Cij

b
��⊕

i

⊕
j

Vij
⊕
i

⊕
j

Vij

where c is the canonical map, i is the map induced by the map in-
troduced in proposition 1.6.3, and b is the canonical map induced by

the de�nition of Vij . The image of ms in EndF

⊕
i

⊕
j

Vij

 is the

composition b ◦ i ◦ c ◦ms ◦ c−1 ◦ i−1 ◦ b−1.

Let us show that it is equal to ms,C . The equality
b ◦ i ◦ c ◦ms ◦ c−1 ◦ i−1 ◦ b−1 = ms,C is equivalent to the equal-
ity b ◦ i ◦ c ◦ms = ms,C ◦ b ◦ i ◦ c. Let us prove this last equality by
calculation. Let v ⊗ λ ∈ V ⊗F C, we have

b ◦ i ◦ c ◦ms(v ⊗ λ) =b ◦ i ◦ c(sv ⊗ λ)

=b ◦ i(sv ⊗ (1⊗ λ))

=b ◦ i(v ⊗ (s⊗ λ))

=b(v ⊗
∏
i

∏
j

σij(s)λ)

=
∑
i

∑
j

v ⊗ σij(s)λ
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and

ms,C ◦ b ◦ i ◦ c(v ⊗ λ) =ms,C ◦ b ◦ i(v ⊗ (1⊗ λ))

=ms,C ◦ b(v ⊗
∏
i

∏
j

λ)

=ms,C(
∑
i

∑
j

v ⊗ λ)

=
∑
i

∑
j

v ⊗ σij(s)λ.

This concludes the proof of (iii).

So, the torus T ×spec(f) spec(C) is a maximal split torus of
H ′ ×spec(f) spec(C), H ×spec(f) spec(C) and G×spec(f) spec(C). More-
over, H ′ ×spec(f) spec(C) is a Levi subgroup of H ×spec(f) spec(C), and
H ×spec(f) spec(C) is a Levi subgroup of G×spec(f) spec(C). We thus have
inclusion of the corresponding set of roots.

Φ(H ′, T, C) ⊂ Φ(H,T,C) ⊂ Φ(G,T,C)

Let us identify, using 1.6.5,

T ×spec(f) spec(C) with
∏
i

∏
j

∏
k

AutC(Dijk),

H ′ ×spec(f) spec(C) with
∏
i

∏
j

AutC(Vij),

H ×spec(f) spec(C) with
∏
i

AutC(
⊕
j

Vij), and

G×spec(f) spec(C) with AutC(
⊕
i

⊕
j

Vij).

Since
⊕
i

⊕
j

Vij is equal to
⊕
i

⊕
j

⊕
k

Dijk, we can apply 1.6.1 to describe

the set of roots Φ(G,T,C). Putting

I = {1, . . . , i, . . . , [l : f ]}
J = {1, . . . , j, . . . , [l′ : l]}
K = {1, . . . , k, . . . , d},

we obtain the following equality.
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Φ(G,T,C) = {αijk,i′j′k′ | (i, j, k), (i′, j′, k′) ∈ (I × J ×K), (i, j, k) 6= (i′, j′, k′)}

The set of roots Φ(H,T,C) is the following subset of Φ(G,T,C)

Φ(H,T,C) = {αijk,i′j′k′ ∈ Φ(G,T, F ) | i = i′}.

The set of roots Φ(H ′, T, C) is the following subset of Φ(G,T,C)

Φ(H ′, T, C) = {αijk,i′j′k′ ∈ Φ(G,T,C) | i = i′ and j = j′}.

The condition GE1 is relative to the set Φ(H,T,C) \ Φ(H ′, T, C). The
following is a description of this set:

Φ(H,T,C) \ Φ(H ′, T, C) = {αijk,i′j′k′ ∈ Φ(G,T,C) | i = i′ and j 6= j′}.

The condition GE1 involves the element Hα for α in
Φ(H,T,C) \ Φ(H ′, T, C). Let us recall the description given in 1.6.1. Let
αijk,i′j′k′ ∈ Φ(G,T,C), the element Hα which is by de�ntion dα∨ijk,i′j′k′(1) is
the element sending each element v ∈ Dijk to v, and sending each element
v ∈ Di′j′k′ to −v and, for all i′′j′′k′′ di�erent of ijk, i′j′k′, sending each
element v ∈ Di′′j′′k′′ to 0.

1.6.4 Tame twisted Levi sequences

Let E′/E/F be a tower of �nite tamely rami�ed extensions. Let
V be an E′-vector space of dimension d and D be a decomposition
V = (D1 ⊕ . . .⊕Dk ⊕ . . .⊕Dd) of V in one dimensional E′-vector spaces.

In the previous subsection, we have introduced H ′ = ResE′/FAutE′(V ),
H = ResE/FAutE(V ), and G = AutF (V ). We have also associated a torus
T = ResE′/F (TD) to the decomposition D.

In proposition 1.6.5, we have computed the extension of scalar of these
F -groups scheme to an extension containing the Galois closure of E′. We
deduce the following corollary.

Corollary 1.6.7. The sequence H ′ ⊂ H ⊂ G is a tamely rami�ed twisted
Levi sequence in G, moreover Z(H ′)/Z(G) is anisotropic.

Proof. We have to verify that the de�nition given in the beginning of section
1.3 is satis�ed. Firstly, we need to show that there exists a �nite tamely
rami�ed Galois extension L of F such thatH ′×spec(F )spec(L) andH ′×spec(F )
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spec(L) are Levi subgroups ofG×spec(F )spec(L). This is a direct consequence
of 1.6.5.

Secondly, the isomorphism of topological groups (Z(H ′)/Z(G)) (F ) '
E′×/F× holds. The explicit description of the topological multiplicative
group of a non archimedean local �eld given in proposition 1.5.1 implies
that E′×/F× is compact. This implies that Z(H ′)/Z(G) is anisotropic. This
concludes the proof of the corollary.

1.6.5 Generic elements associated to minimal elements

We use in this subsection the notations of the previous subsection. The
center Z ′ of H ′ is isomorphic to ResE′/F (Gm). Thus it is connected, i.e.
Z ′◦ = Z ′.

The inclusions Z ′ → H ′ → H → G induces a canonical diagram

Lie(Z ′)

��

// Lie(G)

��
Lie(Z ′)⊗F F

∼=
// Lie(G)⊗F F

∼=

Lie(Z ′ ×spec(F ) spec(F )) // Lie(G×spec(F ) spec(F )
.
As explained after De�nition 1.3.5, we have canonical inclusions

Lie∗(Z ′)→ Lie∗(H ′)→ Lie∗(H)→ Lie∗(G),

inducing a canonical inclusion Lie∗(Z ′)→ Lie∗(G) and a canonical com-
mutative diagram

Lie∗(Z ′) //

��

Lie∗(G)

��
Lie∗(Z ′)⊗F F //

∼=

Lie∗(G)⊗F F

∼=

Lie∗(Z ′ ×spec(F ) spec(F )) // Lie∗(G×spec(F ) spec(F ).

Recall that an element X∗ ∈ Lie∗(Z ′) is H-generic of depth r if and only
if X∗ ∈ Lie∗(Z ′)−r and if Conditions GE1 and GE2 hold. Since H ′ and
H are of type A, Condition GE1 implies Condition GE2 by 1.3.8. Given
X∗ ∈ Lie∗(Z ′) we denote by X∗

F
the image of X∗ in Lie∗(Z ′×spec(F ) spec(F ))

via the previous commutative diagram. Let recall that ConditionGE1 holds
for X∗ if X∗

F
(Hα) = −r for all root α ∈ Φ(H,T, F ) \ Φ(H ′, T, F ).
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De�nition 1.6.8. Let s ∈ E′. Let X∗s be the element in Lie∗(Z ′) send-
ing an element h ∈ Lie(Z ′) to TrEndF (V )/F (ms ◦ i(h)) where i is the map
Lie(Z ′)→ Lie(G), and ms ∈ EndF (V ) is the map sending v ∈ V to sv, i.e
ms is the multiplication by s.

Proposition 1.6.9. Let s ∈ E′. Let X∗s ∈ Lie∗(Z ′) be the element in-
troduced in de�nition 1.6.8. Let X∗

s,F
be the corresponding element in

Lie∗(Z ′ ×spec(F ) spec(F )). Then

(i) X∗
s,F

(Hαi1j1k1,i2j2k2
) = σi1j1(s) − σi2j2(s) for all roots

αi1j1k1,i2j2k2 ∈ Φ(G,T, F ).

(ii) The element X∗s is in Lie∗(Z ′)−r where r = −ord(s).

Proof. (i) Consider the diagram

Lie(Z ′)

Id⊗1
��

i // EndF (V )

Id⊗1
��

ms◦ // EndF (V )F

Id⊗1
��

TrF //

Id⊗1
��

F

Id⊗1
��

Lie(Z ′)⊗F F

g

��

i⊗Id // EndF (V )⊗F F

f
��

ms◦⊗Id// EndF (V )⊗F F

f
��

TrF⊗Id// F

Id
��

Lie(Z ′ ×spec(F ) spec(F )
iF // EndF (V ⊗F F )

ms,F ◦ // EndF (V ⊗F F )
TrF // F

where i is the canonical inclusion, ms◦ is the composition by ms, and
ms,F ◦ is the composition by the image ms,F of ms in EndF (V ⊗F F ).

Let us prove that it is commutative. The left part of the diagram was
introduced before and is the canonical diagram induced by Z ′ → G.
The upper middle and right square are trivialy commutative. The right
lower square is commutative by Lemma 1.6.1. Let us prove that the
middle lower square is commutative. Let L⊗λ ∈ EndF (V )⊗F F , then

(
(ms,F ◦) ◦ f)

)
(L⊗ λ) =(ms,F ◦)

(
v ⊗ λ′ 7→ L(v)⊗ λλ′

)
=
(
v ⊗ λ′ 7→ sL(v)⊗ λλ′

)
and

(f ◦ (ms ⊗ Id))(L⊗ λ) = ms ◦ L⊗ λ
= (v ⊗ λ′ 7→ cL(v)⊗ λλ′.

This concludes the proof of the commutativity of the diagram. By
de�nition, we have
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X∗s = TrF ◦ (ms◦) ◦ i

and

X∗
s,F

= ((TrF ◦ (ms◦) ◦ i)⊗ Id) ◦ g−1.

We thus get

X∗
s,F

= (TrF ⊗ Id) ◦ ((ms◦)⊗ Id) ◦ (i⊗ Id) ◦ g−1.

The commutativity of the previous diagram implies thus

X∗
s,F

= TrF ◦ (ms,F ◦) ◦ iF .

Consequently for all roots α ∈ Φ(G,T, F ), we have

X∗
s,F

(Hα) = TrF (ms,F ◦Hα) (1.16)

We have already computed ms,F and Hα in terms of the decomposition

V ⊗F F =
⊕
i,j,k

Dijk. Let us recall this. By proposition 1.6.5, ms,F is

the map

ms,F :
⊕
i,j,k

Dijk →
⊕
i,j,k

Dijk∑
i,j,k

vijk 7→
∑
i,j,k

σij(s)vijk

Let αi1j1k1,i2j2k2 ∈ Φ(G,T, F ). By the calculation done in the end of
the subsection 1.6.3, Hαi1j1k1,i2j2k2

is the map

Hαi1j1k1,i2j2k2
:
⊕
i,j,k

Dijk →
⊕
i,j,k

Dijk∑
i,j,k

vijk 7→ vi1j1k1 − vi2j2k2 .

Consequently the maps ms,F ◦Hαi1j1k1,i2j2k2
is the map

ms,F ◦Hαi1j1k1,i2j2k2
:
⊕
i,j,k

Dijk →
⊕
i,j,k

Dijk∑
i,j,k

vijk 7→ σi1j1(s)vi1j1k1 − σi2j2(s)vi2j2k2 .
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This implies that

TrF (ms,F ◦Hαi1j1k1,i2j2k2
) = σi1j1(s)− σi2j2(s). (1.17)

The proposition is now a consequence of the equations (1.16) and (1.17).

(ii) Recall that we put r = −ord(s). By de�nition (see the notation at the
beginning of the document)

Lie∗(Z ′)−r = {X ∈ Lie∗(Z ′) | X(Lie((Z ′)r+) ⊂ pF }.

We have sLie(Z ′)r+ = Lie(Z ′)0+ and thus TrEndF (V )/F (sLie(Z ′)) ⊂ pF .
So X∗s ∈ Lie∗(Z ′)−r.

Proposition 1.6.10. Let s ∈ CE′ such that E[s] = E′.
Then the element X∗

s,F
satis�es Condition GE1, more precisely, for all

roots α ∈ Φ(H,T, F ) \ Φ(H ′, T, F ), we have

ord(X∗
s,F

(Hα)) = ord(s).

Proof. Let αi1j1k1,i2j2k2 ∈ Φ(H,T, F ) \ Φ(H ′, T, F ), by 1.6.9,

X∗
s,F

(Hαi1j1k1,i2j2k2
) = σi1j1(s)− σi2j2(s).

We have i1 = i2 and j1 6= j2 (see subsection 1.6.3). Consequently σi1j1
and σi2j2 are two distinct morphisms of F -algebras from E′ to the Galois
closure K ′ of E′ whose restrictions to E are equal. Since s generates E′ over
E, σi1j1(s) is not equal to σi2j2(s). Let τi1j1 and τi2j2 be two morphisms of F -
algebras from K ′ to K ′ extending σi1j1 and σi2j2 , then τi1j1(s) 6= τi2j2(s) and
thus νK′(τi1j1(s)− τi2j2(s)) = νK′(s) by 1.5.6. So ord(σi1j1(s)− σi2j2(s)) =
ord(s). Consequently for all roots α ∈ Φ(H,T, F ) \ Φ(H ′, T, F ), we have
ord(X∗

s,F
) = ord(s), as required.

Corollary 1.6.11. Let c ∈ E′ be minimal relatively to the extension E′/E
(see 1.2.4, in particular E[c] = E′). Let r be −ord(c). Let sr(c) be the stan-
dard representative of c. Then, the element X∗sr(c) is an element of Lie∗(Z ′)−r
and is H-generic of depth r

Proof. Since ord(c) = ord(sr(c)), the proposition 1.6.9 (ii) implies that the
element X∗sr(c) is in Lie

∗(Z ′)−r. By 1.5.8 the element sr(c) ∈ CE′ generates
E′/E, thus by 1.6.10 the element X∗sr(c) ∈ Lie

∗(Z ′) satis�esGE1 with depth
−ord(sr(c)). As explained before, Condition GE2 is also satis�ed. So X∗sr(c)
is H-generic of depth r, since ord(c) = ord(sr(c)).
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1.7 Factorization of tame simple characters

Let [A, n, r, β] be a tame simple stratum. In this section, we choose and
�x a de�ning sequence {[A, n, ri, βi], 0 ≤ i ≤ s} and a simple character

θ ∈ C(A, 0, β) , we show that θ =

s∏
i=0

θi where θi satis�es some conditions.

We then introduce two cases depending on the condition that βs ∈ F or
βs 6∈ F .

1.7.1 Abstract factorizations of tame simple characters

Fix a tame simple stratum [A, n, r, β] in the algebra A = EndF (V ). Propo-
sitions 1.4.3 and 1.4.4 allow us to choose a de�ning sequence {[A, n, ri, βi],
0 ≤ i ≤ s} (see corollary 1.2.11) such that, putting Bβi := A ∩ EndF [βi](V )
and r0 = 0, β0 = β the following holds.

(vii) F [βi+1] ( F [βi] for 0 ≤ i ≤ s− 1

(vi') The stratum [Bβi+1
, ri+1, ri+1 − 1, βi − βi+1] is simple in the algebra

EndF [βi+1](V ) for 0 ≤ i ≤ s− 1.

We �x such a de�ning sequence in the rest of this section 1.7, this includes
the following subsection 1.7.2.

The elements βi , 0 ≤ i ≤ s are all included in F [β]. Put Ei := F [βi] for
0 ≤ i ≤ s.

Let us de�ne elements ci , 0 ≤ i ≤ s , thanks to the following formulas.
• ci = βi − βi+1 if 0 ≤ i ≤ s− 1
• cs = βs
The following proposition is the factorisation of tame simple characters

as anounced before.

Theorem 1.7.1. Let θ ∈ C(A,m, β) be a simple character. There exists
smooth characters φ0, . . . , φs of E

×
0 , . . . , E

×
s such that

θ =
s∏
i=0

θi

where θi, 0 ≤ i ≤ s, is the character de�ned by the following conditions.

(i) θi |Hm+1(β,A)∩Bβi
= φi ◦ detBβi

(ii) θi |Hmi+1(β,A)= ψci where mi = max{[−νA(ci)
2 ],m}.

Proof. Let us prove the proposition by induction. Suppose �rst that s = 0
i.e that β is minimal over F . Put θ0 = θ. Then the condition (i) is trivially
satis�ed thanks to the de�nition of simple character in the minimal case
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(see [13, 3.2.1] or 1.2.16 ). The integer s is equal to 0, thus β = β0 =
c0. So −νA(c0) = −νA(β) = n. By the de�nition of simple characters in
the minimal case, the restriction θ |

Hm+1(β,A)∩U [n2 ]+1(A)
is equal to ψβ . So

it is enough to verify that Hm+1(β,A) ∩ U [n
2

]+1(A) = Hm′0+1(β,A) where
m′0 = max{[n2 ],m} which is a consequence of the de�nition of Hm+1(β,A).
Suppose now that s > 0. Let us remark that −k0(β,A) = −νA(c0), indeed
the stratum [Bβ1 ,−k0(β,A),−k0(β,A) − 1, β0 − β1] is simple. Thus the
de�nition of simple characters implies that θ |Hm0+1(β,A)= θ′ψc0 where θ′ ∈
C(A,m0, β1). Thanks to the induction hypothesis there exists characters

φ1, . . . φs of E
×
1 , . . . , E

×
s such that θ′ =

s∏
i=1

θ′
i where the θ′i are the characters

de�ned by the following conditions.

(i') θ′i |Hm0+1(β,A)∩Bβi
= φi ◦ detAi |Hm′+1(β,A)∩Bβi

(ii') θ′i |Hmi+1(β,A)= ψci

Identity (ii′) is a consequence of the induction hypothesis (ii) and the
fact that max([−νA(ci)

2 ],m0) = max([−νA(ci)
2 ], [−νA(c0)

2 ],m) = mi, because
−νA(c0) < −νA(ci).

For 1 ≤ i ≤ s, the character θ′i is de�ned on Hm0+1(β,A) and we can
extend θ′i to Hm+1(β,A) thanks to the character φi as follows. The group
Hm+1(β,A) is equal to Um+1(Bβ0)Hm0+1(β,A), we extend θ′i to a function
θi of Hm+1(β,A) by puting θi(x) = φi ◦ detA0(x) for x ∈ Um+1(Bβ0). The
function θi is a character. The character θi satis�es the required conditions
(i) and (ii) by construction.

Finaly, put θ0 = θ ×
s∏
i=1

(θi)−1. The restriction θ0 to Hm+1(β,A) ∩Bβi

is equal to the product of the restriction of θ to Hm+1(β,A) ∩Bβi by the
restriction of θ−1

i for 1 ≤ i ≤ s. Let us show that each factor factors
through detBβ0

. By de�nition of a simple character, this is the case for
θ0. Let 1 ≤ i ≤ s, because of Hm+1(β,A) ∩Bβi ⊂ Hm+1(β,A) ∩Bβ0 , the
restriction of θi to Hm+1(β,A) ∩Bβi is equal to φi ◦ detBβi |Hm+1(β,A)∩Bβi

.
However, a basic fact of algebraic number theory shows that detBβi |Bβ0

=
detBβ0

◦NE0/Ei , whereNE0/Ei is the norm map. Thus each factor factors

through detBβ0
. Consequently there exists a smooth character φ0 of E×0

such that the condition (i) is satis�ed. Let us prove that (ii) holds.

61



θ0 |Hm0+1(β,A)=

(
θ |Hm0+1(β,A) ×

s∏
i=1

(θi)−1 |Hm0+1(β,A)

)
=
(
θ |Hm0+1(β,A) ×(θ′)−1

)
=
(
ψc0 × θ′ × (θ′)−1

)
= ψc0

This completes the proof of the theorem, indeed we have found the re-
quired characters φi , 0 ≤ i ≤ s such that Conditions (i) and (ii) are satis�ed.

1.7.2 Explicit factorizations of tame simple characters

In order to associate to each Bushnell-Kutzko datum a generic Yu datum, we
need to introduce two cases. The two cases are denoted like this: (Case A)
or (Case B). In the rest of this paper we write (Case A) at the begining of
a paragraph or in a sentence to signify that we work under the (Case A) hy-
pothesis. We will introduce particular notations in the (Case A). The same
holds for (Case B). The (Case A) is by de�nition when the last element βs
of the �xed choosen de�ning sequence is inside the �eld F , i.e βs ∈ F . The
(Case B) is the other case, i.e when βs 6∈ F .

Explicit factorizations of tame simple characters in (Case A)

Recall that in this case βs ∈ F . In this case we put d = s. Let us give
an explicit description of the group H1(β,A) in this case. This explicit
description is written in a convenient manner in order to compare with Yu's
construction.

Proposition 1.7.2. (Case A) The group H1(β,A) is equal to the following
group

U1(Bβ0)U [
−νA(c0)

2
]+1(Bβ1) . . . U [

−νA(ci−1)

2
]+1(Bβi) . . . U

[
−νA(cs−1)

2
]+1(Bβs)

(1.18)

Proof. Recall that β = β0. By [13, 3.1.14,3.1.15], it is enough to show that

H(β,A) = Bβ0 + Q
[− νA(co)

2
]+1

β1
+ . . .+ Q

[− νA(cs−1)

2
]+1

βs
. (1.19)
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Let us prove (1.19) by induction on s. If s = 0, by de�nition,
H(β,A) = Bβ0 + P[n

2
]+1. The element β0 is in F , thus Bβ0 = A. Con-

sequently H(β,A) = Bβ0 . If s > 0, by induction hypothesis we have

H(β1,A) = Bβ1 + Q
[− νA(c1)

2
]+1

β2
+ . . .+ Q

[− νA(cs−1)

2
]+1

βs
.

By de�nition H(β,A) = Bβ0 + H(β1,A) ∩ P[
−k0(β0,A)

2
]+1. Let us remark

that since the stratum [Bβ1 ,−k0(β0,A),−k0(β0,A) + 1, β0−β1] is simple by
the condition (vi′), the equality νBβ1

(β0 − β1) = k0(β0,A) holds. We have
νBβ1

(β0 − β1) = νA(β0 − β1) = νA(c0). So k0(β0,A) = νA(c0). Consequently

H(β,A) = Bβ0 + H(β1,A) ∩P[
−νA(c0)

2
]+1

= Bβ0 + Q
[− νA(co)

2
]+1

β1
+ . . .+ Q

[− νA(cs−1)

2
]+1

βs
,

as required.

We now reformulate Theorem 1.7.1 in (Case A) for simple characters in
C(A, 0, β). This will be useful in order to associate generic characters in this
case.

Corollary 1.7.3. (Case A) Let θ ∈ C(A, 0, β), let φ0, φ1, . . . , φs be the char-

acters introduced in theorem 1.7.1, then θ =

s∏
i=0

θi where θi is the character

de�ned as follows.
If 0 ≤ i ≤ s−1, the character θi is de�ned by the following two conditions.

(i) θi |
U1(Bβ0

)U [
−νA(c0)

2 ]+1(Bβ1
)...U [

−νA(ci−1)
2 ]+1(Bβi )

= φi ◦ detBβi

(ii) θi |
U [
−νA(ci)

2 ]+1(Bβi+1
)...U [

−νA(cs−1)
2 ]+1(Bβs )

= ψci .

If i = s, θi is de�ned by θi |H1(β,A)= φi ◦ detA.

Proof. The proof consists in applying Theorem 1.7.1 using the explicit de-
scription of H1(β,A) given in the lemma 1.7.2. In Theorem 1.7.1, we have

introduced smooth characters φ0, . . . φs of E×0 , . . . E
×
s such that θ =

s∏
i=0

θi

where θi is de�ned by the following two conditions.

(i) θi |H1(β,A)∩Bβi
= φi ◦ detBβi

(ii) θi |Hmi+1(β,A)= ψci where mi = max{[−νA(ci)
2 ], 0}.

Let 0 ≤ i ≤ s − 1, then Lemma 1.7.2 shows that H1(β,A) ∩ Bβi =

U1(Bβ0)U [
−νA(c0)

2
]+1(Bβ1) . . . U [

−νA(ci−1)

2
]+1(Bβi). Consequently the condi-

tion (i) of the corollary 1.7.3 is satisfy for θi.
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Trivially mi = [−νA(ci)
2 ], moreover the lemma 1.7.2 shows that

H [
−νA(ci)

2
]+1(β,A) = U [

−νA(ci)

2
]+1(Bβi+1

) . . . U [
−νA(cs−1)

2
]+1(Bβs). Thus Con-

dition (ii) of Corollary 1.7.3 is satisfy for θi.
Finally, for i = s, we have θi |H1(β,A)∩Bβi

= φi ◦ detBβi by the theorem
and the condition of the corollary is satis�ed remarking that Bβs = A since
βs ∈ F .

Explicit factorizations of tame simple characters in (Case B)

Recall that in this case βs 6∈ F . In this case we put d = s + 1. Let us
give an explicit description of the group H1(β,A) in this case. This explicit
description is written in a convenient way in order to compare with Yu's
construction.

Proposition 1.7.4. (Case B) The group H1(β,A) is equal to the following
group:

U1(Bβ0 )U [
−νA(c0)

2
]+1(Bβ1 ) . . . U [

−νA(ci−1)

2
]+1(Bβi ) . . . U

[
−νA(cs−1)

2
]+1(Bβs )U [

−νA(cs)

2
]+1(A).
(1.20)

Remark 1.7.5. The di�erence with (Case A) is that there is "one more
term" in this multiplicative expression of H1(β,A). This is due to the de�-
nition of H(β,A) in the minimal case, as explained in the following proof.

Proof. By [13, 3.1.14,3.1.15], it is enough to show that

H(β,A) = Bβ0 + Q
[− νA(co)

2
]+1

β1
+ . . .+ Q

[− νA(cs−1)

2
]+1

βs
+ P[

−νA(cs)

2
]+1. (1.21)

Let us prove (1.21) by induction on s. If s = 0, by de�nition, H(β,A) =
Bβ0 + P[n

2
]+1, where by de�nition n = −νA(β,A). Since s = 0, the equality

β = cs = c0 hold. Thus H(β,A) = Bβ0 + P[
−νA(cs)

2
]+1 as required.

If s > 0, by induction hypothesis we have

H(β1,A) = Bβ1 + Q
[− νA(c1)

2
]+1

β2
+ . . .+ Q

[− νA(cs−1)

2
]+1

βs
+ P[

−νA(cs)

2
]+1.

By de�nition H(β,A) = Bβ0 + H(β1,A) ∩P[
−k0(β0,A)

2
]+1. Let us remark

that since the stratum [Bβ1 ,−k0(β0,A),−k0(β0,A) + 1, β0−β1] is simple by
the condition (vi′), the equality νBβ1

(β0 − β1) = k0(β0,A) holds. We have
νBβ1

(β0 − β1) = νA(β0 − β1) = νA(c0). So νA(c0) = k0(β0,A). Consequently

H(β,A) = Bβ0 + H(β1,A) ∩P[
−νA(c0)

2
]+1

= Bβ0 + Q
[− νA(co)

2
]+1

β1
+ . . .+ Q

[− νA(cs−1)

2
]+1

βs
+ P[

−νA(cs)

2
]+1,
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as required.

We now reformulate Theorem 1.7.1 in (Case B) for the simple characters
in C(A, 0, β). This will be useful in order to associate generic characters in
this case.

Corollary 1.7.6. (Case B) Let θ ∈ C(A, 0, β), there exists φ0, φ1, . . . , φs

such that θ =

s∏
i=0

θi where the θi are the characters de�ned by the following

conditions.
For 0 ≤ i ≤ s, the character θi is de�ned as follows.

(i) θi |
U1(Bβ0

)U [
−νA(c0)

2 ]+1(Bβ1
)...U [

−νA(ci−1)
2 ]+1(Bβi )

= φi ◦ detBβi

(ii) θi |
U [
−νA(ci)

2 ]+1(Bβi+1
)...U [

−νA(cs−1)
2 ]+1(Bβs )U [

−νA(cs)
2 ]+1(A)

= ψci .

Proof. The proof consists in applying Theorem 1.7.1 using the explicit de-
scription of H1(β,A) given in Lemma 1.7.4. By Theorem 1.7.1, there exist

smooth characters φ0, . . . , φs of E
×
0 , . . . , E

×
s such that θ =

s∏
i=0

θi, where θi,

0 ≤ i ≤ s, is de�ned by the following two conditions.

(i) θi |H1(β,A)∩Bβi
= φi ◦ detBβi

(ii) θi |Hmi+1(β,A)= ψci where mi = max{[−νA(ci)
2 ], 0}.

Let 0 ≤ i ≤ s. Then Lemma 1.7.4 shows that

H1(β,A) ∩Bβi = U1(Bβ0)U [
−νA(c0)

2
]+1(Bβ1) . . . U [

−νA(ci−1)

2
]+1(Bβi).

Thus condition (i) of the corollary 1.7.6 is satis�ed for θi.
Trivialy we have mi = [−νA(ci)

2 ]. Moreover Lemma 1.7.4 shows that

H [
−νA(ci)

2
]+1(β,A) = U [

−νA(ci)

2
]+1(Bβi+1

) . . . U [
−νA(cs−1)

2
]+1(Bβs)U

[
−νA(cs)

2
]+1(A).

Thus Condition (ii) of Corollary 1.7.6 is satis�ed for θi.

1.8 Generic characters associated to tame simple
characters

We continue with the same notations as in section 1.7. Thus we have a �xed
tame simple stratum [A, n, 0, β] and various objects and notations relative
to it. In particular we have a de�ning sequence and a simple character
θ ∈ C(A, 0, β. We have also distinguished two cases. In both (Case A)
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and (Case B), we have introduced various objects and notations and have
established results relative to them. In this section we are going to introduce
a 4-uple (

−→
G, y,−→r ,

−→
Φ) which will be part of a complete Yu datum.

1.8.1 The characters Φi associated to a factorization of a

tame simple character

We start with (Case A).

The characters Φi in the (Case A)

In section 1.7, we have introduced a sequence of �elds

E0 ) E1 ) . . . ) Ei ) . . . ) Es.

Recall that in this case d = s and Es = F , since βs ∈ F and Es = F [βs].
For each i, the �eld Ei is included in the algebra A = EndF (V ) i.e V is an
Ei-vector space.

For 0 ≤ i ≤ s, put Gi = ResEi/FAutEi(V ). If 0 ≤ i ≤ j ≤ d then Gi is
canonically a closed subgroup scheme of Gj .

Let
−→
G be the sequence G0 ( G1 ( . . . ( Gs.

Proposition 1.8.1. (Case A) The sequence
−→
G is a tamely rami�ed twisted

Levi sequence in G.

Proof. This is a consequence of 1.6.7.

We now introduce some real numbers ri for 0 ≤ i ≤ s. Put ri := −ord(ci)
for 0 ≤ i ≤ s. Put also −→r = (r0, r1, . . . , ri, . . . , rs).

Proposition 1.8.2. (Case A) For 0 ≤ i ≤ s, the real number ri satis�es
the following formula:

ri = −νA(ci)
e(A|oF ) .

Proof. By de�nition, ri = −ord(ci). By de�nition of ord we know that

ord(ci) =
νEi(ci)

e(Ei | F )
. (1.22)

Lemma 1.2.1 shows that

νA(ci)

e(A | oF )
=

νEi(ci)

e(EioFF )
. (1.23)

Equations 1.22 and 1.23 together �nish the proof of the proposition.
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Proposition 1.8.3. (Case A) There exists a point y in BTE(G0, F ) such
that the following properties hold.

(I) The following equalities hold.

(i) U0(Bβ0) = G0(F )y,0

(ii) U1(Bβ0) = G0(F )y,0+

(iii) Qβ0 = g0(F )y,0+

(iv) Bβ0 = g0(F )y,0

(v) F [β]×U0(Bβ0) = G0(F )[y]

(II) There exist continous, a�ne and Gi−1(F )-equivariant maps

ιi : BTE(Gi−1, F ) �
� ιi // BTE(Gi, F ) , for 1 ≤ i ≤ s, such that,

denoting ιi the composition ιi ◦ ιιi−1 ◦ . . . ◦ ι1, the following equalities
hold.

(i) U [
−νA(ci−1)

2
]+1(Bβi) = Gi(F )

ιi(y),
ri−1

2
+

(ii) U [
−νA(ci−1)+1

2
](Bβi) = Gi(F )

ιi(y),
ri−1

2

(iii) U−νA(ci−1)+1(Bβi) = Gi(F )ιi(y),ri−1+

(iv) U−νA(ci−1)(Bβi) = Gi(F )ιi(y),ri−1

(v) Q
[
−νA(ci−1)

2
]+1

βi
= gi(F )

ιi(y),
ri−1

2
+

(vi) Q
[
−νA(ci−1)+1

2
]

βi
= gi(F )

ιi(y),
ri−1

2

(vii) Q
−νA(ci−1)+1
βi

= gi(F )ιi(y),ri−1+

(viii) Q
−νA(ci−1)
βi

= gi(F )ιi(y),ri−1
and moreover,

(ix) U−νA(ci)(Bβi) = Gi(F )ιi(y),ri

(x) U−νA(ci)+1(Bβi) = Gi(F )ιi(y),ri+

In the rest of this paper, we identify ιi(y) and y.

Proof. In [7], the authors construct an explicit bijection between the set
Latt1(V ) of all lattices functions in V (see [7, De�nition I.2.1] for the de�ni-
tion of a lattice function) and the enlarged Bruhat-Tits building of AutF (V )
(combine [7, Prop I.1.4] and [7, Prop I.2.4]). The group R acts on Latt1(V )
and the previous bijection induces a bijection between Latt(V ) := Latt1(V )/R
and the reduced Bruhat-Tits building BTR(AutF (V ), F ). The authors show
[7, Theorem II.1.1] that if E/F ⊂ A is a separable extension of �elds, there is
a canonical a�ne and continuous emdedding from BTR(ResE/F (AutE(V ), F )

67



to BTR(AutF , F ). Using the general fact that if G is a connected reductive
k′-group and k′/k is a separable �nite extension of non archimedean lo-
cal �eld then BTR(Resk′/k(G), k′) = BTR(G, k); we deduce canonical maps
BTR(Gi−1, F ) → BTR(Gi, F ) for 1 ≤ i ≤ d. Recall that BTE(G, k) is de-
�ned as BTR(G, k) ×X∗(Z(G), F ) ⊗Z R. Since Z(G0)/Z(G) is anisotropic,
X∗(Z(Gi−1), F ) ⊗Z R and X∗(Z(Gi, F ) are isomorphic for 1 ≤ i ≤ d. Fix
such isomorphisms. They induce continous, a�ne and Gi−1(F )-equivariant
embeddings

BTE(Gi−1, F )→ BTE(Gi, F ).

In [7, I �7], the authors explain that there are injective maps

{Lattices chains in V } → {Lattices sequences in V } → {Lattices functions in V }.

Let Λ ∈ Latt1(V ). To the class Λ of Λ, Broussous-Lemaire attach a
�ltration ar(Λ) of A and a �ltration Ur(Λ) of A× = G, they are indexed by
R and R≥0. If Λ comes from a lattices chain L, then the �ltration of A of
Broussous-Lemaire is compatible with the �ltration, indexed by Z, given by
powers of the radical of the hereditary order associated to L.

Let L be an oE-lattices chain associated to B. We thus get a point in
BTE(G0, F ) by the previous considerations. The rest of the proposition is a
consequence of [7][Theorem II.1.1] and [7][Appendix A], up to contemporary
normalization of Moy-Prasad �ltrations.

Let us introduce some character Φi , 0 ≤ i ≤ s.

De�nition 1.8.4. (Case A) Let 0 ≤ i ≤ s, and let Φi be the smooth complex
character of Gi(F ) de�ned by Φi := φi ◦ detBβi where φi is the character
introduced in 1.7.1 ,1.7.3.

Proposition 1.8.5. (Case A) The following assertions hold.

(i) For 0 ≤ i ≤ s−1, the character Φi is Gi+1-generic of depth ri relatively
to y.

(ii) The character Φs is of depth rs relatively to y.

Proof. (i) Let us �rst prove that Φi is of depth ri relatively to y for
0 ≤ i ≤ s − 1. The restriction Φi |Gi(F )ri

is equal to the restriction
Φi |U−νA(ci)(Bβi )

by proposition 1.8.3.

Let us prove that the two inclusions

U−νA(ci)(Bβi) ⊂ U
1(Bβ0)U [

−νA(c0)

2
]+1(Bβ1) . . . U [

−νA(ci−1)

2
]+1(Bβi)

(1.24)
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and

U−νA(ci)(Bβi) ⊂ U
[
−νA(ci)

2
]+1(Bβi+1

) . . . U [
−νA(cs−1)

2
]+1(Bβs) (1.25)

hold.

If i = 0, the �rst inclusion is trivial. Assume now i > 0. In order
to prove the �rst inclusion in this case, remark that the inequality of
integers −νA(ci−1) < −νA(ci) holds.

We deduce easily and successively the inequalities

−νA(ci−1) < −νA(ci)

−νA(ci−1)

2
< −νA(ci)

[
−νA(ci−1)

2
] + 1 ≤ −νA(ci).

So U−νA(ci)(Bβi) ⊂ U [
−νA(ci−1)

2
]+1(Bβi), and the �rst equality holds.

In order to prove the inclusion (1.25), remark that the integer −νA(ci)
is strictly bigger than 0. We deduce easily successively that

−νA(ci) >
−νA(ci)

2

−νA(ci) ≥ [
−νA(ci)

2
] + 1.

Thus, since Bβi ⊂ Bβi+1
, we get

U−νA(ci)(Bβi) ⊂ U [
−νA(ci)

2
]+1(Bβi+1

)

and the second inequality follows. The inclusions (1.24) and (1.25)
together with 1.7.3 imply that

Φi |Gi(F )y,ri
= φi ◦ det |U−νA(ci)(Bβi )

= θi |U−νA(ci)(Bβi )
=

ψci |U−νA(ci)(Bβi )
.

We know that ψci is trivial on U−νA(ci)+1(Bβi) and non-trivial on
U−νA(ci)(Bβi). Consequently, since U−νA(ci)+1(Bβi) = Gi(F )y,ri+ by
1.8.3, the character Φi is of depth ri relatively to y.

We have to show that Φi is Gi+1-generic of depth ri for 0 ≤ i ≤ s− 1.
By de�nition, ψci(1+x) = ψ ◦TrA/F (cix). We have thus obtained that
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Φi |Gi(F )ri:ri+
(1 + x) = ψ ◦ TrA/F (cix) (1.26)

As explained in section 1.3, the characters of gi(F )ri:ri+ '
gi(F )ri/g

i(F )ri+ are in bijection via ψ with gi(F )•ri+/g
i(F )•ri where

gi(F )•ri+ = {x ∈ gi
∗
(F ) | x(gi(F )ri+) ⊂ oF } ⊗oF pF = gi

∗
(F )−ri

and

gi(F )•ri = {x ∈ gi
∗
(F ) | x(gi(F )ri) ⊂ oF } ⊗oF pF = gi

∗
(F )(−ri)+

The isomorphism Gi(F )ri:ri+ ' gi(F )ri:ri+ used by Yu [41], is the same
as the one used by Adler in [1] , and it is given in our case by the map
((1 + x) 7→ x). The element X∗ci = (x 7→ TrA/F (cix)) is an element
in Lie∗(Z(Gi))−ri ⊂ gi

∗
(F )y,−ri . The equation (1.26) shows that X∗ci

realizes Φi |Gi(F )ri:ri+
. In order to verify GE1, we want to show that

the element X∗sr(ci) realizes also Φi |Gi(F )ri
.

The element X∗sr(ci) is in Lie∗(Z(Gi))−ri ⊂ gi
∗
(F )y,−ri = gi(F )•ri+ by

1.6.9 (ii). So it is enough to prove that (X∗sr(ci) −X
∗
ci) ∈ gi(F )•ri . Let

us remark that the equalities

gi(F )•ri = {x ∈ gi
∗
(F ) | x(gi(F )ri) ⊂ oF } ⊗oF pF ⊂ gi

∗
(F )

= {x ∈ gi
∗
(F ) | x(gi(F )ri) ⊂ pF }

hold. Let us prove that (X∗ci −X
∗
sr(ci)

) ∈ gi(F )•ri . Let y ∈ gi(F )y,ri , we
have

(X∗ci −X
∗
sr(ci)

)(y) = X∗ci(y)−X∗sr(c)(y)

= TrA/F (ciy)− TrA/F (sr(ci)y)

= TrA/F (ciy − sr(ci)y)

= TrA/F ((ci − sr(ci)y)

By 1.5.5, ord(ci − sr(ci)) > ord(ci) = ord(sr(ci)). So
(ci − sr(ci))y ∈ gi(F )0+. This �nally implies that
TrA/F ((ci − sr(ci))y) ∈ pF . Thus the character Φi |Gi(F )ri:ri+

is

realized by the element X∗sr(ci). This element is Gi+1-generic of depth

−ord(ci) by 1.6.11. Thus Φi is Gi+1-generic of depth ri.

(ii) Let us show that Φs is of depth rs relatively to y. This is
easier than (i). By 1.8.3, we have G(F )y,rs = U−νA(cs)(Bβs) and
G(F )y,rs+ = U−νA(cs)+1(Bβs).

Thus, using 1.7.1, we get
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Φs |G(F )y,rs
= φs ◦ det |U−νA(cs)(Bβs )= θs |U−νA(cs)(Bβs )= ψcs .

The character ψcs is trivial on G(F )y,rs+ = U−νA(cs)+1(Bβs) and non
trivial on G(F )y,rs = U−νA(cs)(Bβs). This ends the proof of (ii)

The characters Φi in (Case B)

We have already introduced a sequence of �elds

E0 ) E1 ) . . . ) Ei ) . . . ) Es.

Recall that in this case d = s + 1 and Ed = F by de�nition. For each i,
the �eld Ei is contained in the algebra A = EndF (V ) i.e V is an Ei-vector
space.

For 0 ≤ i ≤ d, put Gi = ResEi/FAutEi(V ). If 0 ≤ i ≤ j ≤ d then Gi is
canonically a closed group subscheme of Gj .

Let
−→
G be the sequence G0 ⊂ G1 ⊂ . . . ⊂ Gd.

Proposition 1.8.6. (Case B) The sequence
−→
G is a tamely rami�ed twisted

Levi sequence in G.

Proof. The (Case A) proof adapts to (Case B) without change.

We now introduce some real numbers ri for 0 ≤ i ≤ d. Put ri := −ord(ci)
for 0 ≤ i ≤ s. Put rd = rs. Put also

−→r = (r0, r1, . . . , ri, . . . , rs, rd).

Proposition 1.8.7. (Case B) For 0 ≤ i ≤ s, the real number ri satisfy the
formula

ri = −νA(ci)
e(A|oF ) .

Proof. The (Case A) proof adapts to (Case B) without change.

Proposition 1.8.8. (Case B) There exists a point y in BTE(G0, F ) such
that the following properties hold.

(I) The following equalities hold.

(i) U0(Bβ0) = G0(F )y,0

(ii) U1(Bβ0) = G0(F )y,0+

(iii) Qβ0 = g0(F )y,0+

(iv) Bβ0 = g0(F )y,0

(v) F [β]×U0(Bβ0) = G0(F )[y]
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(II) There exist continous, a�ne and Gi−1(F )-equivariant maps

ιi : BTE(Gi−1, F ) �
� ιi // BTE(Gi, F ) for 1 ≤ i ≤ s, such that,

denoting ιi the composition ιi ◦ ιιi−1 ◦ . . . ◦ ι1, the following equalities
hold.

(i) U [
−νA(ci−1)

2
]+1(Bβi) = Gi(F )

ιi(y),
ri−1

2
+

(ii) U [
−νA(ci−1)+1

2
](Bβi) = Gi(F )

ιi(y),
ri−1

2

(iii) U−νA(ci−1)+1(Bβi) = Gi(F )ιi(y),ri−1+

(iv) U−νA(ci−1)(Bβi) = Gi(F )ιi(y),ri−1

(v) Q
[
−νA(ci−1)

2
]+1

βi
= gi(F )

ιi(y),
ri−1

2
+

(vi) Q
[
−νA(ci−1)+1

2
]

βi
= gi(F )

ιi(y),
ri−1

2

(vii) Q
−νA(ci−1)+1
βi

= gi(F )ιi(y),ri−1+

(viii) Q
−νA(ci−1)
βi

= gi(F )ιi(y),ri−1
and moreover,

(ix) U−νA(ci)(Bβi) = Gi(F )ιi(y),ri

(x) U−νA(ci)+1(Bβi) = Gi(F )ιi(y),ri+

(III) There exists a continous, a�ne and Gs(F )-equivariant map

ιd : BTE(Gs, F ) �
� ιi // BTE(Gd, F ) such that, denoting ιd the

composition ιd ◦ ιιd ◦ . . . ◦ ι1, the following equalities hold.

(i) U [
−νA(cs)

2
]+1(A) = Gd(F )ιi(y), rs

2
+

(ii) U [
−νA(cs)+1

2
](A) = Gd(F )ιi(y), rs

2

(iii) U−νA(cs)+1(A) = Gd(F )ιi(y),rs+

(iv) U−νA(cs)(A) = Gd(F )ιi(y),rs

(v) P[
−νA(cs)

2
]+1 = gd(F )ιi(y), rs

2
+

(vi) P[
−νA(cs)+1

2
] = gd(F )ιi(y), rs

2

(vii) P−νA(cs)+1 = gd(F )ιi(y),rs+

(viii) P−νA(cs) = gd(F )ιi(y),rs

In the rest of this paper, we identify ιi(y) and y.

Proof. The (Case A) proof adapts to (Case B) without change for (I) and
(II), the proof of (II) adapts to (III) without e�ort.
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Let us introduce certain characters Φi , 0 ≤ i ≤ d.

De�nition 1.8.9. (Case B) Let 0 ≤ i ≤ s, and let Φi be the smooth complex
character of Gi(F ) de�ned by Φi := φi ◦ detBβi , where φi is the character

introduced in 1.7.1, 1.7.6. Let also Φd be the trivial character 1 of Gd(F ).

Proposition 1.8.10. (Case B) For 0 ≤ i ≤ s, the character Φi is Gi+1-
generic of depth ri.

Proof. The (Case A) proof adapts to (Case B) without change.

1.8.2 The characters Φ̂i

In both (Case A) and (Case B), we have obtained part of a Yu datum

(
−→
G, y, r,

−→
Φ). To (

−→
G, y, r,

−→
Φ) is attached by Yu various objects. In the rest

of this section we shows that the characters Φ̂i (see section 1.3) are equal to
the factors θi of θ.

Proposition 1.8.11. In both (Case A) and (Case B), let
Kd

+ = Kd
+(
−→
G, y, r,

−→
Φ) be the group attached to (

−→
G, y, r,

−→
Φ) (see section 1.3).

Then H1(β,A) = Kd
+.

Proof. (Case A) By proposition 1.7.2, we have the equality

H1(β,A) = U1(Bβ0 )U [
−νA(c0)

2
]+1(Bβ1 ) . . . U [

−νA(ci−1)

2
]+1(Bβi ) . . . U

[
−νA(cs−1)

2
]+1(Bβs ).

By de�nition of Kd
+(
−→
G, y, r,

−→
φ ), and because of d = s, we have the equality

Kd
+(
−→
G, y, r,

−→
φ ) = G0(F )y,0+G

1(F )y,s0+ · · ·Gi(F )y,si−1+ . . . G
s(F )y,ss−1+.

The required statement is now a formal consequence of 1.8.3.
(Case B) By proposition 1.7.4, we have the equality

H1(β,A) = U1(Bβ0 )U
[
−νA(c0)

2
]+1

(Bβ1 ) . . . U
[
−νA(ci−1)

2
]+1

(Bβi
) . . . U

[
−νA(cs−1)

2
]+1

(Bβs )U
[
−νA(cs)

2
]+1

(A).

By de�nition of Kd
+(
−→
G, y, r,

−→
φ ), and because of d = s + 1, we have the

equality

Kd
+(
−→
G, y, r,

−→
φ ) = G0(F )y,0+G1(F )y,s0+ · · ·Gi(F )y,si−1 . . . G

s(F )y,ss−1+Gd(F )y,ss+.

The required statement is now a formal consequence of 1.8.8.

Proposition 1.8.12. In both (Case A) and (Case B), let 0 ≤ i ≤ d and let
Φ̂i be the character attached to Φi (see section 1.3). Then

(i) Φ̂i = θi for 0 ≤ i ≤ s
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(ii)
d∏
i=0

Φ̂i = θ

Proof. Recall that Φ̂i is de�ned in [41, section 4] and also in the section 1.3
of this text. In order to prove (i), we need �rst to study the decomposition
g = gi ⊕ ni. In our situation where G = AutF (V ), the Lie algebra g is
EndF (V ) and the Lie algebra of Gi denoted gi is EndF [βi](V ). The space gi

is characterized by the fact that it is the maximal subspace of g such that
the adjoint action of the center Z(Gi(F )) of Gi(F ) is trivial. By de�nition,
ni is the sum of the other isotypic spaces for the adjoint action of T i(F ) on
g. This implies that there is an integer Ri such that each n ∈ ni is a �nite
sum

n =

Ri∑
k=0

nk

such that for each 0 ≤ k ≤ Ri, there is an element tk ∈ Z(Gi(F )) and λk 6= 1
such that adtk(nk) = λknk. We are now able to prove (i) of the proposition
1.8.12.

If x ∈ g, let x = πgi(x) + πni(x) denote the decomposition of x relatively
to the decomposition g = gi ⊕ ni.

Let 0 ≤ i ≤ s. By de�nition (see section 1.3) Φ̂i is the character of Kd
+

de�ned by
• Φ̂i |Gi(F )∩Kd

+
= Φi |Gi(F )∩Kd

+

• Φ̂i |G(F )y,si+∩K
d
+

(1 + x) = Φi(1 + πgi(x)).

Let us verify that it is equal to the character θi de�ned in proposition
1.7.1.

First, note that the group Kd
+ is equal to the group H1(β,A) by proposi-

tion 1.8.11, so it makes sense to compare Φ̂i and θi. The group Gi(F )∩Kd
+

is equal to Bβi ∩H1(β,A). Thus, the de�nitions of θi given in proposition
1.7.1 shows that

Φ̂i |Gi(F )∩Kd
+

= Φi |Gi(F )∩Kd
+

= φi ◦ detBβi |Gi(F )∩Kd
+

= θi |Gi(F )∩Kd
+
. (1.27)

It is enough to show that Φ̂i |G(F )y,si+∩K
d
+
is equal to θi |G(F )y,si+∩K

d
+
.

The group G(F )y,si+ is equal to U [
−νA(ci)

2
]+1(A). Consequently

Φ̂i |G(F )y,si+∩K
d
+

(1 + x) = Φi |G(F )y,si+∩K
d
+

(1 + πgi(x))

(Because 1 + π
gi

(x) ∈ Gi(F )) = Φi |G(F )y,si+∩K
d
+∩Gi(F ) (1 + πgi(x))

(By eq. (1.27) and equality of groups) = θi |
H1(β,A)∩Bβi∩U

[
−νA(ci)

2 ]+1(A)
(1 + πgi(x))

(By def. of θ
i
on H

1
(β,A) ∩ U [

−νA(ci)
2

]+1
) = ψ ◦ TrA/F (ciπgi(x)).
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Let us now compute TrA/F (ciπgi(x)). We have the equalities

Tr(cix) = Tr(ci(πgi(x) + πni(x))) = Tr(ciπgi(x)) + Tr(ciπni(x)).

Let us compute Tr(ciπni(x)). Since πni(x) ∈ ni, there is an integer Ri
such that πni(x) is a �nite sum

πni(x) =

Ri∑
k=0

nk

such that for each 0 ≤ k ≤ Ri, there is an element tk ∈ Z(Gi(F )) and λk 6= 1
such that adtk(nk) = λknk. We have

Tr(ciπni(x)) = Tr(ci

Ri∑
k=0

nk) =

Ri∑
k=0

Tr(cink).

Fix 0 ≤ k ≤ Ri. The element tk commutes with ci. Consequently
tcinkt

−1 = citnkt
−1 = ciλnk. So

Tr(cink) = Tr(tcinkt
−1) = λTr(cink)

This implies that

Tr(cink) = 0.

And so

Tr(ciπni(x)) = 0.

Thus the equality

TrA/F (ciπgi(x)) = TrA/F (cix)

holds.
Consequently

Φ̂i |G(F )y,si+∩K
d
+

(1 + x) = ψ ◦ TrA/F (cix) = ψci = θi |G(F )y,si+∩K
d
+
,

as required. This concludes the proof of (i) of Proposition 1.8.12.

The proof of (ii) is now easy because θ =

s∏
i=0

θi and because in (Case A),

d = s, and in (Case B), d = s + 1 and Φ̂d = 1. This ends the proof of
Proposition 1.8.12.

75



1.9 Extensions and main theorem of the compar-
ison: from Bushnell-Kutzko's construction to
Yu's construction

In this section, we keep notations of the sections 1.7 and 1.8. In particular, we
have �xed a tame simple stratum [A, n, r, β] and a choosen de�ning sequence
{[A, n, ri, βi] , 0 ≤ i ≤ s}, such that F [βi+1] ( F [βi] for all 0 ≤ i ≤ s−1. We
have also �xed a simple character θ ∈ C(A, 0, β). We have distinguished two
cases, (Case A) occurs when βs ∈ F . In this case we have put d = s. In the
opposite (Case B), we have put d = s+ 1. In both case we have introduced

part of a Yu datum (
−→
G, y, r,

−→
φ ). We have also proved some results relative

to these objects. In this section we are going to show that the representation
◦λ(
−→
G, y, r,

−→
φ ) is a β-extension of θ. Then, given a cuspidal representation

σ of U0(Bβ0)/U1(Bβ0) and Λ an extension to E×J0(β,A) of κ⊗ σ, we are
going to show that there exists ρ such that Λ = ρd(

−→
G, y, r,

−→
φ , ρ).

Proposition 1.9.1. In both (Case A) and (Case B) the group
◦Kd(

−→
G, y, r,

−→
φ ) is equal to J0(β,A).

Proof. This proposition is similar to that of Proposition 1.8.11 and the proof
adapts trivially.

Proposition 1.9.2. In both (Case A) and (Case B), the representation

◦λ(
−→
G, y, r,

−→
φ )

of ◦Kd is a β-extension of θ.

Proof. Let us verify that ◦λ =◦ λ(
−→
G, y, r,

−→
φ ) satis�es the criterion given in

Proposition 1.2.22.

(a) The representation ◦λ is equal to ◦κ0 ⊗ . . . ⊗ ◦κd (see section 1.3). By
construction of κi, 0 ≤ i ≤ d, the representation ◦κi contains Φ̂i (see [24,
3.27]). Consequently ◦λ contains Φ̂0 ⊗ . . .⊗ Φ̂d. Thus ◦λ contains θ by
1.8.12.

(b) Again, ◦λ =◦ κ0 ⊗ . . . ⊗◦ κd. Thus, it is enough to show that G0(F ) is
contained in IG(F )(

◦κi) for 0 ≤ i ≤ d. Theorem 14.2 of [41], which is
satis�ed here, implies that G0(F ) is contained in IG(F )(Φi

′ |◦Ki). How-
ever, ◦κi is an in�ation of Φi

′ |◦Ki (see de�nition 1.3.21). Consequently
IG(F )(Φi

′ |◦Ki) ⊂ IG(F (◦κi). Consequently G0(F ) ⊂ IG(F )(
◦κi) as re-

quired.

(c) The representation ◦λ is equal to ◦κ0 ⊗ . . . ⊗ ◦κi ⊗ . . . ⊗ ◦κd.
For 0 ≤ i ≤ d− 1 the dimension of ◦κi is [J i+1 : J i+1

+ ]
1
2 .
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The representation ◦κd is one dimensional. So it is enough

to show that
d∏
i=1

[J i+1 : J i+1
+ ] = [J1(β,A) : H1(β,A)]. The

group J1(β,A) is equal to G0(F )y,0+G
1(F )y,s0 . . . G

d(F )y,sd−1
,

this is thus also equal to G0(F )y,0+J
1 . . . Jd. The group

H1(β,A) is equal to G0(F )y,0+G
1(F )y,s0+ . . . G

d(F )y,sd−1+,
this is thus also equal to G0(F )y,0+J

1
+ . . . J

d
+. Since

G0(F )y,0+J
1 . . . Jd/G0(F )y,0+J

1
+ . . . J

d
+ ' J1 . . . Jd/J1

+ . . . J
d
+ it is

enough to show that
d∏
i=1

[J i : J i+] = [J1 . . . Jd : J1
+ . . . J

d
+]. Let us prove

this by induction on d. If d = 1, this is trivial. Let us assume this is true

for d− 1. It is now enough to show that [Jd : Jd+] =
[J1...Jd:J1

+...J
d
+]

[J1...Jd−1:J1
+...J

d−1
+ ]

.

The following fact will be useful.

Fact: Let G′ ⊂ G be groups and let H be a normal subgroup of G. Let
ι be the injective morphism of group G′/(G′ ∩ H) ↪→ G/H. As G-set,
G/HG′ and (G/H)/ι(G′/(G′ ∩H)) are isomorphic.

Since J1
+ . . . J

d
+ is a normal subgroup of J1 . . . Jd, we can ap-

ply the previous fact to G = J1 . . . Jd, G′ = J1 . . . Jd−1 ,
H = J1

+ . . . J
d
+. Using the fact that H ∩ G′ = J1

+ . . . J
d−1
+ ,

we deduce that, as J1 . . . Jd-sets, J1 . . . Jd/J1 . . . Jd−1Jd+ and
(J1 . . . Jd/J1

+ . . . J
d
+)/ι(J1 . . . Jd−1/J1

+ . . . J
d−1
+ ) are isomorphic. Let X

be this J1 . . . Jd-set. The set X is a fortiori a Jd-set. The group Jd

acts transitively on X = J1 . . . Jd/J1 . . . Jd−1Jd+, and the stabilizer of
(J1 . . . Jd−1Jd+) ∈ J1 . . . Jd/J1 . . . Jd−1Jd+ is J1 . . . Jd−1Jd+ ∩ Jd. The
group J1 . . . Jd−1Jd+ ∩ Jd is equal to Jd+. Consequently

[Jd : Jd+] = #(X) =
[J1...Jd:J1

+...J
d
+]

[J1...Jd−1:J1
+...J

d−1
+ ]

,

as required. This ends the proof of the proposition.

The following theorem is the outcome of Sections 1.7 and 1.8. It shows
that given a Bushnell-Kutzko datum, there exists a Yu datum (

−→
G, y, r,

−→
Φ , ρ),

such that Λ = ρd(
−→
G, y, r,

−→
Φ , ρ). The objects (

−→
G, y, r,

−→
Φ , ρ) are given ex-

plicitely in terms of the Bushnell-Kutzko datum.

Theorem 1.9.3. Let V be a N -dimensional F -vector space. Let A denote
EndF (V ) and let G denote A× ' GLN (F ). The following assertions hold.
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(I) Let ([A, n, r, β], θ, σ, κ,Λ) be a tame Bushnell-Kutzko datum of type (a)
in A. Let {[A, n, r, βi], 0 ≤ i ≤ s} be a de�ning sequence such that
F [βi] ( F [βi+1] for 0 ≤ i ≤ s− 1.

• (Case A) If βs is in F , put d = s, and Gi = ResF [βi]/FAutF [βi](V )

for 0 ≤ i ≤ s. Put
−→
G = (G0, . . . , Gs). Choose a factorization

θ =
s∏
i=0

θi as in Theorem 1.7.1, Corollary 1.7.3. Let Φi , 0 ≤ i ≤

s, be the associated characters as in De�nition 1.8.4. Put
−→
Φ =

(Φ0, . . . ,Φs). Let y ∈ BTE(G0, F ) and −→r as in Proposition 1.8.2.
Then, there exists a representation ρ of G0

[y] such that (
−→
G, y,−→r ,

−→
Φ , ρ)

is a Yu datum and ρd(
−→
G, y,−→r ,

−→
Φ , ρ) is isomorphic to Λ (see section

1.3).

• (Case B) If βs 6∈ F , put d = s+1, and Gi = ResF [βi]/FAutF [βi](V )

for 0 ≤ i ≤ s. Put also Gd = AutF (V ). Put
−→
G = (G0, . . . , Gs, Gd).

Choose a factorization θ =
s∏
i=0

θi as in 1.7.1, 1.7.6. Let Φi, 0 ≤ i ≤ s

be the associated characters and let Φd be the trivial character as in
1.8.9. Put

−→
Φ = (Φ0, . . . ,Φs,Φd). Let y ∈ BT e(G0, F ) and −→r as in

Proposition 1.8.7. Then there exists a representation ρ of G0
[y] such

that (
−→
G, y,−→r ,

−→
Φ , ρ) is a Yu datum and ρd(

−→
G, y,−→r ,

−→
Φ , ρ) is isomor-

phic to Λ (see section 1.3).

(II) Let (A, σ,Λ) be a Bushnell-Kutzko datum of type (b). Put d = 0,
G0 = AutF (V ) and

−→
G = (G0). Put r0 = 0 and −→r = (r0). Let

y ∈ BT e(G0, F ) such that A× = G0(F )y. Put Φ0 = 1 and
−→
Φ = (Φ0).

Let ρ be Λ. Then (
−→
G, y,−→r ,

−→
Φ , ρ) is a Yu datum and ρd(

−→
G, y,−→r ,

−→
Φ , ρ)

is isomorphic to Λ.

Proof. (I) As usual, put E = F [β]. Let ρ′ be an arbitrary extension of σ
to G0(F )[y]. Then the compact induction of ρ′ to G0(F ) is irreducible

and supercuspidal and so (
−→
G, y,−→r ,

−→
Φ , ρ′) is a Yu datum. We are

going to show that there exists a character χ of G0(F )[y] such that

(
−→
G, y,−→r ,

−→
Φ , ρ′ ⊗ χ) is a Yu datum such that ρd(

−→
G, y,−→r ,

−→
Φ , ρ⊗ χ) is

isomorphic to Λ.

The representation ◦λ(
−→
G, y,−→r ,

−→
Φ) is a β-extension of θ by Proposition

1.9.2. Consequently, by 1.2.22, there exists a character

ξ′ : U0(Bβ0)/U1(Bβ1) ' J0(β,A)/J1(β,A)→ C×

of the form α′ ◦ det with α′ : U0(oE)/U1(oE)→ C× and such that κ
is isomorphic to ◦λ⊗ ξ′. Let χ′ be an extension of ξ′ to E×U0(Bβ0) =
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G0(F )[y]. The compact induction of ρ′⊗χ′ to G0(F ) is irreducible and

supercuspidal and so (
−→
G, y,−→r ,

−→
Φ , ρ′ ⊗ χ′) is a Yu datum. The repre-

sentation ◦ρd(
−→
G, y,−→r ,

−→
Φ , ρ′⊗χ′) is equal to σ⊗ ξ′⊗◦ λ(

−→
G, y,−→r ,

−→
Φ).

Thus it is isomorphic to σ ⊗ κ. Consequently ρd(
−→
G, y,−→r ,

−→
Φ , ρ′ ⊗ χ′)

and Λ are two extensions of σ ⊗ κ. This implies that there exists a
character

χ′′ : E×J0(β,A)→ E×J0(β,A)/J0(β,A) ' G0(F )[y]/G
0(F )y → C×,

such that ρd(
−→
G, y,−→r ,

−→
Φ , ρ′ ⊗ χ′) ⊗ χ′′ is isomorphic to Λ. Seeing χ′′

as a character of G0(F )[y], the compact induction of the represen-
tation ρ′ ⊗ χ′ ⊗ χ′′ to G0(F ) is irreducible and supercuspidal, and

ρd(
−→
G, y,−→r ,

−→
Φ , ρ′ ⊗ χ′)⊗ χ′′ is isomorphic to λ.

The assertion (I) follows putting ρ = ρ′ ⊗ χ′ ⊗ χ′′.

(II) In this case the representation ρd is ρ, and there is nothing to prove.
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Chapter 2

Analytic �ltrations

In this chapter, as announced in the introduction, we de�ne some k-analytic
�ltrations using Berkovich spaces theory. Taking rational points, we obtain
�ltrations comparable to Moy-Prasad �ltrations.

Notations and conventions for chapter 2

p : a prime number

k/Qp : a �nite extension

πk : a uniformizer of k

ord = ordk : valuation on algebraic extensions of k such that ord(πk) = 1

e > 1 : a real number strictly bigger than 1

|•| = e−ord(•) (norm on k)

k◦ = {x ∈ k | |x| ≤ 1 } = ok

k◦◦ = {x ∈ k | |x| < 1 } = pk

k̃ = k◦/k◦◦ residual �eld

G : connected reductive k-group scheme

BTR(G, k) : reduced Bruhat-Tits building

BTE(G, k) : enlarged Bruhat-Tits building

Gan : analyti�cation of G (Berkovich k-analytic space)

If H is an S-group scheme with S = spec(k) or S = spec(k◦), then
Lie(H) denote the Lie algebra functor (it was denoted Lie(H) in chapter 1.
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2.1 Schemes

2.1.1 Generalities

There is a stripping functor Sch → Top associating to a scheme its un-
derlying topological space, a scheme X is called connected or irreducible if
and only if its underlying topological space has the same property. If S is
a scheme we note S − Sch the category of scheme over S, this is a cate-
gory whose objects are pairs (X, f) where X is a scheme and f : X → S
is a morphism of scheme. There is a stripping functor S − Sch → Sch. If
S = spec(A) is a�ne we sometimes call a S-scheme a A-scheme, and write
A − Sch instead of S − Sch. If S is a scheme and X, Y are two schemes
over S we note X ×S Y the product of X and Y in the category S − Sch, if
moreover S = spec(A) is a�ne, we sometimes denote X ×S Y by X ×A Y ,
and if Y = spec(B) is also a�ne we denote X ×S Y by X ×A B.

LetB be anA-algebraB. LetX be anA-scheme. Then AutA−alg(B) acts
canonically on the right of X ×spec(A) spec(B) by A-scheme automorphisms.

A group scheme is a group Sch-objet, the connected component contain-
ing the unit element is a group scheme called the neutral component. A
S-group scheme is a group S − Sch-objet.

Proposition 2.1.1. [40, Theorem 6.6] Let k be a �eld and let G = spec(A)
be an a�ne k-group scheme such that A is a �nitely generated algebra over
k, the following are equivalent:

1. spec(A) is connected

2. spec(A) is irreducible.

If f : X → S is an S-scheme, and s ∈ S is a point, let k(s) be the
residue �eld of s and spec(k(s)) → S the canonical morphism. The �bre of
the morphism f over the point s is the scheme Xs = X ×S spec(k(s)).

Recall that k denote a �nite extension of Qp. The scheme spec(k◦) is
reduced to two points, the �rst is the prime ideal 0 and the second is the
maximal ideal k◦◦. Let X be a k◦-scheme, the �bre over 0 is called the
generic �bre and the �bre over k◦◦ is called the special �bre. Explicitely
they are given by X ×k◦ k and X ×k◦ k̃. We say that a k◦-scheme X is
connected if its special and generic �bres are connected, as elements of Sch.
A non connected k◦-scheme X can have a underlying connected scheme. A
connected k◦-scheme always have a underlying connected scheme. If G is a
k◦-group scheme, we de�ne the neutral component of the k◦-group scheme G
as the images of the neutral components, as group scheme, of the special and
generic �bres, under the natural morphism to G. The neutral component of
a k◦-group scheme G is denoted by G◦. We have the following result which
is useful to have in mind in this text (see [22] for a general statements and
proofs)
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Proposition 2.1.2. Let X = spec(A) be a smooth k◦-scheme. Then

1. X is a �at k◦-scheme

2. The algebra A⊗k◦ k̃ is a reduced k̃-algebra.

2.1.2 Higher dilatations and congruence subgroups

In this section we recall some results about dilatations, higher dilatations,
and congruence subgroups for schemes and group schemes over k◦ where k is
a �nite extension of Qp. The references are [6], [43] and [32]. The dilatation
is a process which produces, from a �at k◦-scheme X of �nite type and a
closed subscheme of the special �ber of X, a �at closed k◦-subscheme of X.
It preserves group schemes structures. Higher dilatation is an iteration of
dilatations. It preserves group schemes structures. A congruence subgroup
in this setting is obtained by higher dilatation of a k◦-group scheme relatively
to the neutral element. We start by the de�nition of dilatation following [6].

De�nition/Proposition 2.1.3. [6, �3.2] Let X be a �at k◦-scheme of �nite
type, let Yk̃ be a closed subscheme of the special �bre X×k◦ k̃ of X, let J be
the sheaf of ideals of OX de�ning Yk̃. Let X′ → X be the blowing-up of Yk̃
on X, and let u : X′π → X denote its restriction to the open subscheme of X′

where J .OX is generated by π. Then:
(a) X′π is a �at k◦-scheme, and uk̃ : X′π×k◦ k̃ → X×k◦ k̃ factors throught

Yk̃.
(b) For any �at k◦-scheme Z and for any k◦-morphism v : Z → X such

that vk̃ : Z ×k◦ k̃ → X ×k◦ k̃ factor through Yk̃, there exists a unique k◦-
morphism v′ : Z→ X′π such that v = u ◦ v′.

Moreover (X′π, u) is the only couple satisfying (a) and (b) up to canonical
isomorphism, we denote it by Dil(X,Yk̃). If Yk̃ is realized as the special �ber
Y×k◦ k̃ of a closed subscheme Y of X, then we also denote Dil(X,Y×k◦ k̃)
by Dil(X,Y).

Remark 2.1.4. Let X be a �at k◦-scheme of �nite type, then Dil(X,X) = X
since it satis�es (a) and (b).

The following functorial compatibility property holds.

Proposition 2.1.5. [6, �3.2 Proposition 2 (c)] Let X2 be a closed sub-
scheme of a �at k◦-scheme of �nite type X1 and let Yk̃ be a closed sub-
scheme of the special �bre X2×k◦ k̃. Then there is a natural closed immersion
Dil(X2,Yk̃)→ Dil(X1,Yk̃).

Dilatation preserves products and group structures as follows.

Proposition 2.1.6. [6, �3.1 Proposition 2 (d)] Let Xi be �at k◦-schemes of
�nite type and let Yi

k̃
be closed subschemes of Xi ×k◦ k̃, for i = 1, 2. There

is a canonical isomorphism of k◦-schemes
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Dil(X1 ×k◦ X2,Y1
k̃
×k̃ Y

2
k̃
) ' Dil(X1,Y1

k̃
)×k◦ Dil(X2,Y2

k̃
).

In particular, if X is a k◦-group scheme, and if Yk̃ is a subgroup scheme
of X ×k◦ k̃, then Dil(X,Yk̃) is a k◦-group scheme and the canonical map
Dil(X,Yk̃)→ X is a k◦-group scheme morphism.

We now introduce the J.-K. Yu and G. Prasad notion of higher dilatation.

De�nition 2.1.7. [32, �7.2 ] Let X be a �at k◦-scheme of �nite, and i0 :
Y→ X be a �at closed k◦-subscheme. Let us de�ne by induction a sequence of
�at k◦-scheme Γn(X,Y) together with closed immersion in : Y→ Γn(X,Y).
Let Γ0(X,Y) = X and i0 : Y → X = Γ0(X,Y). After Γn(X,Y) and in have
been de�ned, we let Γn+1(X,Y) be Dil(Γn(X,Y), in(Y)). Thanks to 2.1.5 we
have a closed immersion

in+1 : Y = Dil(Y,Y)→ Dil(Γn(X,Y), in(Y)) = Γn+1(X,Y).

Remark 2.1.8. With the same notations as 2.1.7, the generic �bres of X
and Γn(X,Y) are canonically isomorphic.

Construction of higher dilatations and preservation of groups structure
for dilatations imply that higher dilatations preserve groups structure as
follows.

Proposition 2.1.9. [32, �7.4 ] With the same notations as 2.1.7, suppose
X is a k◦-group scheme and Y a closed k◦-group scheme. Then Γn(X,Y) is
naturally a k◦-group scheme.

We now give an explicit description of higher dilatations in the a�ne
case. It will be important for us.

Proposition 2.1.10. [32, Proof of Proposition 7.3] Let X be an a�ne and
�at k◦-scheme of �nite type, and Y be a closed k◦-subscheme of X. Let A and
J such that X = spec(A) and Y = spec(A/J). Then Γn(X,Y) = spec(An)
where

An = A[π−nk J ] = A +
∑
i≥1

π−ink J i ⊂ A⊗k◦ k

We now introduce the notion of congruence subgroups.

De�nition 2.1.11. Let G be a �at k◦-group scheme of �nite type and eG be
the neutral element, this is a closed k◦-group scheme in G. Then Γn(G, eG)
is called the n-th congruence subgroup of G, and is denoted by Γn(G), this is
a �at k◦-group scheme together with a closed immersion Γn(G)→ G.
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Let X = spec(A) be an a�ne k-scheme of �nite type. Let K/k be a �nite
Galois extension. Let X = spec(A) be an a�ne �at K◦-scheme of �nite type
such that X ×K◦ K = X ×k K. We thus have A ⊗K◦ K = A ⊗k K. The
action by k-scheme automorphism on the right of X ×k K corresponds to a
left action by k-algebras automorphisms on A⊗kK. In this situation, we say
that X is Gal(K/k)-stable if A⊗K◦1 is Gal(K/k)-stable in A⊗K◦K = A⊗kK.

In order to prove preservations of Galois stabilities under the operations
of taking congruence subgroups, we need the following lemma.

Lemma 2.1.12. Let K/k be a �nite Galois �eld extension. Let A be a k-
algebra and AK = A ⊗k K. The action of the Galois group Gal(K/k) on
AK is given by γ.(a ⊗ x) = a ⊗ γ(x) (γ ∈ Gal(K/k), a ∈ A, x ∈ K). Let
A be a K◦-sub-algebra of AK and assume A ⊗K◦ K → AK , a ⊗ x 7→ ax is
an isomorphism and identify these rings. Let J be an ideal of A. Assume
A and J are Gal(K/k)-stable, then for all positive integer n, the algebra
An = A[π−nK J ] = A +

∑
i≥0 π

−in
K J i ⊂ AK is Gal(K/k)-stable (πK is a

uniformizer of K).

Proof. Put π = πK . The valuation on K is invariant under the action
of Gal(K/k) on K, and so each π−inJ i is Gal(K/k)-stable. Indeed, let
y ∈ π−inJ i, then there is an element j ∈ J i such that y = π−inj, let
γ ∈ Gal(K/k), then γ(π−in) = o× π−in with o an element of valuation zero
in K◦. Evidently, γ(j) ∈ J i because J is Gal(K/k)-stable by hypothesis, so
o×γ(j) ∈ J i because J i is an ideal in the ring A and o ∈ A. So γ(y) ∈ π−inJ i.
Moreover A is Gal(K/k)-stable by hypothesis, so An is Gal(K/k)-stable.

Lemma 2.1.13. Let K/k be a �nite Galois extension. Let A be a Hopf
algebra over k. In particular we have the augmentation εA : A → k. Let
AK = A ⊗k K, it is naturally a Hopf algebra, the augmentation εAK is
εA ⊗ Id. Then ker(εAK ) = ker(εA)⊗k K and it is Gal(K/k)-stable in AK .

Proof. We have an exact sequence 0 → ker(εA) → A → k → 0, and so,
because of K is �at over k, 0→ ker(εA)⊗kK → A⊗kK → k⊗K → 0, and
so ker(εAK ) = ker(εA)⊗k K. The last assertion follows from it.

Lemma 2.1.14. Let G = spec(A) be an a�ne k-group scheme of �nite type
and A be a �at sub-Hopf K◦-algebra of �nite type of the Hopf K-algebra
AK = A⊗k K, put G = spec(A) and assume that

1. A⊗K◦ K → AK
x⊗λ7→λx

is an isomorphism,

2. A⊗ 1 is Gal(K/k)-stable in AK .

Then for any positive integer n, the congruence subgroup Γn(G) = spec(An)
is Gal(K/k)-stable.
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Proof. Let εA : A → K◦ be the augmentation, then by lemma 2.1.10 An =
A+
∑

i≥1 π
−in
K J i where J = ker(εA). Let's remark that εA is the restriction to

A of the augmentation εA⊗Id : A⊗kK → K of AK . So J = ker(εA⊗Id)∩A.
The set ker(εA ⊗ Id) is Gal(K/k)-stable thank to proposition 2.1.13, and A
is stable by hypothesis, so J is Gal(K/k)-stable as the intersection of two
Gal(K/k)-stable subsets of A⊗kK, the proposition now follows from lemma
2.1.12.

We also have a compatibility between extension of scalars and taking
congruence subgroups (up to rami�cation index).

Lemma 2.1.15. Let K/k be a �nite extension, let e(K, k) be the rami�cation
index, let πk be a uniformizer of k and πK be a uniformizer of K. Let G =
spec(A) be an a�ne �at k◦-group scheme of �nite type. Because of the
�atness hypothesis, A embeds in A⊗k◦ k and we identify A with A⊗ 1. We
also have an embedding A⊗k◦ k → (A⊗k◦ k)⊗kK, we identify A⊗k◦ k with
(A⊗k◦k)⊗1. Then the Hopf algebras of Γn(G)×k◦K◦ and Γe(K,k)n(G×k◦K◦)
are egal in (A⊗k◦ k)⊗k K.

Proof. Let εA : A → k◦ be the augmentation and J = ker(εA). Let An be

the Hopf k◦-algebra such that Γn(G) = spec(An), then An = A+
∑
i≥1

π−ink J i

by 2.1.10. So, we have

Hopf(Γn(G)×k◦K◦) = An⊗k◦K◦ = A⊗k◦K◦+

∑
i≥1

π−ink J i

⊗k◦K◦. (2.1)
Let εA ⊗ Id : A⊗k◦ K◦ → K◦ be the augmentation of A⊗k◦ K◦ and JK◦ =
ker(A⊗k◦ K◦). By 2.1.10, the Hopf K◦-algebra of Γe(K,k)n(G×k◦ K◦) is

Hopf(Γe(K,k)n(G×k◦ K◦)) = A⊗k◦ K◦ +
∑
i≥1

π
−e(K,k)in
K (JK◦)

i. (2.2)

Because of K◦ is �at over k◦, JK◦ = J ⊗k◦ K◦ (see the proof of Lemma
2.1.13).

We claim and remark that if A is a k◦-algebra, J is an ideal of A, and n
is a positive integer, then J⊗k◦ K◦ is an ideal of A⊗k◦ K◦ and we have the
following equality of ideal Jn ⊗k◦ K◦ = (J⊗k◦ K◦)n in A⊗k◦ K◦ (we report
the proof of this claim after deducing the required result).
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So �nally we can deduce easily the equality

Hopf(Γn(G)×k◦ K◦) =

By equation (2.1) = A⊗k◦ K◦ +

∑
i≥1

π−ink J i

⊗k◦ K◦
By properties of sum and tensor product = A⊗k◦ K◦ +

∑
i≥1

((
π−ink J i

)
⊗k◦ K◦

)
= A⊗k◦ K◦ +

∑
i≥1

π−ink

(
J i ⊗k◦ K◦

)
By the claim = A⊗k◦ K◦ +

∑
i≥1

π−ink (J ⊗k◦ K◦)i

πkK
◦ = π

e(K,k)
K K◦ and see before the claim = A⊗k◦ K◦ +

∑
i≥1

π
−e(K,k)in
K (JK◦)

i

By equation (2.2) = Hopf(Γe(K,k)n(G×k◦ K◦))

as required.
Let us now prove the claim i.e. that we have the egality of ideal

(J⊗k◦ K◦)n = (Jn ⊗k◦ K◦). Let us �rst prove the inclusion ⊃. Since Jn

consists in sums of n-products of elements in J and since (J ⊗k◦ K◦)n
is stable by addition, it is enough to show that any element of the form
x = (j1 . . . jn ⊗ λ) ∈ (Jn ⊗k◦ K◦) is contained in (J⊗k◦ K◦)n. This is obvi-
ous, writting (j1 . . . jn ⊗ λ) = (j1 ⊗ λ)(j2 ⊗ 1) . . . (jn ⊗ 1). Now let us prove
the inclusion ⊂. Since (J⊗k◦K◦)n consists of sums of n-products of elements
in J⊗k◦ K◦ and since (J⊗k◦ K◦) consists in sums of pure tensors and since
(Jn ⊗k◦ K◦) is stable by addition, it is enough to show that any element of
the form x = (j1⊗λ1) . . . (jn⊗λn) ∈ (J⊗k◦K◦)n is contained in (Jn⊗k◦K◦).
This is obvious, writting (j1⊗ λ1) . . . (jn⊗ λn) = (j1 . . . jn⊗ λ1 . . . λn). This
ends the proof of the claim and so the lemma is proved.

We �nish this section with important facts about congruence subgroups.

Proposition 2.1.16. [43, 2.8] Let G be a smooth (thus �at by 2.1.2) k◦-
group scheme a�ne and of �nite type. Let n ∈ N, then

1. Γn(G)(k◦) = ker(G(k◦)→ G(k◦/πnk◦))

2. The special �bre of Γn(G) is a vector k̃-group scheme. In particular it
is connected and irreducible. Moreover since Γn(G) is smooth over k◦,
if An denotes the k◦-Hopf algebra of Γn(G), then An ⊗k◦ k̃ is reduced
(by 2.1.2).

If G is a k◦-group scheme, we denote by Lie(G) its Lie algebra functor,
it is a k◦-scheme. We denote by Lie(G)(k◦) the k◦-points.
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2.2 Berkovich k-analytic spaces

In this section we recall Berkovich's de�nitions of k-a�noid algebras and
spaces. We follow very closely [3] and most parts of this section are copies
of [3]. The reader is welcome to read at the same time [3]. We then give
references for de�nitions of general Berkovich spaces. A general Berkovich
analytic space is a locally ringed space obtained by gluing k-a�noid spaces
having certain compatibility conditions. The notion of Berkovich k-analytic
spaces exists for a larger class of �eld k than extension of Qp (see [3]).
The reference for the de�nition of general Berkovich analytic spaces is [4,
�1]. The spaces de�ned in [3] correspond to good spaces in [4] (see [18,
1.3]). In general, Berkovich k-analytic space are equiped with a Grothendieck
topology (see [4, �1.3]). V. Berkovich's k-a�noid theory relies on S. Bosch,
U. Güntzer and R. Remmert's book "Non archimedean Analysis" [5]. I.
Gelfand, D. Raikov and G. Shilov's book "Commutative normed rings" [21]
seems to has fournished important ideas in the Berkovich's approach. For a
more complete historical approach of Berkovich's space, we refer the reader
to the introduction of Berkovich's book [3]. The litterature on Berkovich's
space is wide and applications are abundant. A list of some applications can
be fund in [18] and [19].

2.2.1 k-a�noid algebras

We refer to [3, �1.1] for usual de�nitions concerning Banach rings, we freely
use the following notions:
• non-Archimedean seminorms and norms on an abelian group, equiva-

lence of seminorms, residue seminorms, bounded and admissible morphims
of seminormed groups,
• seminormed rings, normed rings, Banach rings, non-Archimedean �elds,
• seminormed A-modules, normed A-modules, Banach A-modules, com-

plete tensor products M⊗̂N .

De�nition 2.2.1. [3, �2.1] For real numbers r1, . . . , rn > 0, we set:

k{r−1
1 T1, . . . , r

−1
n Tn} = {f =

∑
ν∈Nn

aνT
ν | aν ∈ k and |aν |rν → 0 as |ν| → ∞}

(Here ν = (ν1, . . . , νn) , |ν| = ν1 + . . . + νn, T
ν = T ν11 . . . T νnn and rν = rν11 . . . rνnn ).

This is a commutative Banach k-algebra with respect to the multiplicative
norm ||f || = max

ν
|aν |rν . For brevity this algebra will also be denoted by

k{r−1T}.
• A k-a�noid algebra is a commutative Banach k-algebra A such that

there exists an admissible epimorphism k{r−1T} → A. If such an epimor-
phism can be found with r = 1, A is said to be strictly k-a�noid.
• An a�noid k-algebra is a K-a�noid algebra for some non archimedean

�eld K over k.
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The following proposition characterizes strictly k-a�noid algebras among
k-a�noid algebras.

Proposition 2.2.2. [5, �6.1] Let r = (r1, . . . , ri, . . . , rn) > 0. The k-a�noid
algebra k{r−1T} is strictly k-a�noid if and only if, for all i

ri ∈ {α ∈ R≥0 | αm ∈ |k∗| for some integer m ≥ 1}.

Proposition 2.2.3. [3, 2.1.3] Let A be a k-a�noid algebra and I be an ideal
of A. Then

1. A is a Noetherian ring,

2. I is a closed ideal of A.

We refer to [3, �2.1]for many others interesting propositions on k-a�noid
algebras.

2.2.2 k-a�noid spaces

In this section, we introduce the spectrumM(A) of a k-Banach algebra A,
it is a compact topological space. If A is a k-a�noid algebra,M(A) is called
a k-a�noid space, it is provided with a locally ringed space structure.

Spectrum of a k-Banach algebra

We start with general de�nitions.

De�nition 2.2.4. [3, 1.2] Let A be a commutative Banach ring with identity.
The spectrum M(A) is the set of all bounded multiplicative seminorms on
A provided with the weakest topology with respect to which all real valued
functions onM(A) of the form | | 7→ |f |, f ∈ A, are continous.

Remark 2.2.5. Let A be a commutative Banach ring with identity. An
element in the "space" M(A) is generically denoted x, it is a map from A
to R≥0. More precisely, the element x is a bounded multiplicative seminorm
on A and we also denote x by | |x. An element in A is genericaly denoted
f . If x ∈ M(A) and f ∈ A, the real number x(f) = | |x(f) is also denoted
|f |x.

Proposition 2.2.6. [3, 1.2.1] Let A be a non-zero commutative Banach ring
with identity. The spectrumM(A) is a nonempty, compact Hausdor� space.

Following Berkovich, let us introduce the valuation �eld associated to a
point ofM(A).
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De�nition 2.2.7. [3, 1.2.2 (i)] Let A be a commutative Banach ring with
identity. Let x ∈ M(A). The kernel px of | |x is a closed prime ideal of
A. The value |f |x depends only on the residue class of f in A/px. The
resulting valuation on the integral domain A/px extends to a valuation | |x
on its fraction �eld F . The closure of F with respect to the valuation is a
valuation �eld denoted by H(x). The image of an element f ∈ A in H(x)
will be denoted by f(x).

Remark 2.2.8. Let A be a commutative Banach ring with identity. Let
x ∈ M(A). Remark that |f(x)|x = |f |x. Berkovich does not write the
subscript x and therefore denote |f(x)|x by |f(x)|. Thus x(f), | |x(f) , |f |x ,
|f(x)|x and |f(x)| are well de�ned notations denoting the same real number
(see 2.2.5). Berkovich's notation |f(x)| seems to be the best notation to use
and is the most used in the literature. In this text, we also use the notation
|f |x.

The following is an other description of the spectrumM(A).

Fact 2.2.9. [3, 1.2.2 (ii)] Let K ′ and K ′′ two valuation �elds. Two nonzero
bounded morphisms χ′ : A → K ′ and χ′′ : A → K ′′ are said to be equivalent if
there exist a valuation �eld K and a non zero bounded morphism χ : A → K
and embeddings K → K ′ and K → K ′′ such that the diagram

A

~~ �� !!
K ′ Koo // K ′′

is commutative. The set M(A) coincides with the set of equivalence
classes of nonzero bounded morphism from A to a valuation �eld.

We have the following functorial fact.

Fact 2.2.10. [3, 1.2.2 (iii)]Any bounded morphism of commutative Banach
rings φ : A → B sending the identity to the identity induces a continuous
map φ∗ :M(B)→M(A).

Let us introduce the notion of spectral radius of an element f in a Banach
ring A.

De�nition 2.2.11. [3, 1.3] Let A be a Banach ring and let f ∈ A. The

numbers lim
n→∞

||fn||
1
n and inf

n
||fn||

1
n exist and are equal. This number is

called the spectral radius of f and is denoted by ρ(f).

We have he following proposition.

Proposition 2.2.12. [3, 1.3.3] Let A be a Banach ring. The function f 7→
ρ(f), from A to R≥0, is a bounded seminorm called the spectral norm.

Let us �nish this section with the following proposition.
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Proposition 2.2.13. [3, 1.3.5] Suppose that A is a commutative Banach
algebra over a valuation �eld k, and let K be a �nite Galois extension. The
group Gal(K/k) naturally acts on the right ofM(A⊗K). Moreover we have
a bijection

M(A⊗̂kK)/Gal(K/k) 'M(A)

k-a�noid spaces

A�noid domains We �x a k-a�noid algebra A and we put X =M(A).

De�nition 2.2.14. [3, 2.2.1] A closed subset V ⊂ X is said to be an a�noid
domain in X if there exists a bounded homomorphism of k-a�noid algebras
φ : A → AV satisfying the following universal property. Given a bounded
homomorphism of a�noid k-algebras A → B such that the image of M(B)
in X lies in V , there exits a unique bounded homomorphism AV → B making
the diagram

A φ //

��

AV

~~
B

commutative.
A closed subset of X which is �nite union of a�noid domains is called a

special subsets of X.

We have the following proposition.

Proposition 2.2.15. [3, 2.2.4] Let V be an a�noid domain in X. Then

1. M(AV ) ' V ; in particular, the homomorphism A → AV is uniquely
determined by V ;

2. AV is a �at A-algebra.

We can now introduce k-a�noid spaces.

De�nition/Proposition 2.2.16. [3, 2.3] For an open set U ⊂ X, we set

Γ(U ,OX) = lim
←
AV ,

where the limit is taken over all special subsets V ⊂ U .
This is a sheaf of ring on X and the stalk OX , x at a point x ∈ X is a

local ring. The locally ringed space X obtained is called a k-a�noid space.
If A is strictly k-a�noid, X is called a strictly k-a�noid space.

The following is the de�nition of a morphism of k-a�noid spaces.
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De�nition 2.2.17. A morphism of k-a�noid spaces X = M(A) → Y =
M(B) is a morphism of locally ringed spaces which comes from a bounded
morphism B → A

The category of k-a�noid spaces is antiequivalent to the category of k-
a�noid algebras. For any non Archimedean �eld K over k, we have a ground
�eld extension functorM(A) 7→ M(A⊗̂K).

We refer to [3, 2.3] for many interesting results on k-a�noid spaces.

Shilov boundaries

We start with the de�nition of the Shilov boundary of a commutative Banach
k-algebra.

De�nition/Proposition 2.2.18. [3, page 36] A closed subset Γ of the spec-
trum of a commutative Banack k-algebra A is called a boundary if every
element of A has its maximum in Γ. The set of all boundaries is partially
ordered by inclusion, and it satis�es the conditions of Zorn's Lemma. Hence,
there exist minimal boundaries. If there exists a unique minimal boundary,
it is said to be the Shilov boundary of A, and it is denoted by Γ(A).

We are going to explain that the Shilov boundary of a strictly k-a�noid
algebra exists. That's why we introduce the reduction map [3, 2.4] in the
following. Given a commutative Banach algebra A, the set

A◦ = {f ∈ A | ρ(f) ≤ 1}

is a ring and

A◦◦ = {f ∈ A | ρ(f) < 1}

is an ideal in it. The residue ring A◦/A◦◦ is denoted by Ã. Every mor-
phism of commutative Banach algebras φ : A → B induces ring morphisms
φ◦;A◦ → B◦ and φ̃ : Ã → B̃. In particular, for any point x ∈M(A) there is

a morphism χ̃x : Ã → H̃(x). Because H̃(x) is a �eld, ker(χ̃x) is a prime ideal
of Ã. Letting k̃(x̃) denote the fraction �eld of the ring Ã/ ker(χ̃x), we obtain

an embedding of �elds k̃(x̃) → H̃(x) and the following so-called reduction
map:

π : M(A)→ spec(Ã)

x 7→ ker(χ̃x)

We can now state the following important proposition.

Proposition 2.2.19. [3, 2.4.4] Let A be a strictly k-a�noid algebra. Set
X =M(A) , X̃ = spec(Ã) and denote by X̃gen the set of generic points of
the irreducible components of X̃. The following holds.
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1. The reduction map π : X → X̃ is surjective.

2. For any x̃ ∈ X̃gen, there exists a unique point x ∈ X with π(x) = x̃.

3. The set π−1(X̃gen) is the Shilov boundary of A (so by the previous
assertion, it is in bijection with X̃gen).

Holomorphically convex envelopes

We recall Berkovich's notion of holomorphically convex envelope following
[3, 2.6].

De�nition 2.2.20. Let Σ be a closed subset in a k-a�noid space X =
M(A). Let ||f ||Σ = max

x∈Σ
|f |x. The set

Hol(Σ) = {x ∈ X | |f |x ≤ ||f ||Σ for all f ∈ A}

is called the holomorphically convex envelope of Σ in X.

If Σ is a singleton {σ} we simply write Hol(σ) instead of Hol({σ}).
We refer to [3, 2.6] for results on this notion.

2.2.3 k-analytic spaces

The category k− an of k-analytic space is de�ned by Berkovich in [3]. An
enlarged category is introduced in [4, �1]. In [4], analytic spaces correspond-
ing to ones de�ned in [3] are called good (see [18, �1.3]).
• A k-analytic space is a particular locally ringed space obtained by gluing

k-a�noid spaces. By [4, �1], these spaces are equipped with a Grothendieck
topology [23]. The category of k-analytic spaces is denoted k− an.
•An analytic space over k is aK-analytic space for some non-Archimedean

�eld K over k. The corresponding category is denoted Ank.

The notion of k-a�noid domains, k-analytic domains, open immersions
and closed immersions are de�ned in [4].

The category of k-a�noid spaces is a full subcategory of the category of
k-analytic spaces.

Proposition 2.2.21. The category of k-analytic spaces admits �bre products
and a �nal object: M(k).

De�nition 2.2.22. A k-analytic group is a group k− an-object (see nota-
tions). A k-a�noid group is a k-analytic group whose underlying k-analytic
space is k-a�noid.

Let us now introduce a certain class of k-analytic space obtained from
schemes over k.
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De�nition/Proposition 2.2.23. [3, �3.4] let X be a scheme of locally �nite
type over k. Let Φ be the functor from the category Ank of analytic spaces
over k to the category of sets which associates to every analytic space X the
set of morphisms of k-ringed spaces Homk(X , X).

The functor Φ is represented by k-analytic space Xan and a morphism
π : Xan → X. Moreover π is surjective and for any non-Archimedean �eld
K/k, there is a bijection Xan(K) ' X(K).

The k-analytic space Xan is called the analyti�cation of X.

Let us describe the analytifaction explicitly.

Proposition 2.2.24. [3, 3.4.2] If X = spec(A), where A is a �nitely gener-
ated ring over k, then the underlying topological space Xan coincides with the
set of all multiplicative seminorms on A whose restriction to k is the norm
on k.

If X is arbitrary, Xan (as a set) can be described as follows. The set⋃
K/k

X(K), where the union is over all non-Archimedean extension of k, is

endowed with the following equivalence relation. If x′ ∈ X(K ′) and x′′ ∈
X(K ′′), then x′ ∼ x′′ if there is a non-Archimedean �eld K and embeddings
K → K ′ and K → K ′′ such that the points x′ and x′′ come from the same
point of X(K). Then Xan coincides with the set of such equivalence classes.

We want to make a remark about k-analytic spaces.

Remark 2.2.25. In the beginning of the section we have written that a gen-
eral k-analytic space is a particular locally ringed space obtained by gluing
k-a�noid spaces. One could try to do a parallel with the de�nition of a gen-
eral scheme by gluing a�ne schemes. This parallel could not be deeper than
the previous semantic comparison: the analytifcation of an a�ne k-scheme
is absolutely not in general a k-a�noid space. However, the analyti�cation
functor enjoys many properties [3, 3.4.3 , 3.4.6].

If K/k is an a�noid extension, and X is a k-analytic space, we denote
by prK/k the canonical morphism X ×k−anM(K) → X coming from the
cartesian square

X ×k−anM(K) //

����

M(K)

����
X //M(k)

whereM(K)→M(k) is the map induced by the morphism of k-a�noid
algebra k → K, and X → M(k) is the canonical morphism of k-analytic
spaces X →M(k) (recall thatM(k) is the �nal object in k− an). The map
prK/k between underlying set is surjective.

If K/k is a �nite Galois extension and X is a k-analytic space, the group
Gal(K/k) acts naturally on the right of X ×M(k)M(K) as follows.
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Let γ ∈ Gal(K/k), γ is a morphism of k-algebras from K to K. It is
a morphism of k-a�noid algebras, so it induces a morphism of k-a�noid
spaces γ : M(K) → M(K). Let IdX denote the identity of X. We get a
canonical automorphism of k-analytic spaces

IdX ×M(k) γ : X ×M(k)M(K)→ X ×M(k)M(K).

This is a right action.

Proposition 2.2.26. [3] Let X be a k-analytic space and let K/k be a �nite
Galois extension, let Gal(K/k) act on X ×k−anM(K). Then prK/k induces
an isomorphism (X ×k−anM(K))/Gal(K/k) ' X.

We deduce easily the following corollary.

Corollary 2.2.27. With the same notations as 2.2.26, let DK be a sub-
set of X ×k−anM(K) then DK is Gal(K/k)-stable if and only if pr−1

K/k ◦
prK/k(DK) = DK .

We now get a very important descent theorem, this is due to Rémy-
Thuillier-Werner.

Theorem 2.2.28. [33, Appendix A] Let X be a k-a�noid space. Let K
be a k-a�noid extension. Let D be a subset of X, then D is a k-a�noid
domain of X if and only if the subset pr−1

K/k(D) is a K-a�noid domain in
X ×k−anM(K).

In this text, we are going to construct k-a�noid groups by descent of
K-a�noid groups, where K/k is a certain �nite extension. The K-a�noid
groups are constructed from K◦-group scheme by the process of taking "the
generic �ber of the formal completion along the special �ber". The following
is precisely what we need, it is extracted from Rémy-Thuillier-Werner's work
[33, 1.2.4] and Thuillier's thesis [38, 2.1.1] (see also [3, 5.3.2]).

De�nition/Proposition 2.2.29. Let A be a �at topologically �nitely pre-
sented k◦-algebra whose spectrum we denote X. Let X = spec(A ⊗k◦ k) be
the generic �bre of X. The map

|.|A : A⊗k◦ k → R≥0, a 7→ inf{|λ| | λ ∈ k× and a ∈ λ(A⊗ 1)}

is a norm on A ⊗k◦ k. The Banach algebra A obtained by completion is
a strictly k-a�noid algebra whose spectrum is denoted by X̂η and is called
the generic �bre of the formal completion of X along its special �bre. This
a�noid space is naturally an a�noid domain in Xan (whose points are mul-
tiplicative seminorms on A⊗k◦ k which are bounded with respect to the semi-
norm |.|A).

Moreover, there is a reduction map τ : X̂η → X×k◦ k̃ de�ned as follows:
a point x in X̂η gives a sequence of ring homomorphisms:
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A→ H(x)◦ → H̃(x)

whose kernel τ(x) de�nes a prime ideal of A⊗k◦ k̃, i.e a point in X×k◦ k̃.
If the scheme X is integrally closed in its generic �bre � in particular

if X is smooth � then τ is the reduction map of Berkovich (see 2.2.2 or [3,
2.4]). And so the Shilov Boundary of X̂η is in bijection with the irreducible
components of the special �bre X×k◦ k̃. Moreover, the spectral norm ρ (see
2.2.12) on A is egal to | |A if and only if the algebra A⊗k◦ k is reduced [38,
Proposition 2.1.1].

Let us state an other result in this area.

Lemma 2.2.30. Let A be a �at k◦-algebra of �nite type such that

1. spec(A) is a smooth k◦-scheme

2. spec(A)×k◦ k̃ is irreducible

Then the Shilov boundary of ̂spec(A)η is egal to the norm | |A (see 2.2.29).

Proof. By 2.2.29, Shi( ̂spec(A)η) is a singleton. By 2.1.2, A⊗k◦ k̃ is reduced,

thus by 2.2.29, | |A is the spectral norm. This implies that Shi( ̂spec(A)η) =
| |A (see [3, page 26], see also [33, proof of 2.4(ii)]).

We now show that being Galois stable is preserved by taking the generic
�ber of the formal completion along the special �bre. We prove it under
somes conditions.

Proposition 2.2.31. Let K/k be a �nite Galois extension. Let X = spec(A)
be an a�ne k-scheme of �nite type and let X = spec(A) be a smooth, �at K◦-
scheme of �nite type such that X×K◦ K = X ×k K and such that X×K◦ K̃
is irreducible with a reduced K̃-algebra. Suppose A is a stable Gal(K/k)-
stable subalgebra of A⊗kK. Then the generic �bre of the formal completion
of X along its special �bre is a Gal(K/k)-stable K-a�noid domain X̂η of
X ×k−anM(K).

Proof. Let | |x ∈ X̂η ⊂ X×k−anM(K), it is a seminorm on A⊗kK bounded
by | |A. Recall that Gal(K/k) acts on the right of X ×k−anM(K). Let
γ ∈ Gal(K/k), we need to show that | |x.γ stay in X̂η. Let f ∈ A⊗kK, then
(| |x.γ)(f) = |γ.f |x. By de�nition of | |x, we have |γ.f |x ≤ |γ.f |A. Since A
is Gal(K/k) stable in A ⊗k K, we have γ.A = A for all γ ∈ Gal(K/k) and
we deduce the following.

95



|γ.f |A = inf
λ∈K×

{|λ| | γ.f ∈ A ⊂ A⊗K◦ K}

= inf
λ∈K×

{|λ| | f ∈ γ−1A ⊂ A⊗K◦ K}

= inf
λ∈K×

{|λ| | f ∈ A ⊂ A⊗K◦ K}

= |f |A

Consequently, we have (| |x.γ)(f) = |γ.f |x ≤ |γ.f |A = |f |A. Thus | |x.γ ≤
| |A, and so (| |x.γ) ∈ X̂η as required.

We will also need the following proposition, to ensure that certain k-
a�noid spaces are k-a�noid groups.

Proposition 2.2.32. Let G be a k-analytic group, let K/k be an a�noid
extension, let HK be a k-a�noid subgroup of G ×k−an M(K), let H =
prK/k(HK), if it is a k-a�noid domain of G then it is a k-a�noid subgroup
of G.

Proof. Let m : G×k−an G→ G be the multiplication map and inv : G→ G
the inversion map comming from the group-structure on G. We have to
show that the restriction maps m : H ×k−an H → G and inv : H → G
factor through H. Consider the following diagram whose four squares are
commutative:

HK ×HK
m //

p

����

� t

i

''

HK

p

����

� p

i

""
GK ×GK m //

p

����

GK

p

����

H ×H� t
i

''

H � q

i

""
G×G m // G

Let x be in H ×H, it is enough to show that there is y in H such that
m ◦ i(x) = i(y). Let z in HK ×HK such that p(z) = x, then

m ◦ i(x) = m ◦ p ◦ i(z) = p ◦m ◦ i(z) = p ◦ i ◦m(z) = i ◦ p ◦m(z)

So y = p ◦m(z) works. The same argument works for inv.
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2.3 Bruhat-Tits buildings and Moy-Prasad �ltra-
tions

Let G be a connected reductive group over a complete non archimedean
�eld k. Bruhat and Tits de�ned a combinatoric structure called the reduced
Bruhat-Tits building BTR(G, k). It is an euclidean building in the sense of
Rousseau [36], in particular it is a topological space with a metric and facets,
walls and vertices are de�ned, moreover we have a notion of special points.
We do not recall these de�nitions here. If k is discretly valued, BTR(G, k) is
a polysimplicial complex. In this situation a facet is a polysimplex. Bruhat
and Tits also de�ned the enlarged Bruhat-Tits building BTE(G, k) of G.
The enlarged building BTE(G, k) is the direct product of BTR(G, k) by a
real a�ne space of dimension depending on the split rank of the center of
G. There is a natural projection BTE(G, k) → BTR(G, k). The group
G(k) of rational points of G acts on BTR(G, k) and BTE(G, k), and the
natural projection is G(k)-equivariant. To certain subsets Ω of BTR(G, k),
Bruhat-Tits associated a canonical smooth group scheme GΩ over k◦, GΩ

has the property that GΩ(k◦) is the stabilizer of the preimage of Ω under the
projection BTE(G, k)→ BTR(G, k). In this paper we only consider the case
where Ω = {x} is a singleton, in this case GΩ is well-de�ned and is denoted
Gx. If G is de�ned over a non archimedean local �eld k, Rousseau [35]
proved that for each extension K/k of non archimedean local �elds there is
a canonical injective map BTR(G, k)→ BTR(G,K) which is continous and
G(k)-equivariant. This induces the same property for enlarged buildings.

De�nition 2.3.1. A point x ∈ BTR(G, k) is called rational if there exists a
�nite extension k′/k such that

1. ik′/k(x) is a special point of BTR(G, k′),

2. G is split over k′.

The set of rational points is denoted BTR
rat(G, k).

Proposition 2.3.2. The set BTR
rat(G, k) is a dense subset of BTR(G, k).

Proof. Remark �rst that if G is split over k, it is obvious that BTR
rat(G, k)

is dense in BTR(G, k), since for any maximal split torus S over k and
any �nite extension K/k, the appartement AR(G,S)/K is obtained from
AR(G,S)/k adding regularly e(K, k) times more walls. Let us now prove
the proposition. It is enough to show that for any maximal split torus S
of G over k, ARrat(G,S) is dense in AR(G,S). Let L be a �nite Galois
extension such that G is split over L. By [9, 4.1.1,4.1.2,5.1.12], there ex-
ists a torus T ⊃ S de�ned over k such that T ×k L is a maximal split
torus of G ×k L. There exists a facet F in AR(G,T )/L which is Gal(L/k)-
stable. The barycentre x of F is Gal(L/k)-stable and so x ∈ A(G,S)/k
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(since (AR(G,T )/L)Gal(L/k) = AR(G,S)/k). By [16, �6.3.4, lines 8-9], the
point x becomes special over a �nite extension K/L. So we have proved
that there exists one rational point x in AR(G,S). Now the set of points
{g.x | g ∈ S(k)} consists in a dense subset of AR(G,S) constitued of rational
points. Indeed, let us �rst show that this set consists in rational points. So let
g ∈ S(k), there exists a �nite extension K/L such that g ∈ S(K). The point
x is special in the building BTR(G,K) (since G is split over L and x is special
in the building BTR(G,L)), so g.x is special in BTR(G,K). By de�nition
T (k) acts on AR(G,T )/L by translation (the translation vector v associated
to t ∈ T (k) is given by the usual formula "< v, α >= −ord(α(t)) ∀α", see [9,
4.2.3(I)]) and for any g ∈ S(k) ⊂ T (k), we have g.x ∈ AR(G,S)/k, so g.x is
a rational point in BTR(G, k). Since ord(k) is dense in R, {g.x | g ∈ S(k)}
is dense in AR(G,S). The propositon follows.

In an appendix at the end of this document, we produce a discussion on
the notion of rational points.

Following [33, 1.1] we refer to [17, Exposés XIX to XXVI] for group
schemes and theirs properties. A Demazure k◦- group scheme is a connected
and split reductive k◦-group scheme (see [3, 1.1.2]).

Proposition 2.3.3. [33, end of page 15] [9, 4.6.22] If G is split over k and
x is a special point, then Gx is a Demazure group scheme and Gx×k◦ k = G.
Moreover Gx is smooth and its special �bre is irreducible (Thus by 2.1.2, it
is �at over k◦ and the k̃-algebra of its special �bre is reduced).

To any point x ∈ BTR(G, k) and any r ∈ R≥0 A. Moy and G. Prasad
attached a compact subgroup G(k)MP

x,r ⊂ G(k), they also introduced a sub-
group g(k)MP

x,r of the Lie algebra g(k). If r′ ≥ r then G(k)MP
x,r′ ⊂ G(k)MP

x,r ,
we thus get �ltrations. We refer to Moy-Prasad original articles [29] [30] for
the original de�nition of Moy-Prasad �ltrations in the general case. We refer
to [41] for a current and contemporary de�nition of these �ltrations, with
suitable normalizations, they are de�ned there only if G split over a tamely
rami�ed extension. See also [43, 0.4] and [42] for important commentaries,
informations and works that one should know about Moy-Prasad �ltrations.

Fact 2.3.4. [41, line 36 page 588] [27, line 15 page 278] Let r > 0 and
x ∈ BTR(G, k) and assume G split over a tamely rami�ed extension, then for
any �nite tamely rami�ed extension E/k, GMP (E)x,r ∩G(k) = GMP (k)x,r.

2.4 De�nitions and �rst properties of analytic �l-
trations

Recall that k is a �nite extension of Qp.
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2.4.1 Notions of potentially Demazure objects

LetG = spec(A) be a connected reductive k-group scheme. LetGan be the k-
analytic group associated to G by analyti�cation. B. Rémy, A. Thuillier and
A. Werner [33] have introduced the notion of potentially k-a�noid Demazure
subgroup of Gan. We also introduce a related notion of rational potentially
k-a�noid Demazure subgroup of Gan.

De�nition 2.4.1. A k-a�noid subgroup H of Gan is called a k-a�noid
Demazure subgroup of Gan if there is a Demazure k◦-group scheme G with
generic �bre G and such that H is the generic �bre of the formal completion
of G along its special �bre, i.e. H = Ĝη. A k-a�noid subgroup H is called
potentially of Demazure type if there is a k-a�noid extension K such that
H ×k−anM(K) is a K-a�noid Demazure subgroup of Gan ×k−anM(K).
A potentially k-a�noid Demazure subgroup of Gan is called a rational po-
tentially k-a�noid Demazure subgroup if the extension K/k can be choosen
�nite.

Proposition 2.4.2. [33] [19] Let H be a potentially k-a�noid Demazure
subgroup of Gan. Then

1. The Shilov Boundary of H is reduced to a point σH .

2. The underlying k-a�noid domain of H is the holomorphically convex
envelope of σH .

De�nition 2.4.1 and Proposition 2.4.2 give birth naturally to the following
notions.

De�nition 2.4.3. Let x be a point in Gan.
• It is a Demazure point if its holomorphically convex envelope in Gan is

a k-a�noid Demazure subgroup of Gan.
• It is a potentially Demazure point if its holomorphically convex envelope

in Gan is a potentially k-a�noid Demazure subgroup of Gan.
• It is a rational potentially Demazure point if its holomorphically convex

envelope in Gan is a rational potentially k-a�noid Demazure subgroup of
Gan.

We denote by Dem(G), D̂em(G), Dem(G) the corresponding subsets of
Gan, of course the following inclusions hold

Dem(G) ⊂ Dem(G) ⊂ D̂em(G) ⊂ Gan.

As we are going to explain in the following, Rémy-Thuillier-Werner [33]
(sometimes following certain ideas of Berkovich [3, Chapter 5]) proved that
the reduced Bruhat-Tits building BTR(G, k) of a conneted reductive group
over a non archimedean local �eld k canonically embeds in D̂em(G). Thuil-
lier gave a non published characterization of BTR(G, k) inside D̂em(G).
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For each x ∈ Dem(G) and each positive real rational number r in Q≥0,
using the notion of congruence subgroup, we are going to introduce a point
θ(x, r) ∈ Gan, whose holomorphically convex envelope is a subanalytic group
of the holomorphically convex envelope of x. For each x ∈ Dem(G), the
map Q≥0 → Gan, x 7→ θ(x, r) is continous. We have BTR(G, k)∩Dem(G) =
BTR

rat(G, k) and we will prove that the otained map (BTR(G, k)∩Dem(G))×
Q≥0 → Gan is continous and injective. By density, we get a continous and
injective map BTR(G, k)×R≥0 → Gan. The image of this map forms a cone
in Gan whose basis is BTR(G, k) and vertex is the neutral element of G.

2.4.2 Filtrations of rational potentially Demazure k-a�noid

groups

Let k denote a �nite extension of Qp and G be a connected reductive k-group
scheme. For each x ∈ Dem(G) and each positive real rational number in
Q≥0, using the notion of congruence subgroup, we are going to introduce a
point θ(x, r) ∈ Gan whose holomorphically convex envelope is a k-a�noid
subgroup of the holomorphicaly convex envelope of x. We start by a partic-
ular case.

The split rational case

Assume G is split and let x be a Demazure point in Gan. Let G be the k◦-
Demazure group scheme such that H := Hol(x) = Ĝη. Let T be a maximal
k◦-split torus of G and Φ be the corresponding set of roots. Let B be a
Borel subgroup such that T is a Levi component of B. Let Φ−,Φ+ be the
corresponding sets of negative and positive roots. For each α ∈ Φ, we have
a canonical k◦-root subgroup Uα ⊂ G. Choose an ordering on Φ−,Φ+, then
the multiplication morphism of k◦-schemes∏

α∈Φ−

Uα ×k◦ T×k◦
∏
α∈Φ+

Uα → G (2.3)

is an open immersion. Its image, which does not depend on the choice of the
ordering, is denoted Ω and is called the grosse cellule of G. Taking generic
�bres, we obtain similar objects for G. The objects

T := T×spec(k◦) spec(k)

Uα := Uα ×spec(k◦) spec(k)

B := B×spec(k◦) spec(k)

are respectively a maximal split torus, a roots subgroup, and a Borel sub-
group of G = G ×spec(k◦) spec(k). We can identify canonically Φ with the
set of roots associated to G,T . Moreover (2.3) induces an open immersion
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∏
α∈Φ−

Uα ×k T ×k
∏
α∈Φ+

Uα → G

whose image, independent of the ordering, is denoted Ω and is called the
grosse cellule of G. We can identify Ω and Ω ×spec(k◦) spec(k). The grosse
cellule Ω is a�ne and the open immersion Ω→ G corresponds to an injective
morphism of Hopf algebras from Hopf(G) to Hopf(Ω) (see [3, line 24 page
103]. We are going to construct k-a�noid subgroups Hr of Hol(x) satisfying
that Shi(Hr) ∈ Gan is a singleton. So Shi(Hr) will appear as a function on
Hopf(G), the Hopf algebra of G. We will show that Shi(Hr) can be seen
as a function on the Hopf algebra of Ω. This leads us to study �rstly Hopf
algebras of various a�ne group schemes.

The torus T is split so it is isomorphic to (Gm/k
◦)s for some integer s.

Fix an isomorphism

T ' spec(k◦[X1, . . . , Xs, Y1, . . . , Ys]/(XiYi = 1 for 1 ≤ i ≤ s)).

Fix an integral Chevalley basis of Lie(G, k◦), it induces, for each root α ∈ Φ,
a k◦-isomorphism Uα ' Gadd, where Gadd is the additive group over k◦.
Thus we have �xed an isomorphism Uα ' spec(k◦[Zα]), i.e. we have �xed
an isomorphism Hopf(Uα) ' k◦[Zα], for any root α.

Recall that ord is a valuation on k such that ord(πk) = 1 for any uni-
formizer πk of k (see notations). Let r ∈ Z≥0, and consider the r-th congru-
ence k◦-group scheme Γr(G) (see 2.1.11). By [43] we have an open immersion∏

α∈Φ−

Γr(Uα)×k◦ Γr(T)×k◦
∏
α∈Φ+

Γr(Uα)→ Γr(G), (2.4)

its image does not depend on the ordering and is Γr(Ω).

De�nition/Proposition 2.4.4. Using the process given in 2.2.29, let Hr be

Γ̂r(G)η, the generic �ber of the formal completion of Γr(G) along its special
�ber. We have

1. Γ̂r(G)η is a k-a�noid subgroup of H

2. Its Shilov Boundary Shi(Hr) is reduced to a point.

Proof. If r = 0, Γ̂r(G)η is just H and the proposition follows from Propo-
sition 2.4.2. If r > 0, by 2.1.16, Γr(G) is a smooth (and thus �at by 2.1.2)
k◦-scheme of �nite type. Moreover its special �bre Γr(G)×k◦ k̃ is irreducible.
So by 2.2.29, Γ̂r(G)η is a k-a�noid group and the Shilov Boundary of Γ̂r(G)η
is in bijection with the irreductible component of the special �ber of Γr(G).

So Shi(Γ̂r(G)η) is a singleton.
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Proposition 2.4.5. Let A, A′ be two k◦-subalgebra of Hopf(G) such that
G = spec(A) and G′ = spec(A′) are two Demazure k◦-group scheme with
generic �bers G (recall that G is split).

If Ĝη = Ĝ′η (equality in Gan), then A = A′.

Proof. By 2.4.4, Ĝη and Ĝ′η are two k-a�noid domain in Gan whose Shilov

boundaries are singletons. By 2.2.30, we thus have Shi(Ĝ′η) = Shi(Ĝη) =
| |A = | |A′ . By de�nition, | |A is a norm on Hopf(G) given by the formula
|f |A = inf

λ∈k×
{|λ| | f ∈ λ(A⊗ 1)}. The valuation of k is discrete, so we have

f ∈ A⇔ 1 ∈ {λ ∈ k× | f ∈ λ(A⊗ 1)} ⇔ inf
λ∈k×

{|λ| | f ∈ λ(A⊗ 1)} ≤ 1⇔ |f |A ≤ 1.

Similarly we have f ∈ A′ ⇔ |f |A′ ≤ 1. So �nally f ∈ A ⇔ f ∈ A′, as
required.

In order to give an explicit description of Shi(Hr), we need to study the
Hopf algebra of Γr(Ω). We start by studying the Hopf algebra of Ω.

Since

Ω =
∏
α∈Φ−

Uα ×k T ×k
∏
α∈Φ+

Uα,

we obtain

Hopf(Ω) =
⊗
α∈Φ−

Hopf(Uα)⊗k Hopf(T )⊗k
⊗
α∈Φ+

Hopf(Uα).

The torus T is egal to T×k◦ k. The previously �xed isomorphism

T ' spec(k◦[X1, . . . , Xs, Y1, . . . , Ys]/(XiYi = 1 for 1 ≤ i ≤ s)).

induces a similar isomorphism over k for T . The set1

{XkY l | k, l ∈ N; k 6= 0⇒ l = 0}

is a basis of the k-vector space k[X,Y ]/XY − 1. We need an other basis of
Hopf(Gm), "centered at unity". The set

{(X − 1)k(Y − 1)l | k, l ∈ N; k 6= 0⇒ l = 0}
1Remark that the condition (k 6= 0 ⇒ l = 0) is equivalent to the condition (k = 0 or

l = 0), it is also equivalent to the condition (l 6= 0⇒ k = 0) and to the condition (¬(k 6= 0
and l 6= 0)). So it is a symmetric condition. The algebra k[X,Y ]/XY − 1 is sometimes
written k[X,X−1] and XZ is a k-basis of the underlying vector space. Similar remarks
about this kind of conditions apply in the following. Remark also that k denote a �eld
and also an integer, it is not a problem.
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is a basis of the k-vector space k[X,Y ]/XY − 1.
The previously �xed isomorphisms {Hopf(Uα) ' k◦[Zα]}α∈Φ induce iso-

morphisms Hopf(Uα) ' k[Zα]. We identify the corresponding objects. The
set {Zαmα | mα ∈ Z≥0} is a basis of the k-vector space Hopf(Uα). These
considerations allow us to �x an isomorphism

Hopf(Ω) '

⊗
α∈Φ−

k[Zα]

⊗k
(

s⊗
i=1

k[Xi, Yi]/XiYi − 1

)
⊗k

⊗
α∈Φ+

k[Zα])


' k[X1, . . . , Xs, Y1, . . . , Ys, {Zα}α∈Φ]/(XiYi − 1, 1 ≤ i ≤ s)

Moreover the set

{
s∏
i=1

(Xi−1)ki(Yi−1)li
∏
α∈Φ

Zα
mα | ki, li,mα ∈ N; ∀1 ≤ i ≤ s, ki 6= 0⇒ li = 0}

is a k-basis of the k-vector space Hopf(Ω). So given f ∈ Hopf(Ω), f can be
written uniquely as

f =
∑

k1,...,ks,l1,...,ls,mαα∈Φ

ak1...ksl1...ls,mαα∈Φ

s∏
i=1

(Xi − 1)ki(Yi − 1)li
∏
α∈Φ

Zmαα .

In order to simplify the notation, we denote a parameter
k1, . . . , ks, l1, . . . , ls,mα, α ∈ Φ with ki, li,mα ∈ N; ki 6= 0 ⇒ li = 0 by the
symbol u, and U the set of all such parameters. Moreover, the element
s∏
i=1

(Xi−1)ki(Yi−1)li
∏
α∈Φ

Zmαα is denoted by the symbol ((X − 1)(Y − 1)Z)u.

With these conventions, an element f ∈ Hopf(Ω) is written uniquely as

f =
∑
u∈U

au ((X − 1)(Y − 1)Z)u.

Since

Γr(Ω) =
∏
α∈Φ−

Γr(Uα)×k◦ Γr(T)×k◦
∏
α∈Φ+

Γr(Uα),

we obtain

Hopf(Γr(Ω)) =
⊗
α∈Φ−

Hopf(Γr(Uα))⊗k◦ Hopf(Γr(T))⊗k◦
⊗
α∈Φ+

Hopf(Γr(Uα))

.

Using 2.1.10 , we have

Hopf(Γr(Uα)) = k◦[π−rk Zα]

and

103



Hopf(Γr(T)) = k◦[π−rk (X1 − 1), . . . , π−rk (Xs − 1), π−rk (Y1 − 1), . . . , π−rk (Ys − 1)] ⊂ Hopf(T ).

Finally, we get the formula

Hopf(Γr(Ω)) = k◦[{π−rk Zα}α∈Φ, {π−rk (Xi − 1), π−rk (Yi − 1)}1≤i≤s] ⊂ Hopf(Ω).

Proposition 2.4.6. With the same notations as in 2.4.4, Shi(Hr) is a norm
on Hopf(G) inside Gan. The point Shi(Hr) belongs to Ωan and corresponds
to a norm on Hopf(Ω). The norm Shi(Hr) factorizes trough the canonical in-
jective morphism of Hopf algebras Hopf(G)→ Hopf(Ω). The corresponding
norm on Hopf(Ω) is explicitely given, using the notations introduced previ-
ously, by the following formula

Hopf(Ω) −→ R≥0∑
u∈U

au ((X − 1)(Y − 1)Z)u 7→ max
u∈U

|au|e−r|u|

where |u| is egal to k1 + . . .+ ks + l1 + . . .+ ls +
∑
α∈Φ

mα.

Proof. By 2.4.4, Shi(Γ̂r(G)) ∈ Γ̂r(G) is the unique point such that the re-
duction map sends to the generic point of Γr(G) ×spec(k◦) spec(k̃). Let x

denote the generic point of Γr(G)×spec(k◦) spec(k̃). The closure x of x is egal

to Γr(G)×spec(k◦) spec(k̃). The special �bre Γr(Ω)×spec(k◦) spec(k̃) is open
in Γr(G) (and non empty), consequently x is contained in Γr(Ω) ×spec(k◦)

spec(k̃). Indeed, assume x 6∈ Γr(Ω) ×spec(k◦) spec(k̃), then x is contained

in the closed subset Γr(G)×spec(k◦) spec(k̃) \ Γr(Ω)×spec(k◦) spec(k̃), and so

x 6= Γr(G) ×spec(k◦) spec(k̃), this is a contradiction. So x is contained in

Γr(Ω)×spec(k◦) spec(k̃). The commutative diagram

Γ̂r(Ω)η

��

πΩ // Γr(Ω)×spec(k◦) spec(k̃) 3 x

��
Γ̂r(G)η

πG // Γr(G)×spec(k◦) spec(k̃)

whose vertical arrows are inclusions shows that

Shi(Γ̂r(G)) = π−1
Ω (x) ∈ Γ̂r(Ω)η.

.
So Shi((Γ̂r(G)) = Shi(Γ̂r(Ω)η).

By 2.2.29 and 2.2.30, Shi(Γ̂r(Ω)η) is the norm | |Hopf(Γr(Ω)) on Hopf(Ω)
given as follows.
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For f ∈ Hopf(Ω), write f =
∑
u∈U

au ((X − 1)(Y − 1)Z)u.

|f |Hopf(Γr(Ω)) = inf{|λ| | λ ∈ k and f ∈ λ(Hopf(Γr(Ω)⊗ 1)}

= inf{|λ| | λ ∈ k and au ∈ λ(π−rk )|u|k◦ ∀u ∈ U}
= inf{|λ| | λ ∈ k and |au| ≤ |λ||π−rk |

|u| ∀u ∈ U}
= inf{|λ| | λ ∈ k and |au||πrk||u| ≤ |λ| ∀u ∈ U}
= max

u∈U
|au||πrk||u|

= max
u∈U
|au|e−r|u|

This ends the proof.

Let's show that Hr is determined by its Shilov boundary point.

Proposition 2.4.7. With the previously introduced notations, the k-a�noid
group Hr is the holomorphically convex envelope of Shi(Hr).

Proof. Put σHr = Shi(Hr). The point σHr is a norm on Hopf(G) that we
also denote | |σHr . Recall that the holomorphically convex envelope of σHr
is

Hol(σHr) = {x ∈ Gan | |f |x ≤ |f |σHr ∀f ∈ Hopf(G) }.

By 2.2.29 and 2.2.30, the k-a�noid algebra Ar of Hr is the completion
of Hopf(G) relatively to the norm | |σHr . Let i denote the natural cor-
responding injective k-algebras morphism Hopf(G) → Ar. The inclusion
Hr =M(AσHr ) ⊂ Gan is given by

ι :M(AσHr )→ Gan

| |x 7→ | |x ◦ i .

SinceM(AσHr ) is the set of all multiplicative bounded seminorm on AσHr ,
ι(M(AσHr )) is contained in the holomorphically convex envelope of σHr .

Reciprocally, let x ∈ Hol(σHr), x = | |x is a multiplicative seminorm
Hopf(G) → R≥0 such that |f |x≤|f |σHr ∀f ∈ Hopf(G). Since Ar is the
completion of Hopf(G), x induces a multiplicative seminorm on Ar bounded
by σHr . This ends the proof.

The general case

Lemma 2.4.8. Let k̄ be an algebraic closure of k. Let r ∈ Q≥0. Let H be
a rational potentially k-a�noid Demazure subgroup of Gan. There exists a
�nite Galois extension K/k in k̄ such that:
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• r ∈ ord(K)
• H ×k−an M(K) is a K−a�noid Demazure subgroup of Gan ×k-an

M(K).

Proof. By de�nition, there exists a �nite extension L/k, such that H ×M(k)

M(L) is a L-a�noid Demazure subgroup of Gan×M(k)M(L). There exists
a �nite extension E/k, such that r ∈ ord(E). Let K be a �nite Galois
extension of k such that L,E ⊂ K, it obviously exists. Then K satis�es the
required properties since being potentially k-a�noid Demazure subgroup is
stable by �nite base change.

De�nition 2.4.9. Let H be a rational potentially k-a�noid Demazure sub-
group of Gan and r ∈ Q≥0. Let K be a �nite extension as in the previous
lemma. Let G be the Demazure K◦-group scheme such that H×k-anM(K) =
Ĝη. We assume that the Hopf K◦-algebra A of G is Gal(K/k)-stable.

Then, pose Hr = prK/k(
̂Γe(K,k)r(G)

η
), the projection of the generic �bre

of the formal completion along the special �bre of the e(K, k)r-th congruence
subgroup of G.

We have the following proposition.

Proposition 2.4.10. We have

1. In de�nition 2.4.9, Hr is independant of the choice of K.

2. H0 = H

3. Hr is a k-a�noid subgroup of Gan, it is a k-a�noid subgroup of H.

Proof. We �rst prove (3), then (1) and then (2). By 2.1.12, 2.1.10 and

2.2.31, ̂Γe(K,k)r(G)η is Gal(K/k)-stable in Gan×M(k)M(K). Consequently,

2.2.27 shows that pr−1
K/k(prK/k(

̂Γe(K,k)r(G)
η
)) = ̂Γe(K,k)r(G)

η
. So by Theo-

rem 2.2.28, prK/k(
̂Γe(K,k)r(G)) is a k-a�noid domain in Gan. By Proposition

2.2.32, prK/k(
̂Γe(K,k)r(G)) is a k-a�noid group. This �nishes (3). Let us now

show that prK/k(
̂Γe(K,k)r(G)) does not depend on the choice of the exten-

sion. So let K and K ′ be two extensions satisfying the conditions of Lemma
2.4.8. Let G /K◦ and G′ /K ′◦ be the integral Demazure group schemes
such that H ×M(k) M(K) = Ĝη and H ×M(k) M(K ′) = Ĝ′η. Let K ′′ be
a �nite Galois extension such that K,K ′ ⊂ K ′′. We have equalities (in
(Gan ×M(k)M(K ′′)))

H ×M(k)M(K ′′) = (H ×M(k)M(K))×M(K)M(K ′′) = Ĝη ×M(K)M(K ′′)

= (H ×M(k)M(K ′))×M(K′)M(K ′′) = Ĝ′η ×M(K′)M(K ′′)
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and

Ĝη ×M(K)M(K ′′) = ( ̂G×K◦ K ′′◦)η
Ĝ′η ×M(K′)M(K ′′) = ( ̂G′ ×K′◦ K ′′◦)η.

We thus get an equality ( ̂G×K◦ K ′′◦)η ' ( ̂G′ ×K′◦ K ′′◦)η. Using 2.4.5,
we deduce an equality G ×K◦ K ′′◦ = G′ ×K′◦ K ′′◦, let G′′ denote this K◦-
Demazure-group scheme.

By Proposition 2.1.15, Γe(K′′,k)r(G×K◦ K ′′◦) = Γe(K,k)r(G)×K◦ K ′′◦. So
̂Γe(K′′,k)r(G′′)η = ̂Γe(K,k)r(G)

η
×M(K)M(K ′′). We deduce that

prK′′/K( ̂Γe(K′′,k)r(G′′)η) = ̂Γe(K,k)r(G)
η
.

However, prK′′/k(
̂Γe(K′′,k)r(G′′)η) = prK/k(prK′′/K( ̂Γe(K′′,k)r(G′′)η)).

So prK′′/k(
̂Γe(K′′,k)r(G′′)η) = prK/k(

̂Γe(K,k)r(G)
η
). By symmetry, we get

prK′′/k(
̂Γe(K′′,k)r(G′′)η) = prK′/k(

̂Γe(K′,k)r(G′)η). So prK/k(
̂Γe(K,k)r(G)

η
) =

prK′/k(
̂Γe(K′,k)r(G′)η), and (1) is proved. Let K/k be a �nite Galois exten-

sion such that H ×M(k)M(K) is a Demazure K◦-a�noid group scheme Ĝη.
Then

H0 = prK/k(Γ̂0(G)η)

= prK/k(Ĝη)

= H

So (2) is proved and the proof ends here.

We now have a fundamental result.

Proposition 2.4.11. Let H be a rational potentially k-a�noid Demazure
group. Let K/k and G be objects such that H ×M(k) M(K) ' Ĝη (see
de�nition 2.4.9). Let AKe(K,k)r be the K

◦-algebra of Γe(K,k)r(G).

1. The Shilov boundary of Hr is reduced to a point σHr .

2. The map

| |AK
e(K,k)r

:Hopf(G×k K)→ R≥0

f 7→ inf
λ∈K×

{|λ| | f ∈ λ(AKe(K,k)r ⊗ 1) ⊂ Hopf(G×k K)}.

is a norm on Hopf(G×k K), moreover
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| |AK
e(K,k)r

|Hopf(G)= Shi(Hr).

3. The k-a�noid algebra of Hr is the completion of Hopf(G) relatively to
the norm | |AK

e(K,k)r
|Hopf(G).

4. Hr is the holomorphically convex envelope of σHr .

5. Shi(Hol(σHr)) = σHr and Hol(Shi(Hr)) = Hr.

Proof. 1. The Shilov boundary of ̂Γe(K,k)r(G)
η
is a singleton by the split

rational case (see 2.4.4). The Shilov boundary of ̂Γe(K,k)r(G)
η
surjects

onto the Shilov boundary of Hr by [3, 1.4.5 proof], and so the Shilov
boundary of Hr is a singleton.

2. By 2.4.6 the map | |AK
e(K,k)r

is a norm on Hopf(G×kK). By 2.2.29 and

2.2.30, | |AK
e(K,k)r

is the Shilov boundary of ̂Γe(K,k)r(G)
η
. The Shilov

boundary of Hr is egal to prK/k(Shi( ̂Γe(K,k)r(G)
η
)) and prK/k is real-

ized by the restriction map of functions from Hopf(G×spec(k) spec(K))
to Hopf(G). This explains both assertions.

3. We have already prove it in the "split rational case". We adapt the
argument given by [33, proof of 2.4 (ii)] to descent this result. Let AHr
be the k-a�noid algebra of Hr. Since AHr is reduced, the norm of AHr
coincides with the spectral norm [3, 2.1.4] of AHr , and so it is egal to

| |σHr since σHr = Shi(Hr). Let Hopf(G)
| |σHr be the completion of

Hopf(G) relatively to the norm | |σHr . The injective morphism of k-
algebras i : Hopf(G)→ AHr (corresponding to Hr ⊂ Gan), extends to
an isometric embedding i : Hopf(G)

| |σHr → AHr . Let AHr×M(k)M(K)

be the K-a�noid algebra of Hr×M(k)M(K). By de�nition Hr×M(k)

M(K) is egal to ̂Γe(k,k)r(G)
η
(G is the K◦-Demazure group scheme

used to de�ne Hr). So, by the rational split case,

AHr×M(k)M(K) = Hopf(G×k K)
| |σHr×M(k)M(K) .

In particular Hopf(G ×k K) is dense in AHr×M(k)M(K) = AHr . In
other words Hopf(G)⊗kK is dense in AHr⊗̂kK. It follows that i⊗̂kK :

Hopf(G)
| |σHr ⊗̂kK → AHr⊗̂kK is an isomorphism of Banach algebras,

hence Hopf(G)
| |σHr = AHr by [3, Lemma A.5].

4. Following the "split rational case " (see 2.4.7), this is a consequence
of the previous assertion. Let us write it. By the previous assertion,
the k-a�noid algebra Ar of Hr is the completion of Hopf(G) relatively
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to the norm | |σHr . Let i denote the natural corresponding inclusion
Hopf(G)→ AHr . The inclusion Hr =M(AσHr ) ⊂ Gan is given by

ι :M(AσHr )→ Gan

| |x 7→ | |x ◦ i .

SinceM(AσHr ) is the set of all multiplicative bounded seminorms on
AσHr , ι(M(AσHr )) is contained in the holomorphically convex enve-
lope of σHr . Reciprocally, let x ∈ Hol(σHr), x is a multiplicative semi-
norm Hopf(G)→ R≥0 such that |f |x≤|f |σHr ∀f ∈ Hopf(G). Since Ar
is the completion of Hopf(G), x induces a multiplicative seminorm on
Ar bounded by σHr . This ends the proof.

5. These are obvious consequences of the previous assertions.

Remark 2.4.12. If r > s ∈ Q≥0, Hr ⊂
6=
Hs.

Proof. This is an easy consequence of the de�nition taking the K-points for
any su�ciently big extension K/k.

Proposition 2.4.13. The map Q≥0 → Gan, r 7→ σHr is continous.

Proof. One can adapt the proof of 2.5.7.

2.4.3 Filtrations of Lie algebra

Let g be the k-Lie algebra of G it is a a k-scheme. In this section we
de�ne k-a�noid groups hr ⊂ gan, for any rational potentially Demazure k-
a�noid subgroup H and any r ∈ Q≥0. So let H be a rational potentially
Demazure k-a�noid subgroup of Gan and r ∈ Q≥0. In 2.4.9, we have de�ned
an analytic group Hr. In order to de�ne Hr, we have choosen a certain
extension K/k (see 2.4.9). Let G the K◦-Demazure group scheme such
that H ×M(k)M(K) = Ĝη. Let Γe(K,k)r(G) be the e(K, k)r-th congruence
subgroup of Γ. Let Lie(Γe(K,k)r(G)) be its K◦-Lie algebra, it is in particular
a K◦-group scheme, it is a smooth (and thus �at by 2.1.2) group scheme
over K◦, its special �bre is irreducible with reduced K̃-algebra. We denote
by prK/k the canonical map gan ×k-anM(K)→ gan.

De�nition 2.4.14. With the previously introduced notations, we put

hr = prK/k

(
̂Lie(Γe(K,k)r(G))

η

)
,

the projection of the generic �bre of the formal completion along its special
�bre of Lie(Γe(K,k)r(G)).
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Proposition 2.4.15. With the previously introduced notations, hr is a k-
a�noid domain of gan, it is a k-a�noid group, moreover

1. The Shilov boundary of hr is reduced to a point σhr and is egal to
| |Hopf(Lie(Γe(K,k)r)) |Hopf(g).

2. Hol(σhr) = hr

3. The k-a�noid algebra of hr is the completion of Hopf(g) relatively to
the norm | |Hopf(Lie(Γe(K,k)r(G))) |Hopf(g).

Proof. The proof is similar to that of Proposition 2.4.11.

2.5 Filtrations associated to points in the Bruhat-
Tits building

2.5.1 De�nitions and properties of Gx,r and θ

Let G be a connected reductive k-group scheme, let x ∈ BTR(G, k) be a
rational point in the reduced Bruhat-Tits building ofG and let r be a positive
rational number.

Proposition 2.5.1. There exists a �nite Galois extension K/k such that

1. iK/k(x) is a special point in BTR(G,K),

2. G is split over K

3. r is in ord(K×)

Proof. Since x is rational, by De�nition 2.3.1 there is a �nite Galois extension
K1/k such that (1) and (2) are sati�ed. It is obvious that there exists a �nite
Galois extension K2/k such that (3) is satis�ed. The proposition follows
taking a �nite Galois extension K/k containing K1 and K2. It is easy to
check that K satis�es the three properties (recall that if G is split over K1

and y is special over K1, then iK/K1
(y) is special over any �nite extension

K of K1).

Let K be an extension of k as in Proposition 2.5.1. Let G = Gx be the
canonical K◦-Demazure group scheme attached to x ∈ BTR(G,K) charac-
terized by the fact that its K◦-points form the stabilizer of a preimage of
iK/k(x) in the enlarged Bruhat-Tits building (see section 2.3). In these con-
ditions, the K◦-Hopf algebra of G is Gal(K/k)-stable in A⊗k K. As usual,
let prK/k denote the projection Gan ×k-anM(K)→ Gan.
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De�nition/Proposition 2.5.2. • Let Gx be prK/k(Ĝη), it is a rational
potentially Demazure k-a�noid subgroup of Gan equal to the k-a�noid group
de�ned and considered in [33, theorem 2.1]. It is characterized by the fact
that for any non archimedean extension k′/k,

Gx(k′) = stab(ik′/k(x̃)) ⊂ G(k′).

where x̃ ∈ BTE(G, k) is a preimage of x under the projection (see section
2.3).
• Let r ∈ Q≥0, using 2.4.9, we obtain a k-a�noid subgroup (Gx)r of Gan,

it is equal to prK/k(
̂Γe(K,k)r(G)

η
). We simply write Gx,r instead of (Gx)r.

Proof. The fact that prK/k(Ĝη) is a rational potentially Demazure k-a�noid
subgroup of Gan equal to the k-a�noid group Gx de�ned and considered in
[33, de�nition 2.1] is explained during the proof of [33, 2.1]. The last part of
the proposition is a direct consequence of 2.4.9.

The previous section 2.4 gives us the following properties of Gx,r.

Proposition 2.5.3. We have:

1. Gx,r is a k-a�noid subgroup of Gan.

2. The Shilov boundary of Gx,r is reduced to a point that we denote
θ(x, r). The point θ(x, r) ∈ Gan is a norm on Hopf(G) egal to
| |Hopf(Γe(K,k)r(G)) |Hopf(G).

3. Gx,r is the holomorphically convex envelope of θ(x, r).

4. If r = 0, Gx,r = Gx where Gx is the k-analytic group de�ned in [33,
2.1].

5. The k-a�noid algebra of Gx,r is the completion of Hopf(G) relatively
to the norm | |Hopf(Γe(K,k)r(G)) |Hopf(G), i.e. by a previous assertion, the
completion of Hopf(G) relatively to θ(x, r).

Proof. These are corollaries of 2.4.10 and 2.4.11 .

Proposition 2.5.4. Let x be a rational point in the reduced Bruhat-Tits
building of G, let r be a positive rational number and let g ∈ G(k), then

1. Gg.x,r = gGx,rg
−1

2. θ(g.x, r) = gθ(x, r)g−1
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Proof. By 2.5.3, the two assertions are equivalent. Let us prove the �rst
assertion. The case r = 0 is proved in [33, 2.5]. For r ≥ 0 rational, choose
an extension K/k as in the de�nition of Gx,r and let G be the K◦-Demazure
group scheme attached to the special point iK/k(x) ∈ BTr(G,K). The
point g.iK/k(x) ∈ BTR(G,K) is special and the K◦-Demazure group scheme
attached to g.iK/k(x) ∈ BTR(G,K) is Gg.x = gGxg

−1. We then deduce the
equality

Gg.x,r = (Gg.x)r

= prK/k

(
̂Γe(k,k)r(Gg.x)η

)
= prK/k

(
̂Γe(k,k)r(gGxg−1)η

)
= prK/k

(
̂(gΓe(k,k)r(Gx)g−1)η

)
= prK/k

(
g ̂Γe(k,k)r(Gx)η g

−1
)

= g prK/k

(
̂Γe(k,k)r (Gx)

η

)
g−1

= gGx,rg
−1.

We now introduce a natural map.

De�nition 2.5.5. Let Q≥0 denote the semi-�eld of positive real rational
numbers. Let BTR

rat(G, k) be the set of rational points of the reduced Bruhat-
Tits building of G. Let

θ : BTR
rat(G, k)×Q≥0 → Gan

be the map sending (x, r) to the Shilov boundary of the previously de�ned
k-a�noid group Gx,r.

Remark 2.5.6. Let k′/k be a �nite extension of k. Let x ∈ BTR
rat(G, k

′), let
r ∈ Q≥0, we de�ne a k′-a�noid group as follows. Let K/k′ be a �nite Galois
extension such that G is split over K, iK/k′(x) is special in BTR

rat(G,K)
and r ∈ ordk(K). Let G be the K◦-Demazure group scheme attached to

iK/k′(x). We put G′x,r = prK/k′(
̂Γe(K,k)r(G)

η
), this is a k′-a�noid subgroup

of (G ×k k′)an. Let θk′ be the corresponding map BTR(G, k′) × Q≥0 →
(G ×k k′)an, sending (x, r) to Shi(G′x,r). If x ∈ BTR

rat(G, k
′) comes from k,

i.e. x = ik′/k(x) for a point x ∈ BTR
rat(G, k), we also denote naturally the k′-

a�noid group G′x,r by Gik′/k(x),r. Remark that we have used in the de�nition

the rami�cation index e(K, k) and not e(K, k′), this re�ects the fact that
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k is a "reference" object in this work, indeed we work with the valuation
ord = ordk. These choices allow us to state the following proposition.

Proposition 2.5.7. 1. The map θ : BTR
rat(G, k) × Q≥0 → Gan is G(k)-

equivariant relatively to the actions:

• g.(x, r) = (g.x, r) for all (x, r) ∈ BTR
rat(G, k)×Q≥0

• g.x = gxg−1 for all x ∈ Gan

2. For any �nite extension k′/k, the diagram

BTR
rat(G, k

′)×Q≥0
θk′ // (G×k k′)an

prk′/k

��
BTR

rat(G, k)×Q≥0

ik′/k×Id
OO

θ // Gan

is commutative, where the map θk′ is de�ned in the previous remark
2.5.6. Moreover, for any rational point x ∈ BTR

rat(G, k) and any r ∈
Q≥0, the equality of k′-a�noid subgroups of Gan ×M(k)M(k′) holds:

Gik′/k(x),r = Gx,r ×M(k)M(k′).

3. For any �nite extension k′/k,

Gik′/k(x),r(k
′) ∩G(k) = Gx,r(k)

4. The map θ : BTR
rat(G, k)×Q≥0 → Gan is continuous and injective.

Proof. 1. We have to show that g.θ(x, r) = θ(g.(x, r)). This is a direct
consequence of 2.5.4, indeed

θ(g.(x, r)) = θ(g.x, r) = gθ(x, r)g−1 = g.θ(x, r)

2. We use the notation of remark 2.5.6. Let K/k be the extension used to

de�ne Gx,r as Gx,r = prK/k(
̂Γe(K,k)r(G)η), we can assume that k′ ⊂ K.

We have G′x,r = prK/k′(
̂Γe(K,k)r(G)η), thus Gx,r = prk′/k(G

′
x,r). By

de�nition θ(x, r) = Shi(Gx,r), by the previous sentence and properties
of Shilov boundaries, this is egal to prk′/k(Shi(G′x,r)). The commu-

tativity of the diagram follows. We have pr−1
K/k(Gx,r) = GiK/k(x),r

by de�nition of Gx,r and since K/k is a Galois extension. We thus
get pr−1

K/k′(pr−1
k′/k(Gx,r)) = GiK/k(x),r. We also have pr−1

K/k′(G
′
x,r) =

GiK/k(x),r by de�nition of G′x,r and since K/k′ is a Galois extension.
We thus obtain

pr−1
K/k′(pr−1

k′/k(Gx,r)) = pr−1
K/k′(G

′
x,r).
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This implies pr−1
k′/k(Gx,r) = G′x,r, since prK/k′ is surjective. Now since

G′x,r is a k
′-a�noid domain of Gan×M(k)M(k′) and Gx,r is a k-a�noid

domain of Gan, we have G′x,r = Gx,r ×M(k)M(k′).

3. This is a direct consequence of the previous assertion and the fact that
Gx,r is a k-a�noid domain of Gan.

4. We follow [33, Proposition 2.6 (ii) and Proposition 2.8 (iii)] for the
continuity. Let k′/k be a �nite extension such that G is split over k′.
Since the maps ik′/k × Id : BTR

rat(G, k) × Q≥0 → BTR
rat(G, k

′) × Q≥0

and prk′/k : (G×k k′)an → Gan are continous, it is enough to show that

BTR
rat(G, k

′) × Q≥0 → (G ×k k′)an is continous. In other words, we
can assume G is split over k. So assume G is split over k and choose
a special point x ∈ BTR

rat(G, k). Let G be the k◦-Demazure group
scheme attached to x. Let T be a maximal split k◦-torus of G and let
B be a k◦-Borel such that T is a Levi subgroup of B. Let Φ,Φ−,Φ+ be
the corresponding set of roots. Choose a Chevalley basis of the k◦-Lie
algebra of G. We are in a similar situation as in 2.4.2, and we use the
same notations as 2.4.2 in the following. We can use x to identify the
appartement A(T, k) with V (T ) = HomAb(X

∗(T ),R). It is enough to
show that the restriction map Arat(T, k)×Q≥0 → (G)an is continous.
We claim that for any rational point y in A(T, k) = V (T ) and any
r ∈ Q≥0, the point θ(y, r) belong to Ωan and corresponds to the norm

Hopf(Ω)→ R≥0∑
u∈U

au((X − 1)(Y − 1)Zα)u 7→ max
u∈U
|au|e−r|u|

∏
α∈Φ

emα<y,α>

where< ., . > is the map V (T )×X∗(T )→ R , (y, α) 7→< y, α >= y(α).
This claim implies the continuity since this formula is continous in2

the variable (y, r) . We now prove the claim following closely [33,
Proposition 2.6 (ii)]. Since y is a rational point, there exists a �nite
extension K/k such that y = t.x with t ∈ T (K). Let UKα be Uα ×k K,
ΩK be Ω ×k K and TK be T ×k K. For any t ∈ T (K), and any root
α ∈ Φ, the element t normalizes the root group UKα and conjuguation
by t induces an automorphism of UKα which is just the homothety of
ratio α(t) ∈ K×. If we read it through the isomorphisms Gadd → UKα ,
we have a commutative diagram

2Be carefull that what is denoted by u in [33] is here denoted by y and u here is a
parameter for a basis of Hopf(Ω) (see 2.4.2)
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spec(Hopf(TK)[{Zα}α∈Φ]) //

τ

��

ΩK

int(t)

��
spec(Hopf(TK)[{Zα}α∈Φ]) // ΩK

where τ is induced by the Hopf(TK)-automorphism τ∗ of Hopf(TK)[{Zα}α∈Φ

mapping Zα to α(t)Zα for any α ∈ Φ. It follows that, over K, θ(t.x, r) =
tθ(x, r)t−1 is the point of (G×kK)an de�ned by the multiplicative norm on

Hopf(ΩK) mapping f =
∑
u∈U

au((X − 1)(Y − 1)Zα)u to

|τ∗(f)|θ(x,r) =
∣∣∣∑
u∈U

(
au
∏
α∈Φ

α(t)mα

)
((X − 1)(Y − 1)Zα)u

∣∣∣
θ(x,r)

= max
u∈U
|au|e−r|u|

∏
α∈Φ

|α(t)|mα

= max
u∈U
|au|e−r|u|

∏
α∈Φ

emα<y,α>

Since G is assumed to be split over k and by properties of Shilov bound-
aries, we get the claim by restriction from K to k. This ends the proof of
the continuity.

Let us explain the injectivity. Let (x1, r1) and (x2, r2) be in BTR
rat(G, k)×

Q≥0 such that θ(x1, r1) = θ(x2, r2). Let us �rst explain, by the absurd, that
necessarily we have r1 = r2. So assume by the absurd that there exists
(x1, r1) and (x2, r2) with r1 6= r2 such that θ(x1, r1) = θ(x2, r2). Assume
r1 > r2 (the other case can be treated in a similar way). Since θ(x1, r1) =
θ(x2, r2), taking holomorphically convexe envelope, we have Gx1,r1 = Gx2,r2

by 2.5.3. Since x1 and x2 are rational points, there exists a �nite extension
K/k such that ∃g ∈ G(K) such that g.iK/k(x1) = iK/k(x2). By 2.5.4, we
thus get

gGiK/k(x1),r1g
−1 = Gg.iK/k(x1),r1 = GiK/k(x2),r1 .

By 2.4.12, we thus obtain

gGiK/k(x2),r2g
−1 = gGiK/k(x1),r1g

−1 ⊂
6=
GiK/k(x2),r2 .

We have thus deduced the existence of a k-a�noid group Gabsurd :=
GiK/k(x2),r2 satisfying

gGabsurdg
−1 ⊂
6=
Gabsurd,
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this is absurd. So we have proved that θ(x1, r1) = θ(x2, r2) ⇒ r1 = r2.
Let us now prove that we also necessarily have x1 = x2. Assume �rst G
is split over k. Let (x1, r) and (x2, r) be in BTR

rat(G, k) × Q≥0. We know,
by properties of Bruhat-Tits buildings, that there exists an appartement
A(T, k) such that x1 and x2 belongs to this appartement. The choice of
a special point in A(T, k) induces, as in the proof of the continuity, an
explicit map Arat(T, k) × Q≥0 → Gan which factorizes through Ωan. Let
(y, r) ∈ Arat(T, k)×Q≥0, the explicit formula for θ(y, r)

Hopf(Ω)→ R≥0∑
u∈U

au((X − 1)(Y − 1)Zα)u 7→ max
u∈U
|au|e−r|u|

∏
α∈Φ

emα<y,α>

claimed and proved before (during the proof of the continuity) shows that
θ(x1, r) = θ(x2, r)⇒ x1 = x2. Indeed, the formula give us

θ(x1, r)(Zα) = e−re<x1,α> for any root α

θ(x2, r)(Zα) = e−re<x2,α> for any root α,

consequently,

θ(x1, r) = θ(x2, r)⇒< x1, α >=< x2, α > for all roots α

⇒ x1 = x2

as required.
In general, if G is not split, we prove injectivity using a �nite Galois

extension k′/k such that G is split over k′ and using the diagram

BTR
rat(G, k

′)×Q≥0
θk′ // (G×k k′)an

prk′/k

��
BTR

rat(G, k)×Q≥0

ik′/k×Id
OO

θ // Gan.

By the split case, the map θk′ is injective. The map ik′/k×Id is injective.
So it is enough to show the restriction of prk′/k : (G×k k′)an → Gan to the
image of θk′ ◦ ik′/k × Id is injective. This is a consequence of the fact that
θk′(ik′/k(x), r) is Gal(k′/k)-stable for any (x, r) ∈ BTR

rat(G, k)×Q≥0.

2.5.2 A cone

We have de�ned a continous and injective map θ : BTR
rat(G, k)×Q≥0 → Gan.

By completion, we get a continous and injective map θ : BTR(G, k)×R≥0 →
Gan. For all x ∈ BTR(G, k), we put θ(x,+∞) = eG, where eG ∈ Gan is the
neutral element.
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De�nition/Proposition 2.5.8. The set {θ(BTR(G, k),R≥0) ∪ eG} ⊂ Gan

is a topological cone in Gan. Its base is the reduced Bruhat-Tits building and
its vertex is the neutral element. If p = θ(x, r) ∈ Gan is in this cone, the
depth of p is by de�nition the number r. The subset θ(BTR

rat(G, k),Q≥0)∪eG
is called the rational cone.

Proof. For any x ∈ BTR
rat(G, k), the point θ(x, r) approaches eG as r ap-

proaches +∞. This makes clear 2.5.8.

2.5.3 Comparison with Moy-Prasad �ltrations in the tame

case

Let G be a connected reductive k-group scheme that split over a tamely
rami�ed extension. Recall that G(k)MP

x,r denote the normalized Moy-Prasad
�ltration (see section 2.3). The well known results

• if G is split and x is special, then Moy-Prasad �ltrations are obtained by
taking set-theoretic congruence subgroups of the integral points of the
attached integral Demazure group Gx;
• Moy-Prasad �ltrations are compatible relatively to �eld extensions in the
tame case;

together with the de�nitions of Gx,r imply the following proposition.

Proposition 2.5.9. Assume we can choose the extension K/k tamely rami-
�ed in order to de�ne Gx,r (see De�nitions 2.5.2 and 2.4.9), then Gx,r(k) =
G(k)MP

x,r .

Proof. Let K/k be a �nite tamely rami�ed extension such that we can write

Gx,r = prK/k

(
̂Γe(K,k)r(G)

η

)
. The following equality hold.

Gx,r(k) = Gx,r(K) ∩G(k)

= ̂Γe(K,k)r(G)
η
(K) ∩G(k)

= Γe(k,k)(K
◦) ∩G(k)

[43, 8.8] = ker(G(K◦)→ G(K◦/π
e(K,k)r
K K◦)) ∩G(k)

[43, 8.8] = ker(G(K◦)→ G(K◦/πrkK
◦) ∩G(k)

[43, 8.8] = G(K)MP
x,r ∩G(k)

[27, line 5 page 6] = G(k)MP
x,r

This ends the proof.
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2.5.4 Filtrations of the Lie algebra

By section 2.4.3 and De�nition 2.5.2, we obtain analytic �ltrations of the Lie
algebra gx,r := (gx)r, for each x ∈ BTR

rat(G, k) and each r ∈ Q≥0. We recall
the formal de�nition in the following de�nition.

De�nition 2.5.10. Let x ∈ BTR
rat(G, k) and r ∈ Q≥0. Let K/k as in 2.5.1,

then gx,r = prK/k

(
̂Lie(Γe(K,k)r(G))

η

)
where G is the K◦-Demazure group

scheme attached to iK/k(x) ∈ BTR
rat(G,K).

If K/k can be choosen tamely rami�ed in order to de�ne gx,r, then
gx,r(k) = g(k)MP

x,r for x ∈ BTR
rat(G, k) and r ∈ Q>0 (the proof of the G

case, using [27] and [43], can be easily adapted).

2.5.5 Moy-Prasad isomorphism

Let x ∈ BTR
rat(G, k) and let r, s ∈ Q≥0 be rational numbers such that

0 <
r

2
≤ s ≤ r.

Question 2.5.11. Do we have an isomorphism

Gx,s(k)/Gx,r(k)
∼ // gx,s(k)/gx,r(k) ?

If such an isomorphism exists we say that the �ltrations {Gx,r(k)} and
{gx,r(k)} introduced in De�nition 2.5.2 and De�nition 2.5.10 satisfy Moy-
Prasad isomorphism.

The question can also be posed for general stable rational potentially
k-a�noid groups. In Appendix A, we present a partial answer.

2.5.6 Examples and pictures

In this section we give some examples and pictures of the previously intro-
duced objects.

The split torus of rank one

Let R be a commutative ring. The R-algebra R[X,Y ]/(XY −1) is naturally
a Hopf R-algebra. Recall that its augmentation map is

R[X,Y ]/XY − 1→ R

X 7→ 1

Y 7→ 1

and its kernel is generated byX−1 and Y−1. Now letA be k[X,Y ]/XY−
1 (k is our �xed p-adic �eld). Let G be spec(A), it is a split torus of rank one
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over k. The morphism of k-algebra k[X]→ k[X,Y ]/XY − 1 induces a mor-
phism of a�ne scheme G→ A1

k. It also induces an inclusion Gan ⊂ (A1
k)
an,

it is injective and Gan = (A1
k)
an \ 0. The reduced Bruhat-Tits building of

G is a singleton {x}. The point x is special and G is split over k. The
grosse cellule of G is G. The k◦-Demazure group scheme attached to x
is G = spec(k◦[X,Y ]/XY − 1). Let make explicit the de�nition of the k-
a�noid group Gx,r for r ≥ 0. If r = 0, Gx,r = Gx,0 = Ĝη and Ĝη =
M(k{X,Y }/XY − 1). Assume now r > 0, we have to choose a �nite Galois
extension K/k such that r ∈ ord(K). Let G be the K◦-Demazure group
scheme attached to iK/k(x). It is egal to spec(K◦[X,Y ]/XY −1). By de�ni-

tion Gx,r is egal to prK/k

(
̂Γre(K,k)(G)

η

)
. The K◦-scheme Γe(k,k)r(G) is the

e(k, k)r− th congruence subgroup of G. By 2.1.10 , Hopf(Γe(k,k)r(G) is egal

toK◦[π−e(K,k)r
K (X−1), π

−e(K,k)r
K (Y −1)] ⊂ K[X,Y ]/XY −1, since the kernel

of the augmentation is generated by X − 1 and Y − 1. The K-a�noid group
̂Γe(K,k)r(G)

η
is the Berkovich spectrum of the K-a�noid algebra obtained

by completion of K[X,Y ]/XY −1 relatively to the norm || ||Hopf(Γe(K,k)r(G)).

Writting f ∈ K[X,Y ]/XY − 1 as
∑

(k1,k2)∈U

ak1k2(X − 1)k1(Y − 1)k2 (U is the

set of parameter for the basis of K[X,Y ]/XY − 1 "centered at unity", see
2.4.2), the norm || ||Hopf(Γe(K,k)r(G)) is explicitely given by the map

K[X, Y ]/XY − 1→ R≥0

f 7→ inf
λ∈K×

{|λ| | f ∈ λ(K
◦
[π
−e(K,k)r
K

(X − 1), π
−e(K,k)r
K

(Y − 1)]) ⊂ K[X, Y ]/XY − 1}

= inf
λ∈K×

{|λ| | ak1k2 (X − 1)
k1 (Y − 1)

k2 ∈ λ(K
◦
[π
−e(K,k)r
K

(X − 1), π
−e(K,k)r
K

(Y − 1)])∀(k1, k2) ∈ U}

= inf
λ∈K×

{|λ| | ak1k2 ∈ λπ
−e(K,k)r(k1+k2)
K

K
◦ ∀(k1, k2) ∈ U}

= inf
λ∈K×

{|λ| | |ak1k2 | ≤ |λπ
−re(K,k)(k1+k2)
K

| ∀(k1, k2) ∈ U}

= inf
λ∈K×

{|λ| | |ak1k2 |e
−r(k1+k2) ≤ |λ| ∀(k1, k2) ∈ U}

= max
(k1,k2)∈U

|ak1k2 |e
−r(k1+k2)

.

Completing K[X,Y ]/XY − 1, we deduce that the K-a�noid algebra of
̂Γre(K,k)(G)

η
is

{
∑

(k1,k2)∈U
ak1k2 (X − 1)

k1 (Y − 1)
k2 | ak1k2 ∈ k and |ak1k2 |(e

−r
)
|u| → 0 as |u|→ ∞} ⊂ K[[X, Y ]]/XY − 1

We denote it as K{er(X − 1), er(Y − 1)}/XY − 1. The Shilov bound-

ary of ̂Γe(K,k)r(G)
η
is || ||Hopf(Γe(K,k)r(G)). The Shilov boundary θ(x, r)

of prK/k(
̂Γe(K,k)r(G)

η
) is || ||Hopf(Γe(K,k)r(G)) restricted to the k-algebra

Hopf(G). The point θ(x, r) ∈ Gan is thus egal to the norm on k[X,Y ]/XY−1

which map
∑

(k1,k2)∈U

ak1k2(X − 1)k1(Y − 1)k2 to max
(k1,k2)∈U

|ak1k2 |e−r(k1+k2). It
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corresponds via the embedding Gan → (A1
k)
an\0 to the norm usually denoted

| |1,e−r inside (A1
k)
an.

We have the picture
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Reduced Bruhat-Tits Buildingθ(x, 0) = | |1,1

θ(x,+∞) = | |1,0

θ(x, 1) = | |1,e−1

θ(x, 2) = | |1,e−2

1 1 + π2 + π3 1 + π2 1 + π + π2 1 + π δ1 + π−1
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giving some points (of course it is not exhaustive) of Gan inside (A1
k)
an. Here

δ is an element in (k◦)× \ 1 + k◦◦. The point θ(x, 0) is mapped to the so-
called Gauss point, and corresponds to the reduced Bruhat-Tits building.
When r ≥ 0 is increasing the point θ(x, r) is getting closer to 1, the neutral
element of Gan. The holomorphically convex envelope Gx,r of θ(x, r) should
be thought as all the points under (attainable by going only down) θ(x, r) and
the k-rational points of Gx,r as certain lower extremities. In this situation
the cone is the red line, it is homeomorphic to the segment [0, 1] ( Note that

[0,+∞]
r 7→e−r' [1, 0] ).

A computation of Gx,0 in the case of a wild torus of norm one
elements in a quadratic extension

In this section k = Q2. The polynomial X2 − 2 does not have any solution
in k. Let πl ∈ k be a root of this polynomial and let l be the �eld k(πl) ⊂ k.
The extension l/k is a widely rami�ed Galois extension. We have [l : k] =
e(f : k) = 2. The element πl is a uniformizer of l. The k-vector space l is
2-dimensional and {1, πl} is a k-basis. So each element in l can be written
as x+ πly with x, y ∈ k. The norm of x+ πly is egal to (x+ πly)(x− πly) =
x2 − 2y2. The set of norm 1 elements is an algebraic group. Let us write
the Hopf algebra of the corresponding a�ne k-group scheme G. The Hopf
k-algebra of G is k[X,Y ]/X2 − 2Y 2 − 1, moreover the comultiplication ∆,
the antipode τ and the augmentation ε are

∆ : k[X,Y ]/X2 − 2Y 2 − 1→ k[X,Y ]/X2 − 2Y 2 − 1⊗ k[X,Y ]/X2 − 2Y 2 − 1

X 7→ X ⊗X + 2Y ⊗ Y
Y 7→ X ⊗ Y + Y ⊗X

τ : k[X,Y ]/X2 + 2Y 2 − 1→ k[X,Y ]/X2 + 2Y 2 − 1

X 7→ X

Y 7→ −Y

ε : k[X,Y ]/X2 + 2Y 2 − 1→ k

X 7→ 1

Y 7→ 0 .

The k-group G is a torus, indeed the equation

k[X,Y ]/X2 − 2Y 2 − 1⊗k l ' l[X,Y ]/X2 − 2Y 2 − 1

' l[X,Y ]/(X + πlY )(X − πlY )− 1

' l[U, V ]/UV − 1
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shows that G×spec(k) spec(l) ' Gm/l. The reduced Bruhat-Tits building
BTR(G, k) is a singleton {x}. The point x is a (rational) special point of
BTR(G, k) and iK/k(x) ∈ BTR(G,K) is special for any �nite extension K/k.
The group G is not split over k, it is split over l. Let us make explicit the
group Gx,0. We need to �nd an extension K/k such that G is split over K,
iK/k(x) is special, and r = 0 ∈ ord(K). The �eld K = l works. By de�nition

the k-analytic group Gx,0 is egal to prl/k(Ĝη), where G is the l◦-Demazure
group scheme attached to il/k(x). By the previous example 2.5.6, in the
coordinate U, V , G = spec(l◦[U, V ]/UV − 1). Thus in the coordinate X,Y ,
Hopf(G) is egal to the l◦-subalgebra of l[X,Y ]/X2 − 2Y 2 − 1 generated by
l◦, X+πlY,X−πlY . By 2.5.3, the k-a�noid algebra of Gx,0 is the completion
of Hopf(G) = k[X,Y ]/X2−2Y 2−1 relatively to the norm | |Hopf(G) |Hopf(G)

(recall that | |Hopf(G) is a norm on Hopf(G×k l) ). So let us make as explicit
as possible the norm | |Hopf(G) |Hopf(G). By de�nition, we have

| |Hopf(G) : Hopf(G×k l)→ R≥0

f 7→ inf
λ∈l×
{|λ| | f ∈ λ(Hopf(G)⊗ 1) ⊂ Hopf(G×k l)}.

We deduce that

| |Hopf(G) :l[X,Y ]/X2 − 2Y 2 − 1→ R≥0

f 7→ inf
λ∈l×
{|λ| | f ∈ λ(< l◦, X − πlY,X + πlY >) ⊂ Hopf(G×k l)}.

And so, by restriction

| |Hopf(G) |Hopf(G) : k[X,Y ]/X2 − 2Y 2 − 1→ R≥0

f 7→ inf
λ∈l×
{|λ| | f ∈ λ(< l◦, X − πlY,X + πlY >) ⊂ Hopf(G×k l)}.

We have to complete k[X,Y ]/X2 − 2Y 2 − 1 relatively to this norm, in
order to simplify notation let us put || || = | |Hopf(G) |Hopf(G).

Let us compute the value ||X||. By de�nition it is egal to

inf
λ∈l×
{|λ| | X ∈ λ(< l◦, X − πlY,X + πlY >) ⊂ Hopf(G×k l)}.

Since

X 6∈ (< l◦, X − πlY,X + πlY >) ⊂ Hopf(G×k l)
πlX 6∈ (< l◦, X − πlY,X + πlY >) ⊂ Hopf(G×k l)

2X = π2
lX ∈ (< l◦, X − πlY,X + πlY >) ⊂ Hopf(G×k l),

we deduce that ||X|| = |2−1| = e (2 is a uniformizer of k). Let us now
compute the value ||Y ||. By de�nition it is egal to
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inf
λ∈l×
{|λ| | Y ∈ λ(< l◦, X − πlY,X + πlY >) ⊂ Hopf(G×k l)}.

Since

Y 6∈ (< l◦, X − πlY,X + πlY >) ⊂ Hopf(G×k l)
πlY 6∈ (< l◦, X − πlY,X + πlY >) ⊂ Hopf(G×k l)

2X = π2
l Y 6∈ (< l◦, X − πlY,X + πlY >) ⊂ Hopf(G×k l)

2πlX = π3
l Y ∈ (< l◦, X − πlY,X + πlY >) ⊂ Hopf(G×k l),

we deduce that ||Y || = |π−3
l | = e

3
2 .

By completion, the k-Banach algebra of Gx,0 is egal to

k{e−1X, (e
3
2 )−1Y }/X2 − 2Y 2 − 1 , || ||

where k{e−1X, (e
3
2 )−1Y } is the k-algebra

{
∑
k1,k2

ak1k2X
k1Y k2 | |ak1k2 |e

k1(e
3
2 )k2 → 0 as k1 + k2 →∞} ⊂ k[[X,Y ]].

Let us check directly that the k-a�noid algebra ofGx,0 is k{e−1X, (e
3
2 )−1Y }/X2−

2Y 2 − 1 , || ||.
We need to check that (k{e−1X, (e

3
2 )−1Y }/X2 − 2Y 2 − 1)⊗̂kl is isomor-

phic to the l-a�noid algebra of Ĝη. In the coordinates U, V , the l-a�noid

algebra of Ĝη is l{U, V }/UV − 1. The l-algebra (k{e−1X, (e
3
2 )−1Y }/X2 −

2Y 2 − 1)⊗̂kl is isomorphic to l{e−1X, (e
3
2 )−1Y }/X2 − 2Y 2 − 1).

The isomorphism previously considered l[X,Y ]/X2−2Y 2−1 ' l[U, V ]/UV−
1 induces maps

l{e−1X, (e
3
2 )−1Y }/X2 − 2Y 2 − 1↔ l{U, V }/UV − 1

X + πlY ←[ U

X − πlY ←[ V

X 7→ U + V

2

Y 7→ U − V
2πl

.

These maps are mutual inverse k-Banach algebras isometries.
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APPENDIX A: About
Moy-Prasad isomorphism (part
of a work in progress)

In this Appendix we discuss Question 2.5.11. We work in order to answer if
there exists an isomorphism

Hs(k)/Hr(k) ' hs(k)/hr(k).

for some rational numbers 0 < r
2 ≤ s ≤ r and any Galois stable k-a�noid

rational potentially Demazure subgroup H of Gan.

Recall that the �ltration Hr is de�ned as the projection of ̂Γe(K,k)r(G)η

where G andK are as in 2.4.9 and 2.4.10 (Hr = prK/k(
̂Γe(K,k)r(G)

η
). The �l-

tration on Lie algebra is obtained by a similar process taking theK◦-Lie alge-
bra of G (see section 2.4.3). TheK-rational points ofHr are Γe(K,k)r(G)(K◦)
and the k-rational points of Hr are Γe(K,k)r(G)(K◦) ∩ G(k) (see in the be-
ginning of the second part of the proof of 2.5.25 below for more details).
Similarly the K-rational points of hr are Lie(Γe(K,k)r(G))(K◦) and the k-
rational points of hr are Lie(Γe(K,k)r(G))(K◦) ∩ g(k).

In this appendix, the idea is to use the identity written in [43, �2.8, proof
of Lemma]. In [43], Yu writes (we translate here with our notations) in �2.8,
in the second line of the proof of Lemma, that given a K◦-smooth a�ne
scheme G and integers 0 < a ≤ b ≤ 2a, there is a functorial isomorphism

Γb(G)(K◦)/Γa(G)(K◦) ' Lie(Γb(G))(K◦)/Lie(Γa(G))(K◦).

There is no proof of this fact in [43], and we did not �nd a proof in the
litterature. In this appendix we construct explicitely an injective morphism
of groups for integers r, s such that 0 < r

2 ≤ s ≤ r

Ψ : Γs(G)(K◦)/Γr(G)(K◦ ' Lie(Γs(G))(K◦)/Lie(Γr(G))(K◦) ,

and we conjecture that it is surjective (we work under certains hypothesis as
explained after).
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In the litterature such isomorphism (see for example [1, �1.5] , [41, Lemma
1.3]) is constructed in the situation of reductive group and it is constructed
using a maximal torus, roots groups and splitting the reductive group. Here
we do not use a torus, the approach is algebraic. We use the explicit descrip-
tion of Hopf algebras of congruence groups of G. For any k◦-group scheme
G, we use that Lie(G) is explicitely given by Homk◦−mod(I/I2, k◦) where I
is the augmentation ideal of Hopf(G).

About proof of [43, Proof of Lemma 2.8]

Let k be a non arch. local �eld, and let π , k◦, the usual associated notations.

Lemma 2.5.12. Let G = spec(A) be an a�ne smooth (thus �at) k◦-group
scheme. Let A be the k◦-Hopf algebra of G. Let ε : A → k◦ be the counit.
Let I := ker(ε) be the augmentation ideal. Let I2 be the ideal II, it is a
submodule of I. Then

1. I/I2 is a free k◦-module.

2. There exists a section s of the projection I
p→ I/I2. It is a morphism

of k◦-modules

s : I/I2 → I

such that p ◦ s = Id .

Proof. 1. By [15, remark6.7] I/I2 is projective, thus by [26], it is free.

2. It is a direct consequence of the previous assertion. Indeed, choose
a basis g1, . . . , gn of I/I2; and choose also g̃1, . . . , g̃n, preimages of
g1, . . . , gn under p. Theses choices induce a section s of p, sending gi
to g̃i.

Lemma 2.5.13. Let G = spec(A) be a �at a�ne k◦-scheme satisfying the
hypothesis of [32, Lemma 5.1]. Then

1. A contains no non-zero k◦-divisble element.

2. The ideal of augmentation I and its square power I2 contain no non-
zero k◦-divisible element.

3. A, I and I2 are free k◦-modules.
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Proof. The �rst assertion is the conclusion of [32, Lemma 5.1]. The second
assertion is implied by the �rst one since I and I2 are contained in A. The
third assertion is a consequence of the assertion "Let V be a vector space of
at most countable dimension over K and L an k◦-submodule of V such that
L contains no non-zero k◦-divisible elements. Then L is a free k◦-module."
written and proved in [32, proof of Lemma 5.2]

Remark 2.5.14. If G is a k◦-Demazure group scheme, G satis�es hypothe-
sis of [32, Lemma 5.1]

Lemma 2.5.15. Let R be a ring and let A be a R-Hopf algebra. Let I be the
augmentation ideal of A. Let ∆ : A → A ⊗ A be the comultiplication map.
Then

∀g ∈ I ∆(g) = g ⊗ 1 + 1⊗ g mod I ⊗ I .

Proof. It is a well-know fact which is a direct consequence of the axioms
"(Id⊗ ε)∆ = Id " and " (ε⊗ Id)∆ = Id " of Hopf algebras, writing ∆(g) as
a sum of tensors and using that ε(g) = 0.

Let us �x from now on a smooth k◦-scheme G = spec(A) satisfying the
hypothesis of Lemmas 2.5.12 and 2.5.13. Let ε be its counit and I the
augmentation ideal of A. Let n ≥ 0 be an integer. We recall that the
n-th congruence subgroup of G is an a�ne k◦-scheme with Hopf algebra
An := A[π−nI] = A +

∑
k≥1

π−knIk ⊂ A⊗k◦ k (see Proposition 2.1.10).

Lemma 2.5.16. Let In be the augmentation ideal of An. Then

1. The ideal In is egal to (π−nI), the ideal of the ring An generated by the
k◦-module π−nI ⊂ An.

2. The ideal In is egal to
∑
k≥1

π−nkIk ⊂ A⊗k◦ k.

Proof. 1. The counit εAn is the restriction to An of the counit of A⊗k◦ k,
and the counit of A⊗k◦ k is ε⊗ Id. Let x ∈ An. Since An = A[π−nI],
we can write x as a �nite sum

x = a+
∑

ν=ν1...νj ...νkν
kν≥1

aνπ
−niν1 . . . π

−niνkν a ∈ A, iνj ∈ I

Assume x ∈ In. So εAn(x) = 0, thus

0 = ε(a) +
∑

ν=ν1...νj ...νkν
kν≥1

ε(aν)π−nε(iν1) . . . π−nε(iνkν ) a ∈ A, iνj ∈ I.
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This implies ε(a) = 0. So a ∈ I. Thus a ∈ π−nI and so x ∈ (π−nI).

So we have proved that In ⊂ (π−nI). It is obvious that the reverse
inclusion holds, indeed if x ∈ (π−nI), then

x =
∑
ν

aνπ
−niν a ∈ An, iν ∈ I

and applying εAn gives zero. This �nishes the �rst assertion.

2. Let us prove the formula (π−nI) =
∑
k≥1

π−knIk. The k◦-module
∑
k≥1

π−knIk

is stable by multiplication by element of An, so it is an ideal. Moreover
π−nI is contained in this ideal, so (π−nI) ⊂

∑
k≥1

π−knIk.

Let us now show that
∑
k≥1

π−knIk ⊂ (π−nI). It is enough to show that

for any k ≥ 1, we have π−knIk ⊂ (π−nI). So let x ∈ π−knIk. We have

x = π−kn
∑

ν=ν1...νj ...νk

aνiν1 . . . iνk aν ∈ A iνj ∈ I

=
∑

ν=ν1...νj ...νk

aνπ
−niν1 . . . π

−niνk aν ∈ A iνj ∈ I

So x ∈ (π−nI), and this ends the proof.

Lemma 2.5.17. Let p ≥ 0, then πpI ∩ I2 = πpI2.

Proof. Recall that A, I, I2 and I/I2 are free k◦-modules by 2.5.13 and
2.5.12. We will use in this proof that I/I2 and I2 are free. Choose a k◦-basis
{ek}k∈T of I2. Choose preimages {ek}k∈S under the projection I

p→ I/I2

of a k◦-basis {ek}k∈S of I/I2 (S ∩ T = ∅). Let us prove that {ek}k∈S∪T
is a k◦-basis of I. Let us prove that this is generator. Let x ∈ I. Write
the image [x] of x under p as

∑
k∈S

λkek. Then x −
∑
k∈S

λkek is contained in

I2. So x −
∑
k∈S

λkek =
∑
k∈T

λkek. This shows that {ek}k∈S∪T is generator.

Let us show that this is a free family. So assume
∑

k∈S∪T
λkek = 0. Then∑

k∈S λkek = 0. So λk = 0 for all k ∈ S. So
∑
k∈T

λkek = 0. Thus λk = 0 for

all k ∈ T . So the family if free. Consequently the family is a basis.
Now let x ∈ πpI ∩ I2. Write x =

∑
k∈S∪T

λkek. Since x ∈ I2 we have

λk = 0 for all k ∈ S. Since x ∈ πpI we have λk ∈ πpk◦ for all k ∈ S ∪ T .

128



So we conclude that x =
∑
k∈T

λkek with λk ∈ πpk◦ for all k ∈ T . This implies

that x ∈ πpI2. So πpI ∩ I2 ⊂ πpI2.
The reverse inclusion πpI ∩ I2 ⊃ πpI2 is obvious since πpI2 ⊂ I2 and

πpI2 ⊂ πpI. The lemma is proved.

Lemma 2.5.18. Let n ≥ 0. Then In2 =
∑
k≥2

π−knIk.

Proof. Let us show �rst that In2 ⊃
∑
k≥2

π−knIk. It is enough to show that

for any k ≥ 2, π−knIk ⊂ I2
n. So let x ∈ π−knIk. We write

x = π−kn
∑

ν=ν1...νj ...νk

aνiν1 . . . iνk aν ∈ A iνj ∈ I.

So
x =

∑
ν=ν1...νk

aνπ
−niν1 . . . π

−niνk aν ∈ A iνj ∈ I.

So x ∈ (π−nI)k. Thus x ∈ Ink. Consequently x ∈ In2 since k ≥ 2.

Let us now show that In2 ⊂
∑
k≥2

π−knIk. Let x ∈ In2, it can be written

as
x =

∑
β=β1,β2

aβiβ1iβ2 aβ ∈ An iβ1 ∈ In iβ2 ∈ In.

So it is enough to show that for each β, we have aβiβ1iβ2 ∈
∑
k≥2

π−knIk. Since

An = A +
∑
k≥1

π−knIk, the element aβ ∈ An can be written as

aβ = a+
∑
k≥1

π−kniβk a ∈ A iβk ∈ Ik.

Similarly by 2.5.16, for j = 1, 2 we can write

iβj =
∑
k≥1

π−kniβjk iβjk ∈ I
k.

Now by distributivity the element aβiβ1iβ2 is a sum of terms of the form
a π−kniβ1k π

−k′niβ2k′ k, k
′ ≥ 1 or of the form π−k

′′niβk′′ π
−kniβ1k π

−k′niβ2k′ k
′′, k, k′ ≥

1. Thus each term is included in
∑
k≥2

π−knIk. So aβiβ1iβ2 is included in∑
k≥2

π−knIk. Consequently x is included in
∑
k≥2

π−knIk as required.
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Lemma 2.5.19. Let a ≥ b ≥ 0. Then Ib ∩ Ia2 = Ib
2.

Proof. Recall that by 2.5.16 and 2.5.18 we have

Ib = π−bI + π−2bI2 + π−3bI3 + π−4bI4 + . . .

and that
Ia

2 = π−2aI2 + π−3aI3 + π−4aI4 + . . . .

Put M = π−bI and N = π−2bI2 + π−3bI3 + π−4bI4 + . . . so that Ib =
M +N ; put also P = Ia

2. Thus we want to prove that (M +N) ∩ P = N ,
since by 2.5.18 we have N = Ib

2. We have N ⊂ P . So the inclusion
N ⊂ (M +N) ∩ P is obvious.

Let us prove the reverse inclusion. We have

(M +N) ∩ P = (M ∩ P ) +N.

Indeed (M ∩P ) ⊂ (M+N)∩P and N ⊂ (M+N)∩P and so (M ∩P )+N ⊂
(M+N)∩P . Reciprocally let x ∈ (M+N)∩P thus x = m+n with m ∈M
and n ∈ N . The element m + n and n are contained in P , so m is in p so
x = m+ n is in (M ∩ P ) +N .

We are thus reduced to prove that (M ∩ P ) ⊂ N . Let x ∈ M ∩ P.
We have P = π−2aI2 + π−3aI3 + π−4aI4 + . . .. There is an integer D ≥ 2

such that x ∈
D∑
k=2

π−2kaIk. So π2Dax ∈
D∑
k=2

π2a(D−k)Ik. For all 2 ≤ k ≤ D,

π2a(D−k)Ik ⊂ I2. So π2Dax ∈ I2. But by hypothesis, x ∈ M = π−bI.
So π2Da ∈ π2Da−bI. Thus π2Dax ∈ π2Da−bI ∩ I2. So by 2.5.17 π2Dax ∈
π2Da−bI2. So x ∈ π−bI2. So x ∈ N and this ends the proof.

Maps Φ , Θ
Let 0 < s ≤ r. We have Is ⊂ Ir, the kernel of the composed morphism

Is ⊂ Ir → Ir/Ir
2

is Is ∩ Ir2 = I2
s by 2.5.19. So we get an injective morphism of k◦-modules

Is/Is
2 ιs,r→ Ir/Ir

2, we sometimes write Is/Is2 ⊂ Ir/Ir2. It induces a morphism
of k◦-modules

Φ : Homk◦−mod(Ir/Ir
2, k◦)→ Homk◦−mod(Is/Is

2, k◦)

g 7→ g ◦ ιs,r .

We have an inclusion morphism of k◦-algebras As ⊂ Ar, it induces a map

Θ : Homk◦−alg(Ar, k
◦)→ Homk◦−alg(As, k

◦)

g 7→ g |As .
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Lemma 2.5.20. Let r ≥ s, then

1. Let x ∈ Ar, then there exists a positive integer N such that πNx ∈ As.

2. Let x ∈ Ir, then there exists a positive integer N such that πNx ∈ Is

3. Let x ∈ Ir/Ir2, then πr−sx ∈ Is/Is2.

Proof. The �rst two assertions are direct consequences of the fact that for
any positive integer n, we have

An = A +
∑
k≥1

π−knIk ⊂ A⊗k◦ k

and
In =

∑
k≥1

π−nkIk ⊂ A⊗k◦ k.

Let us prove the third assertion. Let x ∈ Ir/Ir2. Consider the commu-
tative diagram

Is
⊂ //

ps
��

Ir

pr
��

Is/Is
2 ⊂ // Ir/Ir

2 .

We have Ir = π−rI + Ir
2 by 2.5.18. So we can choose a preimage x̃ of

x under pr in π−rI. Then πr−sx̃ ∈ π−sI ⊂ Is. The projection ps(πr−sx̃) ∈
Is/Is

2 is egal to πr−sx. So πr−sx ∈ Is/Is2.

Lemma 2.5.21. 1. An element f ∈ Homk◦−mod(Is/Is
2, k◦) is in the im-

age of Φ if and only if for all i ∈ I, the image of i under the composed
morphism

I ⊂ Is
ps→ Is/Is

2 f→ k◦

is inside πrk◦.

2. An element f ∈ Homk◦−alg(As, k
◦) is in the image of Θ if and only if

for all i ∈ I, the image of i under the the composed morphism

I ⊂ As
f→ k◦

is inside πrk◦.

3. The morphism Φ is injective.

4. The morphism Θ is injective.
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Proof. 1. Let f ∈ Homk◦−mod(Is/Is
2, k◦). Assume it is in the image of

Φ. So there is g ∈ Homk◦−mod(Ir/Ir
2, k◦) such that f is the composed

morphism
Is/Is

2 ιs,r→ Ir/Ir
2 g→ k◦.

Let i ∈ I, and let pr be the morphism Ir
pr→ Ir/Ir

2. We have

f ◦ ps(i) = g ◦ pr(i)
= g(pr(i))

= g(pr(π
rπ−ri))

= πrg(pr(π
−ri)) ∈ πrk◦,

as required. Reciprocally, assume for all i ∈ I we have f ◦ ps(i) ∈
πrk◦. The restriction of ps to π−sI, π−sI → Is/Is

2, is surjective; since
Is = π−sI + Is

2 by 2.5.18. So we deduce that for any x ∈ Is/Is
2

we have f(x) ∈ πr−sk◦ (indeed let x ∈ Is/Is2, then x = ps(π
−si) so

πsf(x) = πs(f(ps(i))) = f(ps(i) ∈ πrk◦). Now for any x ∈ Ir/Ir
2,

πr−sx ∈ Is/Is2 by 2.5.20 and we put g(x) := π−(r−s)f(πr−sx). This
de�nes a morphism of k◦-module g : Ir/Ir

2 → k◦, such that Φ(g) = f .

2. Let f ∈ Homk◦−alg(As, k
◦). Assume it is in the image of Θ. So there

is g ∈ Homk◦−alg(Ar, k
◦) such that f = g |As . Then for any i ∈ I,

f(i) = f(πrπ−ri) = πrf(π−ri) ∈ πrk◦. Reciprocally, assume that
for all i ∈ I, f(i) ∈ πrk◦. We are going to construct a morphism
g : Ar → k◦ whose restriction to As is f . We have that Ar ⊂ As ⊗k◦ k
and f induces a morphism of k-algebras As⊗k◦ k

f⊗Id→ k. By restriction
we obtain a morphism of ring g : Ar → k.

Recall that Ar = A[π−rI], and write and x ∈ Ar as a �nite sum

x =
∑

ν=ν1...νkν

aνπ
−riν1 . . . π

−riνkν aν ∈ A iνj ∈ I.

The map g sends Ar 3
∑

ν=ν1...νkν

aνπ
−riν1 . . . π

−riνkν to

∑
ν=ν1...νkν

f(aν)π−rf(iν1) . . . π−rf(iνkν ) it is in k◦. So g is a morphism

of k◦-algebras. We have g |As= f . This ends the proof of the assertion.

3. The map is injective, indeed let g ∈ Homk◦−mod(Ir/Ir
2, k◦), assume

Φ(g) = 0. Let x ∈ Ir/Ir2, then πr−sx ∈ Is/Is2 and so 0 = g(πr−sx) =
πr−sg(x) so g(x) = 0, so g = 0. Thus ker(Φ) = 0.

4. Let g ∈ Homk◦−alg(Ar, k
◦), assume Θ(g) = 0. Let x ∈ Ar, by 2.5.20,

there is an N such that πNx ∈ As. We have 0 = g(πNx) = πNg(x), so
g(x) = 0. Thus g = 0. Consequently ker(Θ) = 0.
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Lemma 2.5.22. Let n ∈ N. Recall that we have a canonical injective mor-
phism of k◦-modules I/I2 ⊂ In/In

2. Let s : I/I2 → I be a section of
p : I → I/I2.

Then s induces a section In/In
2 sn→ In of the projection In

pn→ In/In
2.

This induces an explicit bijection

Z : sectionp(I/I
2, I) '

s7→sn
sectionpn(In/In

2, In)

such that sn |I/I2= s (here sectionp(I/I2, I) means all the section of
p : I → I/I2, and similarly for pn).

Proof. By 2.5.18, In = π−nI + In
2. So the natural composed morphism

π−nI → In → In/In
2

is surjective. The kernel is π−nI ∩ In2 = π−nIn
2 by 2.5.19. So there is a

canonical isomorphism

π−nI/π−nI2 ' In/In2.

So for any x ∈ In/In2, πnx ∈ I/I2 by 2.5.20. Now let s ∈ sectionp(I/I2, I).

Let us de�ne a map In/In2 sn→ In by

sn(x) = π−n(s(πnx)) ∀x ∈ In/In2.

The map sn is a morphism of k◦-modules. Moreover we have, for any x ∈
In/In

2

πnpn(sn(x)) = πnpn(π−ns(πnx)) = pn(s(πnx)) = p(s(πnx)) = πnx

So pn(sn(x)) = x. Thus sn is a section of pn. So we have introduced
a map Z : s 7→ sn. Let s a section I/I2 → I and let x ∈ I/I2 then
sn(x) = π−ns(πnx) = s(x), so s |I/I2= s. This immediately implies that
the previously introduced map Z is injective. The map Z is surjective,
indeed for any section sn : In/In

2 → In, we have sn = Z(sn |I/I2) ( indeed
let x ∈ In/In2, we have the identity s(x) = π−nπnsn(x) = π−nsn(πnx) =
π−nsn |I/I2 (πnx) = Z(sn |I/I2)(x) ).

Let us now state the theorem

Theorem 2.5.23. Let r, s be integers such that 0 < r
2 ≤ s ≤ r. There is an

explicit injective morphism of groups

Γs(G)(k◦)/Γr(G)(k◦) ' Lie(Γs(G))(k◦)/Lie(Γr(G))(k◦).
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Proof. Recall that Γn(G)(k◦) = Homk◦−alg(An, k
◦) and Lie(Γs(G))(k◦) =

Homk◦−mod(In/In
2, k◦) for n ≥ 0.

Let s : Is/Is
2 → Is be a section of ps : Is → Is/Is

2. Let

Ψs : Homk◦−alg(As, k
◦)→ Homk◦−mod(Is/Is

2, k◦)

x 7→ x |Is ◦ s .

Let us prove that the composed map Ψ

Homk◦−alg(As, k
◦)

Ψs→ Homk◦−mod(Is/Is
2, k◦)→ Homk◦−mod(Is/Is

2, k◦)/Homk◦−mod(Ir/Ir
2, k◦)

does not depend on s. So let s′ be another section Is/Is2 s′→ Is. We need to
show that

x |Is ◦ s− x |Is ◦ s′ ∈ Homk◦−mod(Ir/Ir
2, k◦),

thus by 2.5.21 we need to show that

(x |Is ◦ s− x |Is ◦ s′)(ps(i)) ∈ πrk◦ ∀i ∈ I.

Put a = ps(i) and let us study s(a) − s′(a). We have ps(s(a) − s′(a)) =
a− a = 0 so s(a)− s(a′) ∈ Is2. Moreover s(a) = s(ps(i)) = s(ps(π

sπ−si)) =
πss(ps(π

−si)) ∈ I. Similarly s′(a) ∈ I. So s(a) − s′(a) ∈ I. Consequently
s(a) − s′(a) ∈ Is2 ∩ I. By 2.5.19, we deduce that s(a) − s′(a) ∈ I2. So we
have

(x |Is ◦ s− x |Is ◦ s′)(ps(i)) = x(s(ps(i))− s′(ps(i)))

= x(s(a)− s′(a))

= x(γ) with γ ∈ I2

Recall that x ∈ Homk◦−alg(As, k
◦); the algebra As is egal to A[π−sI], so

for any i ∈ I, we have x(i) ∈ πsk◦. We deduce that x(γ) ∈ π2sk◦. Since
0 < r

2 ≤ s ≤ r, we deduce π2sk◦ ⊂ πrk◦. So x(γ) ∈ πrk◦. So we have
�nished to prove that Ψ does not depend on the section s. So we get a
well-de�ned map

Ψ : Homk◦−alg(As, k
◦)→ Homk◦−mod(Is/Is

2, k◦)/Homk◦−mod(Ir/Ir
2, k◦)

x 7→ [x |Is ◦ s] ,

which does not depend on s.
Let us now show that Ψ is a morhism of groups. The source is denoted

multiplicatively and the target additively. So let x, y ∈ Homk◦−alg(As, k
◦).

Take a section s : Is/I
2
s → Is. We need to show that Ψs(xy) = Ψs(x)+Ψs(y)

mod Homk◦−mod(Ir/Ir
2, k◦). By 2.5.21, it is enough to show that for an i ∈ I,

Ψs(xy)(ps(i))−Ψs(x)(ps(i))−Ψs(y)(ps(i)) ∈ πrk◦. We have Ψs(xy)(ps(i))−
Ψs(x)(ps(i)) − Ψs(y)(ps(i)) = xy(s(ps(i)) − x(s(ps(i))) − y(s(ps(i))). Put
a = s(ps(i)), as we have already explained before in a similar situation, it is
in I. By de�nition xy is the following composed morphism
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As
∆→ As ⊗k◦ As

x⊗y→ k◦ ⊗k◦ k◦ ' k◦.

Thus xy(a) = (x⊗y)(∆(a)). By Lemma 2.5.15 applied to R = k◦, A = A,
we obtain ∆(a) = a ⊗ 1 + 1 ⊗ a mod I ⊗ I. Thus xy(a) = x(a) + y(a)
mod π2sk◦. So Ψ is a morphism of groups.

Let us now prove that ker(Ψ) = Homk◦−alg(Ar, k
◦). Let us �rst prove

the inclusion ker(Ψ) ⊂ Homk◦−alg(Ar, k
◦). So let x ∈ ker(Ψ). By 2.5.21, it

is enough to show that x(i) ∈ πrk◦ for all i ∈ I. As in the proof of 2.5.17,
choose a basis {ek}k∈T of I2 and complete it by {ek}s∈S in order to obtain a
basis {ek}S∪T of I. The family {ek}k∈S induces a section s : I/I2 → I, which
send p(ek) to ek for any k ∈ S. By 2.5.22, we obtain a section of ps whose
restriction to I/I2 is s. We denote it also by s. The element x is in ker(Ψ),
this implies that Ψs(x) ∈ Homk◦−mod(Ir/Ir

2, k◦). Let us �x an i ∈ I. Write

i =
∑

k∈S∪T
λkek λk ∈ k◦. Then x(i) =

∑
k∈S∪T

λkx(ek). Let us study x(ek)

for any k ∈ S ∪ T . If k ∈ T , then ek ∈ I2, and x(ek) ∈ π2sk◦ (by 2.5.21).
Now if k ∈ S. Then by 2.5.21 Ψs(x)(ps(ek)) ∈ πrk◦. Now Ψs(x)(ps(ek)) =
x(s(ps(ek))) = x(s(p(ek))) = x(ek). So x(ek) ∈ πrk◦. So x(i) ∈ πrk◦. Con-
sequently x ∈ Homk◦−alg(Ar, k

◦). So ker(Ψ) ⊂ Homk◦−alg(Ar, k
◦). Let us

show now the reverse inclusion. Let x ∈ Homk◦−alg(Ar, k
◦). Let s be a sec-

tion Is/Is2 → Is. It is enough to show that Ψs(x) ∈ Homk◦−mod(Ir/Ir
2, k◦).

Let i ∈ I. By 2.5.21, it is enough to show that Ψs(x)(ps(i)) ∈ πrk◦. We have
Ψs(x)(ps(i)) = x(s(ps(i))). We have s(ps(i)) ∈ I (for example by 2.5.22). So
x(s(ps(i))) ∈ πrk◦. This ends the proof of the injectivity.

Remark 2.5.24. Let us now give a comment about surjectivity. Let x ∈
Homk◦−mod(Is/Is, k

◦). By construction of Ψ, it is enough to �nd g1, . . . , gn ∈
Is, such that

1. The class [g1], . . . , [gn] ∈ Is/Is2 of g1, . . . , gn ∈ Is is a basis of Is/Is2

(so that g1, . . . , gn ∈ Is induce a section Is/Is2 → Is).

2. There is a morphism f of k◦-algebra As → k◦ such that f(gi) = x([gi])
for 1 ≤ i ≤ n.

We are thus interested in �nding g1, . . . , gn ∈ Is such that the �rst assertion
holds and such that g1, . . . , gn have essentially no algebraic relations. This
should be a consequence of smoothness.

About Moy-Prasad isomorphism for analytic �ltra-
tions

In this section we write a partial answer to the question 2.5.11. This is done
using the morphism 2.5.23, at level of congruence groups, written by Yu in
[43, �2.8] and studied in the previous section.
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Proposition 2.5.25. Let H be a stable rational potentially Demazure k-
a�noid subgroup of Gan. Let r ∈ Q>0 and s ∈ Q>0 be rational numbers
such that 0 < r

2 ≤ s ≤ r. Let K/k be a �nite Galois extension and G

be a K◦-Demazure group scheme such that Hr = prK/k

(
̂Γe(K,k)r(G)

η

)
and

Hs = prK/k

(
̂Γe(K,k)s(G)

η

)
. Assume that

1. The morphism of groups Ψ of Theorem 2.5.23 is surjective,

2. H1(Gal(K/k),Γe(K,k)s(G)(K◦)) = 0,

3. H1(Gal(K/k),Lie(Γe(K,k)s(G))(K◦)) = 0.

Then we have

Hs(k)/Hr(k) ' hs(k)/hr(k). (2.5)

Proof. Let us �rst prove it in the split rational case. Thus assume �rst thatH
is a Demazure k-a�noid group and r ∈ ord(K). Let G be the k◦-Demazure
group scheme such that H = Ĝη. Then by de�nitions

Hr = Γ̂r(G)η

Hs = Γ̂s(G)η

hr = ̂Lie(Γr(G))η

hs = ̂Lie(Γs(G))η.

So we have

Hr(k) = Γr(G)(k◦)

Hs(k) = Γs(G)(k◦)

hr(k) = Lie(Γr(G))(k◦)

hs(k) = Lie(Γs(G))(k◦).

The isomorphism (2.5) is now a consequence of Theorem 2.5.23 and the
�rst hypothesis.

Let us prove now the general case. We have

Hr = prK/k

(
̂Γe(K,k)r(G)

η

)
Hr ×M(k)M(K) = ̂Γe(K,k)r(G)

η
Hr(K) = Γe(K,k)r(G)(K◦)

Hs = prK/k

(
̂Γe(K,k)s(G)

η

)
Hs ×M(k)M(K) = ̂Γe(K,k)r(G)

η
Hs(K) = Γe(K,k)s(G)(K◦)

hr = prK/k

(
̂Lie(Γe(K,k)r(G))

η

)
hr ×M(k)M(K) = ̂Lie(Γe(K,k)r(G))

η
hr(K) = Lie(Γe(K,k)r(G))(K◦)

hs = prK/k

(
̂Lie(Γe(K,k)s(G))

η

)
hs ×M(k)M(K) = ̂Lie(Γe(K,k)r(G))

η
hs(K) = Lie(Γe(K,k)s(G))(K◦),

left equalities are de�nitions, middle ones are formal consequences of left
ones and right ones are direct consequences of middle ones. Since Hr, Hs, hr
and hs are k-a�noid spaces, we have
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Hr(k) = Hr(K)Gal(K/k)

Hs(k) = Hs(K)Gal(K/k)

hr(k) = hs(K)Gal(K/k)

hs(k) = hs(K)Gal(K/k).

So all together we have (∗)

Hr(k) = Γe(K,k)r(G)(K◦)Gal(K/k) = Γe(K,k)r(G)(K◦) ∩G(k)

Hs(k) = Γe(K,k)s(G)(K◦)Gal(K/k) = Γe(K,k)s(G)(K◦) ∩ (G(k)

hr(k) = Lie(Γe(K,k)r(G))(K◦)Gal(K/k) = Lie(Γe(K,k)r(G))(K◦) ∩ g(k)

hs(k) = Lie(Γe(K,k)s(G))(K◦)Gal(K/k) = Lie(Γe(K,k)s(G))(K◦) ∩ g(k).

Since 0 < e(K,k)r
2 ≤ e(K, k)s ≤ e(K, k)r, by the previous split rational

case, we have

Γe(K,k)s(G)(K◦)/Γe(K,k)r(G)(K◦) ' Lie(Γe(K,k)s(G))(K◦)/Lie(Γe(K,k)r(G))(K◦). (2.6)

The group Gal(K/k) acts canonically on Γe(K,k)s(G)(K◦)/Γe(K,k)r(G)(K◦)
and on Lie(Γe(K,k)s(G))(K◦)/Lie(Γe(K,k)r(G))(K◦), these actions are equiv-
ariant relatively to the isomorphism (2.6). We thus get
(
Γe(K,k)s(G)(K◦)/Γe(K,k)r(G)(K◦)

)Gal(K/k)
'
(
Lie(Γe(K,k)s(G))(K◦)/Lie(Γe(K,k)r(G))(K◦)

)Gal(K/k)
.

Conditions on H1 implies now that
Γe(K,k)s(G)(K◦)Gal(K)/Γe(K,k)r(G)(K◦)Gal(K) ' Lie(Γe(K,k)s(G))(K◦)Gal(K)/Lie(Γe(K,k)r(G))(K◦)Gal(K)

where Gal(K) := Gal(K/k). We deduce now the desired isomorphism (2.5)
using equations (∗).

We now state and prove a Lemma which ensure that hypothesis of the
previous proposition holds.

Let K/k be a �nite Galois extension. Let G be a Gal(K/k)-stable K◦-
Demazure group scheme. Let N ∈ Z>0 be a strictly positive integer. Let
ΓN (G) be the N -th congruence K◦-scheme of G. Write ΓN := ΓN (G)(K0).
It is Gal(K/k)-stable by 2.1.14. Let t be a positive integer, Γt and Γt+1 are
Gal(K/k)-stable, so Gal(K/k) acts on Γt/Γt+1.

Lemma 2.5.26. Assume H1(Gal(K/k),Γt/Γt+1) = 0 for all positive integer
t. Then, for any N > 0,

H1(Gal(K/k),ΓN (G)(K◦)) = 0.
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Proof. By [41, Lemma 2.8], it is enough to prove that

(∗i) H1 (Gal(K/k) ,ΓN (G)(K◦)/ΓN+i(G)(K◦)) = 0 for all i ∈ Z>0.

Let us prove it by induction on i. The initialisation (i = 1) is a direct
consequence of the hypothesis. Let us do the heredity. Assume the relation
(∗i) is satis�ed for an i > 0 and let us show that this implies that (∗i+ 1) is
also satis�ed. We have an exact sequence of Gal(K/k)-groups
0 // ΓN+i/ΓN+i+1

// ΓN/ΓN+i+1
// (ΓN/ΓN+i+1)/(ΓN+i/ΓN+i+1)

'

��

// 0

ΓN/ΓN+i.

By hypothesis we have H1(Gal(K/k),ΓN+i/ΓN+i+1) = 0. By induction
hypothesis H1(Gal(K/k),ΓN/ΓN+i) = 0. Thus by [41, Lemma 2.5], we
deduce H1(Gal(K/k),ΓN/ΓN+i+1) = 0. This ends the proof of the heredity.
We have �nished the induction and the proof ends here.
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APPENDIX B: On notions of
rational points in the reduced
Bruhat-Tits building

Let k be a non archimedean local �eld and G be a connected reductive k-
group scheme. We have two natural notions of rational points in the reduced
Bruhat-Tits building BTR(G, k).

1. (Here G = GLN in the original de�nition of Broussous-Lemaire [7])
A point x ∈ BTR(G, k) is called barycentrically rational if it is the
barycentre of vertex in a chamber with rational weights (this de�nition
is natural after Broussous-Lemaire work, see their work on comparison
of �ltrations [7]). We denote by BTR

ratbar
(G, k) the associated subset

of BTR(G, k).

2. A point x ∈ BTR(G, k) is called specially rational if there exists K/k
�nite such that

(a) iK/k(x) ∈ BTR(G,K) is a special point (iK/k is the canonical map
between buildings, this notion of rational point is introduced in
this text (see section 2.3))

(b) G is split over K (this condition is always satis�ed in this ap-
pendix).

We denote BTR
ratspe(G, k) (it was denoted BTR

rat(G, k) in section 2.3)

the associated subset of BTR(G, k).

In this appendix we prove that they are equivalent in the case G = GLN ,
i.e BTR

ratspe(GLN , k) = BTR
ratbar

(GLN , k). We then illustrate the proof in
the GL3 case with an example and a picture.

Proof that the two notions are equivalent for G = GLN

HereG = GLN , it is split /k and the reduced building is a simplicial complex.
That last condition means that any facet F is a simplex. Let F be a maximal
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facet in an appartement A, and �x it. Let S1, . . . , Si, . . . , SN be the vertex
of the facet F . Put I = {1, . . . , N}.
• Since F is a maximal simplex, for all i ∈ I, the set

Ri = {
−−→
SiSj | j ∈ I and i 6= j}

is a repère of A. That means that for any i ∈ I and each P ∈ A, there
exists3 unique real numbers x1, . . . , x̂i, . . . xN such that

−−→
SiP =

∑
j∈I
j 6=i

xj
−−→
SiSj .

The numbers x1, . . . , x̂i, . . . xN are called the coordinates of P in the repère
Ri.
• (Since G = GLN ) The directions 4 of the walls in A are in bijection

with the vertex of the maximal simplex F as follows

{Vertex of F } ↔ {direction of the walls in A}

Si 7→Di = {direction of the wall containing S1, . . . , Ŝi, . . . , SN}

• Let K/k be a �nite extension, since G is split, for any maximal split
torus S, the simplicial structure on the associated appartement AR(G,S)
satis�es the following: The appartement AR(G,S)/K is obtained from
AR(G,S)/k adding regularly e times more walls for each direction. Fix
a vertex Si, we thus get a direction Di , and we put:

WallsSi = {The set of walls having direction Di, and coming from �nite extensions }

Let P ∈ A (think P ∈ F ). Write the coordinates of P in the repère Ri:−−→
SiP =

∑
j∈I\i

xj
−−→
SiSj . By Thalès Theorem, we deduce (j ∈ I \ i):

P ∈WallsSj ⇔ The j-th coordin. xj of P
in the repère Ri is a rational numb.

Recall that a point P is special over an extension K/k if for every direc-
tion Di, there exists a wall of BTR(G,K) such that P is contained in this
wall.

We deduce that
3The symbol hat over a symbol in a list of symbol means that we ommit it.
4By the direction of a wall we mean the vectorial part.
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P ∈ BTR
ratspe(G, k)⇔ ∀j ∈ I, P ∈WallSj

⇔ ∀i, j ∈ I; i 6= j; the j-th coordinate of P

in the repère Ri is rational.

⇔ ∀i ∈ I, the coordinates of P in the

repère Ri are rational numbers

• Let us now prove that BTR
ratspe = BTR

ratbar
.

We start by the inclusion ⊂. Let x ∈ BTR
ratspe . Let i ∈ I, we write P in

the repère Ri
−−→
SiP =

∑
j∈I\i

xj
−−→
SiSj

with xj rational numbers.
We deduce the relation, using Chasles

−−→
SiP =

∑
j∈I\i

xj(
−−→
SiP +

−−→
PSj).

This allows us to write

0 = ((
∑
j∈I\i

xj)− 1)
−−→
SiP +

∑
j∈I\i

xj
−−→
PSj

This makes clear that P ∈ BTR
ratbar

(G, k) by de�nition of barycentres.
Let us prove the reverse inclusion ⊃. Let P ∈ BTR

ratbar
(G, k). We have

to show that for each i, the coordinates of P in the repère Ri are rational
numbers. By de�nition of BTR

ratbar
(G, k), there exists rational numbers cj

such that ∑
j∈I

cj
−−→
PSj = 0.

We thus get ∑
j∈I\i

cj(
−−→
PSi +

−−→
SiSj) + ci

−−→
PSi = 0.

So we obtain ∑
j∈I\i

cj
−−→
SiSj + (

∑
j∈I

cj)
−−→
PSi = 0.
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Putting k =
∑
j∈I

cj (it is 6= 0), we get

−−→
SiP =

∑
j∈I\i

cj
k

−−→
SiSj .

This shows that the coordinates of P in the repère Ri are rational num-
bers. So P ∈ BTR

ratspe(G, k), as required.

Illustration of the proof in GL3

Take G = GL3. A maximal simplex of an appartement in the reduced
building look like this:

C.A

B

P

In black are represented walls over k and in red walls over an extension
K/k of rami�cation index 4. There are three directions, here one horizontal
realized by AC, an other oblic realized by AB and an other BC. With the
notations introduced before, the direction AC is DB, AB is DC and BC
is DA. Consider the point P , it is a point in BTR

ratspe(G, k), since for each
direction, a red line realizing this direction pass by P . In the repère RA,
the coordinates of P are (1

4 ,
1
2), i.e.

−→
AP = 1

4

−−→
AB + 1

2

−→
AC.

We succesively deduce the relations

−→
AP = 1

4

−→
AP + 1

4

−−→
PB + 1

2

−→
AP + 1

2

−−→
PC

1
4

−→
AP + 1

4

−−→
BP + 1

2

−−→
CP = 0

So P is a rational special point in the sense of Broussous-Lemaire, i.e.
P ∈ BTR

ratbar
(G, k).
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Now take a point P ∈ BTR
ratbar

(G, k), and we research an extension K/k
such that P is special in BTR(G,K). Assume for example that P is the
barycentre ((A, 2), (B, 3), (C, 5)), we thus get

2
−→
AP + 3

−−→
BP + 5

−−→
CP = 0

We deduce, using Chasles, that

10
−→
AP + 3

−−→
BA+ 5

−→
CA = 0

So
−→
AP = 3

10

−−→
AB + 5

10

−→
AC, and the coordinates of P in RA are rational.

Analogously, one can see that the coordinates of P in the repère RB and
RC are rational. We deduce that P becomes special over an extension with
rami�cation index multiple of 10.
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