R. C. Bone, R. A. Balk, F. B. Cerra, R. P. Dellinger, A. M. Fein et al., American College of Chest Physicians/Society of Critical Care Medicine: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis, The ACCP/SCCM Consensus Conference Committee, vol.101, pp.1644-1655, 1992.

D. C. Angus, W. T. Linde-zwirble, J. Lidicker, G. Clermont, J. Carcillo et al., Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care, Crit Care Med, vol.29, pp.1303-1310, 2001.

J. L. Vincent, Y. Sakr, C. L. Sprung, V. M. Ranieri, K. Reinhart et al., Sepsis Occurrence in Acutely Ill Patients Investigators: Sepsis in European intensive care units: Results of the SOAP study, Crit Care Med, vol.34, pp.344-353, 2006.

D. C. Angus and T. Van-der-poll, Severe sepsis and septic shock, N Engl J Med, vol.369, pp.840-851, 2013.

J. Cohen, The immunopathogenesis of sepsis, Nature, vol.420, pp.885-891, 2002.

L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J Exp Med, vol.204, pp.1057-1069, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00136917

S. Frantz, U. Hofmann, D. Fraccarollo, A. Schäfer, S. Kranepuhl et al., Monocytes/ macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction, FASEB J, vol.27, pp.871-881, 2013.

J. R. Grainger, E. A. Wohlfert, I. J. Fuss, N. Bouladoux, M. H. Askenase et al., Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection, Nat Med, vol.19, pp.713-721, 2013.

S. Herold, T. S. Tabar, H. Janssen, K. Hoegner, M. Cabanski et al., Exudate macrophages attenuate lung injury by the release of IL-1 receptor antagonist in gram-negative pneumonia, Am J Respir Crit Care Med, vol.183, pp.1380-1390, 2011.

M. Nahrendorf, F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger et al., The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J Exp Med, vol.204, pp.3037-3047, 2007.

C. Auffray, D. Fogg, M. Garfa, G. Elain, O. Join-lambert et al., Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior, Science, vol.317, pp.666-670, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00337698

W. P. Arend, M. Malyak, C. J. Guthridge, and C. Gabay, Interleukin-1 receptor antagonist: Role in biology, Annu Rev Immunol, vol.16, pp.27-55, 1998.

, J Am Soc Nephrol, vol.27, pp.792-803, 2016.

M. Singer, The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), JAMA, vol.315, p.801, 2016.

D. C. Angus, Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care, Crit. Care Med, vol.29, pp.1303-1310, 2001.

N. A. Hutchins, J. Unsinger, R. S. Hotchkiss, and A. Ayala, The new normal: immunomodulatory agents against sepsis immune suppression, Trends Mol. Med, vol.20, pp.224-233, 2014.

C. Torgersen, Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis, Anesth. Analg, vol.108, pp.1841-1847, 2009.

G. P. Otto, The late phase of sepsis is characterized by an increased microbiological burden and death rate, Crit. Care Lond. Engl, vol.15, p.183, 2011.

C. Landelle, Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock, Intensive Care Med, vol.36, pp.1859-1866, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539253

R. S. Hotchkiss, G. Monneret, and D. Payen, Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach, Lancet Infect. Dis, vol.13, pp.260-268, 2013.

D. C. Angus and S. Opal, Immunosuppression and Secondary Infection in Sepsis: Part, Not All, of the Story, JAMA, vol.315, pp.1457-1459, 2016.

F. Pene, Dendritic Cells Modulate Lung Response to Pseudomonas aeruginosa in a Murine Model of Sepsis-Induced Immune Dysfunction, J. Immunol, vol.181, pp.8513-8520, 2008.

X. Fan, Z. Liu, H. Jin, J. Yan, and H. Liang, Alterations of Dendritic Cells in Sepsis: Featured Role in Immunoparalysis, BioMed Res. Int, pp.1-10, 2015.

F. Venet, Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: Correlation with severity and secondary septic shock, Crit. Care Med, vol.35, pp.1910-1917, 2007.

D. H. Livingston, S. H. Appel, S. R. Wellhausen, G. Sonnenfeld, and H. C. Polk, Depressed interferon gamma production and monocyte HLA-DR expression after severe injury, Arch. Surg. Chic. Ill, vol.123, pp.1309-1312, 1960.

M. J. Delano, MyD88-dependent expansion of an immature GR-1 + CD11b + population induces T cell suppression and Th2 polarization in sepsis, J. Exp. Med, vol.204, pp.1463-1474, 2007.

T. Van-der-poll, Myeloid-derived Suppressor Cells in Sepsis, Am. J. Respir. Crit. Care Med, vol.196, pp.256-258, 2017.

M. J. Delano, Sepsis induces early alterations in innate immunity that impact mortality to secondary infection, J. Immunol. Baltim. Md, vol.186, pp.195-202, 1950.

R. S. Tamadaho, A. Hoerauf, and L. E. Layland, Immunomodulatory effects of myeloid-derived suppressor cells in diseases: Role in cancer and infections, Immunobiology, vol.223, pp.432-442, 2018.

D. I. Gabrilovich and S. Nagaraj, Myeloid-derived-suppressor cells as regulators of the immune system, Nat. Rev. Immunol, vol.9, pp.162-174, 2009.

B. G. Chousterman, Ly6Chigh Monocytes Protect against Kidney Damage during Sepsis via a CX3CR1-Dependent Adhesion Mechanism, J. Am. Soc. Nephrol, vol.27, pp.792-803, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01292451

C. Charavaryamath, K. S. Janardhan, S. Caldwell, and B. Singh, Pulmonary intravascular monocytes/macrophages in a rat model of sepsis, Anat. Rec. A. Discov. Mol. Cell. Evol. Biol, vol.288, pp.1259-1271, 2006.

P. Hamon, CX3CR1-dependent endothelial margination modulates Ly6Chigh monocyte systemic deployment upon inflammation in mice, p.2016, 2016.

D. Rittirsch, M. S. Huber-lang, M. A. Flierl, and P. A. Ward, Immunodesign of experimental sepsis by cecal ligation and puncture, Nat. Protoc, vol.4, pp.31-36, 2009.

B. G. Chousterman, Ly6Chigh Monocytes Protect against Kidney Damage during Sepsis via a CX3CR1-Dependent Adhesion Mechanism, J. Am. Soc. Nephrol. JASN, vol.27, pp.792-803, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01292451

P. O. Scumpia, Cutting edge: bacterial infection induces hematopoietic stem and progenitor cell expansion in the absence of TLR signaling, J. Immunol. Baltim. Md, vol.184, pp.2247-2251, 1950.

C. Shi and E. G. Pamer, Monocyte recruitment during infection and inflammation, Nat. Rev. Immunol, vol.11, pp.762-774, 2011.

M. P. Rodero, Immune surveillance of the lung by migrating tissue monocytes, Elife, vol.4, p.7847, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01310477

S. Yona, Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis, Immunity, vol.38, pp.79-91, 2013.

A. Pachot, Decreased Expression of the Fractalkine Receptor CX3CR1 on Circulating Monocytes as New Feature of Sepsis-Induced Immunosuppression, J. Immunol, vol.180, pp.6421-6429, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00428195

K. G. Anderson, Intravascular staining for discrimination of vascular and tissue leukocytes, Nat. Protoc, vol.9, pp.209-222, 2014.

N. M. Girgis, Ly6Chigh Monocytes Become Alternatively Activated Macrophages in Schistosome Granulomas with Help from CD4+ Cells, PLoS Pathog, vol.10, p.1004080, 2014.

C. Combadière, Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice, Circulation, vol.117, pp.1649-1657, 2008.

S. Brilha, R. Wysoczanski, A. M. Whittington, J. S. Friedland, and J. C. Porter, Monocyte Adhesion, Migration, and Extracellular Matrix Breakdown Are Regulated by Integrin ?V?3 in Mycobacterium tuberculosis Infection, J. Immunol, vol.199, pp.982-991, 2017.

H. C. Prescott, J. J. Osterholzer, K. M. Langa, D. C. Angus, and T. J. Iwashyna, Late mortality after sepsis: propensity matched cohort study, BMJ i2375, 2016.

J. R. Grainger, Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection, Nat. Med, vol.19, pp.713-721, 2013.

C. Winter, Lung-specific overexpression of CC chemokine ligand (CCL) 2 enhances the host defense to Streptococcus pneumoniae infection in mice: role of the CCL2-CCR2 axis, J. Immunol. Baltim. Md, vol.178, pp.5828-5838, 1950.

I. R. Dunay, Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii, Immunity, vol.29, pp.306-317, 2008.

M. J. Delano, Sepsis Induces Early Alterations in Innate Immunity That Impact Mortality to Secondary Infection, J. Immunol, vol.186, pp.195-202, 2011.

C. J. Cummings, Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis, J. Immunol. Baltim. Md, vol.162, pp.2341-2346, 1950.

J. Reutershan, Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung, J. Clin. Invest, vol.116, pp.695-702, 2006.

G. S. Martin, D. M. Mannino, S. Eaton, and M. Moss, The epidemiology of sepsis in the United States from, N. Engl. J. Med, vol.348, pp.1546-1554, 1979.

J. E. Gotts and M. A. Matthay, Sepsis: pathophysiology and clinical management, BMJ i1585, 2016.

G. Monneret, F. Venet, A. Pachot, and A. Lepape, Monitoring immune dysfunctions in the septic patient: a new skin for the old ceremony, Mol. Med. Camb. Mass, vol.14, pp.64-78, 2008.

X. Ge, TLR4-dependent internalization of CX3CR1 aggravates sepsis-induced immunoparalysis, Am. J. Transl. Res, vol.8, p.5696, 2016.

D. A. Solovjov, E. Pluskota, and E. F. Plow, Distinct roles for the alpha and beta subunits in the functions of integrin alphaMbeta2, J. Biol. Chem, vol.280, pp.1336-1345, 2005.

L. R. Antonelli, Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population, J. Clin. Invest, vol.120, pp.1674-1682, 2010.

M. Yang, IL-6 ameliorates acute lung injury in influenza virus infection, Sci. Rep, vol.7, p.43829, 2017.

J. Macmicking, Q. Xie, C. Nathan, . Nitric, and . Function, Annu. Rev. Immunol, vol.15, pp.323-350, 1997.

N. V. Serbina, Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection, Immunity, vol.19, pp.891-901, 2003.

K. Wolk, W. D. Döcke, V. Baehr, H. D. Volk, and R. Sabat, Impaired antigen presentation by human monocytes during endotoxin tolerance, Blood, vol.96, pp.218-223, 2000.

P. Roger, Enhanced T-cell apoptosis in human septic shock is associated with alteration of the costimulatory pathway, Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol, vol.28, pp.575-584, 2009.

X. Huang, PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis, Proc. Natl. Acad. Sci, vol.106, pp.6303-6308, 2009.

Y. Zhang, PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction, Crit. Care, vol.14, p.220, 2010.

N. V. Ferreira-da-mota, Immunophenotyping of Monocytes During Human Sepsis Shows Impairment in Antigen Presentation: A Shift Toward Nonclassical Differentiation and Upregulation of Fc?Ri-Receptor, SHOCK, vol.1, 2017.

D. Deng, Systematic investigation on the turning point of over-inflammation to immunosuppression in CLP mice model and their characteristics, Int. Immunopharmacol, vol.42, pp.49-58, 2017.

W. Chen, Ethyl pyruvate reverses development of Pseudomonas aeruginosa pneumonia during sepsisinduced immunosuppression, Int. Immunopharmacol, vol.52, pp.61-69, 2017.

C. Auffray, D. Fogg, and M. Garfa, Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior, Science, vol.317, issue.5838, pp.666-670, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00337698

S. Yona, K. W. Kim, and Y. Wolf, Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis, 2013.

, Immunity, vol.38, issue.5, pp.79-91, 2013.

C. Sunderkötter, T. Nikolic, and M. J. Dillon, Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response, J Immunol, vol.172, issue.7, pp.4410-4417, 2004.

F. K. Swirski, M. Nahrendorf, and M. Etzrodt, Identification of splenic reservoir monocytes and their deployment to inflammatory sites, Science, vol.325, issue.5940, pp.612-616, 2009.

I. S. Mclennan, Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions, J. Anat, vol.188, pp.17-28, 1996.

M. Summan, Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.290, pp.1488-1495, 2006.

L. Arnold, Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J. Exp. Med, vol.204, pp.1057-1069, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00136917

R. Mounier, AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration, Cell Metab, vol.18, pp.251-264, 2013.

P. K. Shireman, MCP-1 deficiency causes altered inflammation with impaired skeletal muscle regeneration, J. Leukoc. Biol, vol.81, pp.775-785, 2007.

V. Contreras-shannon, Fat accumulation with altered inflammation and regeneration in skeletal muscle of CCR2-/-mice following ischemic injury, Am. J. Physiol. Cell. Physiol, vol.292, pp.953-967, 2007.

M. Cantini and U. Carraro, Macrophage-released factor stimulates selectively myogenic cells in primary muscle culture, J. Neuropathol. Exp. Neurol, vol.54, pp.121-128, 1995.

M. Saclier, S. Cuvellier, M. Magnan, R. Mounier, and B. Chazaud, Monocyte/ macrophage interactions with myogenic precursor cells during skeletal muscle regeneration, FEBS J, vol.280, pp.4118-4130, 2013.

C. Sonnet, Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems, J. Cell Sci, vol.119, pp.2497-2507, 2006.

C. Cochain, Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization, Cardiovasc. Res, vol.88, pp.186-195, 2010.

F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity, vol.19, pp.71-82, 2003.

H. Lu, D. Huang, R. M. Ransohoff, and L. Zhou, Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair, FASEB J, vol.25, pp.3344-3355, 2011.

H. Lu, Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury, FASEB J, vol.25, pp.358-369, 2011.

C. O. Martinez, Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.299, pp.832-842, 2010.

O. Ochoa, Delayed angiogenesis and VEGF production in CCR2-/-mice during impaired skeletal muscle regeneration, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.293, pp.651-661, 2007.

P. K. Shireman, V. Contreras-shannon, S. M. Reyes-reyna, S. C. Robinson, and L. M. Mcmanus, MCP-1 parallels inflammatory and regenerative responses in ischemic muscle, J. Surg. Res, vol.134, pp.145-157, 2006.

M. Nahrendorf, The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J. Exp. Med, vol.204, pp.3037-3047, 2007.

C. Combadiere, Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice, Circulation, vol.117, pp.1649-1657, 2008.

T. Aoyama, S. Inokuchi, D. A. Brenner, and E. Seki, CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice, Hepatology, vol.52, pp.1390-1400, 2010.

K. R. Karlmark, The fractalkine receptor CX(3)CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes, Hepatology, vol.52, pp.1769-1782, 2010.

Z. Liu, C. Condello, A. Schain, R. Harb, and J. Grutzendler, CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-beta phagocytosis, J. Neurosci, vol.30, pp.17091-17101, 2010.

N. Mizutani, Dose-dependent differential regulation of cytokine secretion from macrophages by fractalkine, J. Immunol, vol.179, pp.7478-7487, 2007.

L. V. Blomster, CX(3)CR1 deficiency exacerbates neuronal loss and impairs early regenerative responses in the target-ablated olfactory epithelium, Mol. Cell. Neurosci, vol.48, pp.236-245, 2011.

A. J. Clover, A. H. Kumar, and N. M. Caplice, Deficiency of CX3CR1 delays burn wound healing and is associated with reduced myeloid cell recruitment and decreased sub-dermal angiogenesis, Burns, vol.37, pp.1386-1393, 2011.

Y. Ishida, J. L. Gao, and P. M. Murphy, Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function, J. Immunol, vol.180, pp.569-579, 2008.

M. Brigitte, Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury, Arthritis Rheum, vol.62, pp.268-279, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01402283

K. Hochheiser, Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression, J. Clin. Invest, vol.123, pp.4242-4254, 2013.

M. Mizutani, The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood, J. Immunol, vol.188, pp.29-36, 2012.

O. Medina-contreras, CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice, J. Clin. Invest, vol.121, pp.4787-4795, 2011.

L. Landsman, CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival, Blood, vol.113, pp.963-972, 2009.

D. R. Engel, CX3CR1 reduces kidney fibrosis by inhibiting local proliferation of profibrotic macrophages, J. Immunol, vol.194, pp.1628-1638, 2015.

B. Chazaud, Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth, J. Cell Biol, vol.163, pp.1133-1143, 2003.

C. A. Griffin, L. H. Apponi, K. K. Long, and G. K. Pavlath, Chemokine expression and control of muscle cell migration during myogenesis, J. Cell Sci, vol.123, pp.3052-3060, 2010.

F. Tacke, Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques, J. Clin. Invest, vol.117, pp.185-194, 2007.

F. Sennlaub, CCR2( þ ) monocytes infiltrate atrophic lesions in agerelated macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice, EMBO Mol. Med, vol.5, pp.1775-1793, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00912837

A. E. Cardona, Control of microglial neurotoxicity by the fractalkine receptor, Nat. Neurosci, vol.9, pp.917-9245, 2006.

M. W. Freeman and K. J. Moore, eLiXiRs for restraining inflammation, Nature Med, vol.9, pp.168-169, 2003.

O. Levy, Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration, EMBO Mol. Med, vol.7, pp.211-226, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01231055

D. Baitsch, Apolipoprotein E induces antiinflammatory phenotype in macrophages, Arterioscler. Thromb. Vasc. Biol, vol.31, pp.1160-1168, 2011.

M. Van-oosten, Apolipoprotein E protects against bacterial lipopolysaccharide-induced lethality. A new therapeutic approach to treat gram-negative sepsis, J. Biol. Chem, vol.276, pp.8820-8824, 2001.

K. Ali, M. Middleton, E. Pure, and D. J. Rader, Apolipoprotein E suppresses the type I inflammatory response in vivo, Circ. Res, vol.97, pp.922-927, 2005.

J. Kang, Apolipoprotein E-/-mice have delayed skeletal muscle healing after hind limb ischemia-reperfusion, J. Vasc. Surg, vol.48, pp.701-708, 2008.

V. Naik, Sources of cells that contribute to atherosclerotic intimal calcification: an in vivo genetic fate mapping study, Cardiovasc. Res, vol.94, pp.545-554, 2012.

A. C. Li and C. K. Glass, The macrophage foam cell as a target for therapeutic intervention, Nat. Med, vol.8, pp.1235-1242, 2002.

D. J. Grainger, J. Reckless, and E. Mckilligin, Apolipoprotein E modulates clearance of apoptotic bodies in vitro and in vivo, resulting in a systemic proinflammatory state in apolipoprotein E-deficient mice, J. Immunol, vol.173, pp.6366-6375, 2004.

T. Varga, Tissue LyC6-macrophages are generated in the absence of circulating LyC6-monocytes and Nur77 in a model of muscle regeneration, J. Immunol, vol.191, pp.5695-5701, 2013.

N. Saederup, L. Chan, S. A. Lira, and I. F. Charo, Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2 À / À mice: evidence for independent chemokine functions in atherogenesis, Circulation, vol.117, pp.1642-1648, 2008.

S. Fumagalli, C. Perego, F. Ortolano, and M. De-simoni, CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice, Glia, vol.61, pp.827-842, 2013.

D. J. Donnelly, Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/ iNOS þ macrophages, J. Neurosci, vol.31, pp.9910-9922, 2011.

C. Combadiere, CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration, J. Clin. Invest, vol.117, pp.2920-2928, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00176389

Y. W. Chen, P. Zhao, R. Borup, and E. P. Hoffman, Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology, J. Cell Biol, vol.151, pp.1321-1336, 2000.

J. D. Porter, A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice, Hum. Mol. Genet, vol.11, pp.263-272, 2002.

J. Fang, G. P. Shi, and P. L. Vaghy, Identification of the increased expression of monocyte chemoattractant protein-1, cathepsin S, UPIX-1, and other genes in dystrophin-deficient mouse muscles by suppression subtractive hybridization, J. Cell. Biochem, vol.79, pp.164-172, 2000.

J. D. Porter, Persistent over-expression of specific CC class chemokines correlates with macrophage and T-cell recruitment in mdx skeletal muscle, Neuromuscul. Disord, vol.13, pp.223-235, 2003.

C. Combadiere, Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice, Circulation, vol.107, pp.1009-1016, 2003.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns, Proc. Natl Acad. Sci. USA, vol.95, pp.14863-14868, 1998.

, Supplementary Figure 2

, mice on days 10 and 21 post-injury. (b) Distribution of CSA of regenerating myofibres for each mouse strain on days 10 and 21 post-injury. Data are means + s.e.m. of 6 mice per strain in 2 distinct experiments. *p<0.05 for Cx3cr1 -/-strain versus wild-type and # p<0.05 for Ccl2 -/-versus Cx3cr1 -/-Ccl2 -/-strains. (c) Quantification of the total number of regenerating myofibres per field on day 4 post-injury. Data are means + s.e.m. of at least 3 different fields taken from 6 different mice per strain. (d) strain. (e) Example of muscle cross-sections of Ccl2 -/-and Cx3cr1 -/-Ccl2 -/-mice immunolabelled with MyoD (red) and myogenin antibodies (green) on day 4 post-injury. (f) Quantification of MyoD-positive and myogenin-positive cells in an average of 5 fields per mouse on day 4 post-injury (magnification of x40). Data are mean + s.e.m. of 2 different mice per strain. ns: not significant

, Microenvironment and Immunology CCR2 Influences T Regulatory Cell Migration to Tumors and Serves as a Biomarker of Cyclophosphamide Sensitivity Pierre-Louis Loyher, vol.1

K. Franciszkiewicz, A. Boissonnas, M. Boutet, C. Combadiere, and F. Mami-chouaib, Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response, Cancer Res, vol.72, pp.6325-6357, 2012.

M. T. Chow and A. D. Luster, Chemokines in cancer, Cancer Immunol Res, vol.2, pp.1125-1156, 2014.

C. Shi and E. G. Pamer, Monocyte recruitment during infection and inflammation, Nat Rev Immunol, vol.11, pp.762-74, 2011.

Z. Amoura, C. Combadiere, S. Faure, C. Parizot, M. Miyara et al., Roles of CCR2 and CXCR3 in the T cell-mediated response occurring during lupus flares, Arthritis Rheum, vol.48, pp.3487-96, 2003.

M. W. Carr, S. J. Roth, E. Luther, S. S. Rose, and T. A. Springer, Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant, Proc Natl Acad Sci U S A, vol.91, pp.3652-3658, 1994.

L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, and G. Kroemer, Immunological effects of conventional chemotherapy and targeted anticancer agents, Cancer Cell, vol.28, pp.690-714, 2015.

B. Z. Qian, J. Li, H. Zhang, T. Kitamura, J. Zhang et al., CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis, Nature, vol.475, pp.222-227, 2011.

I. Conti and B. J. Rollins, CCL2 (monocyte chemoattractant protein-1) and cancer, Semin Cancer Biol, vol.14, pp.149-54, 2004.

G. Darrasse-jeze and K. Podsypanina, How numbers, nature, and immune status of foxp3(þ) regulatory T-cells shape the early immunological events in tumor development, Front Immunol, vol.4, p.292, 2013.

B. Ondondo, E. Jones, A. Godkin, and A. Gallimore, Home sweet home: the tumor microenvironment as a haven for regulatory T cells, :197. CCR2 Controls Tumor T Regulatory Cells www, vol.4, 2013.

T. J. Curiel, Tregs and rethinking cancer immunotherapy, J Clin Invest, vol.117, pp.1167-74, 2007.

E. M. Shevach, Mechanisms of foxp3þ T regulatory cell-mediated suppression, Immunity, vol.30, pp.636-681, 2009.

D. H. Munn and A. L. Mellor, The tumor-draining lymph node as an immuneprivileged site, Immunol Rev, vol.213, pp.146-58, 2006.

S. Wei, I. Kryczek, and W. Zou, Regulatory T-cell compartmentalization and trafficking, Blood, vol.108, pp.426-457, 2006.

D. J. Campbell and M. A. Koch, Phenotypical and functional specialization of FOXP3þ regulatory T cells, Nat Rev Immunol, vol.11, pp.119-149, 2011.

Y. P. Rubtsov, R. E. Niec, S. Josefowicz, L. Li, J. Darce et al., Stability of the regulatory T cell lineage in vivo, Science, vol.329, pp.1667-71, 2010.

Y. Ding, J. Xu, and J. S. Bromberg, Regulatory T cell migration during an immune response, Trends Immunol, vol.33, pp.174-80, 2012.

H. W. Lim, H. E. Broxmeyer, and C. H. Kim, Regulation of trafficking receptor expression in human forkhead box P3þ regulatory T cells, J Immunol, vol.177, pp.840-51, 2006.

D. J. Campbell, Control of regulatory T cell migration, function, and homeostasis, J Immunol, vol.195, pp.2507-2520, 2015.

T. J. Curiel, G. Coukos, L. Zou, X. Alvarez, P. Cheng et al., Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival, Nat Med, vol.10, pp.942-951, 2004.

M. Gobert, I. Treilleux, N. Bendriss-vermare, T. Bachelot, S. Goddard-leon et al., Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome, Cancer Res, vol.69, pp.2000-2009, 2009.

E. Layseca-espinosa, S. Korniotis, R. Montandon, C. Gras, M. Bouillie et al., CCL22-producing CD8alpha-myeloid dendritic cells mediate regulatory T cell recruitment in response to G-CSF treatment, J Immunol, vol.191, pp.2266-72, 2013.

C. Mitchell, D. Couton, J. P. Couty, A. M. Crain, A. M. Bizet et al., Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice, Am J Pathol, vol.174, pp.1766-75, 2009.

H. Bruhl, J. Cihak, M. A. Schneider, J. Plachy, T. Rupp et al., Dual role of CCR2 during initiation and progression of collagen-induced arthritis: evidence for regulatory activity of CCR2þ T cells, J Immunol, vol.172, pp.890-898, 2004.

N. Zhang, B. Schroppel, G. Lal, C. Jakubzick, X. Mao et al., Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response, Immunity, vol.30, pp.458-69, 2009.

R. Hamano, T. Baba, S. Sasaki, U. Tomaru, A. Ishizu et al., Ag and IL-2 immune complexes efficiently expand Ag-specific Treg cells that migrate in response to chemokines and reduce localized immune responses, Eur J Immunol, vol.44, pp.1005-1020, 2014.

J. J. Engelhardt, B. Boldajipour, P. Beemiller, P. Pandurangi, C. Sorensen et al., Marginating dendritic cells of the tumor microenvironment crosspresent tumor antigens and stably engage tumor-specific T cells, Cancer Cell, vol.21, pp.402-419, 2012.

N. Saederup, A. E. Cardona, K. Croft, M. Mizutani, A. C. Cotleur et al., Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice, PLoS One, vol.5, p.13693, 2010.

I. S. Zeelenberg, W. W. Van-maren, A. Boissonnas, M. A. Van-hout-kuijer, D. Brok et al., Antigen localization controls T cell-mediated tumor immunity, J Immunol, vol.187, pp.1281-1289, 2011.

A. Boissonnas, A. Scholer-dahirel, V. Simon-blancal, L. Pace, F. Valet et al., Foxp3þ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes, Immunity, vol.32, pp.266-78, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00553080

A. Boissonnas, F. Licata, L. Poupel, J. S. Fetler, L. Krumeich et al., CD8þ tumor-infiltrating T cells are trapped in the tumor-dendritic cell network, Neoplasia, vol.15, pp.85-94, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01586881

L. B. Ford, V. Cerovic, S. W. Milling, G. J. Graham, C. A. Hansell et al., Characterization of conventional and atypical receptors for the chemokine CCL2 on mouse leukocytes, J Immunol, vol.193, pp.400-411, 2014.

S. Deaglio, K. M. Dwyer, W. Gao, D. Friedman, A. Usheva et al., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression, J Exp Med, vol.204, pp.1257-65, 2007.

M. T. Madondo, M. Quinn, and M. Plebanski, Low dose cyclophosphamide: mechanisms of T cell modulation, Cancer Treat Rev, vol.42, pp.3-9, 2016.

F. Ghiringhelli, C. Menard, P. E. Puig, S. Ladoire, S. Roux et al., Metronomic cyclophosphamide regimen selectively depletes CD4þCD25þ regulatory T cells and restores T and NK effector functions in end stage cancer patients, Cancer Immunol Immunother, vol.56, pp.641-649, 2007.

C. E. Brown, R. P. Vishwanath, B. Aguilar, R. Starr, J. Najbauer et al., Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells, J Immunol, vol.179, pp.3332-3373, 2007.

Z. G. Fridlender, G. Buchlis, V. Kapoor, G. Cheng, J. Sun et al., CCL2 blockade augments cancer immunotherapy, Cancer Res, vol.70, pp.109-127, 2010.

C. T. Guy, R. D. Cardiff, and W. J. Muller, Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease, Mol Cell Biol, vol.12, pp.954-61, 1992.

P. D. Bos, G. Plitas, D. Rudra, S. Y. Lee, and A. Y. Rudensky, Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy, J Exp Med, vol.210, pp.2435-66, 2013.

S. Drennan, N. D. Stafford, J. Greenman, and V. L. Green, Increased frequency and suppressive activity of CD127(low/À) regulatory T cells in the peripheral circulation of patients with head and neck squamous cell carcinoma are associated with advanced stage and nodal involvement, Immunology, vol.140, pp.335-378, 2013.

K. P. Lim, N. A. Chun, S. M. Ismail, M. T. Abraham, M. N. Yusoff et al., CD4þCD25hiCD127low regulatory T cells are increased in oral squamous cell carcinoma patients, PLoS One, vol.9, p.103975, 2014.

A. K. Schott, R. Pries, and B. Wollenberg, Permanent up-regulation of regulatory Tlymphocytes in patients with head and neck cancer, Int J Mol Med, vol.26, pp.67-75, 2010.

D. T. Le and E. M. Jaffee, Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective, Cancer Res, vol.72, pp.3439-3483, 2012.

M. E. Lutsiak, R. T. Semnani, D. Pascalis, R. Kashmiri, S. V. Schlom et al., Inhibition of CD4(þ)25þ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide, Blood, vol.105, pp.2862-2870, 2005.

X. Chen, J. J. Subleski, H. Kopf, O. M. Howard, D. N. Mannel et al., Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4þCD25þFoxP3þ T regulatory cells: applicability to tumorinfiltrating T regulatory cells, J Immunol, vol.180, pp.6467-71, 2008.

R. G. Van-der-most, A. J. Currie, S. Mahendran, A. Prosser, A. Darabi et al., Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy, Cancer Immunol Immunother, vol.58, pp.1219-1247, 2009.

J. Zhao, Y. Cao, Z. Lei, Z. Yang, B. Zhang et al., Selective depletion of CD4þCD25þFoxp3þ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels, Cancer Res, vol.70, pp.4850-4858, 2010.

. Peck, Lors de la seconde infection, l'expression des transcrits d'iNOS, IL-10, IL-6 et CCL2 est globalement augmentée dans les poumons. Cependant, les souris septiques montrent une plus faible augmentation de l'expression d'iNOS et de d'IL-6. Ces molécules qui sont notamment produites par les Mo et les macrophages, après leur stimulation par le LPS, Cancer Research, vol.76, issue.22, 2004.

;. Ainsi and . Yang, Le rôle toxique direct sur les bactéries du NO est connu depuis de nombreuses années (MacMicking et al., 1997) et l'expression de iNOS par les Mo et les mDC est associée à une augmentation de la mort bactérienne, 2003.

, Dans un premier temps, nous avons pu mettre en évidence que l'expression des marqueurs d'activation ou de costimulation (activateurs ou inhibiteurs) était spécifiquement augmentée sur les Mo infiltrés chez les souris Sham et CLP. Cependant, les Mo Ly6C high des souris septiques restimulés par la seconde infection ne sont pas capables d'atteindre les mêmes niveaux d'expression que les souris Sham pour les marqueurs CMH-II, CD80, CD86 et PDL1. Wolk et al ont montré que la diminution de l'expression du CD86 et du CMH-II sur les Mo cultivés en présence d'endotoxine (LPS) limitait la capacité à, Caractérisation phénotypique des Mo La caractérisation phénotypique des Mo infiltrés et vasculaires du poumon après la seconde infection a montré des différences majeures, 2000.

. De-façon and . Boomer, nous avons identifié une diminution de l'expression du PDL1 sur les Mo septiques après la seconde infection. Nous n'avons pas observé de différence d'expression du PD1 sur les lymphocytes T CD4 + , CD8 + et sur les cellules B Bibliographie World Health Assembly et World Health Organisation, 2011.

, Statistiques sanitaires mondiales

M. N. Ajuebor, R. J. Flower, R. Hannon, M. Christie, K. Bowers et al., Endogenous monocyte chemoattractant protein-1 recruits monocytes in the zymosan peritonitis model, J. Leukoc. Biol, vol.63, pp.108-116, 1998.

B. Almand, J. I. Clark, E. Nikitina, J. Van-beynen, N. R. English et al., Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer, J. Immunol. Baltim. Md, vol.166, pp.678-689, 1950.

J. N. Alves, K. M. Pires, M. Lanzetti, M. V. Barroso, C. F. Benjamim et al., Critical role for CCR2 and HMGB1 in induction of experimental endotoxic shock, Arch. Biochem. Biophys, vol.537, pp.72-81, 2013.

K. G. Anderson, K. Mayer-barber, H. Sung, L. Beura, B. R. James et al., Intravascular staining for discrimination of vascular and tissue leukocytes, Nat. Protoc, vol.9, pp.209-222, 2014.

J. C. Andreu-ballester, C. Tormo-calandín, C. Garcia-ballesteros, J. Pérez-griera, V. Amigó et al., Association of ?? T Cells with Disease Severity and Mortality in Septic Patients, Clin. Vaccine Immunol, vol.20, pp.738-746, 2013.

D. C. Angus, W. T. Linde-zwirble, J. Lidicker, G. Clermont, J. Carcillo et al., Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care, Crit. Care Med, vol.29, pp.1303-1310, 2001.

L. R. Antonelli, A. Gigliotti-rothfuchs, R. Gonçalves, E. Roffê, A. W. Cheever et al., Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population, J. Clin. Invest, vol.120, pp.1674-1682, 2010.

L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J. Exp. Med, vol.204, pp.1057-1069, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00136917

L. Arnold, H. Perrin, C. B. De-chanville, M. Saclier, P. Hermand et al., CX3CR1 deficiency promotes muscle repair and regeneration by enhancing macrophage ApoE production, Nat. Commun, vol.6, p.8972, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01514445

C. Auffray, D. Fogg, M. Garfa, G. Elain, O. Join-lambert et al., Monitoring of Blood Vessels and Tissues by a Population of Monocytes with Patrolling Behavior, Science, vol.317, pp.666-670, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00337698

C. Auffray, M. H. Sieweke, and F. Geissmann, Blood Monocytes: Development, Heterogeneity, and Relationship with Dendritic Cells, Annu. Rev. Immunol, vol.27, pp.669-692, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407757

B. W. Bardoel, E. F. Kenny, G. Sollberger, and A. Zychlinsky, The balancing act of neutrophils, Cell Host Microbe, vol.15, pp.526-536, 2014.

J. F. Bazan, K. B. Bacon, G. Hardiman, W. Wang, K. Soo et al., A new class of membrane-bound chemokine with a CX3C motif, Nature, vol.385, pp.640-644, 1997.

G. Bellingan, Inflammatory cell activation in sepsis, Br. Med. Bull, vol.55, pp.12-29, 1999.

C. F. Benjamim, Reversal of long-term sepsis-induced immunosuppression by dendritic cells, Blood, vol.105, pp.3588-3595, 2005.

G. R. Bernard, J. Vincent, P. Laterre, S. P. Larosa, J. Dhainaut et al., Efficacy and Safety of Recombinant Human Activated Protein C for Severe Sepsis, N. Engl. J. Med, vol.344, pp.699-709, 2001.

S. K. Biswas and E. Lopez-collazo, Endotoxin tolerance: new mechanisms, molecules and clinical significance, Trends Immunol, vol.30, pp.475-487, 2009.

V. Bjerkeli, J. K. Damas, B. Fevang, J. C. Holter, P. Aukrust et al., Increased expression of fractalkine (CX3CL1) and its receptor, CX3CR1, in Wegener's granulomatosis possible role in vascular inflammation, Rheumatology, vol.46, pp.1422-1427, 2007.

K. Blease, B. Mehrad, T. J. Standiford, N. W. Lukacs, J. Gosling et al., Enhanced pulmonary allergic responses to Aspergillus in CCR2-/-mice, J. Immunol. Baltim. Md, vol.165, pp.2603-2611, 1950.

L. Bo, F. Wang, J. Zhu, J. Li, and X. Deng, Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis, Crit. Care, vol.15, p.58, 2011.

R. C. Bone, R. A. Balk, F. B. Cerra, R. P. Dellinger, A. M. Fein et al., Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis, Chest, vol.101, pp.1644-1655, 1992.

R. C. Bone, C. J. Grodzin, and R. A. Balk, Sepsis: A New Hypothesis for Pathogenesis of the Disease Process, vol.112, pp.235-243, 1997.

J. S. Boomer, K. To, K. C. Chang, O. Takasu, D. F. Osborne et al., Immunosuppression in Patients Who Die of Sepsis and Multiple Organ Failure, JAMA, vol.306, p.2594, 2011.

M. Bosmann, N. F. Russkamp, V. R. Patel, F. S. Zetoune, J. V. Sarma et al., The Outcome of Polymicrobial Sepsis Is Independent of, Shock, vol.36, pp.396-401, 2011.

G. Bouma, P. J. Ancliff, A. J. Thrasher, and S. O. Burns, Recent advances in the understanding of genetic defects of neutrophil number and function, Br. J. Haematol, vol.151, pp.312-326, 2010.

D. Brealey, M. Brand, I. Hargreaves, S. Heales, J. Land et al., Association between mitochondrial dysfunction and severity and outcome of septic shock, The Lancet, vol.360, pp.219-223, 2002.

V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann et al., Neutrophil extracellular traps kill bacteria, Science, vol.303, pp.1532-1535, 2004.

K. A. Brown, S. D. Brain, J. D. Pearson, J. D. Edgeworth, S. M. Lewis et al., Neutrophils in development of multiple organ failure in sepsis, Lancet Lond. Engl, vol.368, pp.157-169, 2006.

H. E. Broxmeyer, Regulation of Hematopoiesis by Chemokine Family Members, Int. J. Hematol, vol.74, pp.9-17, 2001.

H. E. Broxmeyer, L. Kohli, C. H. Kim, Y. Lee, C. Mantel et al., Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and G(alpha)i proteins and enhances engraftment of competitive, repopulating stem cells, J. Leukoc. Biol, vol.73, pp.630-638, 2003.

M. K. Brunialti, P. S. Martins, H. Barbosa-de-carvalho, F. R. Machado, L. M. Barbosa et al., TLR2, TLR4, CD14, CD11B, and CD11C expressions on monocytes surface and cytokine production in patients with sepsis, severe sepsis, and septic shock, Shock Augusta Ga, vol.25, pp.351-357, 2006.

M. J. Butte, M. E. Keir, T. B. Phamduy, A. H. Sharpe, and G. J. Freeman, , 2007.

J. Cabrera-perez, S. A. Condotta, V. P. Badovinac, and T. S. Griffith, Impact of sepsis on CD4 T cell immunity, J. Leukoc. Biol, vol.96, pp.767-777, 2014.

L. M. Carlin, E. G. Stamatiades, C. Auffray, R. N. Hanna, L. Glover et al., Nr4a1-Dependent Ly6Clow Monocytes Monitor Endothelial Cells and Orchestrate Their Disposal, Cell, vol.153, pp.362-375, 2013.

J. Cavaillon and M. Adib-conquy, Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis, Crit. Care Lond. Engl, vol.10, p.233, 2006.

K. Chang, C. Svabek, C. Vazquez-guillamet, B. Sato, D. Rasche et al., Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis, Crit. Care Lond. Engl, vol.18, p.3, 2014.

K. C. Chang, C. Burnham, S. M. Compton, D. P. Rasche, R. Mazuski et al., Blockade ofthe negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis, Crit. Care, vol.17, p.85, 2013.

H. Chaudhry, J. Zhou, Y. Zhong, A. , and M. M. , , 2015.

Y. Chen, S. R. Green, J. Ho, A. Li, F. Almazan et al., The mouse CCR2 gene is regulated by two promoters that are responsive to plasma cholesterol and peroxisome proliferator-activated receptor gamma ligands, Biochem. Biophys. Res. Commun, vol.332, pp.188-193, 2005.

A. Chiba and S. Miyake, Basic techniques for studies of iNKT cells and MAIT cells, Methods Mol. Biol. Clifton NJ, vol.1142, pp.75-84, 2014.

A. Chiba, R. Tajima, C. Tomi, Y. Miyazaki, T. Yamamura et al., , 2012.

, Mucosal-associated invariant T cells promote inflammation and exacerbate disease in murine models of arthritis, Arthritis Rheum, vol.64, pp.153-161

D. A. Chistiakov, A. V. Grechko, V. A. Myasoedova, A. A. Melnichenko, and A. N. Orekhov, The role of monocytosis and neutrophilia in atherosclerosis, J. Cell. Mol. Med, vol.22, pp.1366-1382, 2018.

E. L. Chiswick, J. R. Mella, J. Bernardo, and D. G. Remick, Acute-Phase Deaths from Murine Polymicrobial Sepsis Are Characterized by Innate Immune Suppression Rather Than Exhaustion, J. Immunol, vol.195, pp.3793-3802, 2015.

B. G. Chousterman, A. Boissonnas, L. Poupel, C. Baudesson-de-chanville, J. Adam et al., , 2016.

, Ly6Chigh Monocytes Protect against Kidney Damage during Sepsis via a CX3CR1-Dependent Adhesion Mechanism, J. Am. Soc. Nephrol, vol.27, pp.792-803

W. Chua, S. M. Truscott, C. S. Eickhoff, A. Blazevic, D. F. Hoft et al., Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection, Infect. Immun, vol.80, pp.3256-3267, 2012.

C. Chung, L. Watkins, A. Funches, J. Lomas-neira, W. G. Cioffi et al., Deficiency of gammadelta T lymphocytes contributes to mortality and immunosuppression in sepsis, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.291, pp.1338-1343, 2006.

S. R. Clark, A. C. Ma, S. A. Tavener, B. Mcdonald, Z. Goodarzi et al., Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood, Nat. Med, vol.13, pp.463-469, 2007.

J. Cohen, The immunopathogenesis of sepsis, vol.420, p.7, 2002.

J. Cohen, P. Cristofaro, J. Carlet, O. , and S. , New method of classifying infections in critically ill patients*: Crit, Care Med, vol.32, pp.1510-1526, 2004.

J. F. Colbert, R. J. Traystman, S. N. Poisson, P. S. Herson, and A. A. Ginde, Sex-Related Differences in the Risk of Hospital-Acquired Sepsis and Pneumonia Post Acute Ischemic Stroke, J. Stroke Cerebrovasc. Dis, vol.25, pp.2399-2404, 2016.

C. Combadière, S. Potteaux, J. Gao, B. Esposito, S. Casanova et al., Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice, Circulation, vol.107, pp.1009-1016, 2003.

J. W. Conlan and R. J. North, Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody, J. Exp. Med, vol.179, pp.259-268, 1994.

R. I. Connor, L. Shen, and M. W. Fanger, Evaluation of the antibody-dependent cytotoxic capabilities of individual human monocytes. Role of Fc gamma RI and Fc gamma RII and the effects of cytokines at the single cell level, J. Immunol. Baltim. Md, vol.145, pp.1483-1489, 1950.

S. Cooper, C. Mantel, and H. E. Broxmeyer, Myelosuppressive effects in vivo with very low dosages of monomeric recombinant murine macrophage inflammatory protein-1 alpha, Exp. Hematol, vol.22, pp.186-193, 1994.

M. Cornberg, L. L. Kenney, A. T. Chen, S. N. Waggoner, S. Kim et al., Clonal Exhaustion as a Mechanism to Protect Against Severe Immunopathology and Death from an Overwhelming CD8 T Cell Response. Front, 2013.

V. S. Costa, T. C. Mattana, and M. E. Silva, Unregulated IL-23/IL-17 immune response in autoimmune diseases, Diabetes Res. Clin. Pract, vol.88, pp.222-226, 2010.

J. L. Croxford, S. Miyake, Y. Huang, M. Shimamura, Y. et al., , 2006.

, Invariant V(alpha)19i T cells regulate autoimmune inflammation, Nat. Immunol, vol.7, pp.987-994

X. Dai, G. R. Ryan, A. J. Hapel, M. G. Dominguez, R. G. Russell et al., Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects, Blood, vol.99, pp.111-120, 2002.

X. Delabranche, L. Stiel, F. Severac, A. Galoisy, L. Mauvieux et al., Evidence of Netosis in Septic Shock-Induced Disseminated Intravascular Coagulation: SHOCK 47, pp.313-317, 2017.

M. J. Delano, P. O. Scumpia, J. S. Weinstein, D. Coco, S. Nagaraj et al., MyD88-dependent expansion of an immature GR-1 + CD11b + population induces T cell suppression and Th2 polarization in sepsis, J. Exp. Med, vol.204, pp.1463-1474, 2007.

M. J. Delano, T. Thayer, S. Gabrilovich, K. M. Kelly-scumpia, R. D. Winfield et al., Sepsis Induces Early Alterations in Innate Immunity That Impact Mortality to Secondary Infection, J. Immunol, vol.186, pp.195-202, 2011.

D. Deng, X. Li, C. Liu, Z. Zhai, B. Li et al., Systematic investigation on the turning point of over-inflammation to immunosuppression in CLP mice model and their characteristics, Int. Immunopharmacol, vol.42, pp.49-58, 2017.

M. Deng, M. J. Scott, P. Loughran, G. Gibson, C. Sodhi et al., Lipopolysaccharide Clearance, Bacterial Clearance, and Systemic Inflammatory Responses Are Regulated by Cell Type-Specific Functions of TLR4 during Sepsis, J. Immunol, vol.190, pp.5152-5160, 2013.

S. L. Deshmane, S. Kremlev, S. Amini, and B. E. Sawaya, Monocyte Chemoattractant Protein-1 (MCP-1): An Overview, J. Interferon Cytokine Res, vol.29, pp.313-326, 2009.

C. M. Diaz-montero, M. L. Salem, M. I. Nishimura, E. Garrett-mayer, D. J. Cole et al., Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy, Cancer Immunol. Immunother. CII, vol.58, pp.49-59, 2009.

F. Dieli, M. Troye-blomberg, J. Ivanyi, J. J. Fournié, A. M. Krensky et al., Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes, J. Infect. Dis, vol.184, pp.1082-1085, 2001.

T. A. Dietlin, F. M. Hofman, B. T. Lund, W. Gilmore, S. A. Stohlman et al., Mycobacteria-induced Gr-1+ subsets from distinct myeloid lineages have opposite effects on T cell expansion, J. Leukoc. Biol, vol.81, pp.1205-1212, 2007.

D. J. Dries, G. J. Jurkovich, R. V. Maier, T. P. Clemmer, S. N. Struve et al., Effect of interferon gamma on infection-related death in patients with severe injuries. A randomized, double-blind, placebo-controlled trial, Arch. Surg. Chic. Ill, vol.129, pp.1031-1041, 1960.

G. Drifte, I. Dunn-siegrist, P. Tissières, and J. Pugin, Innate Immune Functions of Immature Neutrophils in Patients With Sepsis and Severe Systemic Inflammatory Response Syndrome*, Crit. Care Med, vol.41, pp.820-832, 2013.

I. R. Dunay, A. Fuchs, and L. D. Sibley, Inflammatory Monocytes but Not Neutrophils Are Necessary To Control Infection with Toxoplasma gondii in Mice, Infect. Immun, vol.78, pp.1564-1570, 2010.

A. Dunne, Inflammasome activation: from inflammatory disease to infection: Figure 1, Biochem. Soc. Trans, vol.39, pp.669-673, 2011.

S. F. Van-eeden, E. Lawrence, Y. Sato, Y. Kitagawa, and J. C. Hogg, Neutrophils released from the bone marrow by granulocyte colony-stimulating factor sequester in lung microvessels but are slow to migrate, Eur. Respir. J, vol.15, pp.1079-1086, 2000.

P. A. Efron, A. Martins, D. Minnich, K. Tinsley, R. Ungaro et al., Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis, J. Immunol. Baltim. Md, vol.173, pp.3035-3043, 1950.

H. Ellman, Capillary permeability in septic patients, Crit. Care Med, vol.12, pp.629-633, 1984.

A. El-shazly, P. Berger, P. Girodet, O. Ousova, M. Fayon et al., Fraktalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma, J. Immunol. Baltim. Md, vol.176, pp.1860-1868, 1950.

D. Ermert, A. Zychlinsky, and C. Urban, Fungal and bacterial killing by neutrophils, Methods Mol. Biol. Clifton NJ, vol.470, pp.293-312, 2009.

A. M. Esper, M. Moss, C. A. Lewis, R. Nisbet, D. M. Mannino et al., The role of infection and comorbidity: Factors that influence disparities in sepsis, Crit. Care Med, vol.34, pp.2576-2582, 2006.

A. O. Etogo, J. Nunez, C. Y. Lin, T. E. Toliver-kinsky, and E. R. Sherwood, NK but not CD1-restricted NKT cells facilitate systemic inflammation during polymicrobial intra-abdominal sepsis, J. Immunol. Baltim. Md, vol.180, pp.6334-6345, 1950.

V. Faivre, A. C. Lukaszewicz, A. Alves, D. Charron, D. Payen et al., , 2012.

, Human Monocytes Differentiate into Dendritic Cells Subsets that Induce Anergic and Regulatory T Cells in Sepsis, PLoS ONE, vol.7, p.47209

E. A. Fallon, T. T. Chun, W. A. Young, C. Gray, A. Ayala et al., , 2017.

, Program Cell Death Receptor-1-Mediated Invariant Natural Killer T-Cell Control of Peritoneal Macrophage Modulates Survival in Neonatal Sepsis, Front. Immunol, vol.8

E. K. Fan, F. , and J. , Regulation of alveolar macrophage death in acute lung inflammation, Respir. Res, vol.19, p.50, 2018.

X. Fan, Z. Liu, H. Jin, J. Yan, and H. Liang, Alterations of Dendritic Cells in Sepsis: Featured Role in Immunoparalysis, BioMed Res. Int, pp.1-10, 2015.

H. Fang, W. Jiang, J. Cheng, Y. Lu, A. Liu et al., Balancing Innate Immunity and Inflammatory State via Modulation of Neutrophil Function: A Novel Strategy to Fight Sepsis, J. Immunol. Res, pp.1-8, 2015.

N. V. Ferreira-da-mota, M. K. Brunialti, S. S. Santos, F. R. Machado, M. Assunçao et al., Immunophenotyping of Monocytes During Human Sepsis Shows Impairment in Antigen Presentation: A Shift Toward Nonclassical Differentiation and Upregulation of Fc?Ri-Receptor, 2017.

M. A. Flierl, D. Rittirsch, H. Gao, L. M. Hoesel, B. A. Nadeau et al., Adverse functions of IL-17A in experimental sepsis, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.22, pp.2198-2205, 2008.

S. B. Flohé, H. Agrawal, D. Schmitz, M. Gertz, S. Flohé et al., Dendritic cells during polymicrobial sepsis rapidly mature but fail to initiate a protective Th1-type immune response, J. Leukoc. Biol, vol.79, pp.473-481, 2006.

S. L. Foster, D. C. Hargreaves, and R. Medzhitov, Gene-specific control of inflammation by TLR-induced chromatin modifications, Nature, vol.447, pp.972-978, 2007.

A. Freitas, J. C. Alves-filho, T. Victoni, T. Secher, H. P. Lemos et al., IL-17 receptor signaling is required to control polymicrobial sepsis, J. Immunol. Baltim. Md, vol.182, pp.7846-7854, 1950.
URL : https://hal.archives-ouvertes.fr/hal-00404905

T. Fumeaux, J. Dufour, S. Stern, and J. Pugin, Immune monitoring of patients with septic shock by measurement of intraleukocyte cytokines, Intensive Care Med, vol.30, pp.2028-2037, 2004.

D. I. Gabrilovich and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, Nat. Rev. Immunol, vol.9, pp.162-174, 2009.

D. F. Gaieski, J. M. Edwards, M. J. Kallan, and B. G. Carr, Benchmarking the Incidence and Mortality of Severe Sepsis in the United States*, Crit. Care Med, vol.41, pp.1167-1174, 2013.

H. Gao, S. K. Leaver, A. Burke-gaffney, and S. J. Finney, Severe sepsis and Tolllike receptors, Semin. Immunopathol, vol.30, pp.29-40, 2008.

A. Garland, K. Olafson, C. D. Ramsey, M. Yogendran, and R. Fransoo, Distinct determinants of long-term and short-term survival in critical illness, Intensive Care Med, vol.40, pp.1097-1105, 2014.

X. Ge, S. Fang, M. Zhou, J. Luo, J. Wei et al., , 2016.

, TLR4-dependent internalization of CX3CR1 aggravates sepsis-induced immunoparalysis, Am. J. Transl. Res, vol.8, p.5696

F. Geissmann, S. Jung, and D. R. Littman, Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties, Immunity, vol.19, pp.71-82, 2003.

T. Gerhardt and K. Ley, Monocyte trafficking across the vessel wall, Cardiovasc. Res, vol.107, pp.321-330, 2015.

R. E. Gerszten, E. A. Garcia-zepeda, Y. C. Lim, M. Yoshida, H. A. Ding et al., MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions, Nature, vol.398, pp.718-723, 1999.

S. Goda, T. Imai, O. Yoshie, O. Yoneda, H. Inoue et al., CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms, J. Immunol. Baltim. Md, vol.164, pp.4313-4320, 1950.

D. I. Godfrey, H. R. Macdonald, M. Kronenberg, M. J. Smyth, and L. Van-kaer, NKT cells: what's in a name?, Nat. Rev. Immunol, vol.4, pp.231-237, 2004.

C. A. Gogos, E. Drosou, H. P. Bassaris, and A. Skoutelis, Pro-versus antiinflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options, J. Infect. Dis, vol.181, pp.176-180, 2000.

C. A. Gogos, E. Drosou, H. P. Bassaris, and A. Skoutelis, Pro-versus Antiinflammatory Cytokine Profile in Patients with Severe Sepsis: A Marker for Prognosis and Future Therapeutic Options, vol.5, 2018.

M. C. Gold and D. M. Lewinsohn, Co-dependents: MR1-restricted MAIT cells and their antimicrobial function, Nat. Rev. Microbiol, vol.11, pp.14-19, 2013.

M. C. Gold, S. Cerri, S. Smyk-pearson, M. E. Cansler, T. M. Vogt et al., Human mucosal associated invariant T cells detect bacterially infected cells, PLoS Biol, vol.8, p.1000407, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00707307

R. N. Gomes, F. A. Bozza, R. T. Amâncio, A. M. Japiassú, R. C. Vianna et al., Exogenous platelet-activating factor acetylhydrolase reduces mortality in mice with systemic inflammatory response syndrome and sepsis, Shock Augusta Ga, vol.26, pp.41-49, 2006.

R. N. Gomes, M. G. Teixeira-cunha, R. T. Figueiredo, P. E. Almeida, S. C. Alves et al., Bacterial Clearance in Septic Mice is Modulated by MCP-1/CCL2 and Nitric Oxide: Shock 1, 2013.

J. H. Gong, L. G. Ratkay, J. D. Waterfield, C. , and I. , An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model, J. Exp. Med, vol.186, pp.131-137, 1997.

J. R. Grainger, E. A. Wohlfert, I. J. Fuss, N. Bouladoux, M. H. Askenase et al., Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection, Nat. Med, vol.19, pp.713-721, 2013.

J. W. Griffith, C. L. Sokol, and A. D. Luster, Chemokines and chemokine receptors: positioning cells for host defense and immunity, Annu. Rev. Immunol, vol.32, pp.659-702, 2014.

D. Grimaldi, S. Louis, F. Pène, G. Sirgo, C. Rousseau et al., Profound and persistent decrease of circulating dendritic cells is associated with ICU-acquired infection in patients with septic shock, Intensive Care Med, vol.37, pp.1438-1446, 2011.

D. Grimaldi, L. Le-bourhis, B. Sauneuf, A. Dechartres, C. Rousseau et al., Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections, Intensive Care Med, vol.40, pp.192-201, 2014.

B. Guidet, M. , and E. , Sex and severe sepsis, Crit. Care, vol.17, p.144, 2013.

C. Guignant, A. Lepape, X. Huang, H. Kherouf, L. Denis et al., Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients, Crit. Care, vol.15, p.99, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00698371

O. Guisset, M. Dilhuydy, R. Thiébaut, J. Lefèvre, F. Camou et al., Decrease in circulating dendritic cells predicts fatal outcome in septic shock, Intensive Care Med, vol.33, pp.148-152, 2007.

I. Gutcher and B. Becher, APC-derived cytokines and T cell polarization in autoimmune inflammation, J. Clin. Invest, vol.117, pp.1119-1127, 2007.

M. J. Hall, S. N. Williams, C. J. Defrances, and A. Golosinskiy, Inpatient care for septicemia or sepsis: a challenge for patients and hospitals, 2011.

U. Hallwirth, G. Pomberger, D. Zaknun, Z. Szepfalusi, E. Horcher et al., Monocyte phagocytosis as a reliable parameter for predicting early-onset sepsis in very low birthweight infants, Early Hum. Dev, vol.67, pp.1-9, 2002.

P. Hamon, P. Loyher, C. B. De-chanville, F. Licata, C. Combadière et al., CX3CR1-dependent endothelial margination modulates Ly6Chigh monocyte systemic deployment upon inflammation in mice, 2016.

R. N. Hanna, L. M. Carlin, H. G. Hubbeling, D. Nackiewicz, A. M. Green et al., The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C? monocytes, Nat. Immunol, vol.12, pp.778-785, 2011.

M. He, S. M. Moochhala, S. Adhikari, and M. Bhatia, Administration of exogenous fractalkine, a CX3C chemokine, is capable of modulating inflammatory response in cecal ligation and puncture-induced sepsis, Shock Augusta Ga, vol.31, pp.33-39, 2009.

X. He, Y. Qian, Z. Li, E. K. Fan, Y. Li et al., TLR4-Upregulated IL-1? and IL-1RI Promote Alveolar Macrophage Pyroptosis and Lung Inflammation through an, Autocrine Mechanism. Sci. Rep, vol.6, p.31663, 2016.

D. S. Heffernan, S. F. Monaghan, R. K. Thakkar, M. L. Tran, C. Chung et al., Inflammatory Mechanisms in Sepsis: Elevated Invariant Natural Killer T-Cell Numbers in Mouse and Their Modulatory Effect on Macrophage Function, Shock, vol.40, pp.122-128, 2013.

F. Hein, F. Massin, A. Cravoisy-popovic, D. Barraud, B. Levy et al., The relationship between CD4+CD25+CD127-regulatory T cells and inflammatory response and outcome during shock states, Crit. Care, vol.14, p.19, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00663909

E. Helk, H. Bernin, T. Ernst, H. Ittrich, T. Jacobs et al., TNF?-mediated liver destruction by Kupffer cells and Ly6Chi monocytes during Entamoeba histolytica infection, PLoS Pathog, vol.9, 2013.

J. Hettinger, D. M. Richards, J. Hansson, M. M. Barra, A. Joschko et al., Origin of monocytes and macrophages in a committed progenitor, Nat. Immunol, vol.14, pp.821-830, 2013.

L. M. Hoesel, T. A. Neff, S. B. Neff, J. G. Younger, E. W. Olle et al., Harmful and protective roles of neutrophils in sepsis, Shock Augusta Ga, vol.24, pp.40-47, 2005.

J. C. Hogg, F. Chu, S. Utokaparch, R. Woods, W. M. Elliott et al., The nature of small-airway obstruction in chronic obstructive pulmonary disease, N. Engl. J. Med, vol.350, pp.2645-2653, 2004.

W. Holtmeier and D. Kabelitz, gammadelta T cells link innate and adaptive immune responses, Chem. Immunol. Allergy, vol.86, pp.151-183, 2005.

R. S. Hotchkiss, G. Monneret, and D. Payen, Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy, Nat. Rev. Immunol, vol.13, pp.862-874, 2013.

R. S. Hotchkiss, G. Monneret, and D. Payen, Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach, Lancet Infect. Dis, vol.13, pp.260-268, 2013.

C. K. Hu, F. Venet, D. S. Heffernan, Y. L. Wang, B. Horner et al., The role of hepatic invariant NKT cells in systemic/local inflammation and mortality during polymicrobial septic shock, J. Immunol. Baltim. Md, vol.182, pp.2467-2475, 1950.

X. Huang, F. Venet, Y. L. Wang, A. Lepape, Z. Yuan et al., PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis, Proc. Natl. Acad. Sci, vol.106, pp.6303-6308, 2009.

X. Huang, Y. Chen, C. Chung, Z. Yuan, S. F. Monaghan et al., Identification of B7-H1 as a Novel Mediator of the Innate Immune/Proinflammatory Response as well as a Possible Myeloid Cell Prognostic Biomarker in Sepsis, J. Immunol, vol.192, pp.1091-1099, 2014.

G. B. Huffnagle, R. M. Strieter, T. J. Standiford, R. A. Mcdonald, M. D. Burdick et al., The role of monocyte chemotactic protein-1 (MCP-1) in the recruitment of monocytes and CD4+ T cells during a pulmonary Cryptococcus neoformans infection, J. Immunol. Baltim. Md, vol.155, pp.4790-4797, 1950.

M. Hynninen, V. Pettilä, O. Takkunen, R. Orko, S. Jansson et al., Predictive value of monocyte histocompatibility leukocyte antigen-DR expression and plasma interleukin-4 and -10 levels in critically ill patients with sepsis, Shock Augusta Ga, vol.20, pp.1-4, 2003.

N. Iijima, L. M. Mattei, and A. Iwasaki, Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.284-289, 2011.

S. Inoue, K. Suzuki, Y. Komori, Y. Morishita, K. Suzuki-utsunomiya et al., Persistent inflammation and T cell exhaustion in severe sepsis in the elderly, Crit. Care, vol.18, p.130, 2014.

Y. Ishida, T. Hayashi, T. Goto, A. Kimura, S. Akimoto et al., , 2008.

, Essential Involvement of CX3CR1-Mediated Signals in the Bactericidal Host Defense during Septic Peritonitis, J. Immunol, vol.181, pp.4208-4218

H. Ito, N. Koide, F. Hassan, S. Islam, G. Tumurkhuu et al., Lethal endotoxic shock using alphagalactosylceramide sensitization as a new experimental model of septic shock, Lab. Investig. J. Tech. Methods Pathol, vol.86, pp.254-261, 2006.

S. Ivanov, C. Paget, and F. Trottein, Role of Non-conventional T Lymphocytes in Respiratory Infections: The Case of the Pneumococcus, PLoS Pathog, vol.10, p.1004300, 2014.

H. Iwasaka and T. Noguchi, , 2004.

J. Nihon-rinsho, J. Clin. Med, vol.62, pp.2237-2243

B. L. Jaber and B. J. Pereira, Inflammatory mediators in sepsis: rationale for extracorporeal therapies?, Am. J. Kidney Dis, vol.28, pp.35-49, 1996.

C. Jakubzick, E. L. Gautier, S. L. Gibbings, D. K. Sojka, A. Schlitzer et al., Minimal Differentiation of Classical Monocytes as They Survey Steady-State Tissues and Transport Antigen to Lymph Nodes, Immunity, vol.39, pp.599-610, 2013.

C. A. Janeway, Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harb. Symp. Quant. Biol. 54 Pt, vol.1, pp.1-13, 1989.

S. Janssens and R. Beyaert, A universal role for MyD88 in TLR/IL-1R-mediated signaling, Trends Biochem. Sci, vol.27, pp.474-482, 2002.

B. Johnston, A. R. Burns, M. Suematsu, T. B. Issekutz, R. C. Woodman et al., Chronic inflammation upregulates chemokine receptors and induces neutrophil migration to monocyte chemoattractant protein-1, J. Clin. Invest, vol.103, pp.1269-1276, 1999.

R. N. Jones, Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am, 2010.

B. A. Jones, M. Beamer, A. , and S. , Fractalkine/CX3CL1: A Potential New Target for Inflammatory Diseases, vol.10, pp.263-270, 2010.

H. R. Jones, C. T. Robb, M. Perretti, and A. G. Rossi, The role of neutrophils in inflammation resolution, Semin. Immunol, vol.28, pp.137-145, 2016.

S. Jung, J. Aliberti, P. Graemmel, M. J. Sunshine, G. W. Kreutzberg et al., Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion, Mol. Cell. Biol, vol.20, pp.4106-4114, 2000.

D. Keh and C. L. Sprung, Use of corticosteroid therapy in patients with sepsis and septic shock: an evidence-based review, Crit. Care Med, vol.32, pp.527-533, 2004.

J. A. Kellum, L. Kong, M. P. Fink, L. A. Weissfeld, D. M. Yealy et al., Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study, Arch. Intern. Med, vol.167, pp.1655-1663, 2007.

J. A. Kempker and G. S. Martin, The Changing Epidemiology and Definitions of Sepsis, Clin. Chest Med, vol.37, pp.165-179, 2016.

A. D. Kennedy and F. R. Deleo, Neutrophil apoptosis and the resolution of infection, Immunol. Res, vol.43, pp.25-61, 2009.

M. M. Khan, W. Yang, M. Brenner, A. C. Bolognese, W. et al., Coldinducible RNA-binding protein (CIRP) causes sepsis-associated acute lung injury via induction of endoplasmic reticulum stress, Sci. Rep, vol.7, p.41363, 2017.

K. , E. A. Popova, L. Kwinn, L. Haynes, L. M. Jones et al., Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus, Nat. Immunol, vol.1, pp.398-401, 2000.

J. Kwiecinski, S. Rhost, L. Löfbom, M. Blomqvist, J. E. Månsson et al., Sulfatide attenuates experimental Staphylococcus aureus sepsis through a CD1d-dependent pathway, Infect. Immun, vol.81, pp.1114-1120, 2013.

S. Lambeck, M. Weber, F. A. Gonnert, R. Mrowka, and M. Bauer, Comparison of Sepsis-Induced Transcriptomic Changes in a Murine Model to Clinical Blood Samples Identifies Common Response Patterns, 2012.

V. I. Landoni, D. Martire-greco, N. Rodriguez-rodrigues, P. Chiarella, P. Schierloh et al., Immature myeloid Gr-1+ CD11b+ cells from lipopolysaccharide-immunosuppressed mice acquire inhibitory activity in the bone marrow and migrate to lymph nodes to exert their suppressive function, Clin. Sci, vol.130, pp.259-271, 2016.

E. Lazar-molnar, B. Chen, K. A. Sweeney, E. J. Wang, W. Liu et al., Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis, Proc. Natl. Acad. Sci, vol.107, pp.13402-13407, 2010.

L. Bourhis, L. Martin, E. Péguillet, I. Guihot, A. Froux et al., Antimicrobial activity of mucosal-associated invariant T cells, Nat. Immunol, vol.11, pp.701-708, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00550333

M. Lee, Y. Lee, J. Song, J. Lee, C. et al., Tissue-specific Role of CX 3 CR1 Expressing Immune Cells and Their Relationships with Human Disease, Immune Netw, 2018.

S. Lee, K. Nakahira, J. Dalli, I. I. Siempos, P. C. Norris et al., NLRP3 Inflammasome Deficiency Protects against Microbial Sepsis via Increased Lipoxin B4 Synthesis, Am. J. Respir. Crit. Care Med, vol.196, pp.713-726, 2017.

W. Lee, T. J. Moriarty, C. H. Wong, H. Zhou, R. M. Strieter et al., An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells, Nat. Immunol, vol.11, pp.295-302, 2010.

B. Lemaitre, E. Nicolas, L. Michaut, J. M. Reichhart, and J. A. Hoffmann, The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults, Cell, vol.86, pp.973-983, 1996.

N. Lerolle, D. Nochy, E. Guérot, P. Bruneval, J. Fagon et al., Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration, Intensive Care Med, vol.36, pp.471-478, 2010.

B. Leung and H. W. Harris, NKT Cells in Sepsis, Clin. Dev. Immunol, vol.2010, pp.1-10, 2010.

M. Levi and T. Van-der-poll, Two-Way Interactions Between Inflammation and Coagulation, Trends Cardiovasc. Med, vol.15, pp.254-259, 2005.

J. Li, Y. Zhang, J. Lou, J. Zhu, M. He et al., Neutralisation of peritoneal IL-17A markedly improves the prognosis of severe septic mice by decreasing neutrophil infiltration and proinflammatory cytokines, PloS One, vol.7, p.46506, 2012.

P. Li, H. Allen, S. Banerjee, S. Franklin, L. Herzog et al., Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock, Cell, vol.80, pp.401-411, 1995.

Z. Li, M. J. Scott, E. K. Fan, Y. Li, J. Liu et al., Tissue damage negatively regulates LPS-induced macrophage necroptosis, Cell Death Differ, vol.23, pp.1428-1447, 2016.

X. Liao, T. Feng, J. Zhang, X. Cao, Q. Wu et al., , 2017.

, Phenotypic Changes and Impaired Function of Peripheral ?? T Cells in Patients With Sepsis: SHOCK, vol.48, pp.321-328

C. X. Lima, D. G. Souza, F. A. Amaral, C. T. Fagundes, I. P. Rodrigues et al., Therapeutic Effects of Treatment with Anti-TLR2 and Anti-TLR4 Monoclonal Antibodies in Polymicrobial Sepsis, vol.10, 2015.

Y. M. Ling, M. H. Shaw, C. Ayala, I. Coppens, G. A. Taylor et al., Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages, J. Exp. Med, vol.203, pp.2063-2071, 2006.

M. Lipinska-gediga, Coagulopathy in sepsis -a new look at an old problem, Anestezjol. Intensywna Ter, vol.48, pp.352-359, 2016.

Y. Liu, Y. Jing, C. Zeng, C. Li, L. Xu et al., Scutellarin Suppresses NLRP3 Inflammasome Activation in Macrophages and Protects Mice against Bacterial Sepsis, Front. Pharmacol, vol.8, p.975, 2017.

A. R. Liuzzi, A. Kift-morgan, M. Lopez-anton, I. M. Friberg, J. Zhang et al., Unconventional Human T Cells Accumulate at the Site of Infection in Response to Microbial Ligands and Induce Local Tissue Remodeling, J. Immunol, vol.197, pp.2195-2207, 2016.

R. Lombard, E. Doz, F. Carreras, M. Epardaud, Y. Le-vern et al., IL-17RA in Non-Hematopoietic Cells Controls CXCL-1 and 5 Critical to Recruit Neutrophils to the Lung of Mycobacteria-Infected Mice during the Adaptive Immune Response, PloS One, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01274518

P. Loyher, J. Rochefort, C. Baudesson-de-chanville, P. Hamon, G. Lescaille et al., , p.2, 2016.

, Influences T Regulatory Cell Migration to Tumors and Serves as a Biomarker of Cyclophosphamide Sensitivity, Cancer Res, vol.76, pp.6483-6494

J. Macmicking, Q. Xie, N. , and C. , NITRIC OXIDE AND MACROPHAGE FUNCTION, Annu. Rev. Immunol, vol.15, pp.323-350, 1997.

D. J. Mahad and R. M. Ransohoff, The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), Semin. Immunol, vol.15, pp.23-32, 2003.

L. Marois, G. Paré, M. Vaillancourt, E. Rollet-labelle, and P. H. Naccache, , 2011.

, Fc?RIIIb Triggers Raft-dependent Calcium Influx in IgG-mediated Responses in Human Neutrophils, J. Biol. Chem, vol.286, pp.3509-3519

E. Martin, E. Treiner, L. Duban, L. Guerri, H. Laude et al., Stepwise Development of MAIT Cells in Mouse and Human, PLoS Biol, vol.7, p.1000054, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00707793

G. S. Martin, D. M. Mannino, S. Eaton, and M. Moss, The epidemiology of sepsis in the United States from, N. Engl. J. Med, vol.348, pp.1546-1554, 1979.

D. Martire-greco, V. I. Landoni, P. Chiarella, N. Rodriguez-rodrigues, P. Schierloh et al., all-trans -Retinoic acid improves immunocompetence in a murine model of lipopolysaccharide-induced immunosuppression, Clin. Sci, vol.126, pp.355-365, 2014.

P. Mathelier-fusade, F. Delers, and R. Engler, Interleukine-8. Immuno-Anal, Biol. Spéc, vol.5, pp.9-13, 1990.

J. L. Matsuda, T. Mallevaey, J. Scott-browne, and L. Gapin, CD1d-restricted iNKT cells, the "Swiss-Army knife" of the immune system, Curr. Opin. Immunol, vol.20, pp.358-368, 2008.

A. Matsushima, H. Ogura, K. Fujita, T. Koh, H. Tanaka et al., Early activation of gammadelta T lymphocytes in patients with severe systemic inflammatory response syndrome, Shock Augusta Ga, vol.22, pp.11-15, 2004.

U. A. Maus, K. Waelsch, W. A. Kuziel, T. Delbeck, M. Mack et al., Monocytes Are Potent Facilitators of Alveolar Neutrophil Emigration During Lung Inflammation: Role of the CCL2-CCR2 Axis, J. Immunol, vol.170, pp.3273-3278, 2003.

F. B. Mayr, S. Yende, A. , and D. C. , Epidemiology of severe sepsis, Virulence, vol.5, pp.4-11, 2014.

R. Maze, B. Sherry, B. S. Kwon, A. Cerami, and H. E. Broxmeyer, , 1992.

, Myelosuppressive effects in vivo of purified recombinant murine macrophage inflammatory protein-1 alpha, J. Immunol. Baltim. Md, vol.149, pp.1004-1009, 1950.

J. G. Mccomb, M. Ranganathan, X. H. Liu, J. M. Pilewski, P. Ray et al., CX3CL1 up-regulation is associated with recruitment of CX3CR1+ mononuclear phagocytes and T lymphocytes in the lungs during cigarette smokeinduced emphysema, Am. J. Pathol, vol.173, pp.949-961, 2008.

D. G. Mccormack, S. Mehta, K. Tyml, J. A. Scott, R. Potter et al., , 2000.

, Pulmonary Microvascular Changes during Sepsis: Evaluation Using Intravital Videomicroscopy, Microvasc. Res, vol.60, pp.131-140

F. W. Mcnab, M. P. Berry, C. M. Graham, S. A. Bloch, T. Oni et al., Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis: Immunity to infection, Eur. J. Immunol, vol.41, pp.1941-1947, 2011.

M. B. Mcpeak, D. Youssef, D. A. Williams, C. Pritchett, Z. Q. Yao et al., Myeloid Cell-Specific Knockout of NFI-A Improves Sepsis Survival, Infect. Immun, vol.85, 2017.

R. Medzhitov, P. Preston-hurlburt, and C. A. Janeway, A human homologue of the Drosophila Toll protein signals activation of adaptive immunity, Nature, vol.388, pp.394-397, 1997.

C. Meisel, J. C. Schefold, R. Pschowski, T. Baumann, K. Hetzger et al., Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a doubleblind, randomized, placebo-controlled multicenter trial, Am. J. Respir. Crit. Care Med, vol.180, pp.640-648, 2009.

A. Mencacci, C. Montagnoli, A. Bacci, E. Cenci, L. Pitzurra et al., CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis, J. Immunol. Baltim. Md, vol.169, pp.3180-3190, 1950.

S. Mera, D. Tatulescu, C. Cismaru, C. Bondor, A. Slavcovici et al., Multiplex cytokine profiling in patients with sepsis: SIMULTANEOUS ANALYSIS OF 17 CYTOKINES IN SEPSIS, APMIS, vol.119, pp.155-163, 2011.

G. Monneret, M. Finck, F. Venet, A. Debard, J. Bohé et al., The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration, Immunol. Lett, vol.95, pp.193-198, 2004.

G. Monneret, F. Venet, A. Pachot, and A. Lepape, Monitoring immune dysfunctions in the septic patient: a new skin for the old ceremony, Mol. Med. Camb. Mass, vol.14, pp.64-78, 2008.

G. Monneret, J. Demaret, M. Gossez, E. Reverdiau, F. Malergue et al., Novel Approach in Monocyte Intracellular TNF Measurement: Application to Sepsis-Induced Immune Alterations, SHOCK, vol.47, pp.318-322, 2017.

M. Moss, Epidemiology of sepsis: race, sex, and chronic alcohol abuse, Clin. Infect. Dis, vol.41, pp.490-497, 2005.

R. Mukherjee, P. Kanti-barman, P. Kumar-thatoi, R. Tripathy, B. Kumar-das et al., Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic, Lupus Erythematous. Sci. Rep, vol.5, 2015.

A. C. Muller-kobold, J. E. Tulleken, J. G. Zijlstra, W. Sluiter, J. Hermans et al., Leukocyte activation in sepsis; correlations with disease state and mortality, Intensive Care Med, vol.26, pp.883-892, 2000.

P. M. Murphy, M. Baggiolini, I. F. Charo, C. A. Hébert, R. Horuk et al., International union of pharmacology. XXII. Nomenclature for chemokine receptors, Pharmacol. Rev, vol.52, pp.145-176, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00399158

S. Nacira, F. Meziani, O. Dessebe, V. Cattan, S. Collin et al., Activated protein C improves lipopolysaccharide-induced cardiovascular dysfunction by decreasing tissular inflammation and oxidative stress*: Crit, Care Med, vol.37, pp.246-255, 2009.

M. Nahrendorf, F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger et al., The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J. Exp. Med, vol.204, pp.3037-3047, 2007.

M. Nalos, B. Santner-nanan, G. Parnell, B. Tang, A. S. Mclean et al., Immune effects of interferon gamma in persistent staphylococcal sepsis, Am. J. Respir. Crit. Care Med, vol.185, pp.110-112, 2012.

C. Nathan, Nitric oxide as a secretory product of mammalian cells, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.6, pp.3051-3064, 1992.

C. Nathan, Neutrophils and immunity: challenges and opportunities, Nat. Rev. Immunol, vol.6, pp.173-182, 2006.

G. Noel, Q. Wang, A. Osterburg, S. Schwemberger, L. James et al., A ribonucleotide reductase inhibitor reverses burninduced inflammatory defects, Shock Augusta Ga, vol.34, pp.535-544, 2010.

A. Nolan, M. Weiden, A. Kelly, Y. Hoshino, S. Hoshino et al., CD40 and CD80/86 Act Synergistically to Regulate Inflammation and Mortality in Polymicrobial Sepsis, Am. J. Respir. Crit. Care Med, vol.177, pp.301-308, 2008.

A. Nolan, H. Kobayashi, B. Naveed, A. Kelly, Y. Hoshino et al., The relative importance of blood monocytes and fixed macrophages to the expression of cell-mediated immunity to infection, J. Exp. Med, vol.4, pp.521-534, 1970.

K. Ogasawara, K. Takeda, W. Hashimoto, M. Satoh, R. Okuyama et al., Involvement of NK1+ T cells and their IFN-gamma production in the generalized Shwartzman reaction, J. Immunol. Baltim. Md, vol.160, pp.3522-3527, 1950.

M. Ogiku, H. Kono, M. Hara, M. Tsuchiya, and H. Fujii, Interleukin-17A plays a pivotal role in polymicrobial sepsis according to studies using IL-17A knockout mice, J. Surg. Res, vol.174, pp.142-149, 2012.

L. O&apos;neill, Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases, Curr. Opin. Pharmacol, vol.3, pp.396-403, 2003.

S. M. Opal and V. A. Depalo, Anti-inflammatory cytokines, Chest, vol.117, pp.1162-1172, 2000.

S. M. Opal, P. Laterre, B. Francois, S. P. Larosa, D. C. Angus et al., Effect of Eritoran, an Antagonist of MD2-TLR4, on Mortality in Patients With Severe Sepsis: The ACCESS Randomized Trial, JAMA, vol.309, p.1154, 2013.

G. P. Otto, M. Sossdorf, R. A. Claus, J. Rödel, K. Menge et al., The late phase of sepsis is characterized by an increased microbiological burden and death rate, Crit. Care Lond. Engl, vol.15, p.183, 2011.

D. A. Ovchinnikov, W. J. Van-zuylen, C. E. Debats, K. A. Alexander, S. Kellie et al., Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice, J. Leukoc. Biol, vol.83, pp.430-433, 2008.

A. Pachot, A. Lepape, S. Vey, J. Bienvenu, B. Mougin et al., Systemic transcriptional analysis in survivor and non-survivor septic shock patients: a preliminary study, Immunol. Lett, vol.106, pp.63-71, 2006.

A. Pachot, M. Cazalis, F. Venet, F. Turrel, C. Faudot et al., Decreased Expression of the Fractalkine Receptor CX3CR1 on Circulating Monocytes as New Feature of Sepsis-Induced Immunosuppression, J. Immunol, vol.180, pp.6421-6429, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00428195

R. T. Palframan, S. Jung, G. Cheng, W. Weninger, Y. Luo et al., Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues, J. Exp. Med, vol.194, pp.1361-1373, 2001.

B. Passlick, D. Flieger, and H. W. Ziegler-heitbrock, Identification and characterization of a novel monocyte subpopulation in human peripheral blood, Blood, vol.74, pp.2527-2534, 1989.

E. Pastille, S. Didovic, D. Brauckmann, M. Rani, H. Agrawal et al., Modulation of Dendritic Cell Differentiation in the Bone Marrow Mediates Sustained Immunosuppression after Polymicrobial Sepsis, J. Immunol, vol.186, pp.977-986, 2011.

A. Patel and P. Gruber, Severe infections in neutropenic patients, Curr. Opin. Crit. Care, vol.21, pp.586-592, 2015.

S. P. Patel and R. Kurzrock, PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy, Mol. Cancer Ther, vol.14, pp.847-856, 2015.

A. A. Patel, Y. Zhang, J. N. Fullerton, L. Boelen, A. Rongvaux et al., The fate and lifespan of human monocyte subsets in steady state and systemic inflammation, J. Exp. Med, vol.214, pp.1913-1923, 2017.

A. C. Patera, A. M. Drewry, K. Chang, E. R. Beiter, D. Osborne et al., , 2016.

, Frontline Science: Defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1, J. Leukoc. Biol, vol.100, pp.1239-1254

N. Patil, Y. Guo, L. Luan, and E. Sherwood, Targeting Immune Cell Checkpoints during Sepsis, Int. J. Mol. Sci, vol.18, p.2413, 2017.

H. A. Paula-neto, J. C. Alves-filho, F. O. Souto, F. Spiller, R. S. Amêndola et al., Inhibition of guanylyl cyclase restores neutrophil migration and maintains bactericidal activity increasing survival in sepsis, Shock Augusta Ga, vol.35, pp.17-27, 2011.

A. Pavon, C. Binquet, F. Kara, O. Martinet, F. Ganster et al., Profile of the Risk of Death After Septic Shock in the Present Era: An Epidemiologic Study, Crit. Care Med, vol.41, pp.2600-2609, 2013.

O. M. Peck, D. L. Williams, K. F. Breuel, J. H. Kalbfleisch, H. Fan et al., Differential regulation of cytokine and chemokine production in lipopolysaccharide-induced tolerance and priming, Cytokine, vol.26, pp.202-208, 2004.

F. Pène, D. Grimaldi, B. Zuber, B. Sauneuf, C. Rousseau et al., Toll-Like Receptor 2 Deficiency Increases Resistance to Pseudomonas aeruginosa Pneumonia in the Setting of Sepsis-Induced Immune Dysfunction, J. Infect. Dis, vol.206, pp.932-942, 2012.

W. Peters, J. G. Cyster, M. Mack, D. Schlöndorff, A. J. Wolf et al., CCR2-dependent trafficking of F4/80dim macrophages and CD11cdim/intermediate dendritic cells is crucial for T cell recruitment to lungs infected with Mycobacterium tuberculosis, J. Immunol. Baltim. Md, vol.172, pp.7647-7653, 1950.

H. Poehlmann, J. C. Schefold, H. Zuckermann-becker, H. Volk, and C. Meisel, Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis, Crit. Care, vol.13, p.119, 2009.

L. Poupel, A. Boissonnas, P. Hermand, K. Dorgham, E. Guyon et al., Pharmacological inhibition of the chemokine receptor, CX3CR1, reduces atherosclerosis in mice, Arterioscler. Thromb. Vasc. Biol, vol.33, pp.2297-2305, 2013.

H. C. Prescott, J. J. Osterholzer, K. M. Langa, D. C. Angus, and T. J. Iwashyna, Late mortality after sepsis: propensity matched cohort study, BMJ i2375, 2016.

S. A. Price, D. A. Spain, M. A. Wilson, P. D. Harris, and R. N. Garrison, Subacute Sepsis Impairs Vascular Smooth Muscle Contractile Machinery and Alters Vasoconstrictor and Dilator Mechanisms, J. Surg. Res, vol.83, pp.75-80, 1999.

X. Qiang, W. Yang, R. Wu, M. Zhou, A. Jacob et al., Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis, Nat. Med, vol.19, pp.1489-1495, 2013.

G. Qin, H. Mao, J. Zheng, S. F. Sia, Y. Liu et al., Phosphoantigen-expanded human gammadelta T cells display potent cytotoxicity against monocyte-derived macrophages infected with human and avian influenza viruses, J. Infect. Dis, vol.200, pp.858-865, 2009.

A. A. Quartin, R. M. Schein, D. H. Kett, and P. N. Peduzzi, Magnitude and duration of the effect of sepsis on survival. Department of Veterans Affairs Systemic Sepsis Cooperative Studies Group, JAMA, vol.277, pp.1058-1063, 1997.

J. Quenot, C. Binquet, F. Kara, O. Martinet, F. Ganster et al., The epidemiology of septic shock in French intensive care units: the prospective multicenter cohort EPISS study, Crit. Care, vol.17, p.65, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00873494

J. P. Quenot, A. Pavon, I. Fournel, S. D. Barbar, and R. Bruyère, Le choc septique de l'adulte en France : vingt ans de données épidémiologiques, Réanimation, vol.24, pp.303-309, 2015.

M. S. Rangel-frausto, The epidemiology of bacterial sepsis, Infect. Dis. Clin. North Am, vol.13, pp.299-312, 1999.

C. Raspé, K. Höcherl, S. Rath, C. Sauvant, and M. Bucher, NF-?B-mediated inverse regulation of fractalkine and CX3CR1 during CLP-induced sepsis, Cytokine, vol.61, pp.97-103, 2013.

D. Reim, K. Westenfelder, S. Kaiser-moore, S. Schlautkötter, B. Holzmann et al., Role of T cells for cytokine production and outcome in a model of acute septic peritonitis, Shock Augusta Ga, vol.31, pp.245-250, 2009.

J. Rello, J. A. Paiva, J. Baraibar, F. Barcenilla, M. Bodi et al., International Conference for the Development of Consensus on the Diagnosis and Treatment of Ventilator-associated Pneumonia, Chest, vol.120, pp.955-970, 2001.

A. Rhodes, L. E. Evans, W. Alhazzani, M. M. Levy, M. Antonelli et al., Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock, Crit. Care Med, vol.45, pp.486-552, 2017.

T. W. Rice, A. P. Wheeler, G. R. Bernard, J. Vincent, D. C. Angus et al., A randomized, double-blind, placebocontrolled trial of TAK-242 for the treatment of severe sepsis*, Crit. Care Med, vol.38, pp.1685-1694, 2010.

F. Rios-santos, J. C. Alves-filho, F. O. Souto, F. Spiller, A. Freitas et al., Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthasederived nitric oxide, Am. J. Respir. Crit. Care Med, vol.175, pp.490-497, 2007.

P. M. Robben, M. Laregina, W. A. Kuziel, and L. D. Sibley, Recruitment of Gr-1 + monocytes is essential for control of acute toxoplasmosis, J. Exp. Med, vol.201, pp.1761-1769, 2005.

C. M. Robertson, E. E. Perrone, K. W. Mcconnell, W. M. Dunne, B. Boody et al., Neutrophil Depletion Causes a Fatal Defect in Murine Pulmonary Staphylococcus aureus clearance, J. Surg. Res, vol.150, pp.278-285, 2008.

H. N. Rode, N. V. Christou, O. Bubenik, R. Superina, J. Gordon et al., Lymphocyte function in anergic patients, Clin. Exp. Immunol, vol.47, pp.155-161, 1982.

M. P. Rodero, L. Poupel, P. Loyher, P. Hamon, F. Licata et al., Immune surveillance of the lung by migrating tissue monocytes, vol.4, p.7847, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01310477

N. Rodig, T. Ryan, J. A. Allen, H. Pang, N. Grabie et al., Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis, Eur. J. Immunol, vol.33, pp.3117-3126, 2003.

P. Roger, H. Hyvernat, J. Breittmayer, B. Dunais, J. Dellamonica et al., Enhanced T-cell apoptosis in human septic shock is associated with alteration of the costimulatory pathway, Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol, vol.28, pp.575-584, 2009.

S. Rosseau, P. Hammerl, U. Maus, H. D. Walmrath, H. Schütte et al., Phenotypic characterization of alveolar monocyte recruitment in acute respiratory distress syndrome, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.279, pp.25-35, 2000.

D. Rossi and A. Zlotnik, The biology of chemokines and their receptors, Annu. Rev. Immunol, vol.18, pp.217-242, 2000.

A. Rossi, S. Illouz, A. , and D. , Faut-il toujours utiliser les corticoïdes dans le choc septique ? Réanimation, vol.18, pp.309-322, 2009.

J. H. Rowe, T. M. Johanns, J. M. Ertelt, and S. S. Way, PDL-1 blockade impedes T cell expansion and protective immunity primed by attenuated Listeria monocytogenes, J. Immunol. Baltim. Md, vol.180, pp.7553-7557, 1950.

A. Rudiger, M. Stotz, and M. Singer, Cellular processes in sepsis, Swiss Med. Wkly, vol.138, pp.629-634, 2008.

G. R. Ryan, X. M. Dai, M. G. Dominguez, W. Tong, F. Chuan et al., Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis, Blood, vol.98, pp.74-84, 2001.

M. N. Saleh, S. J. Goldman, A. F. Lobuglio, A. C. Beall, H. Sabio et al., CD16+ monocytes in patients with cancer: spontaneous elevation and pharmacologic induction by recombinant human macrophage colony-stimulating factor, Blood, vol.85, pp.2910-2917, 1995.

F. Sallusto and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colonystimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, J. Exp. Med, vol.179, pp.1109-1118, 1994.

L. E. Sander, S. D. Sackett, U. Dierssen, N. Beraza, R. P. Linke et al., Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function, J. Exp. Med, vol.207, pp.1453-1464, 2010.

S. S. Santos, M. K. Brunialti, O. Rigato, F. R. Machado, E. Silva et al., Generation of nitric oxide and reactive oxygen species by neutrophils and monocytes from septic patients and association with outcomes, Shock Augusta Ga, vol.38, pp.18-23, 2012.

S. S. Santos, A. M. Carmo, M. K. Brunialti, F. R. Machado, L. C. Azevedo et al., Modulation of monocytes in septic patients: preserved phagocytic activity, increased ROS and NO generation, and decreased production of inflammatory cytokines, Intensive Care Med. Exp, vol.4, p.5, 2016.

A. Sarkar, M. W. Hall, M. Exline, J. Hart, N. Knatz et al., , 2006.

, Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18, Am. J. Respir. Crit. Care Med, vol.174, pp.1003-1010

B. Schaaf, K. Luitjens, T. Goldmann, T. Van-bremen, F. Sayk et al., Mortality in human sepsis is associated with downregulation of Toll-like receptor 2 and CD14 expression on blood monocytes, Diagn. Pathol, vol.4, p.12, 2009.

T. J. Schall and A. E. Proudfoot, Overcoming hurdles in developing successful drugs targeting chemokine receptors, Nat. Rev. Immunol, vol.11, pp.355-363, 2011.

J. C. Schefold, D. Hasper, H. D. Volk, and P. Reinke, Sepsis: time has come to focus on the later stages, Med. Hypotheses, vol.71, pp.203-208, 2008.

A. R. Schenkel, Z. Mamdouh, and W. A. Muller, Locomotion of monocytes on endothelium is a critical step during extravasation, Nat. Immunol, vol.5, pp.393-400, 2004.

R. W. Schrier, W. , and W. , Acute renal failure and sepsis, N. Engl. J. Med, vol.351, pp.159-169, 2004.

T. Secher, V. Vasseur, D. M. Poisson, J. A. Mitchell, F. Q. Cunha et al., Crucial role of TNF receptors 1 and 2 in the control of polymicrobial sepsis, J. Immunol. Baltim. Md, vol.182, pp.7855-7864, 1950.
URL : https://hal.archives-ouvertes.fr/hal-00404907

S. Seo, H. Jeong, S. Park, S. Lee, I. Choi et al., Blockade of endogenous B7-H1 suppresses antibacterial protection after primary Listeria monocytogenes infection, Immunology, vol.123, pp.90-99, 2008.

N. V. Serbina and E. G. Pamer, Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2, Nat. Immunol, vol.7, pp.311-317, 2006.

N. V. Serbina, T. P. Salazar-mather, C. A. Biron, W. A. Kuziel, and E. G. Pamer, , 2003.

, TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection, Immunity, vol.19, pp.59-70

N. V. Serbina, W. Kuziel, R. Flavell, S. Akira, B. Rollins et al., , 2003.

, Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection, Immunity, vol.19, pp.891-901

N. V. Serbina, T. Jia, T. M. Hohl, and E. G. Pamer, Monocyte-mediated defense against microbial pathogens, Annu. Rev. Immunol, vol.26, pp.421-452, 2008.

N. Serriari, M. Eoche, L. Lamotte, J. Lion, M. Fumery et al., Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases: MAIT cells in IBD, Clin. Exp. Immunol, vol.176, pp.266-274, 2014.

S. Shahrara, S. R. Pickens, A. M. Mandelin, W. J. Karpus, Q. Huang et al., IL-17-mediated monocyte migration occurs partially through CC chemokine ligand 2/monocyte chemoattractant protein-1 induction, J. Immunol. Baltim. Md, vol.184, pp.4479-4487, 1950.

I. N. Shalova, J. Y. Lim, M. Chittezhath, A. S. Zinkernagel, F. Beasley et al., Human Monocytes Undergo Functional Re-programming during Sepsis Mediated by Hypoxia-Inducible Factor-1?, Immunity, vol.42, pp.484-498, 2015.

B. Shao, Z. Xu, B. Han, D. Su, and C. Liu, NLRP3 inflammasome and its inhibitors: a review, vol.6, p.262, 2015.

A. D. Shaw, G. M. Vail, D. J. Haney, J. Xie, and M. D. Williams, Severe protein C deficiency is associated with organ dysfunction in patients with severe sepsis, J. Crit. Care, vol.26, pp.539-545, 2011.

E. R. Sherwood, V. T. Enoh, E. D. Murphey, and C. Y. Lin, Mice depleted of CD8+ T and NK cells are resistant to injury caused by cecal ligation and puncture, Lab. Investig. J. Tech. Methods Pathol, vol.84, pp.1655-1665, 2004.

C. Shi and E. G. Pamer, Monocyte recruitment during infection and inflammation, Nat. Rev. Immunol, vol.11, pp.762-774, 2011.

Y. Shindo, J. S. Mcdonough, K. C. Chang, M. Ramachandra, P. G. Sasikumar et al., Anti-PD-L1 peptide improves survival in sepsis, J. Surg. Res, vol.208, pp.33-39, 2017.

M. Shirozu, T. Nakano, J. Inazawa, K. Tashiro, H. Tada et al., Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene, Genomics, vol.28, pp.495-500, 1995.

E. Siddall, M. Khatri, and J. Radhakrishnan, Capillary leak syndrome: etiologies, pathophysiology, and management, Kidney Int, vol.92, pp.37-46, 2017.

S. C. Silva, G. L. Baggio-zappia, M. K. Brunialti, M. S. Assunçao, L. C. Azevedo et al., Evaluation of Toll-like, chemokine, and integrin receptors on monocytes and neutrophils from peripheral blood of septic patients and their correlation with clinical outcomes. Braz, J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas E Biol, vol.47, pp.384-393, 2014.

K. A. Simonsen, A. L. Anderson-berry, S. F. Delair, and H. D. Davies, Early-Onset Neonatal Sepsis, Clin. Microbiol. Rev, vol.27, pp.21-47, 2014.

M. Singer, C. S. Deutschman, C. W. Seymour, M. Shankar-hari, D. Annane et al., The Third International Consensus Definitions for Sepsis and Septic Shock, vol.315, p.801, 2016.

D. A. Solovjov, E. Pluskota, and E. F. Plow, Distinct roles for the alpha and beta subunits in the functions of integrin alphaMbeta2, J. Biol. Chem, vol.280, pp.1336-1345, 2005.

F. Sônego, J. C. Alves-filho, and F. Q. Cunha, Targeting neutrophils in sepsis, Expert Rev. Clin. Immunol, vol.10, pp.1019-1028, 2014.

F. O. Souto, J. C. Alves-filho, W. M. Turato, M. Auxiliadora-martins, A. Basile-filho et al., Essential Role of CCR2 in Neutrophil Tissue Infiltration and Multiple Organ Dysfunction in Sepsis, Am. J. Respir. Crit. Care Med, vol.183, pp.234-242, 2011.

F. Souza-fonseca-guimaraes, M. Parlato, C. Fitting, J. Cavaillon, and M. Adib-conquy, NK Cell Tolerance to TLR Agonists Mediated by Regulatory T Cells after Polymicrobial Sepsis, J. Immunol, vol.188, pp.5850-5858, 2012.

P. Souza-fonseca-guimaraes, F. Guimaraes, C. Natânia-de-souza-araujo, L. Maria-boldrini-leite, A. Cristina-senegaglia et al., , 2017.

, Natural Killer Cell Assessment in Peripheral Circulation and Bronchoalveolar Lavage Fluid of Patients with Severe Sepsis: A Case Control Study, Int. J. Mol. Sci, vol.18, p.616

F. Stephan, K. Yang, J. Tankovic, C. Soussy, G. Dhonneur et al., Impairment of polymorphonuclear neutrophil functions precedes nosocomial infections in critically ill patients, Crit. Care Med, vol.30, pp.315-322, 2002.

C. Sunderkötter, T. Nikolic, M. J. Dillon, N. Van-rooijen, M. Stehling et al., Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response, J. Immunol. Baltim. Md, vol.172, pp.4410-4417, 1950.

P. A. Szabo, R. V. Anantha, C. R. Shaler, J. K. Mccormick, and S. M. Haeryfar, , 2015.

C. , Cells in Sepsis. Front. Immunol, vol.6

F. Tacke, F. Ginhoux, C. Jakubzick, N. Van-rooijen, M. Merad et al., Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery, J. Exp. Med, vol.203, pp.583-597, 2006.

R. Taneja, A. P. Sharma, M. B. Hallett, G. P. Findlay, and M. R. Morris, IMMATURE CIRCULATING NEUTROPHILS IN SEPSIS HAVE IMPAIRED PHAGOCYTOSIS AND CALCIUM SIGNALING: Shock, vol.30, pp.618-622, 2008.

R. Tatura, M. Zeschnigk, W. Hansen, J. Steinmann, P. Goncalves-vidigal et al., Relevance of Foxp3 + regulatory T cells for early and late phases of murine sepsis, Immunology, vol.146, pp.144-156, 2015.

B. M. Tavares-murta, M. Zaparoli, R. B. Ferreira, M. L. Silva-vergara, B. Oliveira et al., Failure of neutrophil chemotactic function in septic patients*: Crit. Care Med, vol.30, pp.1056-1061, 2002.

J. T. Thomson, M. B. Brand, and P. Frufonteh, THE ROLE OF IL17-A IN THE SECOND HIT OF ACUTE PANCREATITIS. South Afr, J. Surg. Suid-Afr. Tydskr. Vir Chir, vol.55, p.51, 2017.

F. Tilloy, E. Treiner, S. H. Park, C. Garcia, F. Lemonnier et al., An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals, J. Exp. Med, vol.189, pp.1907-1921, 1999.

E. Treiner, L. Duban, S. Bahram, M. Radosavljevic, V. Wanner et al., Selection of evolutionarily conserved mucosalassociated invariant T cells by MR1, Nature, vol.422, pp.164-169, 2003.

F. Trottein and C. Paget, Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Front. Immunol, vol.9, 2018.

J. Tschöp, A. Martignoni, H. S. Goetzman, L. G. Choi, Q. Wang et al., Gammadelta T cells mitigate the organ injury and mortality of sepsis, J. Leukoc. Biol, vol.83, pp.581-588, 2008.

C. Tumer, H. Bilgin, B. Obay, H. Diken, M. Atmaca et al., Effect of nitric oxide on phagocytic activity of lipopolysaccharide-induced macrophages: Possible role of exogenous l-arginine, Cell Biol. Int, vol.31, pp.565-569, 2007.

A. Tyagi, A. K. Sethi, G. Girotra, and M. Mohta, The microcirculation in sepsis, Indian J. Anaesth, vol.53, pp.281-293, 2009.

J. Unsinger, M. Mcglynn, K. R. Kasten, A. S. Hoekzema, E. Watanabe et al., IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis, J. Immunol. Baltim. Md, vol.184, pp.3768-3779, 1950.

E. Van-coillie, J. Van-damme, and G. Opdenakker, The MCP/eotaxin subfamily of CC chemokines, Cytokine Growth Factor Rev, vol.10, pp.61-86, 1999.

P. Vantourout and A. Hayday, Six-of-the-best: unique contributions of ?? T cells to immunology, Nat. Rev. Immunol, vol.13, pp.88-100, 2013.

F. Venet, A. Pachot, A. Debard, J. Bohé, J. Bienvenu et al., Increased percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease of CD4+CD25-lymphocytes, Crit. Care Med, vol.32, pp.2329-2331, 2004.

F. Venet, J. Bohé, A. Debard, J. Bienvenu, A. Lepape et al., Both percentage of gammadelta T lymphocytes and CD3 expression are reduced during septic shock, Crit. Care Med, vol.33, pp.2836-2840, 2005.

J. Vincent, International Study of the Prevalence and Outcomes of Infection in Intensive Care Units, JAMA, vol.302, p.2323, 2009.

A. Viola and A. D. Luster, Chemokines and Their Receptors: Drug Targets in Immunity and Inflammation, Annu. Rev. Pharmacol. Toxicol, vol.48, pp.171-197, 2008.

J. Walter, S. Haller, C. Quinten, T. Kärki, B. Zacher et al., Healthcare-associated pneumonia in acute care hospitals in European Union/European Economic Area countries: an analysis of data from a point prevalence survey, Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull, vol.23, 2011.

J. Wang, J. Li, Y. Zhao, W. Yi, J. Bian et al., Up-regulation of Programmed Cell Death 1 Ligand 1 on Neutrophils May Be Involved in Sepsis-induced Immunosuppression: An Animal Study and a Prospective Case-control Study, Anesthesiology, vol.122, pp.852-863, 2015.

Y. Wang, O. Ö. Braun, S. Zhang, E. Norström, and H. Thorlacius, Monocytes regulate systemic coagulation and inflammation in abdominal sepsis, Am. J. Physiol.-Heart Circ. Physiol, vol.308, pp.540-547, 2015.

Z. Wang, J. H. Holthoff, K. A. Seely, E. Pathak, H. J. Spencer et al., Development of Oxidative Stress in the Peritubular Capillary Microenvironment Mediates Sepsis-Induced Renal Microcirculatory Failure and Acute Kidney Injury, Am. J. Pathol, vol.180, pp.505-516, 2012.

P. A. Ward, The dark side of C5a in sepsis, Nat. Rev. Immunol, vol.4, pp.133-142, 2004.

C. Weber, K. S. Weber, C. Klier, S. Gu, R. Wank et al., Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and T(H)1-like/CD45RO(+) T cells, Blood, vol.97, pp.1144-1146, 2001.

J. B. Weinberg, M. A. Misukonis, P. J. Shami, S. N. Mason, D. L. Sauls et al., Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages, Blood, vol.86, pp.1184-1195, 1995.

H. Wen, Y. Dou, C. M. Hogaboam, and S. L. Kunkel, Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response, Blood, vol.111, pp.1797-1804, 2008.

S. C. Wesselkamper, B. L. Eppert, G. T. Motz, G. W. Lau, D. J. Hassett et al., NKG2D is critical for NK cell activation in host defense against Pseudomonas aeruginosa respiratory infection, J. Immunol. Baltim. Md, vol.181, pp.5481-5489, 1950.

E. J. Wherry, T cell exhaustion, Nat. Immunol, vol.12, pp.492-499, 2011.

E. J. Wherry and M. Kurachi, Molecular and cellular insights into T cell exhaustion, Nat. Rev. Immunol, vol.15, pp.486-499, 2015.

G. E. White, E. Mcneill, K. M. Channon, and D. R. Greaves, Fractalkine promotes human monocyte survival via a reduction in oxidative stress, Arterioscler. Thromb. Vasc. Biol, vol.34, pp.2554-2562, 2014.

P. Wintermeyer, C. Cheng, S. Gehring, B. L. Hoffman, M. Holub et al., Invariant natural killer T cells suppress the neutrophil inflammatory response in a mouse model of cholestatic liver damage, Gastroenterology, vol.136, pp.1048-1059, 2009.

N. Wisnoski, C. Chung, Y. Chen, X. Huang, and A. Ayala, THE CONTRIBUTION OF CD4+ CD25+ T-REGULATORY-CELLS TO IMMUNE SUPPRESSION IN SEPSIS: Shock, vol.27, pp.251-257, 2007.

J. Witowski, K. Pawlaczyk, A. Breborowicz, A. Scheuren, M. Kuzlan-pawlaczyk et al., IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GRO alpha chemokine from mesothelial cells, J. Immunol. Baltim. Md, vol.165, pp.5814-5821, 1950.

K. Wolk, W. D. Döcke, V. Baehr, H. D. Volk, and R. Sabat, Impaired antigen presentation by human monocytes during endotoxin tolerance, Blood, vol.96, pp.218-223, 2000.

H. R. Wong, Genome-wide expression profiling in pediatric septic shock, Pediatr. Res, vol.73, pp.564-569, 2013.

D. Wu, T. Li, J. , and X. , Dendritic Cells in Sepsis: Pathological Alterations and Therapeutic Implications, J. Immunol. Res, vol.2017, pp.1-9, 2017.

H. Xiao, J. Siddiqui, and D. G. Remick, Mechanisms of Mortality in Early and Late Sepsis, Infect. Immun, vol.74, pp.5227-5235, 2006.

W. Xiao, M. N. Mindrinos, J. Seok, J. Cuschieri, A. G. Cuenca et al., A genomic storm in critically injured humans, J. Exp. Med, vol.208, pp.2581-2590, 2011.

Z. Xiao, C. Wilson, H. L. Robertson, D. J. Roberts, C. G. Ball et al., Inflammatory mediators in intra-abdominal sepsis or injury -a scoping review, Crit. Care, 2015.

F. Xiu, M. Stanojcic, V. Wang, P. Qi, and M. G. Jeschke, C-C Chemokine Receptor Type 2 Expression on Monocytes Before Sepsis Onset Is Higher Than That of Postsepsis in Septic Burned Patients: A New Predictor for Sepsis in Burned Injury, Ann. Surg, vol.264, pp.392-398, 2016.

M. Yang, C. Wang, S. Yang, C. Leu, S. Chen et al.,

, IL-6 ameliorates acute lung injury in influenza virus infection, Sci. Rep, vol.7, p.43829

Z. Yao, S. L. Painter, W. C. Fanslow, D. Ulrich, B. M. Macduff et al., Human IL-17: a novel cytokine derived from T cells, J. Immunol. Baltim. Md, vol.155, pp.5483-5486, 1950.

S. Yona, K. Kim, Y. Wolf, A. Mildner, D. Varol et al., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis, Immunity, vol.38, pp.79-91, 2013.

T. Yoshimura, N. Yuhki, S. K. Moore, E. Appella, M. I. Lerman et al., Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE, FEBS Lett, vol.244, pp.487-493, 1989.

J. Youn, S. Nagaraj, M. Collazo, and D. I. Gabrilovich, Subsets of myeloidderived suppressor cells in tumor-bearing mice, J. Immunol. Baltim. Md, vol.181, pp.5791-5802, 1950.

Y. Yuan, D. Yan, G. Han, G. Gu, and J. Ren, Complement C3 depletion links to the expansion of regulatory T cells and compromises T-cell immunity in human abdominal sepsis: a prospective pilot study, J. Crit. Care, vol.28, pp.1032-1038, 2013.

A. M. Zawada, K. S. Rogacev, B. Rotter, P. Winter, R. Marell et al., SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset, Blood, vol.118, pp.50-61, 2011.

S. Zeerleder, C. Hack, C. Caliezi, G. Vanmierlo, A. Eerenbergbelmer et al., Activated cytotoxic T cells and NK cells in severe sepsis and septic shock and their role in multiple organ dysfunction, Clin. Immunol, vol.116, pp.158-165, 2005.

N. Zhang, B. Schröppel, G. Lal, C. Jakubzick, X. Mao et al., Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response, Immunity, vol.30, pp.458-469, 2009.

Y. Zhang, Y. Zhou, J. Lou, J. Li, L. Bo et al., PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction, Crit. Care, vol.14, p.220, 2010.

Y. Zhao, L. Lin, Z. Xiao, M. Li, X. Wu et al., , 2018.

, Protective Role of ?? T Cells in Different Pathogen Infections and Its Potential Clinical Application, J. Immunol. Res, pp.1-15, 2018.

D. Zhou, Y. Zhu, M. Ouyang, M. Zhang, K. Tang et al., Knockout of Toll-like receptor 4 improves survival and cardiac function in a murine model of severe sepsis, Mol. Med. Rep, 2018.

H. Zhou, Y. Li, H. Gui, H. Zhao, M. Wu et al., Antagonism of Integrin CD11b Affords Protection against Endotoxin Shock and Polymicrobial Sepsis via Attenuation of HMGB1 Nucleocytoplasmic Translocation and Extracellular Release, J. Immunol. Baltim. Md, pp.1771-1780, 2018.

S. Zhou, G. Wang, and W. Zhang, Effect of TLR4/MyD88 signaling pathway on sepsis-associated acute respiratory distress syndrome in rats, via regulation of macrophage activation and inflammatory response, Exp. Ther. Med, 2018.

E. Zigmond, S. Samia-grinberg, M. Pasmanik-chor, E. Brazowski, O. Shibolet et al., Infiltrating Monocyte-Derived Macrophages and Resident Kupffer Cells Display Different Ontogeny and Functions in Acute Liver Injury, J. Immunol, vol.193, pp.344-353, 2014.

A. Zlotnik, Y. , and O. , Chemokines: a new classification system and their role in immunity, Immunity, vol.12, pp.121-127, 2000.

Q. Zou, W. Wen, and X. Zhang, Presepsin as a novel sepsis biomarker, World J. Emerg. Med, vol.5, pp.16-19, 2014.