D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learning algorithm for Boltzmann machines, Cogn Sci, vol.9, issue.1, pp.147-169, 1985.

K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, The swiss-model workspace: a web-based environment for protein structure homology modelling, Bioinformatics, vol.22, issue.2, pp.195-201, 2006.

S. Balakrishnan, H. Kamisetty, J. G. Carbonell, S. Lee, and C. J. Langmead, Learning generative models for protein fold families, Proteins, vol.79, issue.4, pp.1061-1078, 2011.

J. P. Barton, D. Leonardis, E. Coucke, A. Cocco, and S. , Ace: adaptive cluster expansion for maximum entropy graphical model inference, Bioinformatics, vol.32, issue.20, pp.3089-3097, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01528510

S. Cocco, C. Feinauer, M. Figliuzzi, R. Monasson, and M. Weigt, Inverse statistical physics of protein sequences: a key issues review, Rep Prog Phys, vol.81, p.3, 2017.

D. De-juan, F. Pazos, and A. Valencia, Emerging methods in protein coevolution, Nat Rev Genet, vol.14, issue.4, pp.249-261, 2013.

E. W. Dijkstra, A note on two problems in connexion with graphs, Numer Math, vol.1, issue.1, pp.269-271, 1959.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis: probabilistic models of proteins and nucleic acids, 1998.

S. R. Eddy, Profile Hidden-Markov models, Bioinformatics, vol.14, issue.9, pp.755-763, 1998.

M. Ekeberg, C. Lövkvist, Y. Lan, M. Weigt, and E. Aurell, Improved contact prediction in proteins: using pseudolikelihoods to infer potts models, Phys Rev E, vol.87, issue.1, p.12707, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01528418

R. D. Finn, A. Bateman, J. Clements, P. Coggill, R. Y. Eberhardt et al., Pfam: the protein families database, Nucleic Acids Res, vol.42, issue.D1, pp.222-230, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01294685

A. Haldane, W. F. Flynn, P. He, R. Vijayan, and R. M. Levy, Structural propensities of kinase family proteins from a potts model of residue covariation, Protein Sci, vol.25, issue.8, pp.1378-1384, 2016.

T. A. Hopf, C. P. Sch?-arfe, J. P. Rodrigues, A. G. Green, O. Kohlbacher et al., Sequence co-evolution gives 3d contacts and structures of protein complexes, vol.3, p.3430, 2014.

D. T. Jones, D. W. Buchan, D. Cozzetto, and M. Pontil, Psicov: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments, Bioinformatics, vol.28, issue.2, pp.184-190, 2012.

D. T. Jones, T. Singh, T. Kosciolek, and S. Tetchner, Metapsicov: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins, Bioinformatics, vol.31, issue.7, pp.999-1006, 2015.

R. M. Levy, A. Haldane, and W. F. Flynn, Potts Hamiltonian models of protein co-variation, free energy landscapes, and evolutionary fitness, Curr. Opin. Struct. Biol, vol.43, pp.55-62, 2017.

D. S. Marks, T. A. Hopf, and C. Sander, Protein structure prediction from sequence variation, Nat Biotechnol, vol.30, issue.11, pp.1072-1080, 2012.

L. Merchan and I. Nemenman, On the sufficiency of pairwise interactions in maximum entropy models of networks, J Stat Phys, vol.162, issue.5, pp.1294-1308, 2016.

T. Mora and W. Bialek, Are biological systems poised at criticality?, J Stat Phys, vol.144, issue.2, pp.268-302, 2011.

F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks et al., Direct-coupling analysis of residue coevolution captures native contacts across many protein families, Proc Natl Acad Sci, vol.108, issue.49, pp.1293-1301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01589010

J. Otwinowski and J. B. Plotkin, Inferring fitness landscapes by regression produces biased estimates of epistasis, Proc Natl Acad Sci, vol.111, issue.22, pp.2301-2309, 2014.

S. Ovchinnikov, H. Kamisetty, and D. Baker, Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information, Elife, vol.3, p.2030, 2014.

S. Ovchinnikov, H. Park, N. Varghese, P. Huang, G. A. Pavlopoulos et al., Protein structure determination using metagenome sequence data, Science, vol.355, issue.6322, pp.294-298, 2017.

K. A. Reynolds, W. P. Russ, M. Socolich, and R. Ranganathan, Evolutionbased design of proteins, Methods Enzymol, vol.523, pp.213-235, 2013.

W. P. Russ, D. M. Lowery, P. Mishra, M. B. Yaffe, and R. Ranganathan, Naturallike function in artificial ww domains, Nature, vol.437, issue.7058, pp.579-583, 2005.

M. Schmidt and K. Hamacher, Three-body interactions improve contact prediction within direct-coupling analysis, Phys Rev E, vol.96, issue.5, p.52405, 2017.

A. Schug, M. Weigt, J. N. Onuchic, T. Hwa, and H. Szurmant, High-resolution protein complexes from integrating genomic information with molecular simulation, Proc Natl Acad Sci, vol.106, issue.52, pp.22124-22129, 2009.

M. Socolich, S. W. Lockless, W. P. Russ, H. Lee, K. H. Gardner et al., Evolutionary information for specifying a protein fold, Nature, vol.437, issue.7058, pp.512-518, 2005.

L. Sutto, S. Marsili, A. Valencia, and F. L. Gervasio, From residue coevolution to protein conformational ensembles and functional dynamics, Proc Natl Acad Sci, vol.112, issue.44, pp.13567-13572, 2015.

. Figliuzzi,

M. Weigt, R. A. White, H. Szurmant, J. A. Hoch, and T. Hwa, Identification of direct residue contacts in protein-protein interaction by message passing, Proceedings of the National Academy of Sciences, vol.106, pp.67-72, 2009.

T. Mora, A. M. Walczak, W. Bialek, and C. G. Callan, Maximum entropy models for antibody diversity, Proceedings of the National Academy of Sciences, vol.107, pp.5405-5410, 2010.

A. L. Ferguson, Translating hiv sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design, Immunity, vol.38, pp.606-617, 2013.

T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. V. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proceedings of the National Academy of Sciences, vol.103, pp.19033-19038, 2006.

E. Schneidman, M. J. Berry, R. Segev, and W. Bialek, Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, vol.440, pp.1007-1012, 2006.

S. Cocco, S. Leibler, and R. Monasson, Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods, Proceedings of the National Academy of Sciences, vol.106, pp.14058-14062, 2009.

W. Bialek, Statistical mechanics for natural flocks of birds, Proceedings of the National Academy of Sciences, vol.109, pp.4786-4791, 2012.

E. T. Jaynes, Information theory and statistical mechanics, Physical Review, vol.106, p.620, 1957.

Y. Roudi, J. Tyrcha, and J. Hertz, Ising model for neural data: model quality and approximate methods for extracting functional connectivity, Physical Review E, vol.79, p.51915, 2009.

V. Sessak and R. Monasson, Small-correlation expansions for the inverse ising problem, Journal of Physics A: Mathematical and Theoretical, vol.42, p.55001, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00340939

, Scientific RepoRts |, vol.6, p.37812

M. Mézard and T. Mora, Constraint satisfaction problems and neural networks: A statistical physics perspective, Journal of Physiology-Paris, vol.103, pp.107-113, 2009.

S. Cocco, R. Monasson, and V. Sessak, High-dimensional inference with the generalized hopfield model: Principal component analysis and corrections, Physical Review E, vol.83, p.51123, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00586950

S. Cocco and R. Monasson, Adaptive cluster expansion for inferring boltzmann machines with noisy data, Physical Review Letters, vol.106, p.90601, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00566281

H. C. Nguyen and J. Berg, Mean-field theory for the inverse ising problem at low temperatures, Physical Review Letters, vol.109, p.50602, 2012.

E. Aurell and M. Ekeberg, Inverse ising inference using all the data, Physical Review Letters, vol.108, p.90201, 2012.

H. C. Nguyen and J. Berg, Bethe-peierls approximation and the inverse ising problem, Journal of Statistical Mechanics: Theory and Experiment, p.3004, 2012.

A. Decelle and F. Ricci-tersenghi, Pseudolikelihood decimation algorithm improving the inference of the interaction network in a general class of ising models, Physical Review Letters, vol.112, p.70603, 2014.

M. Figliuzzi, H. Jacquier, A. Schug, O. Tenaillon, and M. Weigt, Coevolutionary inference of mutational landscape and the context dependence of mutations in beta-lactamase tem-1, Molecular Biology and Evolution, 2016.

L. Asti, G. Uguzzoni, P. Marcatili, and A. Pagnani, Maximum-entropy models of sequenced immune repertoires predict antigenantibody affinity, PLoS Comput Biol, vol.12, p.1004870, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01333986

F. Morcos, N. P. Schafer, R. R. Cheng, J. N. Onuchic, and P. G. Wolynes, Coevolutionary information, protein folding landscapes, and the thermodynamics of natural selection, Proceedings of the National Academy of Sciences, vol.111, pp.12408-12413, 2014.

J. K. Mann, The fitness landscape of hiv-1 gag: Advanced modeling approaches and validation of model predictions by in vitro testing, PLoS Comput Biol, vol.10, p.1003776, 2014.

R. N. Mclaughlin, F. J. Poelwijk, A. Raman, W. S. Gosal, and R. Ranganathan, The spatial architecture of protein function and adaptation, Nature, vol.491, pp.138-142, 2012.

H. Jacquier, Capturing the mutational landscape of the beta-lactamase tem-1, Proceedings of the National Academy of Sciences, vol.110, pp.13067-13072, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00984680

D. Melamed, D. L. Young, C. E. Gamble, C. R. Miller, and S. Fields, Deep mutational scanning of an rrm domain of the saccharomyces cerevisiae poly (a)-binding protein, RNA, vol.19, pp.1537-1551, 2013.

T. Hinkley, A systems analysis of mutational effects in hiv-1 protease and reverse transcriptase, Nature genetics, vol.43, pp.487-489, 2011.

J. A. De-visser and J. Krug, Empirical fitness landscapes and the predictability of evolution, Nature Reviews Genetics, vol.15, pp.480-490, 2014.

J. Otwinowski and J. B. Plotkin, Inferring fitness landscapes by regression produces biased estimates of epistasis, Proceedings of the National Academy of Sciences, vol.111, pp.2301-2309, 2014.

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learning algorithm for boltzmann machines, Cognitive Science, vol.9, pp.147-169, 1985.

J. Mistry, R. D. Finn, S. R. Eddy, A. Bateman, and M. Punta, Challenges in homology search: Hmmer3 and convergent evolution of coiled-coil regions, Nucleic Acids Research, vol.41, p.121, 2013.

R. D. Finn, Pfam: the protein families database, Nucleic Acids Research, vol.42, pp.222-230, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01294685

Y. Dehouck, J. M. Kwasigroch, D. Gilis, and M. Rooman, Popmusic 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality, BMC Bioinformatics, vol.12, p.151, 2011.

F. Morcos, Direct-coupling analysis of residue coevolution captures native contacts across many protein families, Proceedings of the National Academy of Sciences, vol.108, pp.1293-1301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01589010

L. Sutto, S. Marsili, A. Valencia, and F. L. Gervasio, From residue coevolution to protein conformational ensembles and functional dynamics, Proceedings of the National Academy of Sciences, vol.112, pp.13567-13572, 2015.

A. Haldane, W. F. Flynn, P. He, R. S. Vijayan, and R. M. Levy, Structural Propensities of Kinase Family Proteins from a Potts Model of Residue Co-Variation, Protein Science, vol.25, pp.1378-1384, 2016.

T. Plefka, Convergence condition of the tap equation for the infinite-ranged ising spin glass model, Journal of Physics A: Mathematical and general, vol.15, p.1971, 1982.

. B-i-b-l-i-o-g-r-a-p-h-y,

H. David, G. E. Ackley, T. J. Hinton, and . Sejnowski, A Learning Algorithm for Boltzmann Machines*, en. In: Cognitive Science, vol.9, issue.1, pp.1551-6709, 1985.

, Bruce Alberts. Essential Cell Biology. en, 2013.

E. Aurell, The Maximum Entropy Fallacy Redux?" en, PLOS Computational Biology, vol.12, issue.5, 2016.

S. Balakrishnan, H. Kamisetty, J. G. Carbonell, S. Lee, and C. J. Langmead, Learning Generative Models for Protein Fold Families, en. In: Proteins: Structure, Function, and Bioinformatics, vol.79, pp.1061-1078, 2011.

C. Baldassi, M. Zamparo, C. Feinauer, A. Procaccini, R. Zecchina et al., Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners, PLoS One, vol.9, issue.3, pp.1932-6203, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01344551

P. Barrat-charlaix, M. Figliuzzi, and M. Weigt, Improving Landscape Inference by Integrating Heterogeneous Data in the Inverse Ising Problem, en. In: Scientific Reports, vol.6, issue.1, pp.2045-2322, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01405150

J. P. Barton, S. Cocco, E. D. Leonardis, and R. Monasson, Large Pseudocounts and L 2 -Norm Penalties Are Necessary for the Mean-Field Inference of Ising and Potts Models, en. In: Physical Review E, vol.90, issue.1, pp.1550-2376, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01528534

,

J. P. Barton, E. De-leonardis, A. Coucke, and S. Cocco, ACE: Adaptive Cluster Expansion for Maximum Entropy Graphical Model Inference, Bioinformatics, vol.32, pp.1460-2059, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01528510

W. Bialek and R. Ranganathan, Rediscovering the Power of Pairwise Interactions, 2007.

A. Bitbol, R. S. Dwyer, L. J. Colwell, and N. S. Wingreen, Inferring Interaction Partners from Protein Sequences, Proc Natl Acad Sci U S A, vol.113, pp.27-8424, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01636994

M. S. Breen, C. Kemena, P. K. Vlasov, C. Notredame, and F. A. Kondrashov, Epistasis as the Primary Factor in Molecular Evolution, Nature, vol.490, pp.28-0836, 2012.

L. Burger and E. Van-nimwegen, Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments, PLoS Computational Biology, vol.6, issue.1, 2010.

. Bourne,

T. C. Butler, J. P. Barton, M. Kardar, and A. K. Chakraborty, Identification of Drug Resistance Mutations in HIV from Constraints on Natural Evolution, Physical Review E, vol.93, issue.2, 2016.

A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati et al., Scale-Free Correlations in Starling Flocks, Proceedings of the National Academy of Sciences, vol.107, pp.27-8424, 2010.

A. Cavagna, I. Giardina, A. Orlandi, G. Parisi, A. Procaccini et al., The STARFLAG Handbook on Collective Animal Behaviour: 1. Empirical Methods." en. In: Animal Behaviour, vol.76, issue.1, pp.217-236, 2008.

R. R. Cheng, O. Nordesjö, R. L. Hayes, H. Levine, S. C. Flores et al., Connecting the Sequence-Space of Bacterial Signaling Proteins to Phenotypes Using Coevolutionary Landscapes, Mol Biol Evol, vol.33, pp.737-4038, 2016.

S. Cocco and R. Monasson, Adaptive Cluster Expansion for the Inverse Ising Problem: Convergence, Algorithm and Tests, en. In: Journal of Statistical Physics, vol.147, pp.1572-9613, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00634921

S. Cocco, R. Monasson, and M. Weigt, From Principal Component to Direct Coupling Analysis of Coevolution in Proteins: Low-Eigenvalue Modes Are Needed for Structure Prediction, PLoS Computational Biology, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00764377

,

S. Cocco, C. Feinauer, and M. Figliuzzi, Inverse Statistical Physics of Protein Sequences: A Key Issues Review, In: Reports on Progress in Physics, vol.81, pp.1361-6633, 2018.

A. Coucke, Statistical Modeling of Protein Sequences beyond Structural Prediction : High Dimensional Inference with Correlated Data, Paris Sciences et Lettres, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01736980

A. Coucke, G. Uguzzoni, F. Oteri, S. Cocco, R. Monasson et al., Direct Coevolutionary Couplings Reflect Biophysical Residue Interactions in Proteins, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01528504

R. Delgoda and J. D. Pulfer, A Guided Monte Carlo Search Algorithm for Global Optimization of Multidimensional Functions ?, en. In: Journal of Chemical Information and Computer Sciences, vol.38, issue.6, pp.95-2338, 1998.

E. W. Dijkstra, A Note on Two Problemsin Connexionwith Graphs, Numerische Mathematik, p.3, 1959.

S. D. Dunn, L. M. Wahl, and G. B. Gloor, Mutual Information without the Influence of Phylogeny or Entropy Dramatically Improves Residue Contact Prediction, en. In: Bioinformatics, vol.24, issue.3, pp.1460-2059, 2008.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, 1998.

S. R. Eddy, Profile Hidden Markov Models, en. In: Bioinformatics, vol.14, issue.9, pp.1460-2059, 1998.

M. Ekeberg, T. Hartonen, and E. Aurell, Fast Pseudolikelihood Maximization for Direct-Coupling Analysis of Protein Structure from Many Homologous Amino-Acid Sequences, Journal of Computational Physics, vol.276, pp.341-356, 2014.

M. Ekeberg, C. Lövkvist, Y. Lan, M. Weigt, and E. Aurell, Improved Contact Prediction in Proteins: Using Pseudolikelihoods to Infer Potts Models, en. In: Physical Review E, vol.87, issue.1, pp.1550-2376, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01528418

C. Feinauer, H. Szurmant, M. Weigt, and A. Pagnani, Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon, PLoS One, vol.11, issue.2, pp.1932-6203, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01294651

J. Felsenstein, Journal of Molecular Evolution c Springer-Verlag 1981 Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach

U. Ferrari, S. Deny, M. Chalk, G. Tkacik, O. Marre et al., Separating Intrinsic Interactions from Extrinsic Correlations in a Network of Sensory Neurons, en. In: (Feb, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01912303

M. Figliuzzi, P. Barrat-charlaix, and M. Weigt, How Pairwise Coevolutionary Models Capture the Collective Residue Variability in Proteins?" en, Molecular Biology and Evolution, vol.35, pp.1537-1719, 2018.

M. Figliuzzi, H. Jacquier, A. Schug, O. Tenaillon, and M. Weigt, Coevolutionary Landscape Inference and the Context-Dependence of Mutations in Beta-Lactamase TEM-1, Molecular Biology and Evolution, vol.33, issue.1, pp.1537-1719, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01284957

R. D. Finn, J. Clements, and S. R. Eddy, HMMER Web Server: Interactive Sequence Similarity Searching, Nucleic Acids Research, vol.39, 2011.

R. D. Finn, The Pfam Protein Families Database: Towards a More Sustainable Future, Nucleic Acids Research, vol.44, pp.305-1048, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01294685

W. F. Flynn, A. Haldane, B. E. Torbett, and R. M. Levy, Inference of Epistatic Effects Leading to Entrenchment and Drug Resistance in HIV-1 Protease, Mol Biol Evol, vol.34, issue.6, pp.737-4038, 2017.

A. A. Fodor and R. W. Aldrich, Influence of Conservation on Calculations of Amino Acid Covariance in Multiple Sequence Alignments, en. In: Proteins: Structure, Function, and Bioinformatics, vol.56, pp.211-221, 2004.

A. Georges and J. Yedidia, How to Expand around Mean-Field Theory Using High-Temperature Expansions, en. In: Journal of Physics A: Mathematical and General, vol.24, issue.9, pp.1361-6447, 1991.

T. Gueudré, C. Baldassi, M. Zamparo, M. Weigt, and A. Pagnani, Simultaneous Identification of Specifically Interacting Paralogs and Interprotein Contacts by Direct Coupling Analysis, Proc Natl Acad Sci U S A, vol.113, pp.27-8424, 2016.

N. Halabi, O. Rivoire, S. Leibler, and R. Ranganathan, Protein Sectors: Evolutionary Units of Three-Dimensional Structure, en. In: Cell, vol.138, pp.774-786, 2009.

A. Haldane, W. F. Flynn, R. S. Peng-he, R. M. Vijayan, and . Levy, Structural Propensities of Kinase Family Proteins from a Potts Model of Residue Co-Variation: Structural Propensities of Kinase Family Proteins, Protein Science, vol.25, pp.1378-1384, 2016.

J. Michael, J. W. Harms, and . Thornton, Evolutionary Biochemistry: Revealing the Historical and Physical Causes of Protein Properties, Nature Reviews Genetics, vol.14, pp.1471-0056, 2013.

A. Thomas, C. P. Hopf, . Schärfe, P. João, A. G. Rodrigues et al., Sequence Co-Evolution Gives 3D Contacts and Structures of Protein Complexes

T. A. Hopf, J. B. Ingraham, F. J. Poelwijk, C. P. Schärfe, M. Springer et al., Mutation Effects Predicted from Sequence Co-Variation, Nat Biotechnol, vol.35, issue.2, pp.1087-0156, 2017.

H. Jacquier, Capturing the Mutational Landscape of the Beta-Lactamase TEM-1, In: Proc Natl Acad Sci U S A, vol.110, pp.27-8424, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00984680

E. T. Jaynes, Information Theory and Statistical Mechanics, In: Phys. Rev, vol.106, pp.620-630, 1957.

E. T. Jaynes, Probability Theory: The Logic of Science. en, 2003.

D. T. Jones, W. A. Daniel, D. Buchan, M. Cozzetto, and . Pontil, PSICOV: Precise Structural Contact Prediction Using Sparse Inverse Covariance Estimation on Large Multiple Sequence Alignments, Bioinformatics, vol.28, issue.2, pp.1367-4811, 2012.

D. T. Jones, T. Singh, T. Kosciolek, and S. Tetchner, MetaPSICOV: Combining Coevolution Methods for Accurate Prediction of Contacts and Long Range Hydrogen Bonding in Proteins, In: Bioinformatics, vol.31, pp.1367-4803, 2015.

A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences, In: Computational Methods in Molecular Biology, 1998.

C. D. Livingstone and G. J. Barton, Protein Sequence Alignments: A Strategy for the Hierarchical Analysis of Residue Conservation, Comput. Appl. Biosci, vol.9, issue.6, pp.266-7061, 1993.

J. K. Mann, J. P. Barton, A. L. Ferguson, S. Omarjee, B. D. Walker et al., The Fitness Landscape of HIV-1 Gag: Advanced Modeling Approaches and Validation of Model Predictions by In Vitro Testing, PLoS Comput Biol, vol.10, 2014.

N. Richard, F. J. Mclaughlin, A. Poelwijk, W. S. Raman, R. Gosal et al., The Spatial Architecture of Protein Function and Adaptation, Nature, vol.491, pp.28-0836, 2012.

R. N. Mclaughlin, F. J. Poelwijk, A. Raman, W. S. Gosal, and R. Ranganathan, The Spatial Architecture of Protein Function and Adaptation, Nature, vol.491, pp.138-142, 2012.

D. Melamed, D. L. Young, C. E. Gamble, C. R. Miller, and S. Fields, Deep Mutational Scanning of an RRM Domain of the Saccharomyces Cerevisiae Poly(A)-Binding Protein, In: RNA, vol.19, pp.1355-8382, 2013.

S. Miyazawa and R. L. Jernigan, Residue -Residue Potentials with a Favorable Contact Pair Term and an Unfavorable High Packing Density Term, for Simulation and Threading, In: Journal of Molecular Biology, vol.256, issue.3, pp.22-2836, 1996.

F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks et al., Direct-Coupling Analysis of Residue Coevolution Captures Native Contacts across Many Protein Families, Proceedings of the National Academy of Sciences, vol.108, pp.27-8424, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01589010

C. , A. Olson, N. C. Wu, and R. Sun, A Comprehensive Biophysical Description of Pairwise Epistasis throughout an Entire Protein Domain, Curr Biol, vol.24, pp.960-9822, 2014.

A. R. Ortiz, A. Kolinski, P. Rotkiewicz, B. Ilkowski, and J. Skolnick, Ab Initio Folding of Proteins Using Restraints Derived from Evolutionary Information, Proteins Suppl, pp.887-3585, 1999.

J. Otwinowski, Biophysical Inference of Epistasis and the Effects of Mutations on Protein Stability and Function, 2018.

S. Ovchinnikov, H. Kamisetty, and D. Baker, Robust and Accurate Prediction of Residue-Residue Interactions across Protein Interfaces Using Evolutionary Information, 2014.

S. Ovchinnikov, H. Park, N. Varghese, P. Huang, G. A. Pavlopoulos et al., Protein Structure Determination Using Metagenome Sequence Data, Science, vol.355, pp.36-8075, 2017.

, Pfam 31.0 Is Released. en, 2017.

A. I. Podgornaia and M. T. Laub, Pervasive Degeneracy and Epistasis in a Protein-Protein Interface, en. In: Science, vol.347, pp.1095-9203, 2015.

L. Posani, S. Cocco, K. Je?ek, and R. Monasson, Functional Connectivity Models for Decoding of Spatial Representations from Hippocampal CA1 Recordings, en. In: Journal of Computational Neuroscience, vol.43, issue.1, pp.1573-6873, 2017.

C. Qin and L. J. Colwell, Power Law Tails in Phylogenetic Systems, Proceedings of the National Academy of Sciences, vol.115, pp.27-8424, 2018.

J. Nathan, . Rollins, P. Kelly, . Brock, J. Frank et al., 3D Protein Structure from Genetic Epistasis Experiments, 2018.

W. P. Russ, D. M. Lowery, P. Mishra, M. B. Yaffe, and R. Ranganathan, Natural-like Function in Artificial WW Domains, Nature, vol.437, pp.28-0836, 2005.

M. Schmidt and K. Hamacher, Three-Body Interactions Improve Contact Prediction within Direct-Coupling Analysis, en. In: Physical Review E, vol.96, 2017.

E. Schneidman, M. J. Berry, R. Segev, and W. Bialek, Weak Pairwise Correlations Imply Strongly Correlated Network States in a Neural Population, Nature, vol.440, pp.28-0836, 2006.

A. Schug, M. Weigt, J. N. Onuchic, T. Hwa, and H. Szurmant, High-Resolution Protein Complexes from Integrating Genomic Information with Molecular Simulation, Proceedings of the National Academy of Sciences, vol.106, pp.27-8424, 2009.

B. Schuster-böckler, J. Schultz, and S. Rahmann, HMM Logos for Visualization of Protein Families, BMC Bioinformatics, p.8, 2004.

D. J. Schwab, I. Nemenman, and P. Mehta, Zipf's Law and Criticality in Multivariate Data without Fine-Tuning, en. In: Physical Review Letters, vol.113, issue.6, pp.31-9007, 2014.

J. Marcin, D. Skwark, M. Raimondi, A. Michel, and . Elofsson, Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns, PLoS Computational Biology, vol.10, 2014.

M. Socolich, S. W. Lockless, W. P. Russ, H. Lee, K. H. Gardner et al., Evolutionary Information for Specifying a Protein Fold, Nature, vol.437, pp.28-0836, 2005.

L. Sutto, S. Marsili, A. Valencia, and F. L. Gervasio, From Residue Coevolution to Protein Conformational Ensembles and Functional Dynamics, en. In: Proceedings of the National Academy of Sciences, vol.112, pp.27-8424, 2015.

T. Tanaka, Mean-Field Theory of Boltzmann Machine Learning, Physical Review E, vol.58, issue.2, pp.1095-3787, 1998.

. The-uniprot-consortium, UniProt: A Hub for Protein Information, Nucleic Acids Research, vol.43, pp.305-1048, 2015.

J. Tubiana, S. Cocco, and R. Monasson, Learning Protein Constitutive Motifs from Sequence Data, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02364205

S. Vorberg, S. Seemayer, and J. Soeding, Synthetic Protein Alignments by CCMgen Quantify Noise in Residue-Residue Contact Prediction, 2018.

S. Wang, S. Sun, Z. Li, R. Zhang, and J. Xu, Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model, PLOS Computational Biology, p.34, 2017.

M. Weigt, R. A. White, H. Szurmant, J. A. Hoch, and T. Hwa, Identification of Direct Residue Contacts in Protein-Protein Interaction by Message Passing, Proceedings of the National Academy of Sciences, vol.106, pp.27-8424, 2009.

A. Wlodawer, J. Walter, R. Huber, and L. Sjölin, Structure of Bovine Pancreatic Trypsin Inhibitor: Results of Joint Neutron and X-Ray Refinement of Crystal Form II, In: Journal of Molecular Biology, vol.180, issue.2, pp.80006-80012, 1984.

J. Y. Yen, Finding the K Shortest Loopless Paths in a Network, en. In: Management Science, p.6, 1971.

H. Zhang, Y. Gao, M. Deng, C. Wang, J. Zhu et al., Improving Residue-Residue Contact Prediction via Low-Rank and Sparse Decomposition of Residue Correlation Matrix, en. In: Biochemical and Biophysical Research Communications, vol.472, issue.1, pp.217-222, 2016.

E. Van-nimwegen, Finding Regulatory Elements and Regulatory Motifs: A General Probabilistic Framework, BMC Bioinformatics 8.Suppl, vol.6, 2007.

, Final Version as of, 2018.