. .. Introduction, , vol.87

. .. Conclusion, 98 Conclusions and Future Work Contents 7.1 Conclusions

, Open Issues and Future Directions

J. Bughin, E. Hazan, S. Ramaswamy, M. Chui, T. Allas et al., Nicolaus Henke, and Monica Trench. Artificial intelligence: the next digital frontier? McKinsey Global Institute Report, 2017.

M. Christopher and . Bishop, Pattern recognition and machine learning, 2006.

M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, Mining data streams: a review, SIGMOD 34, vol.2, pp.18-26, 2005.

C. Charu and . Aggarwal, Data streams: models and algorithms, vol.31, 2007.

J. David, H. Hand, P. Mannila, and . Smyth, Principles of data mining, 2001.

C. Charu, S. Aggarwal, and . Philip, A survey of synopsis construction in data streams, Data Streams, pp.169-207, 2007.

J. Gama and M. M. Gaber, Learning from data streams: processing techniques in sensor networks, 2007.

J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques, 2011.

J. Gama, I. ?liobait?, A. Bifet, M. Pechenizkiy, and A. Bouchachia, A survey on concept drift adaptation, Computing Surveys (CSUR), vol.46, p.44, 2014.

M. M. Gaber, J. Gama, S. Krishnaswamy, J. Bártolo-gomes, and F. Stahl, Data stream mining in ubiquitous environments: state-of-theart and current directions, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.4, pp.116-138, 2014.

J. Luca-albergante, A. Bac, and . Zinovyev, Estimating the effective dimension of large biological datasets using Fisher separability analysis, International Joint Conference on Neural Networks (IJCNN), pp.1-8, 2019.

C. Xu, A. Scott, and . Jackson, Machine learning and complex biological data, 2019.

J. Tiago-a-almeida, A. Almeida, and . Yamakami, Spam filtering: how the dimensionality reduction affects the accuracy of Naive Bayes classifiers, Journal of Internet Services and Applications, vol.1, issue.3, pp.183-200, 2011.

P. John, Z. Cunningham, and . Ghahramani, Linear dimensionality reduction: Survey, insights, and generalizations, Journal of Machine Learning Research (JMLR), vol.16, issue.1, pp.2859-2900, 2015.

L. Van-der-maaten, E. Postma, J. Van-den, and . Herik, Dimensionality reduction: a comparative, Journal of Machine Learning Research, vol.10, p.13, 2009.

C. Sorzano, J. Vargas, and . Montano, A survey of dimensionality reduction techniques, 2014.

J. Gama, R. Sebastião, and P. P. Rodrigues, Issues in evaluation of stream learning algorithms, pp.329-338, 2009.

J. Heitor-murilo-gomes, A. Read, J. P. Bifet, J. Barddal, and . Gama, Machine learning for streaming data: state of the art, challenges, and opportunities, ACM SIGKDD Explorations Newsletter, vol.21, pp.6-22, 2019.

G. Cormode and S. Muthukrishnan, An improved data stream summary: the count-min sketch and its applications, Journal of Algorithms, vol.55, pp.58-75, 2005.

K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg, Feature hashing for large scale multitask learning, International Conference on Machine Learning (ICML), pp.1113-1120, 2009.

A. Bifet and R. Gavalda, Learning from time-changing data with adaptive windowing, International Conference on Data Mining (ICDM). SIAM, pp.443-448, 2007.

. Naomi-s-altman, An introduction to kernel and nearest-neighbor nonparametric regression, The American Statistician, vol.46, pp.175-185, 1992.

L. David and . Donoho, Compressed sensing, IEEE Transactions on Information Theory, vol.52, issue.4, pp.1289-1306, 2006.

A. Bifet, G. Holmes, and B. Pfahringer, Leveraging bagging for evolving data streams, Joint European conference on machine learning and knowledge discovery in databases, pp.135-150, 2010.

M. Heitor, A. Gomes, J. Bifet, J. P. Read, F. Barddal et al., Adaptive random forests for evolving data stream classification, Machine Learning, pp.1-27, 2017.

L. Mcinnes, J. Healy, and J. Melville, Umap: Uniform manifold approximation and projection for dimension reduction, 2018.

M. Bahri, A. Bifet, J. Gama, S. Maniu, and H. Gomes, Data stream analysis: foundations, progress in classification and tools

M. Bahri, A. Bifet, S. Maniu, and H. Gomes, Survey on feature transformation techniques for data streams, International Joint Conference on Artificial Intelligence (IJCAI), 2020.

E. Ikonomovska, S. Loskovska, and D. Gjorgjevik, A survey of stream data mining, National Conference with International participation ETAI, pp.19-21, 2007.

W. Ng and M. Dash, Discovery of frequent patterns in transactional data streams, Transactions on large-scale data-and knowledge-centered systems II, pp.1-30, 2010.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, Models and issues in data stream systems, pp.1-16, 2002.

M. Garofalakis, J. Gehrke, and R. Rastogi, Querying and mining data streams: you only get one look a tutorial, ACM SIGMOD, pp.635-635, 2002.

G. Singh-manku and R. Motwani, Approximate frequency counts over data streams, Very Large Data Bases (VLDB), pp.346-357, 2002.

H. Burton and . Bloom, Space/time trade-offs in hash coding with allowable errors, Communications of the ACM, vol.13, pp.422-426, 1970.

A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà, New ensemble methods for evolving data streams, pp.139-148, 2009.

A. Bifet and R. Kirkby, Data stream mining a practical approach, 2009.

A. Bifet, R. Gavaldà, G. Holmes, and B. Pfahringer, Machine learning for data streams: with practical examples in MOA, 2018.

N. Friedman, D. Geiger, and M. Goldszmidt, Bayesian network classifiers, Machine learning, vol.29, pp.131-163, 1997.

A. Bifet, B. Pfahringer, J. Read, and G. Holmes, Efficient data stream classification via probabilistic adaptive windows, Symposium On Applied Computing (SIGAPP), pp.801-806, 2013.

V. Losing, B. Hammer, and H. Wersing, KNN classifier with self adjusting memory for heterogeneous concept drift, International Conference on Data Mining (ICDM), pp.291-300, 2016.

P. Domingos and G. Hulten, Mining high-speed data streams, SIGKDD. ACM, pp.71-80, 2000.

J. Gama, R. Rocha, and P. Medas, Accurate decision trees for mining high-speed data streams, SIGKDD. ACM, pp.523-528, 2003.

J. Gama, R. Fernandes, and R. Rocha, Decision trees for mining data streams, Intelligent Data Analysis (IDA), vol.10, pp.23-45, 2006.

A. Bifet and R. Gavaldà, Adaptive learning from evolving data streams, Intelligent Data Analysis (IDA), pp.249-260, 2009.

R. Polikar, Ensemble based systems in decision making, IEEE Circuits and Systems Magazine, vol.6, issue.3, pp.21-45, 2006.

L. Breiman, Bagging predictors, ML 24, vol.2, pp.123-140, 1996.

G. Thomas and . Dietterich, Ensemble methods in machine learning, International Workshop on Multiple Classifier Systems, pp.1-15, 2000.

J. P. Heitor-murilo-gomes, F. Barddal, A. Enembreck, and . Bifet, A survey on ensemble learning for data stream classification, Computing Surveys (CSUR), vol.50, p.23, 2017.

C. Nikunj and . Oza, Online bagging and boosting, IEEE International Conference on Systems, Man and Cybernetics, vol.3, pp.2340-2345, 2005.

J. Heitor-murilo-gomes, A. Read, and . Bifet, Streaming random patches for evolving data stream classification, International Conference on Data Mining (ICDM), 2019.

H. Liu and H. Motoda, Computational methods of feature selection, 2007.

H. Liu and H. Motoda, Feature extraction, construction and selection: A data mining perspective, vol.453, 1998.

J. Paul-barddal, H. Gomes, F. Enembreck, and B. Pfahringer, A survey on feature drift adaptation: Definition, benchmark, challenges and future directions, Journal of Systems and Software, vol.127, pp.278-294, 2017.

S. Ram?rez-gallego, B. Krawczyk, S. Garc?a, M. Wo?niak, and F. Herrera, A survey on data preprocessing for data stream mining: Current status and future directions, Neurocomputing, vol.239, pp.39-57, 2017.

X. Hu, P. Zhou, P. Li, J. Wang, and X. Wu, A survey on online feature selection with streaming features, Frontiers of Computer Science, vol.12, pp.479-493, 2018.

N. Alnuaimi, M. M. Masud, M. A. Serhani, and N. Zaki, Streaming feature selection algorithms for big data: A survey, Applied Computing and Informatics, 2019.

M. Artac, M. Jogan, and A. Leonardis, Incremental PCA for on-line visual learning and recognition, Object Recognition Supported by User interaction for Service Robots, vol.3, pp.781-784, 2002.

J. Weng, Y. Zhang, and W. Hwang, Candid covariance-free incremental principal component analysis, Transactions on Pattern Analysis and Machine Intelligence, vol.25, pp.1034-1040, 2003.

A. David, J. Ross, R. Lim, M. Lin, and . Yang, Incremental learning for robust visual tracking, International Journal of Computer Vision (IJCV), pp.125-141, 2008.

I. Mitliagkas, C. Caramanis, and P. Jain, Memory limited, streaming PCA, Neural Information Processing Systems (NIPS), pp.2886-2894, 2013.

W. Yu, Y. Gu, J. Li, S. Liu, and Y. Li, Single-pass PCA of large high-dimensional data, International Joint Conference on Artificial Intelligence (IJCAI, 2017.

W. Feng, Z. Yan, L. Ai-ping, and W. Quan-yuan, Online classification algorithm for data streams based on fast iterative Kernel principal component analysis, International Conference on Natural Computation (ICNC), vol.1, pp.232-236, 2009.

S. Günter, N. Nicol, S. Schraudolph, and . Vishwanathan, Fast iterative kernel principal component analysis, Journal of Machine Learning Research (JMLR), vol.8, pp.1893-1918, 2007.

H. Cardot and D. Degras, Online principal component analysis in high dimension: Which algorithm to choose?, In: International Statistical Review, vol.86, pp.29-50, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01700948

F. Wickelmaier, An introduction to MDS, In: Sound Quality Research Unit, vol.46, pp.1-26, 2003.

A. Agarwal, J. M. Phillips, H. Daumé, I. , and S. Venkatasubramanian, Incremental multidimensional scaling, The Learning Workshop. Citeseer, vol.173, p.227, 2010.

X. Zhang, H. Huang, K. Mueller, and S. Yoo, Streaming classical multidimensional scaling, New York Scientific Data Summit (NYSDS), pp.1-2, 2018.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, Greedy layerwise training of deep networks, Neural Information Processing Systems (NIPS), pp.153-160, 2007.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, Extracting and composing robust features with denoising autoencoders, International Conference on Machine Learning (ICML), pp.1096-1103, 2008.

G. Zhou, K. Sohn, and H. Lee, Online incremental feature learning with denoising autoencoders, Artificial Intelligence and Statistics, pp.1453-1461, 2012.

Y. Dong and N. Japkowicz, Threaded ensembles of supervised and unsupervised neural networks for stream learning, pp.304-315, 2016.

J. Geoffrey and . Mclachlan, Discriminant analysis and statistical pattern recognition, vol.544, 2004.

A. Haque, L. Khan, M. Baron, B. Thuraisingham, and C. Aggarwal, Efficient handling of concept drift and concept evolution over stream data, International Conference on Data Engineering (ICDE), pp.481-492, 2016.

S. Pang, S. Ozawa, and N. Kasabov, Incremental linear discriminant analysis for classification of data streams, Transactions on Systems, Man, and Cybernetics, vol.35, pp.905-914, 2005.

J. Ye, Q. Li, H. Xiong, H. Park, R. Janardan et al., IDR/QR: An incremental dimension reduction algorithm via QR decomposition, Transactions on Knowledge and Data Engineering, vol.17, pp.1208-1222, 2005.

T. Kim, B. Stenger, J. Kittler, and R. Cipolla, Incremental linear discriminant analysis using sufficient spanning sets and its applications, International Journal of Computer Vision (IJCV), vol.91, pp.216-232, 2011.

H. Li, T. Jiang, and K. Zhang, Efficient and robust feature extraction by maximum margin criterion, Neural Information Processing Systems (NIPS), pp.97-104, 2004.

J. Yan, B. Zhang, S. Yan, Q. Yang, H. Li et al., IMMC: incremental maximum margin criterion, SIGKDD. ACM, pp.725-730, 2004.

S. Santosh and . Vempala, The random projection method, vol.65, 2005.

S. Dasgupta and A. Gupta, An elementary proof of the Johnson-Lindenstrauss lemma, International Computer Science Institute, pp.1-5, 1999.

J. William-b-johnson, G. Lindenstrauss, and . Schechtman, Extensions of Lipschitz maps into Banach spaces, Israel Journal of Mathematics, vol.54, pp.129-138, 1986.

C. Qiu, W. Lu, and N. Vaswani, Real-time dynamic MR image reconstruction using Kalman filtered compressed sensing, International Conference on Acoustics, Speech and Signal Processing, pp.393-396, 2009.

H. Li, C. Shen, and Q. Shi, Real-time visual tracking using compressive sensing, Computer Vision and Pattern Recognition (CVPR), pp.1305-1312, 2011.

M. Uttarakumari, V. Ashray, . Achary, D. Sujata, . Badiger et al., Vehicle classification using compressive sensing, International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT), pp.692-696, 2017.

D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss with binary coins, Journal of computer and System Sciences, vol.66, issue.4, pp.671-687, 2003.

M. Datar, N. Immorlica, P. Indyk, S. Vahab, and . Mirrokni, Localitysensitive hashing scheme based on p-stable distributions, Symposium on Computational Geometry (SOCG), pp.253-262, 2004.

V. D. Joshua-b-tenenbaum, J. Silva, and . Langford, A global geometric framework for nonlinear dimensionality reduction, science 290, vol.5500, pp.2319-2323, 2000.

H. C. Martin, N. Law, . Zhang, and . Jain, Nonlinear manifold learning for data stream, International Conference on Data Mining (ICDM). SIAM, pp.33-44, 2004.

F. Schoeneman, S. Mahapatra, V. Chandola, N. Napp, and J. Zola, Error metrics for learning reliable manifolds from streaming data, International Conference on Data Mining (ICDM). SIAM. 2017, pp.750-758

L. Van-der-maaten and G. Hinton, Visualizing data using t-SNE, Journal of Machine Learning Research (JMLR), vol.9, pp.2579-2605, 2008.

. Philip-dawid, Present position and potential developments: Some personal views statistical theory the prequential approach, Journal of the Royal Statistical Society: Series A (General), vol.147, pp.278-290, 1984.

Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values, Data Mining and Knowledge Discovery, vol.2, issue.3, pp.283-304, 1998.

M. Bahri, S. Maniu, and A. Bifet, Sketch-based naive Bayes algorithms for evolving data streams, International Conference on Big Data, pp.604-613, 2018.

G. Cormode, M. Garofalakis, J. Peter, C. Haas, and . Jermaine, Synopses for massive data: Samples, histograms, wavelets, sketches, pp.1-294

G. Cormode, Data Sketching, Queue 15, vol.2, p.60, 2017.

H. Branislav-kveton, M. Bui, G. Ghavamzadeh, . Theocharous, S. Muthukrishnan et al., Graphical model sketch, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.81-97, 2016.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, Moa: Massive online analysis, Journal of Machine Learning Research (JMLR), vol.11, pp.1601-1604, 2010.

N. Street and Y. Kim, A streaming ensemble algorithm (SEA) for largescale classification, SIGKDD. ACM, pp.377-382, 2001.

W. Loh, Classification and regression trees, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.1, issue.1, pp.14-23, 2011.

R. Agrawal, T. Imielinski, and A. Swami, Database mining: A performance perspective, Transactions on Knowledge and Data Engineering (TKDE), vol.5, pp.914-925, 1993.

G. Hulten, L. Spencer, and P. Domingos, Mining time-changing data streams, pp.97-106, 2001.

M. Harries and N. South-wales, Splice-2 comparative evaluation: electricity pricing, 1999.

B. Klimt and Y. Yang, The enron corpus: A new dataset for email classification research, European Conference on Machine Learning (ECML), pp.217-226, 2004.

L. Andrew, R. E. Maas, . Daly, T. Peter, D. Pham et al., Learning word vectors for sentiment analysis, ACL-HLT, pp.142-150, 2011.

P. Marques, C. , and E. Oliveira, Agglomeration and elimination of terms for dimensionality reduction, International Conference on Intelligent Systems Design and Applications, pp.547-552, 2009.

J. Gama and C. Pinto, Discretization from data streams: applications to histograms and data mining, ACM symposium on Applied computing, pp.662-667, 2006.

G. Holmes, A. Donkin, and I. H. Witten, Weka: A machine learning workbench, Proceedings of the second Australia and New Zealand Conference on Intelligent Information Systems, pp.357-361, 1994.

M. Bahri, A. Bifet, S. Maniu, R. De-mello, and N. Tziortziotis, Compressed k-nearest neighbors ensembles for evolving data streams, European Conference on Artificial Intelligence (ECAI), 2020.

Y. Weiss, H. S. Chang, and W. Freeman, Learning compressed sensing, Snowbird Learning Workshop. Citeseer, 2007.

J. Starck, F. Murtagh, and J. Fadili, Sparse image and signal processing: Wavelets and related geometric multiscale analysis, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01658853

. Alfred-m-bruckstein, L. David, M. Donoho, and . Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Review, vol.51, pp.34-81, 2009.

Y. Avishy, L. Carmi, S. J. Mihaylova, and . Godsill, Compressed sensing and sparse filtering, 2014.

J. Read, A. Bifet, B. Pfahringer, and G. Holmes, Batch-incremental versus instance-incremental learning in dynamic and evolving data, Intelligent Data Analysis (IDA), pp.313-323, 2012.

Y. Arjoune, N. Kaabouch, H. E. Ghazi, and A. Tamtaoui, A performance comparison of measurement matrices in compressive sensing, International Journal of Communication Systems, vol.31, p.3576, 2018.

L. N. Thu, Y. Nguyen, and . Shin, Deterministic sensing matrices in compressive sensing: a survey, The Scientific World Journal, 2013.

M. Nikolaos, O. Freris, M. Oçal, and . Vetterli, Compressed sensing of streaming data, 51st Annual Allerton Conference on Communication, Control, and Computing. IEEE. 2013, pp.1242-1249

R. Baraniuk, M. Davenport, R. Devore, and M. Wakin, A simple proof of the restricted isometry property for random matrices, Constructive Approximation, vol.28, pp.253-263, 2008.

H. Edelsbrunner and J. Harer, Persistent homology-a survey, Contemporary Mathematics, vol.453, pp.257-282, 2008.

R. Donald and . Sheehy, The persistent homology of distance functions under random projection, Symposium on Computational Geometry (SOCG), p.328, 2014.

F. Krahmer and R. Ward, New and improved Johnson-Lindenstrauss embeddings via the restricted isometry property, Mathematical Analysis, vol.43, pp.1269-1281, 2011.

I. Katakis and G. Tsoumakas, Evangelos Banos, Nick Bassiliades, and Ioannis Vlahavas, Journal of Intelligent Information Systems, vol.32, pp.191-212, 2009.

M. Bahri, M. Heitor, A. Gomes, S. Bifet, and . Maniu, Compressed adaptive random forests for evolving data streams, International Joint Conference on Neural Networks (IJCNN), 2020.

L. Breiman, Random forests, Machine learning, vol.45, pp.5-32, 2001.

L. Candillier and V. Lemaire, Design and analysis of the Nomao challenge active learning in the real-world, ALRA, Workshop ECML-PKDD. sn, 2012.

D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. , Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine, pp.216-223, 2012.

M. Bahri, B. Pfahringer, A. Bifet, and S. Maniu, Efficient batchincremental classification for evolving data streams, Intelligent Data Analysis (IDA), 2020.

F. Klawonn and P. Angelov, Evolving extended naive Bayes classifiers, International Conference on Data Mining Workshops. IEEE, pp.643-647, 2006.

S. David-w-hosmer, R. Lemeshow, and . Sturdivant, Applied logistic regression, vol.398, 2013.

C. Cortes and V. Vapnik, Support-vector networks, pp.273-297, 1995.

G. Holmes, R. B. Kirkby, and D. Bainbridge, Batchincremental learning for mining data streams, 2004.

H. Hotelling, Analysis of a complex of statistical variables into principal components, In: Journal of Educational Psychology, vol.24, p.417, 1933.

W. David and . Aha, Lazy learning, 2013.

C. Charu and . Aggarwal, Data mining: the textbook, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research (JMLR), vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

J. Montiel, J. Read, A. Bifet, and T. Abdessalem, Scikit-multiflow: a multi-output streaming framework, Journal of Machine Learning Research (JMLR), vol.19, pp.2915-2914, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02287993

B. Veloso, J. Gama, and B. Malheiro, Self hyper-parameter tuning for data streams, Data Streams, 2018.