Skip to Main content Skip to Navigation
Theses

Improving IoT data stream analytics using summarization techniques

Résumé : Face à cette évolution technologique vertigineuse, l’utilisation des dispositifs de l'Internet des Objets (IdO), les capteurs, et les réseaux sociaux, d'énormes flux de données IdO sont générées quotidiennement de différentes applications pourront être transformées en connaissances à travers l’apprentissage automatique. En pratique, de multiples problèmes se posent afin d’extraire des connaissances utiles de ces flux qui doivent être gérés et traités efficacement. Dans ce contexte, cette thèse vise à améliorer les performances (en termes de mémoire et de temps) des algorithmes de l'apprentissage supervisé, principalement la classification à partir de flux de données en évolution. En plus de leur nature infinie, la dimensionnalité élevée et croissante de ces flux données dans certains domaines rendent la tâche de classification plus difficile. La première partie de la thèse étudie l’état de l’art des techniques de classification et de réduction de dimension pour les flux de données, tout en présentant les travaux les plus récents dans ce cadre.La deuxième partie de la thèse détaille nos contributions en classification pour les flux de données. Il s’agit de nouvelles approches basées sur les techniques de réduction de données visant à réduire les ressources de calcul des classificateurs actuels, presque sans perte en précision. Pour traiter les flux de données de haute dimension efficacement, nous incorporons une étape de prétraitement qui consiste à réduire la dimension de chaque donnée (dès son arrivée) de manière incrémentale avant de passer à l’apprentissage. Dans ce contexte, nous présentons plusieurs approches basées sur: Bayesien naïf amélioré par les résumés minimalistes et hashing trick, k-NN qui utilise compressed sensing et UMAP, et l’utilisation d’ensembles d’apprentissage également.
Document type :
Theses
Complete list of metadatas

Cited literature [139 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02865982
Contributor : Abes Star :  Contact
Submitted on : Friday, June 12, 2020 - 10:47:08 AM
Last modification on : Wednesday, June 24, 2020 - 4:19:43 PM

File

90368_BAHRI_2020_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02865982, version 1

Citation

Maroua Bahri. Improving IoT data stream analytics using summarization techniques. Machine Learning [cs.LG]. Institut Polytechnique de Paris, 2020. English. ⟨NNT : 2020IPPAT017⟩. ⟨tel-02865982⟩

Share

Metrics

Record views

88

Files downloads

65