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Abstract

The first part of this thesis focuses on the colonization dynamics of a bacterial
population in early infection of the gut. The aim is to infer biologically relevant
parameters from indirect data. We discuss the optimal observable to characterize
the variability in genetic tags distributions. In a first one-population model, bi-
ological arguments and inconsistencies between several experimental observables
lead to the study of a second model with two-subpopulations replicating at differ-
ent rates. As expected, this model allows for broader possibilities in observables
combination, even though no clear conclusion can be drawn as to a data set on
Salmonella in mice. The second part concerns the mechanisms that make the im-
mune response effective. The main effector of the immune system in the gut, IgA
(an antibody), enchains daughter bacteria in clonal clusters upon replication. Our
model predicting the ensuing reduction of diversity in the bacterial population
contributes to evidence this phenomenon, called “enchained growth”. Inside the
host, the interplay of cluster growth and fragmentation results in preferentially
trapping faster-growing and potentially noxious bacteria away from the epithe-
lium, which could be a way for the immune system to regulate the microbiota
composition. At the scale of the hosts population, in the context of evolution of
antibiotic resistance, if bacteria are transmitted via clonal clusters, the probabil-
ity to transmit a resistant bacteria is reduced in immune populations. Thus we
use statistical physics tools to identify some generic mechanisms in biology.
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Résumé

La première partie de cette thèse porte sur les dynamiques de colonisation d’une
population bactérienne au début d’une infection intestinale. Le but est de déduire
des paramètres biologiquement pertinents de données indirectes. Un modèle sim-
ple est étudié, et l’on discute de l’observable optimale pour caractériser la vari-
abilité d’une distribution d’étiquettes génétiques. Des arguments biologiques et
des incohérences entre des observables expérimentales avec le premier modèle
motivent l’étude d’un second, où deux sous-populations se répliquent à des taux
différents, mais on ne peut pas conclure clairement sur le jeu de données utilisé. La
seconde partie porte sur les mécanismes de la réponse immunitaire. Le principal
effecteur du système immunitaire adaptatif dans l’intestin, l’IgA (un anticorps),
enchâıne les bactéries-filles en agrégats clonaux lors de la réplication. Nous avons
contribué à prouver ce phénomène par un modèle qui prédit la réduction de la
diversité bactérienne qui en découle. Au sein de l’hôte, l’interaction entre la crois-
sance et la fragmentation des agrégats a pour conséquence le piégeage préférentiel
des bactéries à croissance rapide, ce qui pourrait permettre au système immuni-
taire de réguler la composition du microbiote. A l’échelle de la population-hôte, et
dans le contexte de l’évolution d’une résistance aux antibiotiques, si les bactéries
sont transmises sous forme d’amas clonaux, alors la probabilité de transmet-
tre une bactérie résistante est réduite dans une population immunisée. Ainsi,
des outils de physique statistique nous permettent d’identifier des mécanismes
génériques en biologie.
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conseils précieux, à Löıc pour les bavardages et les encouragements, et pour avoir
bien voulu relire des bouts de ce manuscrit. Merci aussi à tous les deux pour
une intéressante et fructueuse collaboration sur le dernier chapitre de ce manus-
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sations beaucoup plus futiles, fut un réel plaisir, et une motivation.
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Résumé en français

Introduction

Le corps humain abrite un microbiote important. Chaque compartiment anato-
mique en contact direct avec l’environnement, comme la peau, la plaque dentaire,
la salive, les poumons, recèle de très nombreux microorganismes. Il a été estimé
[1] qu’un corps humain contient environ 1013 bactéries, soit approximativement
autant que le nombre de cellules humaines qui composent ce corps. La plupart de
ces bactéries (environ 99%) sont situées dans l’appareil digestif. La présence de
ces écosystèmes est essentielle à la bonne santé des individus, car ils remplissent
plusieurs fonctions importantes [2] : grâce aux effets de compétition, ils protègent
l’hôte de l’intrusion d’autres agents potentiellement pathogènes. Dans le système
digestif, ils aident aussi à la digestion en cassant des nutriments spécifiques. Il
s’agit d’une interaction mutualiste entre l’hôte et les bactéries commensales, qui
se nourrissent des nutriments ingérés par l’hôte. Bien sûr, les bactéries sont aussi
responsables de nombreuses pathologies : une souche virulente peut parvenir à
supplanter les autres populations bactériennes, perturber le fonctionnement de
l’écosystème et déclencher une inflammation (causant par exemple des caries, des
diarrhées, des orgelets, etc). Parfois, une telle souche pénètre l’organisme et se
répand dans les différents organes, causant de graves infections systémiques. Les
infections bactériennes sont responsables de millions de morts chaque année : se-
lon l’Organisation Mondiale de la Santé, elles contribuent largement à trois des dix
premières causes de mort à l’échelle mondiale en 2016, avec la pneumonie, les ma-
ladies diarrhéiques et la tuberculose [3]. Les infections bactériennes sont d’autant
plus un enjeu de santé publique que la résistance aux antibiotiques semble main-
tenant s’étendre plus rapidement que les nouveaux traitements ne sont conçus
[4], alors même que les antibiotiques constituent le principal outil pour lutter
contre elles. C’est pourquoi il est essentiel de développer notre connaissance des
populations bactériennes et des infections bactériennes.

Différentes approches coexistent pour étudier les populations bactériennes. Une
première classe d’approches pourrait être qualifiée d’ascendante : l’idée est de
partir du système le plus simple possible in vitro, et d’introduire progressivement
des niveaux de complexité de manière mâıtrisée afin d’imiter les conditions na-
turelles. [5] [6] [7] [8]. A l’inverse, une autre classe d’approches complémentaires
aux précédentes pourrait être qualifiée de descendante : l’idée est cette fois de
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partir de systèmes complexes en conditions naturelles et d’essayer d’analyser et
de séparer les différents facteurs qui en régissent les comportements. Ces ap-
proches sont essentielles, car le niveau de complexité en conditions naturelles
et/ou dans des systèmes vivants est très difficile, voire impossible, à reproduire
artificiellement. D’une part, afin de recréer les contraintes mécaniques ressenties
dans un environnement naturel, ou in vivo pour des populations bactériennes
vivant à l’intérieur d’un hôte, il faut que ces contraintes puissent être correcte-
ment caractérisées, ce qui n’est pas toujours le cas. Par exemple, dans l’appareil
digestif, des mouvements péristaltiques complexes visant à mélanger le digestat
de manière optimale afin de favoriser l’absorption des nutriments imposent des
contraintes complexes sur le contenu extrêmement non-Newtonien[9, 10]. D’autre
part, des composants chimiques ou enzymatiques, des bactériophages ou d’autres
microorganismes, pourraient jouer un rôle important dans les comportements
observés sans être correctement identifiés. Et même lorsque ces composants sont
correctement identifiés, certains composants moléculaires peuvent être difficiles à
reproduire artificiellement ou à isoler en quantités suffisantes pour être ajoutés
à des systèmes in vitro. C’est pourquoi de nombreux modèles animaux ont été
développés pour étudier les infections bactériennes directement dans l’hôte. Le
modèle de l’infection de la souris par la salmonelle [11], utilisé dans les études
expérimentales qui ont initialement motivé ce travail, présente de nombreux avan-
tages. D’abord, le système immunitaire de la souris présente un degré de com-
plexité similaire à celui des humains, avec en particulier un système immuni-
taire adaptatif développé. En outre, plusieurs aspects de l’infection peuvent être
contrôlés. Les souris peuvent être élevées en environnement stérile de sorte que la
composition de leur microbiote puisse être contrôlée et présenter une complexité
moindre que dans des conditions naturelles. Les souris peuvent également être
manipulées génétiquement de manière à présenter des déficiences immunitaires
particulières. Tous ces outils permettent de mieux séparer les différentes effets
étudiés.

L’étude des populations bactériennes en conditions naturelles ou dans des
systèmes vivants complets nécessite le recours à la modélisation pour de nom-
breuses questions, et, inversement, ces systèmes représentent tout un champ de
possibles applications pour les modélisateurs et les physiciens. Par exemple, les
progrès des techniques de séquençage permettent maintenant l’analyse de micro-
biomes entiers, que l’on peut confronter à des modèles de réseaux [12], de théorie
des graphs et théorie des jeux [13], ou encore de génétique des populations [14].
Un autre exemple est la contribution que la physique a déjà apporté à l’immuno-
logie, notamment en utilisant le concept d’information, en particulier en ce qui
concerne la reconnaissance des agents pathogènes qui déclenchent la sécrétion de
nouveaux effecteurs, et la constitution de répertoires de récepteurs à antigènes
d’une grande diversité [15, 16].

En ce qui concerne la colonisation d’un hôte, à part dans des configurations
très particulières [17, 18], il est impossible de suivre le processus infectieux en
détail sans avoir recours à des mesures invasives et donc perturbatrices. Des me-
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sures indirectes sont plutôt privilégiées, et c’est là que la modélisation devient un
outil essentiel pour comprendre les observations expérimentales. L’organisme ani-
mal peut être vu comme une “bôıte noire”, et le rôle du modélisateur consiste alors
à inférer ses règles internes à partir d’observations extérieures. Par ailleurs, dans
le contexte des infections, les outils de physique statistique sont nécessaires pour
étudier les dynamiques de populations. En effet, une infection peut démarrer d’un
petit nombre de microorganismes, ce qui requière une modélisation stochastique.
Ces microorganismes se répliquent ensuite en grands nombres, ce qui nécessite
une description de type champ moyen.

Du point de vue du physicien, le système digestif est particulièrement intéres-
sant. D’une part, en raison des forces exercées par le flux qui mélange et trans-
porte le contenu des intestins, et d’autre part, parce qu’il n’y a qu’un nombre
restreint d’effecteurs immunitaires à prendre en compte, ce qui rend l’étude de
leurs mécanismes physiques plus aisée. En effet, le système digestif est topologi-
quement “à l’extérieur” de l’organisme hôte, les effecteurs immunitaires sécrétés
sont donc pour ainsi dire “perdus” pour l’organisme une fois dans le lumen in-
testinal. Cela pourrait expliquer pourquoi, sauf dans des cas particuliers, seul un
petit nombre de cellules immunitaires sont sécrétées dans les intestins. Les cel-
lules de l’immunité présentent plusieurs états, réagissent à de nombreux signaux,
et sont donc complexes à modéliser. Au contraire, et bien que les mécanismes
menant à sa sécrétion soient complexes eux aussi, l’immunoglobuline A (IgA), un
type d’anticorps et le principal effecteur de la réponse immunitaire adaptative
sécrété dans les intestins, est une molécule dont la concentration peut être me-
surée, et dont les effets sont plus faciles à caractériser. Par ailleurs, ces anticorps
reconnaissent une souche spécifique de bactéries, ce qui signifie que la population
bactérienne avec laquelle ils interagissent est essentiellement homogène, ce qui
facilite encore la modélisation biophysique.

Cette thèse porte sur plusieurs aspects des dynamiques d’une population bacté-
rienne et de son interaction avec le système immunitaire dans les intestins. Elle
se compose de deux parties distinctes et essentiellement indépendantes. Dans
une première partie, je présente mon travail portant sur les dynamiques de co-
lonisation d’une population bactérienne au début d’une infection. Je développe
des modèles stochastiques (car les nombres initiaux de bactéries d’intérêt sont
faibles) qui visent à déterminer à partir de données expérimentales indirectes
des paramètres biologiquement pertinents, comme des taux de réplication et
d’élimination, et la probabilité pour une bactérie de s’établir dans l’organisme et
de participer à l’infection. Dans un premier chapitre 1.1, je présente brièvement
les données expérimentales qui ont motivé cette étude (et qui reposent principale-
ment sur du marquage bactérien), et je présente les principales méthodes de phy-
sique statistique qui sont utilisées dans la suite – à la fois analytiques (avec prin-
cipalement des processus de branchement) et numériques (avec principalement
des simulations de type Gillespie). Le second chapitre 1.2 est ensuite consacré
à l’étude d’une première classe de modèles dont la population bactérienne est
initialisée par un tirage Poissonien puis suit un processus de mort et de naissance
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de Markov en temps continu. Cette étude permet également une réflexion plus
large sur le choix optimal d’une observable pour caractériser la variabilité dans
la distribution d’un ensemble de variables aléatoires suivant la même dynamique
temporelle mais avec des nombres initiaux différents. Je montre que dans certains
cas, les paramètres estimés à l’aide des différentes observables à partir d’un même
jeu de données ne sont pas clairement cohérents. Cela m’a menée à l’étude d’une
autres classe de modèles au chapitre 1.3, avec deux sous-populations distinctes
suivant les mêmes types de dynamiques mais avec des paramètres différents. Plu-
sieurs facteurs biologiques pourraient en effet être à l’origine de telles disparités
au sein d’une population d’une même souche bactérienne. Je montre que si ces
modèles permettent de plus grandes possibilités de combinaisons des différentes
observables, qui permettent d’expliquer certaines des expériences considérées ici,
on ne peut pas tirer de conclusion générale pour l’ensemble (restreint) de données
exploitées dans ce travail.

La seconde partie de ma thèse porte sur les mécanismes physiques de la
réponse immunitaire dans les intestins. Elle s’appuie sur les résultats d’une étude
récente, à laquelle j’ai contribué, montrant que le principal effecteur du système
immunitaire dans les intestins, l’immunoglobuline A (un anticorps spécifique),
enchâıne les bactéries filles en agrégats clonaux lors de la réplication [19]. Dans
un premier chapitre 2.1, je reprends les résultats de cette étude et présente en
particulier ma contribution, avec un modèle qui montre la diminution de diversité
dans la population bactérienne résultant de ce processus de croissance enchainée,
tout en expliquant comment ce mécanisme suffit à protéger l’organisme de l’infec-
tion. Dans les deux chapitres suivants (2.2 et 2.3), j’explore les conséquences de
ce phénomène, d’abord à l’échelle de l’hôte (chapitre 2.2), puis à l’échelle d’une
population d’hôtes, en terme d’évolution de la résistance aux antibiotiques dans
la population bactérienne (chapitre 2.3). A l’échelle de l’hôte, dans le chapitre 2.2,
je montre que dans les individus immuns produisant de l’immunoglobuline A, l’in-
teraction entre croissance bactérienne et dislocation des agrégats pourrait être un
moyen pour le système immunitaire de contrôler la composition du microbiote en
impactant préférentiellement les bactéries à croissance rapide, plus susceptibles
de déséquilibrer la flore intestinale [20]. En effet, si les bactéries se répliquent
plus vite que les agrégats ne cassent, alors elle finissent piégées dans ces agrégats,
ce qui les empêche d’approcher les parois de l’intestin et de coloniser le reste de
l’organisme, c’est-à-dire de commencer une infection systémique. En outre, si les
bactéries sont présentes sous forme d’agrégats clonaux au sein de l’hôte, il est
aussi plausible qu’elles soient transmises sous cette forme. Dans le chapitre 2.3,
je montre qu’à l’échelle de la population d’hôtes, si tous les autres paramètres
sont inchangés, la probabilité qu’une infection émerge est réduite dans une popu-
lation immunisée (où les bactéries s’agrègent) par rapport à une population näıve
(où les bactéries restent libres). En effet, dans le cas où les bactéries sont trans-
mises sous forme d’agrégats clonaux (soit totalement résistants, soit totalement
sensibles), si le nombre moyen de bactéries résistantes transmises est conservé, la
proportion de transmissions contenant au moins une bactérie résistante est plus
faible par rapport au cas où il n’y a pas d’agrégation.
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Les deux parties de cette thèse ont été motivées par l’étude de données
quantitatives d’expériences d’infections de la souris par la salmonelle. Cepen-
dant, les résultats présentés ici dépassent le cadre de la simple interprétation de
données. Les mécanismes d’immunité que je présente ici sont en effet de portée
très générale : le système immunitaire de la souris est proche de celui de nom-
breux autres vertébrés (dont les humains), et la croissance enchâınée n’est pas
un processus qui se limite à la salmonelle, puisqu’il a déjà été mis en évidence
notamment chez E. coli [19]. En outre, dans la première partie, les outils de
physique statistique qui sont développés pourraient être appliqués à de plus
grands ensembles de données sur les infections bactériennes de l’intestin dans
divers animaux et avec diverses souches bactériennes, mais pourraient aussi être
adaptés facilement à d’autres systèmes en écologie, pourquoi pas à des échelles
différentes. Dans la deuxième partie, l’étude de la croissance et de la fragmen-
tation des agrégats présente en soi un problème général de physique statistique,
qui s’est déjà révélé utile dans d’autres contextes [21][22]. Ainsi, l’objectif est
d’identifier des mécanismes génériques, et les ingrédients minimaux nécessaires à
la compréhension de la portée de ces mécanismes.

1 Dynamiques d’une population bactérienne lors
d’une infection des intestins

Introduction

Les maladies infectieuses sont souvent étudiées sous l’angle des processus molécu-
laires impliqués. L’identification des molécules et des cellules clés est utile, mais
ce point de vue peut être complété par d’autres approches. En particulier, la
contribution des méthodes de type dynamiques de populations est essentielle :
on ne peut pas imaginer concevoir des stratégies optimales pour combattre une
infection sans savoir par quelle voie l’agent pathogène pénètre l’organisme hôte,
quels organes il colonise, à quelle vitesse il se réplique, migre, et se fait poten-
tiellement éliminer. L’identification de points faibles du processus infectieux à
l’échelle de toute la population pourrait amener à concevoir de nouveaux vaccins
et thérapies. De telles approches ont été développées dans la communauté des
virus [23, 24] et se sont déjà montrées prometteuses en ce qui concerne les infec-
tions bactériennes [25, 26]. Inversement, les populations bactériennes fournissent
des systèmes modèles pour l’étude des dynamiques de population et d’évolution,
en particulier en raison des taux de croissance élevés.

Dans cette partie, on développe des outils génériques, et on les applique à un
cas spécifique : les infections bactériennes intestinales résultant d’une intoxication
alimentaire. L’objectif est en particulier de caractériser les dynamiques de coloni-
sation des bactéries dans les premiers stades de l’infection, en déterminant des pa-
ramètres biologiquement pertinents, comme des taux de réplication, d’élimination,
ou la probabilité pour une bactérie de s’établir et de prendre part au processus
infectieux. Pour un même nombre final de bactéries issues d’un nombre initial de
bactéries donné, différents scénarios sont possibles. Par exemple, des taux élevés
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de réplication et d’élimination pourraient mener au même nombre final qu’un
scénario avec des taux de réplication et d’élimination faibles, bien que le premier
scénario présente un taux de renouvellement bien plus important. La modélisation
sert donc à déchiffrer les données indirectes auxquelles on a accès et à déterminer
lequel de ces scénarios est le plus probable.

D’un point de vue plus général, cette partie de mon travail vise également
à traiter des questions plus théoriques. Le but est de développer des modèles
génériques d’une ou de plusieurs sous-populations dans un système ouvert et de
déterminer les meilleurs observables pour extraire un maximum d’information sur
la dynamique. Le recours à différentes observables doit permettre soit d’inférer
un plus grand nombre de paramètres, soit de vérifier la cohérence des résultats.

Dans la suite, je commence par présenter les données expérimentales qui ont
motivé mon travail, en particulier les différents marqueurs bactériens utilisés afin
d’obtenir plus d’informations quantitatives sur les nombres initiaux et finaux de
la population bactérienne, et je dresse une liste non exhaustive des méthodes ana-
lytiques et computationnelles qui sont utilisées dans la suite. Dans un deuxième
temps, je décris un premier modèle à une population, ainsi que toutes les ques-
tions soulevées en ce qui concerne le choix des observables. Enfin, je présente
un modèle à deux sous-populations inspiré d’arguments biologiques. Je finis en
discutant les résultats obtenus avec ces différents modèles et leurs limitations, et
présente les perspectives de développement de ce travail.

1.1 Données expérimentales et méthodes

1.1.1 Données expérimentales

Le travail de cette thèse s’inspire de données expérimentales produites dans
l’équipe du Dr. Emma Wetter-Slack, immunologiste à l’ETH de Zürich. Ces
données portent sur l’infection orale de la souris par la souche bactérienne Sal-
monella enterica serovar enterica Typhimurium [11]. Cette bactérie cause entre
autre de sévères diarrhées chez l’humain, responsables de plusieurs millions de
morts chaque année [27]. On s’intéresse principalement aux premiers stades de
l’infection, lorsqu’elle n’est pas encore systémique et qu’il n’y a pas encore d’in-
flammation. On se concentre sur le contenu du cæcum, une poche située au début
du gros intestin de dimension importante chez les rongeurs, et où les bactéries
s’établissent et se répliquent pendant les premiers stades de l’infection.

Comptage direct des bactéries Les bactéries sont rendues résistantes à un
antibiotique. Plusieurs dilutions (par exemple à la fin de l’expérience, dans le
contenu cæcal) sont faites, et déposées dans des bôıtes de Pétri. Des colonies
bactériennes visibles se forment et sont comptées [28].

Plasmides et nombres de générations Des plasmides (brins d’ADN circu-
laires) qui ne se répliquent plus une fois dans l’organisme de la souris sont ajoutés
aux bactéries. Ainsi, lorsque les bactéries se divisent dans la souris, les plasmides
doivent choisir entre l’une ou l’autre des deux bactéries-filles. Toutes les bactéries
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sont initialement porteuses du plasmides, puis la proportion de bactéries por-
teuses est divisée par deux à chaque cycle de réplication. Des expériences in vitro
permettent de calibrer précisément la correspondance entre dilution des plas-
mides et nombre de cycles de réplication. De cette manière, on a accès au nombre
moyen de cycles de réplication qu’a connu la population bactérienne au cours de
l’expérience.

WITS Des souches isogéniques marquées (WITS pour Wild type Isogenic Tag-
ged Strains [29]) sont également utilisées. Ces bactéries se comportent identique-
ment aux bactéries non-marquées et peuvent être identifiées par PCR quantitative
grâce à une séquence d’ADN spécifique non-codante ajoutée à leur génome (dans
les données exploitées ici, 7 WITS différents sont utilisés). Seul un petit nombre
de WITS sont inoculés à la souris, de sorte que les effets de la stochasticité
des processus impliqués soient observables sur leur distribution [29, 25, 26]. Par
exemple, un scénario avec de forts taux de réplication et d’élimination mènera à
une plus grande variabilité dans la distribution de WITS qu’un scénario avec de
faibles taux de réplication et d’élimination.

1.1.2 Méthodes

Dans cette partie on considère de manière abstraite un modèle ”zéro” dont les
composantes seront justifiées dans la section suivante, où la taille initiale de la
population résulte d’un tirage Poissonien de moyenne βN0 et où la dynamique
après t = 0 suit un processus Markovien en temps continu avec un taux de
réplication r et un taux d’élimination c.

Méthodes analytiques L’équation mâıtresse sur la distribution de probabilité
P (n, t) que n bactéries soient présentes dans le cæcum au temps t s’écrit :

∂P (n, t)

∂t
= (−cn− rn)P (n, t) + c(n+ 1)P (n+ 1, t) + r(n− 1)P (n− 1, t)

En sommant cette équation sur tous les n, on obtient une équation aux dérivées
partielles sur la fonction génératrice de cette distribution, qu’on résout. On trouve
l’expression suivante pour la fonction génératrice :

g(z, t) = exp

[
βN0(r − c)(z − 1)e(r−c)t

rz − c− (z − 1)re(r−c)t

]

On peut ensuite extraire les moments de la distribution de probabilité à l’aide
des dérivées de la fonction génératrice.

Méthodes computationnelles Afin de simuler la dynamique de ce modèle,
on utilise des algorithmes de type Gillespie. Les transitions (dans notre cas :
naissance ou mort d’un individu) sont prises en compte les unes après les autres.
A chaque pas de temps, des nombres aléatoires sont générés afin de déterminer
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l’intervalle de temps ainsi que la prochaine transition qui va se produire. Pour ce
travail, j’ai utilisé l’outil adaptivetau du langage R, qui est une version approchée
de l’algorithme de Gillespie permettant de réaliser plusieurs transitions à la fois
et ainsi d’accélérer le temps de calcul.

1.2 Modèles à une population

Les bactéries inoculées à la souris sont prélevées d’une solution, ce que l’on
modélise par un tirage Poissonnien de moyenne N0. Il est ensuite possible que
l’acidité de l’estomac représente une barrière que toutes les bactéries ne par-
viennent par à franchir vivantes, on considère donc que chaque bactérie a une
probabilité β de la traverser et de s’établir dans le cæcum. Le nombre initial
de bactérie résulte donc d’un tirage Poissonnien de moyenne βN0. On considère
ensuite un taux fixe de réplication plutôt qu’un temps fixe de division pour des
raisons de simplicité (cette hypothèse est discutée plus en détail en annexe). Dans
les simulations, on considère une saturation de la réplication lorsque la capacité
maximum du cæcum est atteinte, par le biais d’un terme de croissance logistique.
Dans l’étude analytique en revanche, on néglige cette saturation (on verra plus
loin que les observables que l’on considère dépendent surtout de la dynamique au
tout début de l’infection, ce qui permet de négliger la saturation).

On peut déterminer le taux maximal initial de réplication (qui est une quantité
robuste dépendant peu des spécificités de l’expérience) grâce notamment au taux
de réplication maximal in vitro. La proportion d’étiquettes génétiques perdues au
cours de l’expérience peut s’écrire comme le zéro de la fonction génératrice. Cette
expression dépend à la fois de β et de c. On cherche donc une seconde observable
pour séparer les effets de β et de c.

1.2.1 Une nouvelle observable

On cherche une observable afin de caractériser la variabilité dans la distribu-
tion des étiquettes génétiques. L’evenness a d’abord été privilégiée pour des rai-
sons de continuité avec des travaux précédents de nos collaborateurs. Cependant,
cette observable est difficilement manipulable analytiquement. La variance est
une quantité plus naturelle pour le calcul. Nous avons montré qu’en fait, elle
dépend de la même combinaison des paramètres β et c que la probabilité de
perte. Elle ne contient donc a priori pas d’information différente par rapport à
la probabilité de perte. Elle peut néanmoins avoir une autre utilité : comparer
les estimations des paramètres possibles en utilisant la perte des WITS versus
leur variabilité et vérifier que ces estimations sont compatibles. Par ailleurs, afin
de prendre correctement en compte la variabilité initiale dans la distribution des
WITS, on regardera plutôt la variance sur les taux de croissance des populations
individuelles de WITS.
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1.2.2 Résultats

Stratégie pour l’estimation des paramètres Dotés de cette nouvelle ob-
servable, on peut maintenant explorer l’espace paramétrique (β, c). En chaque
point, on peut calculer ou réaliser une simulation pour obtenir la valeur attendue
dans le cadre du modèle étudié pour les trois observables suivantes : la propor-
tion de perte des étiquettes génétiques, la variance sur le taux de croissance,
et le taux de croissance moyen (qui vaut β2Ge−ct avec G le nombre moyen de
cycles de réplications estimé par la donnée de la dilution des plasmides). Puis
les valeurs expérimentales de ces trois observables définissent des courbes de l’es-
pace paramétrique qui correspondent aux ensembles de paramètres autorisés par
chacune des observables. Dans certains cas, des incertitudes sur ces courbes de
niveaux peuvent être estimées (voir figure 1).
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Figure 1 – Courbes de contour des valeurs expérimentales des différentes observables

dans l’espace des paramètres (β, c) pour une expérience démarrant avec un inoculum de

taille 103. Pour la variance : rouge pointillé : contour de la variance pour trois souris

et rouge trait plein : pour la valeur moyenne. Rose pointillé et orange pointillé : incerti-

tudes sur ce contour estimées de diverses manières, voir détails dans le texte principal.

Pour la perte des WITS : bleu et vert : courbes de contour pour la proportion de WITS

expérimentalement perdue, estimées de diverses manières (voir détails dans le texte prin-

cipal). Vert pointillé et cyan : incertitudes sur ces contours, estimées de diverses manières

(voir détails dans le texte principal). Sur le taux de croissance : noir : en utilisant l’ex-

pression β2Ge−ct, contour pour la valeur expérimentale du taux de croissance dans trois

souris (traits pointillés) ainsi que la valeur moyenne (trait plein).

Discussion On observe tout d’abord que bien que l’on ne prenne pas en compte
la saturation dans l’étude analytique, elle correspond parfaitement aux résultats
des simulations. En effet, en ce qui concerne les observables de la proportion de
WITS perdus et de la variance, les effets importants se produisent au tout début,
lorsque les populations de WITS sont encore de petite taille. Par ailleurs, les
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contours pour la variance et la probabilité de perte sont parallèles, ce qui était
attendu puisque ces deux observables dépendent de la même combinaison des
paramètres β et c. Quant au contour du taux de croissance moyen, il restreint
l’espace des paramètres possibles à de faibles valeurs de c, ce qui était également
attendu. Dans certaines expériences, on ne peut pas dire clairement si l’espace
entre les contours de la variance et de la probabilité de perte peuvent être compris
dans le bruit attendu ou non. Afin d’explorer de plus grandes possibilités de
combinaison des observables, on se tourne donc vers des modèles à plusieurs
sous-populations.

1.3 Modèles à deux sous-populations

1.3.1 Arguments en faveur d’un modèle à deux sous-populations

Plusieurs facteurs biologiques pourraient expliquer la coexistence au sein d’une
population d’une même souche bactérienne de plusieurs sous-populations suivant
des dynamiques différentes. On pourrait par exemple imaginer que la spatia-
lité joue un rôle : par exemple, si les nutriments ne sont pas bien répartis dans
le cæcum, il pourrait y avoir des zones où les bactéries se répliquent plus que
d’autres. Il peut aussi exister plusieurs états phénotypiques dans la population
bactérienne : une partie de la population peut par exemple exprimer un facteur de
virulence, ou un flagelle, tandis que l’autre non. Ces différences pourraient mener
à des dynamiques différentes, et notamment des taux de réplications différents.

Par ailleurs, comme les nombres initiaux de WITS sont petits, si deux sous-
populations se répliquent à des taux différents, alors il peut arriver que toutes les
bactéries marquées avec un premier WITS soient à croissance rapide, tandis que
toutes les bactéries marquées avec un autre WITS soient à croissance lente. Dans
ce cas, on arriverait à la fin de l’expérience à une plus grande variance dans la
distribution des WITS que si toutes les bactéries se répliquaient au même taux
moyen : ainsi, pour un même nombre de WITS perdus, on devrait avoir accès à
une plus grande plage de valeurs pour la variance.

1.3.2 Résultats

Le calcul des différentes observables peut être adapté au cas avec deux sous-
populations. On note α le ratio entre les deux taux de réplication (on définit
α > 1) et q la proportion initiale de bactéries à croissance rapide. Ici, on fixe tous
les paramètres sauf α et q grâce à la donnée des valeurs expérimentales pour deux
observables : le taux de croissance et la probabilité de perte. Une seule observable
reste libre : la variance. On explore donc les valeurs attendues (analytiquement
et par des simulations) pour la variance dans l’espace des paramètres (α, q), et
l’on compare ces valeurs à la valeur expérimentale. Deux exemples de cartes
paramétriques sont présentés figure 2.

Plusieurs expériences présentent des mesures de dilution de plasmides assez
peu compatibles avec la mesure des tailles initiale et finale des populations, ou des
problèmes expérimentaux. Deux expériences semblent cohérentes avec le modèle
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Figure 2 – Cartes de la variance attendue dans le cadre du modèle à deux sous-

populations, pour deux expériences commençant avec un inoculum de taille 103. En

abscisse on a log10(q), avec q la proportion initiale de bactéries à croissance rapide ; en

ordonnées, on a log10(α−1), avec α le ratio entre les deux taux de réplication. Les contours

montrent les points de l’espace paramétrique où l’on retrouve la valeur expérimentale de

la variance (pointillés pour trois souris et trait plein pour la moyenne). Le simple fait que

ces lignes apparaissent sur la carte montre que certaines combinaisons des paramètres

(q, α) permettent de retrouver les valeurs expérimentales des trois observables à la fois,

ce qui n’était pas le cas dans le cadre du modèle à une seule population.

à deux sous-populations, bien que pour l’une d’entre elles les paramètres estimés
soient plus faibles que l’ordre de grandeur attendu. Cependant, un plus grand
nombre de données serait nécessaire afin de conclure plus généralement sur le
sujet, comme il sera discuté dans la conclusion qui suit.

Conclusion

Dans cette partie, j’ai présenté la partie de mon travail qui porte sur les dyna-
miques de colonisation d’une population bactérienne au début d’une infection
intestinale. J’ai développé des modèles stochastiques de dynamiques de popula-
tion en systèmes ouverts, qui visent à déterminer des paramètres biologiquement
pertinents de l’infection (comme les taux de réplication et d’élimination, et la
probabilité pour une bactérie de s’établir dans l’organisme et de prendre part
à l’infection) à partir de données indirectes. Dans une première section 1.1, j’ai
présenté les données quantitatives sur l’infection de la souris par la salmonelle
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qui ont motivé cette étude (essentiellement les nombres initiaux et finaux de
bactéries, ainsi que les distributions initiales et finales de marqueurs génétiques),
ainsi que les méthodes générales utilisées par la suite (à la fois analytiques, avec
principalement des processus de branchement, et computationnelles, avec princi-
palement des simulations de Gillespie). Dans une deuxième section 1.2, j’ai étudié
un premier modèle à une population, dont la taille de la population est initialisé
par un tirage Poissonnien et qui suit ensuite un processus de naissance et de mort
de Markov en temps continu. Dans ce cadre, j’ai cherché l’observable optimale
pour caractériser la variabilité dans la distribution des étiquettes génétiques, qui
ont la particularité de partir de tailles de populations inégales, et ai montré que
le variance du taux de croissance renormalisée était une observable adéquate. J’ai
vérifié la cohérence des estimations de paramètres s’appuyant sur les différentes
observables et ai montré que dans certains cas, on ne peut pas conclure clai-
rement quant à cette cohérence. A partir d’arguments biologiques qui viennent
soutenir cette hypothèse, et en me basant sur l’idée que cela pourrait mener à de
plus grandes possibilités de combinaison des observables, j’ai ensuite développé
dans une troisième section 1.3 un modèle avec deux sous-populations suivant la
même dynamique, mais avec des taux de réplication différents. J’ai montré que
ce type de modèle explique très bien certaines expériences, mais pas toutes, et en
raison de la faible quantité de données considérées ici, on ne peut pas conclure
clairement quant à la coexistence réelle ou non de plusieurs sous-populations.

Dans ces modèles, on a toujours considéré que les bactéries se répliquaient
avec un taux fixe, pour des raisons de simplicité. Cependant, des temps fixes de
réplication sont plus proches de la réalité. En appendice D j’ai étudié un modèle
simple à une population, identique au modèle simple à une population étudié
en section 1.2, mais où toutes les bactéries se répliquent au bout d’un temps
fixe τ à la place de se répliquer à un taux fixe r. Les nouveaux paramètres sont
ajustés afin que les tailles moyennes de populations soient identiques dans les
deux modèles au bout du même temps. J’ai déterminé les nouvelles expressions
pour les observables considérées (variance sur le taux de croissance renormalisée
et probabilité de perte), qui sont toutes les deux modifiées de manière complexe :
les effets sur l’estimation des paramètres ne sont pas triviaux, et dépendent des
expériences considérées, on ne peut donc pas tirer de conclusion claire quant à
l’effet de l’hypothèse ”taux fixe de réplication” dans nos modèles.

Une autre piste concerne une étape des expériences qui a été identifiée comme
étant source de variabilité additionnelle : avant les mesures de q-PCR des fréquences
des différents WITS, il y a une étape préalable d’amplification de la population
bactérienne. Des arguments théoriques indiquent que, sauf cas extrêmes, cette
étape ne devrait pas contribuer significativement, mais ses effets devraient être
étudiés expérimentalement plus en détail.

Une autre question est celle des plus grands nombres de sous-populations.
Des arguments théoriques et des simulations préliminaires indiquent qu’on ne
peut pas atteindre de plus grande variance avec 3 sous-populations ou plus que
dans le cas avec deux sous-populations.

Pour conclure sur l’ensemble de données sur lequel on a testé nos méthodes,
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une des plus grandes difficultés réside dans le fait que l’observable qui contient
le plus d’information, la proportion de WITS perdus dans les expérience, est
aussi celle qui est expérimentalement mesurée avec un échantillonnage insuffisant
pour en avoir une valeur suffisamment fiable. Un bon moyen de contourner ce
problème sans avoir recourt à des nombres d’expériences trop importants serait
de développer un plus grand nombre de marqueurs génétiques (dans les données
considérées ici, seuls sept marqueurs génétiques différents sont utilisés) de manière
à ce que la probabilité de perte et les distributions de WITS soient mesurées de
manière plus statistiquement significative. Cependant, même si l’on ne peut pas
tirer de conclusion générale quant à ce jeu de données particulier, les méthodes
développées dans cette partie sont suffisamment générales pour être applicables
dans d’autres cas de dynamiques de populations.

2 Mécanismes d’action de l’immunoglobuline A lors
de la réponse immunitaire

Introduction

La surface du système digestif est très grande [30][31], couverte d’une couche de
cellules épithéliales essentielles à l’absorption des nutriments, mais qui consti-
tue aussi une porte d’entrée pour de nombreux pathogènes. Contrairement à
l’intérieur de l’organisme, où la présence de n’importe quelle bactérie est anor-
male, le lumen de l’appareil digestif abrite un microbiote important : il y a au
moins autant de bactéries dans l’appareil digestif humain qu’il n’y a de cellules hu-
maines composant le corps humain [1]. Le microbiote est donc important en taille,
mais aussi par sa fonction : les bactéries sont nécessaires pour casser et absorber
certains nutriments, et peuvent agir contre de potentiel agents pathogènes par
effets de compétition [2]. Pour ces raisons, dans le système digestif, le système
immunitaire de l’hôte doit à la fois lutter contre les bactéries dangereuses et
préserver celles qui sont bénéfiques.

Le principal effecteur du système immunitaire adaptatif dans les intestins est
un anticorps spécifique, l’Immunoglobuline A (IgA). Cet anticorps s’attache à des
antigènes-cibles précédemment rencontrés (lors d’une infection ou grâce à une vac-
cination), et permet de protéger de l’infection [32]. Si les mécanismes moléculaires
complexes permettant la sécrétion de l’anticorps ont été étudiés en détail [33], on
commence seulement à développer notre compréhension des mécanismes d’action
qui les rendent efficaces une fois dans le lumen intestinal. Dans cette partie, on
vise à éclaircir certains aspects de ces mécanismes. Dans une première section,
le concept de croissance enchâınée sera exposé ; je reprendrai l’élément de preuve
par lequel j’ai contribué à l’étude de Moor et al. [19]. Dans une deuxième section,
on explorera les conséquences de ce phénomène à l’échelle de l’hôte, et l’on mon-
trera qu’il peut permettre au système immunitaire pour réguler la composition du
microbiote. Enfin, dans une dernière section on s’intéressera aux conséquences de
la croissance enchâınée sur l’évolution de la résistance aux antibiotiques à l’échelle
d’une population d’hôtes.
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2.1 Une idée nouvelle en immunologie : la croissance enchâınée

Nos collaborateurs ont développé un protocole de vaccination de la souris basé
sur l’inoculation de grandes quantités de bactéries tuées [34]. Cette vaccination
déclenche la sécrétion en grandes quantités d’IgA dans le lumen intestinal, et les
souris ainsi vaccinées sont ensuite protégées d’infections ultérieures. Cependant,
l’IgA n’a pas de pouvoir bactéricide : en fait, dans les souris vaccinées, les nombres
de bactéries sont inchangés par rapport aux souris non-vaccinées. En revanche,
on observe des agrégats de bactéries, trop gros pour approcher la surface de
l’intestin et interagir avec, étape essentielle aux bactéries pour déclencher les
étapes suivantes de l’infection. Les IgA possédant plusieurs sites de fixation, il
était connu que ces anticorps pouvaient agglomérer les bactéries entre elles. Ce
processus d’agglutination avait cependant toujours été pensé comme résultant de
la rencontre aléatoire des bactéries et des IgA diffusant dans le contenu intestinal.
Or, dans les expériences, avec une concentration initiale de bactéries dans la limite
haute de ce qui peut provoquer une intoxication alimentaire, le temps typique de
rencontre d’une bactérie avec une autre est d’environ 30 heures ; cette hypothèse
ne permet donc pas d’expliquer comment les souris sont protégées. En fait, ce
que montre l’étude de Moor et al. [19], c’est que les bactéries-filles restent collées
entre elles par les IgA lors de la division. Les agrégats bactériens qui en résultent
sont donc clonaux.

Plusieurs éléments de preuve ont été nécessaires. J’ai contribué à l’un d’eux
en développant un modèle simple de croissance enchâınée basé sur la donnée des
distributions de WITS. En effet, si les bactéries se développent et sont éliminées
sous forme d’agrégats clonaux, tout se passe essentiellement comme si la taille
effective de la population était réduite (voir figure 3). Mon modèle a ainsi permis
de prédire la réduction de diversité observée dans la population bactérienne.

2.2 La croissance enchâınée comme moyen de régulation de la
composition du microbiote

Introduction

Dans les intestins, le système immunitaire doit pouvoir protéger l’organisme de
l’intrusion de bactéries pathogènes, tout en protégeant celles qui sont bénéfiques.
Cette distinction peut s’avérer d’autant plus délicate que certaines bactéries pour-
tant très apparentées présentent des comportements tout à fait différents dans les
intestins. Et comme la sur-croissance de n’importe quelle source bactérienne peut
mettre en danger l’équilibre de la flore intestinale, il est nécessaire que le système
immunitaire puisse maintenir un homéostat sur la composition du microbiote.

Or, les agrégats bactériens résultants de la croissance enchainée (voir section
2.1) peuvent casser, vraisemblablement sous l’effet des contraintes mécaniques
imposés par les flux. L’interaction entre la cassure des agrégats et la croissance
bactérienne pourrait avoir des conséquences importantes. Considérons un modèle
simplifié à l’extrême où toutes les bactéries se répliquent au bout d’un temps
τdiv et où tous les liens formés par les IgA se cassent au bout d’un temps τbreak
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extinction 

Normal growth IgA-driven enchained growth 

partial loss 

Figure 3 – Croissance bactérienne dans une souris näıve (gauche) ou dans une souris

vaccinée (droite) (source : figure 2a in [19]). Les couleurs représentent les différentes

souches de WITS, les contours bleus représentent les IgA qui recouvrent la surface. Les

encadrés zooment sur la surface et montrent que les agrégats ne peuvent pas interagir

avec (soit parce qu’ils sont trop gros pour pénétrer les cryptes, soit parce qu’ils sont trop

gros pour parvenir à pénétrer la couche de mucus).

(voir figure 4). Alors si τdiv > τbreak, les liens se cassent avant que les bactéries
aient le temps de se diviser, et il ne se forme pas d’agrégats de taille supérieure
à 2. En revanche, si τdiv < τbreak, alors les bactéries se divisent toujours avant
que les liens ne cassent, des clusters de taille toujours plus grande se forment
et il n’y a plus aucune bactérie libre. Dans ce modèle, ce sont les bactéries qui
se répliquent le plus vite, donc les plus susceptibles de déséquilibrer l’équilibre
de la flore intestinale, dont l’organisme se protège en les piégeant sous forme
d’agrégats. Dans la suite, on élabore cette idée à l’aide de modèles plus réalistes.

τdiv < τbreak 

Ø  No free bacteria 

Ø  Either free bacteria or 2-bacteria clusters 

τdiv > τbreak 

Figure 4 – Modèle simplifié de croissance et dislocation des agrégats, où toutes les

bactéries se divisent après un temps τdiv et où tous les liens se cassent après τbreak.
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2.2.1 Modèle de base

On considère d’abord un modèle de base, où les bactéries se répliquent à taux
constant r et sont parfaitement enchâınées à la réplication, et où les liens se
cassent tous avec un taux α. On considère qu’au début de l’infection, on peut
négliger les rencontres aléatoires de bactéries ou d ’agrégats indépendants dus à
la diffusion. On considère que les agrégats sont initialement formés de châınes
linéaires de bactéries (comme cela a été observé expérimentalement), sauf lors-
qu’une châıne casse ailleurs qu’aux extrémités : dans ce cas, on considère qu’elle
se recombine de manière plus complexe (par les côtés, comme cela a également été
observé), et que comme dans ces clusters complexes, les bactéries ont en moyenne
plus d’attaches, elles sont moins susceptibles de se détacher. On considère donc
que seuls les agrégats linéaires participent à la dynamique des bactéries libres,
les agrégats plus complexes ne contribuent plus au système.

En partant de ces hypothèses, on peut écrire l’ensemble d’équations différen-
tielles déterministes sur les nombres moyens ni de châınes de bactéries linéaires
de taille i. Ces systèmes d’équations sont ensuite étudiés à la fois à l’aide de
résolutions numériques du système complet (en coupant le système arbitrairement
à une taille maximale de châıne nmax qui n’impacte pas la dynamique), et à
l’aide d’approximations qui permettent d’obtenir des expressions approchées de
la distribution des tailles de châınes. On se concentre en particulier sur le taux
de croissance de la population de bactéries libres ; en effet, seules les bactéries
planctoniques peuvent approcher la paroi de l’intestin et déclencher les étapes
suivantes de l’infection.

Les résultats pour le modèle de base sont présentés figure 5. Le taux de crois-
sance des bactéries libres est drastiquement réduit par rapport au cas où il n’y a
pas de croissance enchâınée, et devient non-monotone : plus r est élevé, plus on
peut potentiellement produire de bactéries libres, mais lorsque r devient grand
par rapport à α, les agrégats se forment, puis se cassent pour former des agrégats
plus complexes dont aucune bactérie libre ne peut s’échapper. En ce qui concerne
la distribution des tailles de clusters, celle ci décroit en loi de puissance, et décroit
d’autant plus rapidement que r est petit devant α (auquel cas très peu d’agrégats
se forment).

2.2.2 Variantes de modèle de base

Des variantes du modèle de base sont ensuite étudiées, afin de vérifier la robus-
tesse des résultats par rapport aux hypothèses faites dans le modèle de base.
En utilisant toujours les mêmes méthodes, on étudie ainsi : un modèle où l’en-
châınement n’est pas parfait lors de la réplication, où les bactéries-filles ont donc
une probabilité non-nulle de s’échapper ; un modèle avec un temps fixe au lieu
d’un taux fixe de réplication ; un modèle où les châınes lorsqu’elles cassent ailleurs
qu’aux extrémités ont une probabilité non-nulle de donner deux châınes linéaires
au lieu d’un amas plus complexe qui ne contribue plus au système ; et un modèle
où le taux de cassure des liens augmente avec la force exercée sur les liens par les
contraintes hydrodynamiques.
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A. Taux de croissance de la population
de bactéries libres λ en fonction du taux

de réplication r, avec α pour unité.
Résultat numérique (en vert), et limite

sans agrégation (λ = r en pointillés
noirs).

B. Distribution de la taille des clusters
pour différents r. Traits pleins :
résultats numériques, pointillés :

approximations (confondue avec les
résultats numériques pour r/α = 0.1).

Figure 5 – Modèle de base. Pour les résolutions numériques, nmax = 40.

2.2.3 Comparaison aux données et discussion

Sauf dans le cas très particulier où les deux châınes résultant d’une cassure au
milieu d’une châıne peuvent toujours s’échapper, le taux de croissance de la po-
pulation de bactéries libres est toujours réduit par rapport au taux de réplication
bactérien. De plus, dans la plupart des modèles étudiés (sauf si plus de la moitié
des châınes s’échappe après cassure ou si la probabilité de s’échapper au mo-
ment de la réplication est grande), le taux de croissance de la population de
bactéries libre est une fonction non-monotone du taux de réplication, et il existe
un taux de réplication fini qui maximise le taux de croissance. A plus grands taux
de réplication, les bactéries restent piégées dans des agrégats complexes qui ne
contribuent plus à la dynamique générale du système.

En ce qui concerne les distributions des tailles d’agrégats, celles-ci présentent
toutes une décroissance qualitativement similaire, à l’exception près du modèle
avec des temps fixes de réplications, qui présente des pics correspondants aux
tailles qui sont des puissances de 2. L’analyse d’images du contenu cæcal de
souris vacciné semble indiquer une plus grande compatibilité avec ce modèle,
ainsi qu’avec le modèle où le taux de cassure dépend des forces, qui présente une
distribution plus étroite.

2.3 Conséquences de la croissance enchâınée pour l’évolution de
la résistance aux antibiotiques

Introduction

Depuis la découverte de la pénicilline, la conception d’un nouveau traitement
antibiotique a systématiquement été suivie de l’apparition d’une résistance à cet
antibiotique [4]. Les antibiotiques représentent un outil essentiel pour la médecine,
et sont très largement utilisés : un quart des Français en prennent chaque année
[35, 36], et le bétail des exploitations agricoles est souvent traité de manière rou-
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tinière. Or, le traitement n’est efficace que sur les bactéries sensibles. Au contraire,
si certaines bactéries sont résistantes, la prise du traitement ne peut qu’augmenter
la proportion de bactéries résistantes au sein d’un hôte. Par ailleurs, la prise d’an-
tibiotiques contre une bactérie pathogène peut favoriser l’apparition de résistance
chez d’autres bactéries du microbiote, en particulier dans les intestins. Dans cette
partie, on développe des modèles multi-échelle qui visent à comprendre l’interac-
tion entre prise d’un traitement antibiotique et dissémination de la résistance, en
prenant en compte l’aspect d’enchâınement clonal dû à l’immunité.

En effet, on a vu à la section précédente que les bactéries connaissaient une
croissance enchâınée dans les hôtes immunisés. Or si les bactéries sont présentes
sous forme d’agrégats clonaux au sein de l’hôte, il est probable qu’elles soient
également transmises sous cette forme à d’autres individus via la route fécale-
orale, réduisant ainsi la diversité des populations transmises. Le but de cette
section est d’étudier les effets de ce phénomène sur l’émergence de la résistance
aux antibiotiques à l’échelle d’une population d’hôtes.

2.3.1 Modèle

On utilise un modèle multi-échelle où la dynamique au sein de l’hôte est décrite
de manière déterministe (les nombres de bactéries sont typiquement très grands),
alors que la transmission entre les hôtes est décrite de manière stochastique, à
l’aide d’un processus de branchement (les nombres transmis peuvent être faibles).
On considère que les individus sont toujours initialement infectés d’un total N
de bactéries, et qu’il s’agit exactement de la taille d’un agrégat au sein des hôtes
immunisés.

Dynamique au sein de l’hôte Les hôtes sont soit immunisés (les bactéries qui
le colonisent forment des agrégats) soit näıfs (elles n’en forment pas). Ils peuvent
être traités avec des antibiotiques, auquel cas si l’hôte n’était colonisé que de
bactéries sensibles toutes les bactéries sont tuées, et sinon l’infection au sein de
l’hôte ne se fait plus qu’avec des bactéries résistantes. Des mutations peuvent se
produire au sein de l’hôte, avec une probabilité µ1 (resp. µ2) pour une bactérie-
fille de se transformer de sensible à résistant (resp. de résistant à sensible) lors
de la réplication. Les bactéries résistantes le sont au coût d’un taux de croissance
réduit d’un facteur (1− s). Ainsi on écrit les équations différentielles régissant la
dynamique au sein de l’hôte :

dS

dtg
= (1− µ1/ log(2))S + (1− s)Rµ2/ log(2),

dR

dtg
= (1− s)(1− µ2/ log(2))R+ µ1S/ log(2),

que l’on peut résoudre exactement afin de connâıtre les proportions finales des
différents types bactériens au sein de l’hôte au bout de G générations, avant
l’étape de transmission.
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Transmission Quand il n’y a pas de croissance enchâınée, les bactéries sont
transmises indépendamment. Mais dans les hôtes immunisés, elles sont transmises
sous forme d’agrégats. En l’absence de mutations, ou lorsqu’elles sont négligeables
(notamment lorsque l’inoculum est mixte), les agrégats transmis sont principale-
ment d’un seul type, soit totalement sensibles, soit totalement résistants. Lorsque
l’inoculum est d’un seul type, il devient nécessaire de prendre en compte les mu-
tations, et il est parfois nécessaire de prendre en compte la présence d’agrégats
mixtes (notamment lorsque le nombre de générations G au sein de l’hôte n’est
pas très grand devant le nombre de générations g nécessaire à l’élaboration d’un
cluster de taille N = 2g). Chaque individu näıf (resp. immunisé) transmet l’in-
fection à un nombre d’hôtes qui suit une distribution de Poisson de moyenne λ
(resp. λ′).

2.3.2 Méthodes et équations

On utilise les processus de branchement pour décrire le début de l’infection
[37, 38, 39], et on écrit donc les fonctions génératrices, avec ℘i,{n0,n1,....,nN} la
probabilité qu’un hôte initialement infecté avec i bactéries résistantes et N − i
bactéries sensibles infecte n0 nouveaux individus avec 0 résistants et N sensibles,
n1 nouveaux individus avec 1 résistante et N − 1 sensibles, etc. On suppose
que le nombre de transmissions est distribué de manière Poissonienne et que les
transmissions sont indépendantes les unes des autres. En notant fij la probabi-
lité qu’une transmission d’un hôte initialement infecté de i bactéries résistantes
contienne j bactéries résistantes, on obtient :

gi(z0, ..., zn) =
∑

{n0,n1,....,nN}

℘i,{n0,n1,....,nN}z
n0
0 ....znNN

= exp

−λ̃ N∑
j=0

fi,j(1− zj)


avec λ̃ = λ pour un individu näıf et λ′ pour un individu immunisé. Les probabilités
d’extinction ei (pour un ”patient zéro” infecté de i bactéries résistantes) sont les
points fixes de ces fonctions génératrices. Les fij doivent donc être explicités dans
chacun des cas, puis l’on obtient un système d’équations linéaires que l’on peut
résoudre numériquement et étudier à l’aide d’approximations analytiques.

2.3.3 Résultats

En l’absence de mutations En l’absence de mutations, la résolution du
système complet d’équations pour λ = λ′ et q = q′ permet de montrer que
dans une population immunisée, la probabilité d’extinction de l’infection est plus
grande (voir figure 6).

Effet de porteur sain Il est vraisemblable qu’un individu immunisé ne se
sente pas malade. Dans ce cas, on peut imaginer qu’il reste moins isolé, et a donc
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With clustering; numerical 
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Échelle linéaire

With clustering; numerical 
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No clustering; numerical 
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No clustering; numerical 
No clustering; simulation 

Échelle logarithmique

Figure 6 – Probabilité d’extinction de l’épidémie en fonction du nombre de bactéries

résistantes n ayant infecté le ”patient zéro”. Ici on a pris µ1 = µ2 = 0, s = 0, N = 100,

λ = λ′ = 2 et q = q′ = 0.55, et n varie de 0 à N = 100.

la possibilité de transmettre l’infection à plus d’individus (λ′ > λ). De plus, il est
aussi possible qu’étant moins malade, il soit moins traité (q′ < q). Toujours en
l’absence de mutations, avec λ′ > λ, l’effet de l’immunité sur la propagation peut
être inversé, notamment lorsque le ”patient-zéro” n’était initialement infecté que
de bactéries résistantes.

Avec des mutations On considère en particulier le cas où le ”patient-zéro”
n’est initialement infecté que de bactéries sensibles, et où la résistance ne peut
émerger que par une nouvelle mutation. On compare la probabilité de survie de
l’épidémie dans une population entièrement näıve par rapport à une population
entièrement immunisée en considérant la quantité :

1− e0,naive

1− e0,immune
.

Dans ce cas il est important de distinguer le cas où les clusters mixtes sont
importants à prendre en compte des cas où l’on peut les négliger. En écrivant
les équations complètes que l’on résout numériquement, mais aussi par des ap-
proximations pour des cas limites, on montre que dans deux régimes différents
(celui d’un petit nombre de génération avec s suffisamment petit, et celui d’un
grand nombre de générations avec s pas trop petit), lorsque la souche bactérienne
ne peut pas se propager en l’absence de mutations, la probabilité de survie de
l’épidémie est réduite dans la population immunisée par rapport à une population
näıve, d’un facteur qui dépend des détails de l’infection.

Discussion

Ainsi, dans la plupart des cas, on observe une réduction de la probabilité d’émergen-
ce d’une épidémie dans une population immunisée par rapport à une population
näıve. L’idée principale qui explique cet effet est que pour un individu immun
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les transmissions sont d’un seul type, et ainsi si le nombre moyen de bactéries
transmises est conservé, le nombre moyen d’hôtes auquel on n’a transmis aucune
bactérie résistante est plus élevé dans la population immunisée.

Conclusion

Dans cette thèse, j’ai présenté dans un premier temps la partie de mon travail
qui porte sur les dynamiques de colonisation des populations bactériennes au
début d’une infection de l’intestin. J’ai développé des modèles stochastiques de
dynamiques de population en système ouvert, m’aidant à la fois de méthodes ana-
lytiques – comme les processus de branchements – et de méthodes numériques –
comme les simulations de Gillespie. Le but de cette approche est d’inférer des pa-
ramètres de l’infection pertinents d’un point de vue biologique (par exemple des
taux de réplication et d’élimination, et la probabilité pour une bactérie de s’établir
dans l’organisme et de participer à l’infection) à partir de données indirectes (la
dilution de plasmides qui ne se répliquent pas dans l’organisme de la souris, les
nombres initiaux et finaux de bactéries, ainsi que les distributions initiales et
finales d’étiquettes génétiques marquant les bactéries). Dans un premier temps,
j’ai étudié un modèle à une population : le nombre initial est tiré d’un processus
Poissonnien, puis la population suit un processus de Markov de naissance et de
mort en temps continu. Dans ce contexte, j’ai cherché l’observable optimale afin
de caractériser la variabilité de la distribution finale des étiquettes génétiques,
qui ont la particularité d’avoir une distribution initiale inégale. J’ai vérifié si les
paramètres estimés à partir des observables du taux de croissance moyen, de
la variance renormalisée du taux de croissance et de la proportion d’étiquettes
génétiques perdue étaient cohérents, et ai montré que pour certaines expériences,
on ne peut pas conclure clairement quant à la cohérence du modèle. En m’ap-
puyant sur des arguments biologiques et sur l’idée qualitative qu’un tel modèle
devrait permettre de plus grandes possibilités pour combiner les différentes obser-
vables, j’ai ensuite développé des modèles à deux sous-populations suivant cha-
cune le même type de dynamique, mais avec des taux de réplications différents.
J’ai montré que ce type de modèles permet bien d’expliquer certaines expériences,
mais pas toutes ; et en raison de la faible quantité de données, on ne peut pas
tirer de conclusion claire quant à la coexistence de plusieurs sous-populations.

La deuxième partie de ma thèse porte sur les mécanismes qui permettent à la
réponse immunitaire d’être efficace. J’ai d’abord repris les résultats de l’étude de
Moor et al. [19] à laquelle j’ai contribué. Elle montre que le principal effecteur du
système immunitaire dans les intestins, l’immunoglobuline A (un anticorps pro-
duit en grandes quantités après une infection ou une vaccination), enchâıne les
bactéries-filles en agrégats clonaux lors de la réplication, agrégats que l’on pensait
auparavant le résultat de rencontres aléatoires de bactéries dans les intestins (ren-
contres qui sont en fait assez rares en raison des faibles concentrations initiales
en bactéries typiques lors d’une intoxication alimentaire). Ce mécanisme appelé
croissance enchâınée suffit à protéger la souris en empêchant les bactéries d’in-
teragir avec l’épithélium et de le traverser pour coloniser le reste de l’organisme.
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J’ai contribué à mettre en évidence ce phénomène en construisant un modèle
simple permettant de prédire la diminution de diversité au sein de la population
bactérienne qui en résulte. J’ai ensuite cherché à déterminé les conséquences de
ce processus. A l’échelle de l’hôte, j’ai étudié l’interaction entre la croissance des
agrégats et leur fragmentation au sein des individus immuns, à l’aide de modèles
basés sur des équations différentielles étudiées à la fois numériquement et avec des
approximations analytiques. J’ai montré que la croissance enchâınée touche vrai-
semblablement d’avantage les bactéries à croissance rapide, c’est à dire les plus
susceptibles de perturber l’équilibre de la flore intestinale, et que ce mécanisme
pourrait donc permettre au système immunitaire de réguler la composition du
microbiote. A l’échelle de la population d’hôtes, et dans le contexte de l’évolution
de la résistance aux traitements antibiotiques, si les bactéries sont transmises
sous forme d’agrégats clonaux (soit complètement résistants soit complètement
sensibles) plutôt que sous forme de paquets aléatoires de bactéries sensibles et
résistantes, la probabilité qu’une bactérie résistante soit transmise à un individu
particulier est diminuée. A l’aide de modèles multi-échelles basés sur des proces-
sus de branchement, j’ai quantifié les variations dans la probabilité d’émergence
d’une infection entre une population immunisée et une populations näıve.

Les deux parties de cette thèse ont été motivées par l’étude de données quanti-
tatives d’expériences d’infections de souris par la salmonelle. Les mécanismes im-
munitaires présentés dans cette thèse sont pourtant de portée bien plus générale :
en effet, le système immunitaire de la souris est proche de celui de nombreux
autres vertébrés, notamment de celui des humains, et la croissance enchainée
concerne a priori de nombreux autres micro-organismes (et a par exemple déjà
été observée pour E. coli [19]). Bien sûr, des expériences complémentaires se-
raient nécessaires afin de conclure plus généralement quant à la portée exacte de
ce phénomène. A long terme, la croissance enchâınée pourrait être maitrisée grâce
à la vaccination orale, et constituer un moyen de lutte pour réduire l’utilisation
des antibiotiques et ralentir l’évolution et la propagation de souches résistantes.
Par ailleurs, les outils de dynamiques de populations développés dans la première
partie pourraient être appliqués à de plus grands ensembles de données sur des
infections bactériennes des intestins avec divers souches et divers animaux hôtes,
mais également à des systèmes différents en écologie, pas nécessairement à la
même échelle. Dans la deuxième partie, l’étude de la croissance et de la frag-
mentation des agrégats présente en soi un problème général de physique statis-
tique, qui s’est déjà révélé utile dans d’autres contextes [21][22]. Ainsi, dans cette
thèse on utilise des outils de physique statistique pour identifier des mécanismes
génériques en biologie, et les propriétés essentielles pour en comprendre la portée.
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Introduction

The human body is host to an important microbiota. Any anatomical com-
partment in direct contact with the environment, like the skin, the dental plaque,
the saliva, the lungs, are home to many microorganisms. It has been estimated[1]
that there are about 1013 bacteria in a human body, i.e. approximately as many
as the number of human cells composing the body. Most of them (' 99%) are
located in the digestive track. The presence of these ecosystems is essential to
the good health of an individual, because they fulfill several important functions
[2]: through competition effects, they protect the host against other potentially
pathogenic invaders. In the digestive tract, they also help digestion by breaking
specific nutrients, in a mutualistic interaction between the host and its commen-
sal bacteria (which feed on nutrients ingested by the host). But bacteria are of
course also responsible for many pathologies, when a virulent strain manages to
overgrow the other populations, disrupts the functioning of the ecosystem and
triggers inflammation (causing dental cavities, diarrhea, styes, etc), and some-
times, enters the organism and spreads to various organs, in serious systemic
infections. Bacterial infections are responsible for millions of deaths every year:
according to the World Health Organization, they contribute largely to three of
the top ten causes of death worldwide in 2016 with pneumonia, diarrheal diseases
and tuberculosis [3]. Bacterial infections are all the more a public health issue
that antibiotic resistance seems now to increase faster than the rate of new drugs
conception [4], while antibiotics constitute the main available tool to fight against
them. Thus developing our knowledge of bacterial populations and bacterial in-
fections is crucial.

To study bacterial populations, various approaches exist. A first range of
approaches could be qualified as bottom up, starting from the simplest possible
systems in vitro and introducing progressively mastered levels of complexity to
mimic natural conditions. These microbiology approaches have developed in
parallel to the emergence of more sophisticated experimental techniques. Thus
bacteria were first extensively studied in suspensions, because it is the most
convenient way to culture them. Then many studies focused on surface effects,
typically on Petri dishes [5]. The development of microfluidics now allows to
investigate the behavior of bacterial colonies both at the scale of interacting
mixed communities (for example to study biofilm formation [6]) and at the single
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cell level (for example to study the accumulation of new mutations[7]), in highly
controlled environments [8].

Conversely, complementary approaches that could be qualified as top down,
start from complex systems in natural conditions and try to analyze and sep-
arate the various factors driving the system’s behavior. These approaches are
essential because the level of complexity found in natural conditions and/or in
living systems is very hard, or even impossible, to recreate artificially. First,
reproducing the mechanical constraints felt in a natural environment, or in vivo
for bacterial populations inside a host, supposes that these constraints are well
characterized, which is not always the case. For example in the digestive tract,
complex peristaltic motions aiming at the well-mixing of the digesta to favor nu-
trients absorption impose complex constraints on the very non-Newtonian content
[9, 10]. Secondly, there could be chemical or enzymatic components, phages or
other microorganisms, that play a role in the observed bacterial behavior but
that are not necessarily well identified. And even when they are well identified,
some molecular components which intervene in the immune response for example
might be extremely hard to reproduce artificially or to isolate properly to add
them in in vitro systems. Thus, various animal models have been developed to
study bacterial infections directly in the host. The mice model for Salmonella
diarrhea [11] used in the experimental studies that motivated this present work
presents many advantages. First, mice immune system presents a similar level
of complexity to the human one, and in particular harbors a developed adap-
tive immune system. Then several aspects of the infection can be controlled,
like the stomach acidity. Mice can be grown in sterile environment so that the
composition of their microbiota can be designed with a lower complexity than
in wild-type animals. Mice can also be genetically engineered with specific im-
munology deficiencies, and all these tools allow a better separation of the various
effects studied.

The study of bacterial populations in natural conditions and possibly in com-
plete living animals requires modeling for a wide range of questions, and these
systems represent a huge field of possible applications and interest for modelers
and physicists.

A first example is linked to the progresses in sequencing technologies that
now allow to sequence and analyze whole complex microbiomes. To infer the
different types of interactions between the different species in presence, the con-
tribution from the networks community is absolutely essential [12]. In a reverse
way, bacterial complex systems can also represent an interesting way to confront
networks and game theory models to the real world, for example in the context
of evolution of structured populations [13]. Modeling can also decipher to which
extent the composition of a microbiota is the product of an active selection or a
neutral random process [14].

A second example is the contribution of physicists to new insights in im-
munology using the concept of information, in particular regarding pathogens
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recognition that triggers the secretion of new effectors, and the building of di-
verse repertoirs of antigen receptors [15, 16].

Regarding host colonization, except in very particular configurations [17, 18],
it is impossible to follow the infectious process in details without invasive, and
hence, disruptive measurements. Indirect measures are favored instead, and this
is where modeling becomes an essential tool to the understanding of the exper-
imental observations. The animal organism can be seen as a “black box”, and
the role of the modeler is to infer its internal rules from external observations.
Then, in the context of infections, statistical physics is needed to study micro-
bial population dynamics. Indeed, an infection can start from a single or very
few microorganisms, thus requiring full-fledged stochastic modeling. These mi-
croorganisms then replicate to very large numbers, thus requiring coarse-grained
descriptions.

From the point of view of the physicist, the digestive system is particularly
interesting. First because of the hydrodynamics (there is a flow, the fluid is non-
Newtonian), and also because it is still topologically “outside” the host body,
thus there are fewer different immune effectors to take into account, and study-
ing their physical effects seems more tractable. Indeed, immune effectors secreted
in the gut lumen are essentially “lost” for the body. This may be a reason why,
except in particular circumstances, few immune cells are secreted in the gut. Im-
mune cells can have different states, react to many cues, and thus are complex
to model. In contrast, although the mechanisms leading to its secretion are com-
plex, Immunoglobulin A (IgA), a type of antibody and the main effector of the
adaptive immune response secreted in the gut, is a molecule which concentration
can be measured, and which effect is more easily characterized. Furthermore,
these antibodies recognize one specific strain of bacteria, meaning that the bac-
terial population they interact with should essentially be homogeneous, which
facilitates physical modeling. Thus the action of IgA can be more easily studied
by biophysical models.

This thesis focuses on several aspects of bacterial population dynamics and
interactions with the immune system in the gut. It is constituted of two dis-
tinct parts largely independent. In the first part, I present my work regarding
the colonization dynamics of bacterial populations in early infection. I develop
stochastic models (because the initial numbers of bacteria of interest are small)
which aim at determining biologically relevant parameters, such as replication
and elimination rates, and the probability for one bacteria to settle in the organ-
ism and participate in the infection. I start in the first chapter (1) with a brief
presentation of the experimental data – relying in particular on bacteria labeling
– that motivated this study, along with a brief review of the general statistical
physics methods used thereafter – both analytical (mostly branching processes)
and numerical (mostly agent-based Gillespie simulations). I then dedicate the
next chapter (chapter 2) to the study of a first class of models with Poissonian
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initialization followed by continuous time Markovian birth-death process. This
study is also the occasion for a broader reflection on the optimal choice of observ-
able to characterize the variability of a distribution for a set of random variables
following the same dynamics but starting with different initial values. I show that
in some cases, the parameters estimates obtained by using different observables
on the same experimental data are not clearly consistent. This led me to the
study of another class of models in chapter 3, with two distinct subpopulations
following the same type of dynamics but with different parameters. Various bi-
ological factors can account for the coexistence of different bacterial dynamics
among a population of same strain. I show that these models allow for a broader
range of combinations of the different observables values which can very well ex-
plain some of the experiments, although considering the whole set of data, there
is not enough evidence to get a clear conclusion.

The second part focuses on the physical mechanisms underlying the immune
response in the gut. It starts with a recent finding that IgA, a specific kind of
antibody and main effector of the immune system in the gut, enchains daughter
bacteria in clonal clusters upon replication [19]. In a first chapter (chapter 4), I
summarize the findings of this study and focus on my contribution to it with a
model showing the reduced diversity in the bacterial population caused by this
enchained growth phenomenon, and show how this mechanism suffices to protect
the organism from infection. Then the two following chapters (chapter 5 and
chapter 6) explore the consequences of this phenomenon, at the scale of a host
(chapter 5) and at the scale of a host population in terms of bacterial evolution
of antibiotic resistence (chapter 6). At the scale of the host, in chapter 5, I pro-
pose to show that in vaccinated individuals producing IgA, the interplay between
bacterial growth and cluster breaking could be a way for the immune system to
maintain microbiota homeostasis by discriminating against fast-growing bacteria
susceptible to disrupt the gut flora equilibrium [20]. Indeed, if bacteria replicate
faster than bacterial aggregates break, then they end up trapped in cluster form,
which prevents them from approaching the epithelium, a necessary step to colo-
nize the rest of the organism, i.e. to start a systemic infection. Then if bacteria
are agglomerated in clonal clusters, it is plausible that they are also transmitted
under this form. In chapter 6, I show that at the scale of the host population,
if other parameters do not change, the probability of infection emergence is re-
duced in immune populations (where bacteria are agglomerated) compared to
naive ones (where bacteria grow freely). The main reason for that is that, as
in the case of immune hosts bacteria are transmitted via clonal clusters (being
either completely resistant or completely sensitive), then, with the same average
number of transmitted resistant bacteria, the proportion of transmissions with at
least one resistant bacteria transmitted is lower for immune donor hosts.

Both parts of this thesis were motivated by the study of quantitative data on
Salmonella infection in the mice gut. However, the results presented here go be-
yond the scope of mere data interpretation. It is essential to understand that the
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immune mechanisms we propose here are of very general scope: the mice immune
system is indeed close to the one of many other vertebrates (including humans),
and enchained growth is not a process limited to Salmonella but has already
been evidenced in E. coli [19] for example. Then in the first part, the population
dynamics tools developed could be applied to larger sets of data concerning bac-
terial infection of the gut with various strains in various animals, but could also
easily be translated to different systems in ecology, not necessarily at the same
scale. In the second part, the study of clusters growth and fragmentation is a
more general statistical physics problem which had already proved to be useful in
other contexts and at other scales (for example to the study of a specific kind of
algae, see [21], or to explore reproduction modes [22]). We thereby aim to identify
some generic mechanisms, and the minimal ingredients needed to understand the
range of situations where these mechanisms may be important.
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Introduction

Infectious diseases are often studied from a molecular point of view. The identifi-
cation of key molecules or key cells is very useful, but this vision can be completed
by other approaches. In particular, the contribution from population dynamics
is essential: one cannot design optimal strategies to block the infectious process
without knowing where the pathogen enters the host, which organs it colonizes,
how fast it replicates, migrates, and potentially gets eliminated. Identifying weak
points of the infectious process at the whole pathogen population level could lead
the way to the design of new vaccines and therapies. Such approaches have been
developed in the virus community [23, 24], and have already provided promising
insights regarding bacterial infections [25, 26]. Additionally, bacterial populations
also provide model systems for the study of population dynamics and evolution,
in particular because of their high growth rate.

In this part, we develop generic tools, and apply them to a specific case: gut
infections following food poisoning. We aim at understanding them in terms of
population dynamics, and in particular at characterizing the colonization dynam-
ics of bacteria in the first stages of infection. In this perspective, modeling is a
key tool to reconstruct what has happened in the black box that is the organ-
ism, since only indirect data are available: the initial data on bacteria inoculated
and the final data retrieved after dissection. The goal is to estimate biologically
relevant parameters, such as the replication rate, elimination rate (due either to
feces production or immune response), and the probability for one bacteria to
establish in the gut and not get killed before by the acidity in the stomach or
being directly evacuated. Many different scenarios could account for exactly the
same final numbers starting from the same initial numbers. For example, a high
replication and elimination rates scenario could lead to the same final numbers
as a low replication and elimination rates scenario, only that in the first scenario
the turnover would be more important. Modeling is needed to decipher these
data and determine which scenario is the most likely to have happened.

From a broader perspective, this part of the work is also motivated by more
general and theoretical questions. It aims at developing generic models of one
or several subpopulations in open system and determining which observables
are best to extract maximum information on the dynamics. Using different ob-
servables would either enable to infer more parameters, or to infer the same
parameters and check the consistency of the results.

In the following, in a first chapter I will present the experimental data that
motivated this work, in particular the different markers used to get additional
quantitative information on the initial and final bacterial populations, and will
then review the different analytical and computational methods used thereafter.
In a second chapter, I will describe a first one-population model, along with all
the questions it raised, including the more theoretical ones concerning the choice
of observables. In a third chapter, I will argue that the study of several sub-
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populations models is relevant in our context and present a two-subpopulations
model. I will finally discuss the results obtained with these different models and
their limitations, and present some further thoughts and perspectives for future
developments.
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In this introductory chapter, I present in a first section the experimental
system and related data of Salmonella colitis that motivated this study, and in
particular the different bacterial labels developed to get additional quantitative
data on the initial and final bacterial populations. In a second section, I review
and re-derive some of the essential methods from statistical physics that will be
of use in the following chapter, both analytical (mostly branching processes) and
computational (Gillespie-based simulations).

1.1 Experimental data

Our work was motivated and inspired by data collected in the group of Dr. Emma
Wetter Slack, immunologist at ETH Zürich. They study intestinal microbiota
using the streptomycin mouse model for Salmonella diarrhea [11], whereby mice
are orally infected with Salmonella enterica serovar enterica Typhimurium (re-
ferred to as S. Typhimurium in the following). This rod-shaped, gram-negative
potentially flagellated, potentially anaerobe, non-typhoidal strain of bacteria, can
cause acute diarrhea to humans and is responsible for several millions of death
per year [27]. In normal conditions, an inoculation of this bacterium does not nec-
essarily trigger an infection: the overgrowth of this particular strain can indeed
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Chapter 1. Experimental data and methods

be regulated by competition effects with the multitude of other microorganisms
composing the microbiota. In order to be sure to trigger an infection even start-
ing with a low inoculum, mice were pre-treated with broad-spectrum antibiotics
before the beginning of each experiment. Two different strains were used in
the experiments under consideration in this part: a wild type strain producing
virulence factors favoring the immune response (“SB300”), and an attenuated
non-virulent strain avoiding inflammation (“M2702”), which can allow better ob-
servations in specific cases. As we focus on the beginning of the infection, before
inflammation, the two strains should be equivalent.

We are mostly interested in the early stages of the infection (24-48h post
inoculation), when it is not systemic yet and the immune system has had no
time to react strongly yet, i.e. before inflammation is triggered [25]. We will
focus exclusively on the content of the cecum, a pouch situated at the beginning
of the large intestine and of important dimensions for rodents (see figure 1.1),
where the bacteria colony settles and develops during the first stages of infection.
The following sections present the different types of quantitative data collected
during these infection experiments: the final numbers of bacteria, the dilution of
a specific plasmid giving information on the number of generations, and the final
numbers of genetically labeled bacteria.

cecum 

Figure 1.1 – Drawing of the digestive track of a laboratory mouse. The digesta enters

through the stomach (S), passes the duodenum (D) and enters the cecum through the

ileum. It then leaves it to the colon. The cecum is important for cellulose digestion in

rodents. Figure adapted from [40]

1.1.1 Direct count of bacteria

Bacteria are genetically engineered to be resistant to an antibiotic (streptomycin).
The technique to count them consists in making several different dilutions of the
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1.1. Experimental data

cecum content and put them on Petri dishes with streptomycin. An adequate
dilution will allow to count visually the number of colonies on the plate (not
too diluted to obtain a large enough number of colonies and limit the noise but
diluted enough so that each colony is distinct from one another on the plate).
The unit to count bacteria this way is hence called CFU for Colony Forming Unit
(it is considered that each colony results from a single bacterium if the dilution
was appropriate). This counting technique is estimated to be accurate with a
factor 2 [28].

Most of the data are from the cecum, measured after killing the mice. Some-
thing that could be done is to count the bacteria in the feces to get additional
longitudinal points. But very little is know about the dynamics of microbiota
composition along the gut (both in the cecum and downstream), which could be
shaped by physical factors (complicated hydrodynamics of non-Newtonian fluid
with peristaltic motions [41]), chemical factors (pH gradient shaping the bacterial
landscape [42]), and ecological factors (competition between species). Compar-
ing preliminary data from the feces and data from the cecum after euthanasia, it
was unclear to which extent the feces composition is representative of the cecum
content; therefore only cecum data are considered in the following.

1.1.2 Plasmids and mean number of generations

The type of parameters we want to estimate depends on the type of model we
choose (and the more complex the model, the more parameters are to be esti-
mated). In any case, the mean number of generations will always be a relevant
information, and it can be directly estimated from the dilution of a specific type
of plasmid, as will be explained below.

A plasmid is a strand of circular DNA separate from the chromosomal DNA
and which can replicate independently. The E.coli plasmids pAM34 [43] used in
the experiments we consider have two particular properties. First, these plasmids
have been engineered to need IPTG to replicate (see fig. 1.2 A). IPTG is present in
the in vitro culture but absent from the mouse system. Secondly, these plasmids
have been engineered to carry the resistance to a second antibiotic (Ampicillin).
This antibiotic resistance allows to measure the final proportion of bacteria still
carrying a plasmid at the end of the experiment. And since a plasmid does
not replicate once inside the mouse, it has to “choose” between one of the two
daughter-bacteria at each step of replication (see fig. 1.2 B). Thus, if one supposes
that initially, each bacteria carries a single plasmid, the link between the total
number of replication cycles G and the final proportion of plasmid-carriers y(tf )
can simply be written as:

y(tf ) = 1/2G

In practice, it is slightly more complicated, since plasmids are usually found
in more than one copy in each bacteria initially. There is thus an initial phase
of replication during which each bacteria still carries at least one plasmid, before
plasmid-carrier bacteria actually start diluting with replications. We also con-
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A. Regulation of plasmids replication:
in presence of IPTG the inhibition of

RNA II production is inhibited [44]. As
RNA II is needed for replication,

absence of IPTG suppresses replication.

B. Dilution of the proportion of bacteria
carrying plasmids: here dilution starts

only after a first step of replication
(∆d = 1). At the end 1/4 = 1/(22)
bacteria carry a plasmid, there were
G = 2 replication steps after the

begining of dilution.

Figure 1.2 – Plasmids which do not replicate in vivo allow the estimation of the mean

number of replications through the measure of the final proportion of antibiotic-resistant

bacteria

sider the possibility that there is a residual replication of the plasmids once in the
mice, which would slow the dilution process. Calibration experiments are carried
on in vitro (see the data in appendix A table A.1), in conditions for which there
is no bacterial death. For each experiment i, let N0i be the initial number of
bacteria. After G replication cycles, the total final number of bacteria is N0i2

G.
Let us write 2∆d the mean initial number of copies of the plasmid present in each
bacteria at the beginning of the experiment. The initial number of plasmids is
thus 2∆dN0i, and considering that a residual number of replications εG happens
for the plasmids after the beginning of the experiment, the final number of plas-
mids is N0i2

∆d2εG. Thus the final proportion of resistant bacteria measured as
yi in experiment i writes:

yi =
N0i2

∆d2Gε

N0i2G
= 2∆d−G(1−ε) =

2∆d

x
(1−ε)
i

(1.1)

with xi = 2G the measured ratio between the final and initial numbers of bacteria
in experiment i. The experimental points (xi, yi) are thus fitted (see fig. 1.3)
through quadratic error minimization to the best equation of the following form:

log2(y) = ∆d − (1− ε) log2(x)

corresponding to eq. (1.1) taken in base log2.
During actual experiments in the mice, bacteria die or are carried out of

the cecum, and this is why the final number of bacteria will only give a lower
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bound for the number of replications having happened. But bacteria carrying a
plasmid or not will die indifferently, leaving the proportion of plasmid-carriers
unchanged. Thus, the data of the two best-fitting parameters ε and ∆d for
the proportion of plasmid-carrying bacteria directly allows to estimate the mean
number of replications G.
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SB300
delta d = 5.5, eps = 0
delta d = 4.4, eps = 0.08
M2702
delta d = 6.3, eps = 0
delta d = 4.5, eps = 0.11

Figure 1.3 – Calibrating data from in vitro experiments, for the virulent (in red) and

avirulent (in blue) strains: log2 of the fraction of antibiotic-resistant bacteria in function

of log2 of the ratio between final and initial numbers. For both strains, a fit with ε

constrained to zero and one with ε free are tested, leading to solutions close to one

another.

1.1.3 Wild type Isogenic Tagged Strains

Some Wild type Isogenic Tagged Strains [29] (WITS in the following) are in-
cluded in the inoculum given to the mice in the experiments. A specific sequence
has been added to the genome of these bacteria, as well as a gene coding for the
resistance to a third antibiotic (Kanamycin), so that, again, it is possible to tell
apart those bacteria from the others and count them (as seen in section 1.1.1).
They are otherwise identical to the unlabeled strain, and in particular they do
not differ in fitness [29]. In the experiments considered in this part, seven dif-
ferent genetically tagged strains have been used, with seven different specific
sequences. The proportion in which each strain is present can be determined
through quantitative-Polymerase Chain Reaction (q-PCR). The use of these ge-
netic tags gives an additional data: the initial and final distribution of these seven
strains.

To extract relevant information from these distributions, the initial number of
bacteria labeled with these genetic tags needs to be low enough so that the effects
of the stochasticity of the processes involved can be observed on the distribution
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[29, 25, 26], but still high enough so that we do not lose all the tags in the process.
Typically if we go back to the example given in the introduction of this part, a
scenario “high replication and elimination rates” leads to a higher variability in
the WITS distribution than a scenario “low replication and elimination rates”.

Figure 1.4 – An example of raw data from experiment ES15-010: wild type mice,

n = 3 per group, were infected with approximately 103, 105 or 107 wild type (SB300)

or avirulent (M2702) Salmonella containing 5 to 10 CFU of each WITS. The mice were

euthanised for cecal content at 24h post infection. In many cases, some WITS are

present in much higher proportions than the others. This could indicate that very small

proportions should actually be seen as experimental artifacts and considered as 0. In

general we will thus define a cutoff under which WITS numbers are put to zero.

1.1.4 Summary of experimental data

In the end, we have seen in this section the three types of data we will be analyz-
ing in the following, measured both at the beginning (in the inoculum) and at the
end of the experiments (from the cecal content): the total number of bacteria,
the plasmids dilution which gives a direct estimate of the mean number of gen-
erations, and the WITS distributions from which we will retrieve information on
the stochasticity of the processes involved. We will study in this part I a simple
data set (no vaccination), to test our methods.

1.2 General methods

In this section, I am going to review the main methods that will be used in the
following. In a first section, I present analytical methods and re-derive results that
can be found in [37, 45]: starting from the master equation of a Markovian birth-
death process, I solve the equation for the generating function of its probability
distribution and show how to obtain the moments of the distribution from it.
I also introduce the method of log-likelihood maximization [46]. In a second
section, I present computational methods, first the Gillespie simulation [47], then
the tau-leaping procedure which derives from it [48]. I finally recall Bessel’s
correction [49] for the estimate of distribution parameters from a finite number
of measures.
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1.2.1 Analytical methods

In this section I present some general analytical methods through the study of a
null model. For this abstract study, no data will be considered; all the issues of
observables calculations and parameters estimations will thus be left to the next
sections along with data interpretation questions. Likewise, all the biological
arguments justifying the choice of the type of model will be treated in chapter2.

Null model: Let us consider a stochastic population dynamics model where
the initial population size is drawn from a Poisson distribution of mean βN0. At
time t = 0+ starts a continuous time Markov process with a constant replication
rate r, and a constant elimination rate c.

1.2.1.1 Master equation

Let us define P (n, t) as the probability density that the system contains n indi-
viduals at time t. At time t+ dt, the new probability distribution only depends
on the one at time t and thus one can write the following:

P (n, t+dt) = (1− (c+r)ndt)P (n, t)+c(n+1)dtP (n+1, t)+r(n−1)dtP (n−1, t)
(1.2)

with the following Poissonian initial condition:

P (n, t = 0) =
(βN0)n

n!
e−βN0 (1.3)

Making dt small, one can re-write eq. (1.2) as the following master equation:

∂P (n, t)

∂t
= (−cn− rn)P (n, t) + c(n+ 1)P (n+ 1, t) + r(n− 1)P (n− 1, t) (1.4)

1.2.1.2 Generating function

This whole stochastic process is a branching process in continuous time. It can be
treated by studying a generating function g(z, t) over the probability distribution
P (n, t) [38]. This generating function corresponds to

g(z, t) =

n=+∞∑
n=0

P (n, t)zn (1.5)

Summing eq. (1.4) multiplied by zn over n, and having in mind that

∂g

∂z
=

n=+∞∑
n=0

nP (n, t)zn−1,

one gets:

∂g

∂t
= −(c+ r)z

∂g

∂z
+ c

∞∑
n=0

(n+ 1)P (n+ 1, t)zn + r
∞∑
n=1

(n− 1)P (n− 1, t)zn.
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The summation index can be shifted in the second term of the right hand side
(n′ = n + 1) without additional term since the n′ = 0 term added to the sum is
zero; we thus get c∂g∂z . Similarly, the last summation index can be shifted easily

(this time n′ = n − 1). Hence, this term transforms into rz2 ∂g
∂z and one finally

gets the following partial differential equation on g:

∂g

∂t
+ (1− z)(rz − c)∂g

∂z
= 0 (1.6)

1.2.1.3 Characteristics method

This equation can be solved using the method of characteristics [50], which allows
to reduce it to a collection of ordinary differential equations. This method consists
of seeing the first member of eq. (1.6) as the full derivative of g with respect to a
new parameter x, and the two parameters z and t as functions of x parametrizing
the curves of space (the “characteristic lines”) on which the equation Dg

Dx = 0 is
true indeed. Since

Dg(z(x), t(x))

Dx
=
∂g

∂t

dt

dx
+
∂g

∂z

dz

dx

by identification, one can chose
dt
dx = 1

dz
dx = −(z − 1)(rz − c)

And integrating this system, one gets:
t = x+ t0

x =
∫ −dz

(z−1)(rz−c) = 1
r−c ln

(
rz−c
z−1

)
+ x0

(1.7)

One can choose x0 = 0. Then, only one constant of integration is needed. Along
(t(x), z(x)), Dg

Dx = 0, and hence g is a constant that only depends on the constant
of integration t0. Thus

g(z, t) = K(t0) = K

(
t− 1

r − c
ln

(
rz − c
z − 1

))
K can then be found with the initial condition on P eq. (1.3). Thus:

g(z, t = 0) =
∞∑
n=0

P (n, t = 0)zn = e−βN0

∞∑
n=0

(βN0z)
n

n!
= eβN0(z−1)

Now,

g(z, t = 0) = K

(
− 1

r − c
ln

(
rz − c
z − 1

))
= K(−x)
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And if one inverts the relation between x and z in eq. (1.7), z = e(r−c)x−c
e(r−c)x−r , one

gets:

K(−x) = eβN0(z−1) = exp

[
βN0

(
e(r−c)x − c
e(r−c)x − r

− 1

)]
= exp

[
βN0(r − c)e−(r−c)x

1− re−(r−c)x

]

Now that we have the expression of the function K, one just needs to remember
that g(z, t) = K(t0) and replace −x with the expression of t0 deduced from

eq. (1.7), t0 = t − 1
r−c ln

(
rz−c
z−1

)
. In fine, one gets the following generating

function:

g(z, t) = exp

[
βN0(r − c)(z − 1)e(r−c)t

rz − c− (z − 1)re(r−c)t

]
(1.8)

1.2.1.4 Moments of the probability distribution

The generating function eq. (1.8) is a powerful tool which allows the calculation of
the different moments of the distribution P (n, t), and from them, the calculation
of relevant observables, as it will be presented in the next sections. Here are a
few identities which will be useful in the following:

Mean population size By definition,

〈n〉(t) =
+∞∑
n=0

nP (n, t) =
∂g

∂z

∣∣∣∣
z=1,t

(1.9)

Higher order moments

〈n2〉(t) = 〈n(n− 1)〉(t) + 〈n〉(t) =

+∞∑
n=0

n(n− 1)P (n, t) + 〈n〉(t)

=
∂2g

∂z2

∣∣∣∣
z=1,t

+
∂g

∂z

∣∣∣∣
z=1,t

By induction, higher moments can similarly be expressed as combinations of
the derivatives of g.

Variance In particular, the variance on the number of individuals can be ex-
pressed as:

σ2(t) =
〈
(n− 〈n〉)2

〉
(t) = 〈n2〉(t)− 〈n〉2(t)

=
∂2g

∂z2

∣∣∣∣
z=1,t

+
∂g

∂z

∣∣∣∣
z=1,t

−

(
∂g

∂z

∣∣∣∣
z=1,t

)2
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Extinction probability The extinction probability is the probability that
there is no individual left at a certain time t: P (n = 0, t). This quantity can
be obtained from the generating function by noticing that 12

P (n = 0, t) = g(z = 0, t) (1.10)

1.2.1.5 Log-likelihood maximization principle

The log-likelihood maximization principle [46] allows to get the best fitting pa-
rameters that fit a data set with an assumed probability distribution function.
Let us suppose we have at our disposal the data of a set of draws x1, ..., xN from
a random variable X. We know the shape of its distribution – let us say for
example that X is normally distributed – but the parameters of the distribution
function (in our example, the variance and/or the mean which characterize the
normal distribution) are unknown. The maximization of the log-likelihood al-
lows for an estimation of these parameters from the data of x1, ..., xN . Let us
write fµ(x) the probability distribution of X, with µ the parameter we want to
estimate. The likelihood can be defined as the quantity L(µ), with:

L(µ) =

N∏
i=1

fµ(xi)

The best fit of the data will be obtained for the value of µ maximizing the quantity
L. Figure 1.5 provides a qualitative explication of this principle. Thus, in order
to find this best-fitting parameter, one must solve the equation ∂L

∂µ = 0 in µ. In
many cases, the log-likelihood ln(L) is a quantity easier to manipulate; it does not
change anything for the maximization, since a probability distribution function
is always positive, and that the logarithm is a strictly monotonically increasing
function.

1.2.2 Computational and numerical methods

In this section, I present computational methods which allow to simulate the
stochastic birth-death process presented in the previous part. I first present the
exact Gillespie algorithm, and then present in a second section an approached
version which allows faster updates. I finish with a comment on the numerical
estimate of the variance from a finite data set.

1In this context, it is agreed that 00 = 1. The equality 1.10 can otherwise be obtained
by considering the uniqueness of the development in power series with the Taylor expansion

g(z, t) =
∑∞
n=0

∂ng
∂zn

∣∣∣
z=0

zn

2Note that although n = 0 is an absorbing state of this Markov process (once reached, it is
impossible to escape), the extinction probability does not tend to 1 when t → ∞. The reason
is that there is an infinite number of states and that the rate to move away from the absorbing
state is higher than the rate to come back. For more details, see [51].
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Figure 1.5 – Log-likelihood maximization principle applied to a normal distribution

fµ,σ(x) = 1
σ
√
2π
e(

x−µ
σ )

2

. The vertical dashed lines represent the data of the draws

x1, ...xN from the random variable X. L(µ) (resp. L(σ)) is the product of the heights

of those bars under the curve corresponding to µ (resp. σ). A. Here the variance is

known already, we try to determine the mean. The parameter of the blue curve is better

adapted. B. Here the mean is known, but not the variance. The parameter of the blue

curve is the best adapted.

1.2.2.1 Gillespie algorithm

The Gillespie stochastic simulation algorithm (SSA) was first introduced in the
context of chemistry, with microscopic systems of reactant molecules [47]. This
algorithm generates possible trajectories for a stochastic equation. Let us write
X(t) the vector of the different population sizes (X1(t), ..., XN (t)) we are follow-
ing. As will be explained in the next sections, in our case the different popula-
tions will correspond to the different types of labeled bacteria. Let us note M the
number of possible transitions, aj(X(t)) the rate (probability per unit of time)
at which the transition j occurs (it can depend on the state of the system at time
t X(t)), and νj = (ν1j , ..., νNj) the state change vector of transition j (meaning
that νij gives the change in the Xi population induced by the transition j). We
follow N populations3 that can only replicate or die by increasing or decreasing
their population size by 1. For example if the transition j is a replication event
in the population Xk, then νkj = +1 and νij = 0 for all i 6= k. Bellow are the
steps followed by the SSA algorithm:

1. Initialization: Choose initial values for X(0). In our case they are drawn
from a Poisson distribution

2. Monte Carlo Step: Two random numbers r1 and r2 are generated from
the uniform distribution on the interval between 0 and 1, boundary val-
ues excluded. The time for the next transition to occur is exponentially

3We will see in the next section that in our case, the only interaction we will contemplate
between populations will be through the consideration of logistic growth, in which case the
transition rates of replication events decrease with the sum of Xi
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distributed and calculated as:

τ =
1∑M

j=1 aj(X(t))
log

(
1

r1

)
and the selected transition is the smallest index j satisfying:

j∑
l=1

al(X(t)) > r2

M∑
l=1

al(X(t))

3. Update: Increase the time step by the τ calculated at step 2 and actually
perform the transition X(t+ τ) = X(t) + νj

4. Iterate: Go back to step 2 unless the final time has been reached, or if
all the rates are equal to zero (in our system, it is equivalent to all the
populations being extinct).

1.2.2.2 Tau-leaping procedure

Some approximations were later made to optimize the computational time of the
Gillespie algorithm, which is slow because it processes reactions one at a time.
For my simulations I used the adaptivetau package of the R language [48]. Many
sophistications are included in this package to optimize the algorithm, but we
will review here only the main ones, of interest for our study. The tau-leaping
principle is to choose a time step τ so that there is little change in the rates of
the transitions over time step, and perform simultaneously several transitions at
a time. The parameter controlling how strictly we want the rates not to change
over the selected τ (and thus how accurately the algorithm converges) is ε. With
∆aj(x) the change in rate aj from t to t + τ , the rates have to obey a leap
condition of the form:

∆aj(x) < εf(a1(x), ..., aM (x)). (1.11)

If this condition cannot be met, then the algorithm switches back to the exact
Gillespie procedure.

There are different tau-selection formulas (i.e. different f in eq. (1.11)) for
each possible scheme. The updates can be done either following an explicit scheme
– where the state of the system at time t+τ is calculated based only on the state of
the system at time t, like in the standard Gillespie algorithm – or implicit scheme –
where the state of the system at time t+τ is similarly written but with the rates of
transition taken at time t+τ instead of t – the advantage of implicit schemes being
that they allow bigger tau leaps. There are also other special cases when some
specific conditions are verified by the system, for example of partial equilibrium.
The tau-selection formulas have themselves been approximated and simplified so
that the calculus of the biggest τ value allowed by a scheme is optimized in time.
At each step, the largest possible τ is calculated for each possible scheme, and
then the scheme allowing the biggest tau-leap is automatically selected (that is

32



1.2. General methods

why the algorithm is called adaptive). In particular, the parameter controlling
the switch between the implicit/explicit schemes is Nstiff , which specifies how
much larger τ implicit needs to be relative to τ explicit to make it worth enough
to choose the implicit scheme over the explicit scheme (the implicit scheme is
favored if τ implicit > Nstiffτ

explicit, with τ implicit the tau-leap allowed with the
implicit scheme and τ explicit with the explicit one).

The standard value for ε is 0.05. But is that small enough for our case? Not all
the time, especially when high replication rates are taken. I ran some tests with
the “null model” (see fig. 1.6 and fig. 1.7), checking if the mean size of the final
population (average over many realizations of the procedure) actually matches
the size we are analytically expecting, and came to the conclusion that we should
pay special attention to the choice of this parameter in the next sections.

A special care is also taken of the populations close to extinction: if a popu-
lation gets below a critical size nc then the algorithm goes back to the standard
Gillespie algorithm. If a population had a size above this limit but still acciden-
tally ends up with a negative population size after a tau leap, the procedure goes
back one step and divides the chosen τ by two before trying again. On the other
hand, if two populations are on partial equilibrium then higher values of τ are
allowed.

1.2.2.3 Bessel’s correction

Let us suppose that we could reproduce the same stochastic experiment corre-
sponding to our null model as defined at the beginning of section 1.2, a certain
number h of times. For each realization of the experiment i – which can either
be a simulation or an actual biological experiment if the model is adapted to the
situation – let us denote the measure of the size of the population at the end of
the experiment mi, which are then different realizations of the random variable
m. Let µ be the exact average of m (as put in the simulation for example), and
σ2 its exact variance.

We can estimate a mean population size from this finite number of realiza-
tions:

m̄ =
1

h

h∑
i=1

mi

If we then want to estimate the variance of the distribution of m from the same
set of (m1, ...,mh), the correct estimate is [49]:

s2 =
1

h− 1

h∑
i=1

(mi − m̄)2 (1.12)

Differing from s2
h = 1

h

∑h
i=1(mi − m̄)2 by a correcting factor h/(h − 1). This

correcting factor comes from the fact that we try to estimate both the average
and the variance with the same data set, and there is thus one degree of freedom
less than what one could think. Let us demonstrate eq. (1.12) is the right estimate
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Figure 1.6 – Ratio between the size of the population as a result of the simulation

(averaged over 10000 realizations) and the mean size of the population calculated an-

alytically (see eq. (1.9)), in the context of the null model defined at the beginning of

section 1.2. Initial population size is 5, final time is one day, probability to establish is

β = 0.8. From left to right and from top to bottom, different values of the replication

rate r = 5, 10, 15, 20, 25, 30day−1, with no loss. For the high values of r we get quickly far

from the right population size as soon as ε is non-zero. The error bars in red (contained

within the points) are given by the standard error renormalized by the expected mean

population size.

by calculating the expectation value of s2:

E(s2) = E

(
h∑
i=1

(mi − m̄)2

h− 1

)
=

1

h− 1
E

(
h∑
i=1

[mi − µ− (m̄− µ)]2
)

=
1

h− 1
E

(
h∑
i=1

(
[mi − µ]2 − 2[mi − µ][m̄− µ] + [m̄− µ]2

))

=
1

h− 1
E

(
h∑
i=1

[mi − µ]2 − 2h[m̄− µ]2 + h[m̄− µ]2

)

=
1

h− 1
E

(
h∑
i=1

[mi − µ]2 − h[m̄− µ]2

)

=
1

h− 1

[
h∑
i=1

σ2 − hσ
2

h

]

=
1

h− 1
(h− 1)σ2 = σ2
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Figure 1.7 – Everything as in fig. 1.6, except that c is non zero (c = 0.1r). Same

conclusion on the need to be careful with ε

1.2.3 Summary of general methods

In this section, I presented and rederived part of the general methods I will
use thereafter. As much as possible, I will try to obtain analytical expressions,
writing generating functions for the branching processes. I will also use numerical
methods, in particular, Gillespie-like algorithms in agent-based simulations.
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Chapter 1. Experimental data and methods

1.3 Symbols for Part I

Plasmids dilution

G Number of generations estimated from plasmids dilution

N0i Initial number of bacteria in the in vitro calibration experiment i

∆d ”Delay” to dilution: each bacteria carries initially 2∆d plasmids

xi Ratio between final and initial numbers of bacteria in in vitro calibration
experiment i

yi Final proportion of resistant bacteria in in vitro calibration experiment i

One-population model

P (n, t) Probability that n bacteria are in the cecum at time t

g(z, t) Generating function for the probability distribution P (n, t)

β Probability for one bacteria to establish initially in the cecum

N0 Total initial number of bacteria

rmean = G ln 2/t, mean replication rate, another way to express the plasmids
dilution data

rmax Initial replication rate (before saturation) for the bacterial population

K Carrying capacity at which the growth saturates

c Loss rate for the bacterial population

mi Final number of WITS i

ni Initial number of WITS i

n0 The mean of the initial numbers of WITS, taken in first approximation of
an equal inoculum

B(t) Number of bacteria in the cecum at time t (deterministic description for
the total population)

Bf Total final number of bacteria

u = r
βn0(r−c) Indicator of stochasticity

ũ = r
β(r−c) Indicator of stochasticity normalized by the initial population size

Two-populations model

rmax,1 Initial growth rate of population 1 (fast-replicating)

rmax,2 Initial growth rate of population 2 (slow-replicating)

α =
rmax,1
rmax,2

ratio between the replication rates of the two sub-populations

q Initial proportion of the fast-replicating subpopulation 1
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Chapter 2

One-population models
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In this chapter I will consider different variations of a model where all the
bacteria follow the same dynamics, replicating at the same rate and getting elim-
inated at the same rate. I will first review the biological ground which justify
the choice of model (section 2.1). Then I will present the principles underlying
our approach for parameters estimation through the study of an oversimplified
approximation (section 2.2). I will then discuss the best strategy to extract in-
formation from the data through the choice of an appropriate observable (section
2.3) and will then show how the null model can be refined to best take into ac-
count the specificity of the data (section2.3.4). Finally, I will present the results
and discuss the appropriateness of these models to describe the data (section 2.5).
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Chapter 2. One-population models

2.1 Biological grounds to the one-population model

In the experiments, bacteria are taken from a suspension at a certain concen-
tration C0 to be orally inoculated to mice. Thus we will consider in our model
that the sample of bacterial solution of volume V0 given to a mouse contains a
number of bacteria k Poisson-distributed of average of N0 = C0V0. Once inside
the organism, the bacterial population may undergo a first bottleneck, best taken
into account by an identical probability β for each bacteria to settle in the ce-
cum, instead of being killed by the acidity in the stomach before reaching it or
being directly carried out of the niche . We will consider this phenomenon to
be instantaneous and to happen at t = 0, while in practice, inoculated bacteria
reach the cecum over a couple of hours. Writing P (n, t) the probability to find a
total number of bacteria n at time t in the cecum:

P (n, t = 0+) =
∞∑
k=n

Nk
0

k!
e−N0

(
k

n

)
βn(1− β)k−n

= e−N0

∞∑
k′=0

Nk′+n
0

(k′ + n)!

(k′ + n)!

k′!n!
βn(1− β)k

′

= e−N0
(βN0)n

n!

∞∑
k′=0

(N0(1− β))k
′

k′!

=
(βN0)n

n!
e−βN0

The binomial selection combined with the Poisson sampling is thus equivalent to
a Poisson sampling of average βN0.

At time t = 0 then starts the replication and death of bacteria. For simplicity
reasons we will consider that replication happens at constant rate r, i.e. that
division times are exponentially distributed1. In practice, division times are typ-
ically more narrowly distributed; the case of a model with fixed division time will
therefore be discussed in appendix D. Data show (see fig. 2.1) that the number of
replication cycles depends on the size of the inoculum: even with different bacte-
rial inoculum sizes, after one day the final bacterial population reaches the same
size K, the carrying capacity. When the inoculum is large, only a few replication
events take place. We estimate the size of the niche to be around 109 bacteria in
the cecum (the maximum number of Salmonella experimentally reached). Thus
the model should include a saturation term. Taking the classic model of logistic
growth, the replication rate at time t is K−B(t)

K r with r the replication rate far

1Demonstration: let us consider a population B(t) replicating exponentially so that dB
dt

=
rB(t). Let us write S(t) the fraction of the population which did not undergo a replication
event yet at time t. The probability not to have known such an event at t+dt is the probability
not to have known it until time t minus the probability to have known it during dt, so that
S(t + dt) = S(t) − rdtS(t) and S(t) = e−rt (because the counters of replication are set to
zero at time t = 0: S(t = 0) = 1). Then the probability to replicate exactly between τ and
τ + dτ is the probability not to have replicated until τ but to have replicated before τ + dτ :
P (τ)dτ = −dS = re−rτdτ . Thus 〈τ〉 =

∫∞
τ=0

τP (τ)dτ = 1/r. τ is thus exponentially distributed,
of mean 1/r, with P (τ) = re−rτ .
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2.2. Approximation c = 0

from saturation and B(t) the number of bacteria in the cecum at time t. In
practice, since the data we will analyze concerns the beginning of the infection,
or rather because it is the beginning of the infection that matters regarding the
WITS distribution, it will almost always be justified to consider we are far from
saturation and make the approximation K−B

K r ' r for the analytical analysis.
We will however take this saturation into account in the simulations. The elimi-
nation of bacteria can be due to evacuation through feces production. As we will
see in the following, feces production alone accounts for a loss rate of the order
of c ' 10day−1, much smaller than the initial replication rate (around 33day−1

as will be seen in the following). It has been shown that after a few days, inflam-
mation may cause bacterial death [25], but that early in infection bacterial death
is negligible.

A. Bacterial load per gram of feces B. Number of generations

Figure 2.1 – 3 mice per group were fed with different sizes of inoculum of the attenuated

strain of S.Tm one day after receiving a Streptomycin treatment. A. The bacterial load

is fitted with four-parameter sigmoids. B. Corresponding numbers of generations are

calculated from plasmids dilution data as explained in section 1.1.2. The final bacte-

rial concentrations are similar, and the bigger the inoculum, the smaller the number of

replications. Figures from [19]

We use the term one-population models since in this model, all bacteria follow
the same dynamics. But in practice, and in order to study the WITS data, we are
going to follow several independent populations (only potentially interacting via
the saturation term which is global), one for each WITS. We will note n1, ..., nh
the initial numbers of the h WITS populations (h = 7 in the data considered),
and will first consider all of them to be equal (ni = n0 for all i). The fig. 2.2
represents the dynamical steps of the model.

2.2 Approximation c = 0

A first approximation one can make is to consider that c = 0 since we focus on
the beginning of the infection, when it is not systemic yet and the immune system
has had no time to react strongly yet, i.e. before inflammation is triggered [25].
This approximation will allow us to present simply in this section the principles
underlying our approach, because then the determination of the other parameters
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Chapter 2. One-population models

Figure 2.2 – Illustration of the one-population model under consideration: Poissonian

inoculum of mean size N0 including a small proportion of seven different genetically

labeled strains (WITS, represented here with rainbow colors), probability to settle in the

gut β followed by a Markov birth and death process with constant elimination rate c and

saturating replication rate rK−B(t)
K , B(t) being the number of bacteria in the cecum at

time t

β and r is simple. In the following sections, we will study the case c > 0 but the
reasoning will remain similar.

2.2.1 Replication rates

In our model, for simplicity reasons, we model bacterial growth at a constant
rate: each bacteria has the probability r to replicate per unit of time. Depending
on the quantity we look at, we will either choose to use a mean replication rate
over the considered period of time, rmean, or the initial replication rate rmax
(corresponding to the initial slope on figure 2.1B). For example, to estimate the
mean final population size, rmean will be more relevant. But for the quantities
linked to the WITS distribution (variance and loss probability, as will be exposed
in the next sections), then rmax is more relevant, because it is the early stages
of the dynamics which will shape the WITS distribution: the saturation starts
having a significant effect only when the WITS population sizes are already large
enough so that the effect of stochasticity is negligible and the deterministic mean
evolution describes well what happens next (i.e. only the absolute numbers
change, but the distribution remains quite unchanged).

We have seen in section 1.1.2 how to get the mean number of generations G
from the data of plasmids dilution (the plasmid dilution data for the experiments
under consideration can be found in appendix A table A.3). The link between
G and rmean can be found by writing the final number of bacteria, starting from
βN0, in both cases, with only replication:

βN0e
rmeant = βN02G

Thus rmean can be estimated with rmean = G ln(2)
t , with G estimated from the
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2.2. Approximation c = 0

plasmids data as explained in section section 1.1.2.
rmax can be inferred from the data of figure 2.1: bacteria replicate approx-

imately every half hour, so that the corresponding replication rate is rmax =
48 ln(2)day−1. This quantity has been observed to be very robust, and does not
depend on the type of strain studied or the size of the inoculum. It corresponds
also to the replication rate in vitro in favorable conditions.

2.2.2 Establishment probability with the WITS loss

In the case where c = 0, no WITS can be lost during the Markov process, and
all the WITS that are lost are lost during the Poissonian initial sampling. The
probability to lose the tag i during the first step writes as the probability to draw
a zero in the Poisson distribution of mean βni:

Probability to lose strain i =
(βni)

0

0!
e−βni = e−βni

Since we suppose all WITS are all inoculated in the same proportions, then the
probability to lose a strain is the same for each strain, and equals the mean
number of strains lost, which is available in our data set (it can a priori be
averaged on several mice at once):

Proportion of WITS lost = e−βn0

2.2.3 Limit of the approximation c = 0

With rmax and the β estimated from the WITS loss, we ran some preliminary
simulations. By choosing arbitrary values of c remaining small (of the order
of 0.1rmax) we noticed that the proportion of WITS lost after the Poissonian
initialization was not a negligible portion of the totality of the WITS lost. We
thus looked for a more accurate way of estimating the parameters β and c when
c is not zero. The way to estimate r (taken either equal to rmax or to rmean)
remains unchanged.

2.2.3.1 WITS loss when c 6= 0

First of all, let us look at the expression taken by the proportion of WITS lost
when c 6= 0. Since we consider each WITS to be inoculated in the same number
n0, each WITS population gets exactly the same generating function eq. (1.8)
as the one calculated with the null model, with n0 instead of N0. We can then
directly use the extinction probability exposed with eq. (1.10), and thus:

Proportion of WITS lost(t) = g(s = 0, t) = exp

[
−βn0(r − c)e(r−c)t

−c+ re(r−c)t

]
(2.1)

If we compare this β estimate with the previous one assuming that c = 0,
that we will now denote β0 for convenience

β

β0
=

re(r−c)t − c
(r − c)e(r−c)t =

1− e−(1−c/r)rtc/r

1− c/r
. (2.2)
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Chapter 2. One-population models

We can check that for c = 0 (and any t), as well as for t = 0 (and any c), this
ratio is 1 as expected. The limit when rt→∞ is:

β

β0
→ 1

1− c/r
. (2.3)

The correction coefficient (2.2) depends on two parameters, rt and c/r. For
values of interest for us, rt is typically around 10 or more, and c/r is believed to
be small, likely smaller than 0.5. Thus as can be seen on fig. 2.3, the correcting
factor is close to its limit when rt is large, i.e. 1/(1 − c/r). It is interesting
because then, it depends only on one parameter.

As a function of rt. c/r = 0.1, 0.2, 0.5,
0.9, solid lines for the exact expression

(2.2), dashed lines for the limit
expression (2.3).

As a function of c/r. Exact expression
(2.2) : coloured lines with rt = 0.1,1, 5,

10, 20, limit (2.3): black line

Figure 2.3 – Correction factor β/β0 as a function of c/r and rt.

2.2.3.2 The need for a new observable to disentangle β and c

We have thereby seen that when c cannot be approximated to zero, the data of
the proportion of WITS lost only gives a constraint linking β and c. In order
to separate the effects of β and c on the WITS distribution, additional infor-
mation must be extracted from the data. A possibility to do so is to look for
an additional observable, to complete the data of the proportion of zeros in the
distribution. Another possibility would simply be to apply numerically the log-
likelihood maximization principle (as explained in section 1.2.1.5) on the whole
WITS distribution. However, this method is just a way to obtain the best fit
possible by introducing a black box providing no actual understanding on the
data. On the other hand, the use of another observable can provide a feedback
on the model we choose: either it provides totally new information and allows to
disentangle the roles of β and c, or at least we can check if the informations pro-
vided by both observables on the parameters are coherent. This is the direction
we will follow in the next section, by looking for an observable to characterize
the variability of the WITS distribution.
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2.3. The quest for another observable

2.3 The quest for another observable

We have seen in the previous section that the data of the number of WITS lost
provided an information linking the parameters β and c, but was not sufficient
to disentangle their effects. In this section, I look for a second observable on the
WITS distribution that could provide complementary information on the param-
eters, and that could be measured in the experiments. I thus present different
possible observables to characterize the variability in the WITS distribution. The
evenness index was first chosen for continuity reasons with previous work of our
collaborators, and proves to be convenient for simulations, but is hard to handle
analytically. To overcome this difficulty, two other observables will be considered
in the following: the variance on the final numbers of WITS, and the variance
restrained on surviving WITS. Then the variance over the growth rate will be
introduced in order to take into account the initial variability in the inoculum.

2.3.1 Evenness

The evenness that we use here is the Gini index, or relative evenness as defined in
[52]. It is an index of diversity, traditionally used to measure the biodiversity of
an environment (taking into account both the number of species, or richness, and
the equitability of the proportional abundances of the species). Let {x1, ...xh}
be the normalized distribution (

∑h
i=1 xi = 1) giving the final frequencies of the

h different WITS we want to characterize. Here are the steps to calculate the
evenness E:

1. Order the values so that x1 ≤ x2... ≤ xh

2. Replace the ordered distribution with its cumulative sum distribution: {x1, x1+
x2, ..., x1 + x2 + ...+ xh}

3. Take the sum of the cumulative sum distribution:

S({xi}) =
h∑
i=1

(h+ 1− i) xi

4. Subtract the same quantity calculated with the most uneven distribution
{0, ...0, 1}: Suneven = 1

5. Renormalize by the difference between this quantity for the most even dis-
tribution { 1

h , ...,
1
h}: Seven =

∑h
i=1

i
h = h+1

2 and this quantity for the most
uneven distribution Suneven

In the end the evenness writes:

E =
S({xi})− Suneven
Seven − Suneven

=
2

h− 1

[
h∑
i=1

(h+ 1− i) xi − 1

]
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Chapter 2. One-population models

Figure 2.4 – The blue line is the cumulative of the most even distribution, its sum is

Seven. The red line is the cumulative of the most uneven distribution, its sum is Suneven.

The green line is some cumulative distribution to characterize with the evenness

and can be interpreted as a difference of areas below the curves shown on figure
2.4. Note that in this expression, the xi need to be ordered, which is the main
source of difficulties in the analytical manipulation of evenness.

Since all WITS populations follow the same dynamics, and assuming that the
initial distribution is even, then each WITS should have an average final frequency
of 1/h. However, that does not mean that the average final evenness should be
equal to one. Let us illustrate this point, with an example in the simplest case
of h = 2. Let us note {m1,m2} the absolute numbers of WITS corresponding to
the WITS frequencies {x1, x2}, with always x1 < x2. In the most uneven case,
x1 = 0 and x2 = 1, thus Suneven = 1. In the most even case, x1 = x2 = 1/2 and
thus Seven = 3/2. For any distribution {x1, x2}, S({xi}) = 2x1 +x2 = 1+x1. Let
us assume for example that x1 and x2 are identically distributed, with a Poisson
distribution of mean λ, and try to calculate the mean evenness:

〈x1〉 =

〈
m1

m1 +m2

〉
=

+∞∑
j=0

e−λ
λj

j!

j∑
i=0

e−λ
λi

i!

i

i+ j

I found no simple exact expression. Ordering the distribution necessarily implies
to introduce partial sums, even for the simplest case; thus the evenness is not
suitable for analytical analysis.

Entropy A more natural observable to characterize variability for a physicist
is entropy. The Shannon entropy is expressed as:

H(X) =

∞∑
i=1

Pi log(Pi)

with Pi the probability that the random variable X takes the value i, i.e. the
probability that the final size of a WITS population is i in our case. Although
this quantity should in principle be less difficult to manipulate analytically in
general, it is not ideal either, since we do not have enough data at our disposal
to make relevant estimates of the values of the Pi.

46



2.3. The quest for another observable

Comparison on real data We will see in the following that the variance is
a much more suitable observable both to handle analytically and to estimate
from the data. On figure 2.5 we check that variance and evenness are correlated,
meaning variation is similarly translated in both.

Figure 2.5 – Comparison of the evenness index and the simple normalized variance (see

section 2.3.2) on empirical data. Each color corresponds to a combination of an inoculum

size and a strain.

2.3.2 Variance

A natural observable to characterize the variability of the WITS distribution is
a simple variance on the final numbers of each of the h different WITS strains
{m1, ...mh}. We will see that the mean variance expected from the model is a
much more natural quantity to derive analytically.

2.3.2.1 Mean expected variance

With Bessel’s correction 1.2.2.3 the expression of the variance estimated from the
final numbers of WITS of one experiment or one run of simulation is:

var =
1

h− 1

h∑
i=1

mi −
1

h

h∑
j=1

mj

2

(2.4)

Since we consider all WITS are equivalent, it is straightforward to check that the
mean expected value of var is indeed 〈m2〉 − 〈m〉2, which is the variance of the
distribution. As it was shown in section 1.2.1.4, this variance can be expressed
with derivatives of the generating function 1.5. In the end the mean expected
variance writes:

〈var〉 = (βn0 exp((r − c)t))2 1

βn0

(
2r

r − c
− r + c

r − c
exp(−(r − c)t)

)
, (2.5)
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which in the limit (r − c)t� 1, and with u = r/((r − c)βn0) tends to:

〈var〉l = (βn0 exp((r − c)t))2 2u (2.6)

i.e. the mean population size value 1.9 to the square multiplied by 2u, with u
a measure of the stochasticity: when the initial population is small (βn0 small)
and the loss rate is close to the replication rate ((r− c)� r), then u is large and
stochasticity will have a large effect. On the other hand, if the initial population
is large (βn0 large) and the loss rate is small compared to the replication rate
(c� r) then u is small and the effects of stochasticity are negligible.

2.3.2.2 Comparison with the WITS loss

We have also seen in section 1.2.1.4 how to calculate the WITS loss using the
generating function 1.8. It writes:

P (n = 0, t) = g(s = 0, t) = exp

(
− n0β(r − c)
r − c exp(−(r − c)t

)
−−−−−−→
(r−c)t�1

exp

(
−n0β(r − c)

r

)
= e−

1
u (2.7)

We see from expressions 2.6 and 2.7 that in the limit (r − c)t � 1 the variance
and the WITS loss depend on the same combination u of the parameters of the
model. So, fundamentally, the variance and the loss probability contain similar
information on the parameters, and they cannot separate β and c, since the
parameters are similarly combined. However, if the model matches properly the
data, it also means that we should be able to check that those two observables
actually convey the same information.

2.3.2.3 Variance of the variance

The variance calculated in the previous section is only a mean expected value: for
each realization of the same experiment (a run of the simulation or one mouse),
the final numbers of WITS {m1, ...mh} will give a different estimate of the vari-
ance with expression 2.4. Thus, providing that more than one experiment/simula-
tion is completed, it is possible to estimate a variance on the variance observable,
and also to get an expression for its expected value in the model. It is useful to
estimate the expected variance on this observable. If we measure the variance on
a single mouse, the variance of the variance can help us estimate a lower bound
on the expected accuracy of our estimate. When measuring the variances on
several mice, the experimental variance of the variance could be compared with
the theoretical one (and likely be larger, as in the theoretical one, we assume that
there is no inter-mice differences).

The expected variance of the variance writes as follows:

〈varvar〉 =

〈 1

h− 1

h∑
i=1

mi −
1

h

h∑
j=1

mj

2

−
(
〈m2〉 − 〈m〉2

)2〉
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In appendix B.1 we derive the whole expression (which might have already
been derived elsewhere) and find:

〈varvar〉 =
(
e(r−c)tn0β

)4 2r − (r + c)e−(r−c)t

h(h− 1)(r − c)2(n0β)2
×(

(h− 1)(c2 + 10cr + r2)e−2(r−c)t

(r − c)βn0
− 12(h− 1)r(c+ r)e−(r−c)t

(r − c)βn0

−2h(r + c)e−(r−c)t + 4hr +
12r2(h− 1)

n0β(r − c)

) (2.8)

In the limit (r − c)t� 1,

varvar →
(
βn0e

(r−c)t
)4 8u2(h+ 3(h− 1)u)

h(h− 1)
.

with u = r
βn0(r−c) . As expected, it scales with the mean population size to the

power four, and the higher the stochasticity (i.e. the higher u), the higher the
variance. We also notice that, in this limit:

varvar
〈var〉2

∝
2h(h+ 3(h− 1)u)

h(h− 1)
.

Also, in the limit of h large, varvar scales as 1/h.

2.3.3 Variance conditioned on WITS survival

One idea to try to decorrelate the information obtained from the WITS loss
and the information obtained from the variability, is to restrain the study of
the variability to the surviving WITS. The mean number of bacteria per WITS,
conditioned on WITS survival, with ns the number of surviving WITS types is:

〈m〉s =

〈
1

ns

∑
i∈s

mi

〉
=

∑∞
q=1 p(q)q∑∞
q=1 p(q)

=

∑∞
q=0 p(q)q

1− p(0)
=

∂sg|s=1

1− g(0)
.

With eq. (1.8),

〈m〉s =
βn0e

(r−c)t

1− e−X
,

with

X =
βn0(r − c)
r − ce−(r−c)t .

In the limit (r − c)t� 1, X → 1/u, and

〈m〉s →
βn0e

(r−c)t

1− e−1/u
.
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Again, the variance used is the variance with the Bessel’s correction:

vars =
1

ns − 1

∑
i∈s

(mi − 〈m〉s)2.

The expected mean value of the variance is:

〈vars〉 = 〈m2〉s − 〈m〉2s

〈vars〉 =
1

1− g(0)

(
∂2g

∂s2

∣∣∣∣
s=1

+
∂g

∂s

∣∣∣∣
s=1

− 1

1− g(0)

(
∂g

∂s

∣∣∣∣
s=1

)2
)
.

With eq. (1.8), we obtain:

〈vars〉 =
e2(r−c)tn0β

(r − c)(1− e−X)

(
n0β(r − c) + 2r − (r + c)e−(r−c)t +

(r − c)n0β

1− e−X

)
.

In the limit (r − c)t� 1,

〈vars〉 →

(
βn0e

(r−c)t

1− e−1/u

)2

(2u(1− e−1/u)− e−1/u) = 〈m〉2s(2u(1− e−1/u)− e−1/u).

Again, all is function of 〈m〉 and u, thus it does not help more in distinguishing
n0β and (r−c)/r. Another issue with this observable is that if there is an error in
the presence/absence of a WITS (WITS present in very small proportion), then
it bias considerably the result.

2.3.4 Variance over the growth factor

Among all the indicators of variability for the WITS distribution seen in the
previous sections, the simple variance over the absolute final numbers is the only
quantity that can easily be analytically predicted. However, until now, we have
always made the assumption that the initial numbers of WITS were all equal,
which meant that the h final numbers could be seen as h independent draws from
the same random variable. But in the experiments, there is always some initial
variability in the concentrations of the solutions of the different WITS prepared
to make the inoculum. This translates into different ni values, and this variability
is sometimes non-negligible compared to the final variability. It is thus essential
that this initial variability can be taken into account, and we will see in this
section how to do so. The solution we propose is to look at the variance over
the ratio between the final (mi) and initial (ni) numbers of WITS mi/ni. These
expressions might have been derived in the literature, but we rederive them,
building on the previous section.

2.3.4.1 Mean growth rate

It is straightforward that the mean expected value of the random variables mi/ni
are the same for all i and equal to:〈

mi

ni

〉
= β exp((r − c)t) (2.9)
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2.3.4.2 Variance

With Bessel’s correction:

〈var〉 =

〈
1

h− 1

h∑
i=1

mi

ni
− 1

h

h∑
j=1

mj

nj

2〉
=

1

h− 1

h∑
i=1

〈mi

ni
− 1

h

h∑
j=1

mj

nj

2〉

Expanding the square:

〈var〉 =
1

h− 1

h∑
i=1

〈(mi

ni

)2
〉
− 2

h

〈
mi

ni

h∑
j=1

mj

nj

〉
+

1

h2

〈 h∑
j=1

mj

nj

2〉
As the WITS are independent, separating the term i = j from the others in the
second right-hand side term:

〈var〉 =
1

h− 1

h∑
i=1

((
1− 2

h

)〈(
mi

ni

)2
〉
− 2(h− 1)

h

〈
mi

ni

〉2

+
1

h2

h∑
j=1

〈(
mj

nj

)2
〉

+
h(h− 1)

h2

〈
mi

ni

〉2


〈var〉 =
1

h− 1

h∑
i=1

(1− 2

h

)〈(
mi

ni

)2
〉

+
1

h2

h∑
j=1

〈(
mj

nj

)2
〉
− h− 1

h

〈
mi

ni

〉2


The second sum does not depend on i. Thus
∑h

i=1

∑h
j=1

〈(
mj
nj

)2
〉

= h
∑h

j=1

〈(
mj
nj

)2
〉

and the two first terms can be regrouped:

〈var〉 =
1

h− 1

(
−(h− 1)

〈
mi

ni

〉2

+
h∑
i=1

[(
1− 1

h

)〈(
mi

ni

)2
〉])

〈var〉 = −
〈
mi

ni

〉2

+
1

h

h∑
i=1

〈(
mi

ni

)2
〉

(2.10)

We now study:〈(
mi

ni

)2
〉

=

〈
mi(mi − 1)

n2
i

〉
+

〈
mi

n2
i

〉
=

1

n2
i

∂2gi
∂s2

∣∣∣∣
s=1

+
βe(r−c)t

ni

Using the definition of the generating function,〈(
mi

ni

)2
〉

= β2e2(r−c)t

(
1 +

2r(1− e−(r−c)t)

niβ(r − c)

)
+
βe(r−c)t

ni
, (2.11)
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which put back in the equation 2.10 for the variance leads to:

〈var〉 =
1

h

h∑
i=1

(
β2e2(r−c)t

(
1 +

2r(1− e−(r−c)t)

niβ(r − c)

)
+
βe(r−c)t

ni

)
− β2e2(r−c)t

〈var〉 = β2e2(r−c)t 2r − (r + c)e−(r−c)t

β(r − c)
1

h

h∑
i=1

1

ni
(2.12)

We notice that in the limit (r − c)t� 1, this variance tends to:

〈var〉l = (β exp((r − c)t))2

[
1

h

h∑
i=1

1

ni

]
2r

β(r − c)
(2.13)

and there is thus always a dependence in the same combination of the parameters
ũ = r

β(r−c) . We also check that if all the ni are equal to n0, the results from the
simple variance 2.5 and 2.6 are recovered.

2.3.4.3 Variance on the variance

Following the same reasoning as for the simple variance, a mean expected variance
over this new variance can be calculated. We show in appendix section B.2 that:

〈varvar〉 =
(
β4e4(r−c)t

)[2
(
(c+ r)e−(r−c)t − 2r

)2
β2(h− 1)2h2(r − c)2

SN2

+
2(h− 2)

(
(c+ r)e−(r−c)t − 2r

)2
β2(h− 1)2h(r − c)2

SN2

− e−3rt

β3h2(r − c)3

{
c3e3ct + c2r

(
11e3ct − 14et(2c+r)

)
+r3

(
−14et(2c+r) + 36et(c+2r) + e3ct − 24e3rt

)
+cr2

(
−44et(2c+r) + 36et(c+2r) + 11e3ct

)}
SN3

]
.

(2.14)

with SN =
∑h

i=1
1
ni

, SN2 =
∑h

i=1
1
n2
i

and SN3 =
∑h

i=1
1
n3
i
. Note that if all the

ni are replaced by n0, equation 2.8 divided by n4
0 is recovered.

In the limit of (r − c)t� 1,

〈varvar〉 →
(
βe(r−c)t

)4 8u2

(h− 1)2h2

(
SN2 + h(h− 2)SN2 + 3u(h− 1)2SN3

)
with u = r

β(r−c) . As expected, it scales with the mean growth factor to the power

four, and the higher the stochasticity (i.e. the higher u), the higher the variance.
Also, in the limit of large h, it scales as 1/h.
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2.3.5 Summary of the quest for a new observable

To characterize the variability in the WITS distribution, the evenness index was
first chosen for continuity reasons with previous work of our collaborators. It
proves to be convenient for simulations, but it is hard to handle analytically.
To overcome this difficulty, the variance on the final numbers of WITS was first
considered: it is indeed easier to derive but provides no new information on the
parameters, and neither does the variance restrained on surviving WITS that was
considered next. More importantly, these observables did not take into account
the initial variability of the WITS distribution. We thus introduced the variance
over the growth factor, which is the observable we will keep for our study.

2.4 Strategy for parameters estimation

Now that we have settled for the choice of our second observable for the variability
in the WITS distribution, with the variance over the growth factors, let us go
back to the question of parameters estimation. Using the different observables,
let us look at the constraints imposed on the parameters by the data.

2.4.1 Constraint on β and c from the mean growth rate

In addition to the data on the WITS distribution, we can also exploit the initial
and final total count of bacteria measured experimentally combined to the data
of the plasmids dilution for another observable, the one of the mean growth rate.
As seen in equation 2.9, it expresses as:〈

Bf
N0

〉
= β exp((r − c)t)

In this expression, r can be replaced by rmean = G ln 2
t given by the data of the

plasmids dilution (see section 1.1.2 and 2.2.1). This gives a first constraint on
the parameters (β, c).

2.4.2 Constraint on β and c from the tags loss

As seen in the previous section, for a WITS population i starting with ni bacteria,
the probability that this population dies during the process modeled is given by
the following probability distribution function:

P (0, t|ni) = exp

[
−βni

(r − c)e(r−c)t

re(r−c)t − c

]
This probability is thus different for each WITS. Let us write Θi the random
variable taking the value 1 if the population of WITS i got extinct in the process,
and 0 otherwise. The probability to get the value θi for Θi writes as the binomial
(either WITS i gets lost, or not):

P (θi) = (P (0, t|ni))θi(1− P (0, t|ni))(1−θi)
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Thus we can apply the method described in section 1.2.1.5 on this probability
distribution and can define the likelihood as:

L(β) =

n∏
i=1

P (θi)

and taking the derivative of the logarithm of this quantity, assuming all the other
parameters well known, one can find β as the root of the following equation:

d ln(L(β))

dβ
= 0 = −

h∑
i=1

niθi

[
(r − c)e(r−c)t

re(r−c)t − c

]

+

h∑
i=1

(1− θi)ni

[
(r − c)e(r−c)t

re(r−c)t − c

]
exp

(
−βni

[
(r−c)e(r−c)t
re(r−c)t−c

])
1− exp

(
−βni

[
(r−c)e(r−c)t
re(r−c)t−c

])

2.4.3 Constraint on β and c from the renormalized variance over
the growth factor

It has been seen in the previous section that the variance can be expressed as
a function of both β and c (see eq. 2.12). Thus, the value of the experimental
variance gives a constraint linking β and c.

2.4.4 Summary of the strategy for parameters estimation

The strategy to extract the parameters of the model from the data will therefore
be the following:

1. Depending on the case, use either rmean or rmax for r as defined and ex-
plained in section 2.2.1.

2. Explore all the possible sets of parameters β and c: for each set, calculate
the expected value for the three observables (the growth factor, the vari-
ance on the growth factor and the tags loss) and see which region of the
parameters space is compatible with their experimental values.

3. Each observable will result in a curve(β, c) of plausible parameters. First,
we will check that the estimates are compatible, i.e. that these curves
either cross or are close enough in at least one region of the parameter
space. Then if this region is smaller than each curve, that will give some
constrained estimate of (β, c).

The same strategy can be adopted using simulations instead of analytics, as it
will be shown in the next section.
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2.5 Simulations and results

In this section, we will see how the reasoning and techniques developed in the
previous sections applies to the data set that drove our study (the data set can
be found in appendix A), and what conclusions can be drawn from them. Of
course the same techniques can be applied to larger amounts of the same kind of
data, or even adapted to other systems behaving similarly.

2.5.1 Determining the carrying capacity

In order to run the simulations, one needs to determine one additional parameter
compared to the set of parameters used for the analytical study, where we ne-
glected the growth saturation: we need to estimate K, the carrying capacity. The
easiest way to do so, which also allows for the determination of a K value that
does not vary much with the other parameters of the model, is to consider that
at the end of the experiment (24h post-infection), equilibrium of the population
size is reached (which is also coherent with the data shown on figure 2.1). Let us
consider B(t) the total number of bacteria in the cecum at time t. At the end of
the experiment, the size of the bacterial population is very large (of the order of
109 at least), and thus we take the deterministic equation:

∂B

∂t
(t) =

((
1− B(t)

K

)
rmax − c

)
B(t)

Then when equilibrium is reached, ∂B
∂t = 0 and thus

K =
Bfrmax
rmax − c

with Bf the total final number of bacteria (which can be averaged over several
repetitions of the same experiment, in our case three mice per experiment). Thus,
since we are going to explore different values of the parameters β and c, the value
of K put in the simulations will have to be recalculated for every new value of c,
but since c should be relatively small compared to rmax, there will not be a large
range of values for K.

2.5.2 Results

For each set of parameter (β, c), a simulation can be launched, with all the other
parameters being known : we start with the initial numbers of WITS ni and the
initial number of untagged bacteria N0 experimentally measured (see the data
concerning the inoculum in the appendix A, table A.2). We use an effective

replication rate rmax

(
1− B(t)

K

)
, recalculated at each new time step with the new

value of B(t) (the total number of bacteria in the system at time t), with rmax
and K determined as previously explained (section 2.5.1). Many runs of the same
simulation are repeated, so that we can average on the different iterations all the
observables of interest : the proportion of WITS lost, the renormalized variance
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over the growth rate (that we will simply call “variance” hereafter), and also
the mean growth rate. The full source program in .R is shown in appendix C.
Simultaneously, the theoretical expected value for the same observables can be
calculated, using either rmax or rmean for r, as exposed in section 2.2.1:

• rmax for the two observables – WITS loss and variance – linked to the WITS
distribution that mostly depends on the early dynamics, and

• rmean for the mean growth rate, which writes
〈
mi
ni

〉
= 2Ge−ct = βe(rmean−c)t

with G the number of replications estimated from the plasmids dilution,

to compensate the fact that we do not take saturation into account in our ana-
lytical study. We thus obtain parametric maps of those observables, as presented
for example for the variance on figures 2.6. On those heat maps can be added
contour lines, corresponding to the experimental values of the observables under
consideration (calculated from the data in appendix A table A.3). These curves
indicate the region of the parameter space which is coherent with the data, in
the model we chose, for each observable considered.

Then these different contour lines can be superposed on the (β, c) grid, this
is what is shown on figures 2.7 and 2.8. To the contour lines of the variance (in
red) can be added the ones for the WITS loss. There are several possibilities for
the WITS loss :

1. The log-likelihood maximization method can be used as seen in section 2.4
to estimate a value of β for each value of c in order to take properly into
account the uneven inoculum.

2. The contour curve of the experimental loss can be traced on the landscape
of the lost proportion of WITS in the simulations. This method takes into
account the initial unevenness in the simulation but not in the way the final
lost proportions is counted (with simply the number of WITS lost over h
the number of WITS, averaged over the three mice, or over the simulation
runs, regardless of the initial WITS proportions).

3. The same experimental contour line can be taken, but on the landscape
of the analytical loss probability (expression 2.1), making this time the
approximation of an equal inoculum (taking all the ni to be 〈n0i〉).

Figures 2.7 and 2.8 show (in blue and green) that these three options give very
similar results.

Last but not least, to the variance and the WITS loss is added the mean
growth factor: its theoretical value on the (β, c) grid is β2Ge−ct = βe(rmean−c)t

with G the number of replications estimated from the plasmids dilution. On
this theoretical landscape we draw the contour lines of the experimental growth
factor, calculated as the ratio between the final and initial whole population sizes,
both experimentally measured2.

2In the simulations, Bf/N0 is already used to constraint K. We could then look at the final
average number of replications Gsimu and compare it with its experimental value.
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Figure 2.6 – Parametric maps for the renormalized variance over the growth factor: “x”

coordinate is the loss rate c in units of the initial replication rate rmax, “y” coordinate is

the logarithm in base 10 of the establishment probability β. The heat colors correspond

to the variance in log scale (see the color scale), either as resulting from the simulations

(A, ratio of the variance on the growth factor averaged on 5000 iterations on the square

of the final growth factor averaged on the same iterations) or from analytics (B, ratio of

expression 2.12 on the square of expression 2.9 with r = rmax). The variance is higher

when the numbers of bacteria are lower, especially the initial numbers: it is thus higher

for the lower values of β and the higher values of c. The initial numbers of bacteria put in

the model are from three repeats of an experiment with the strain SB300, starting from

an inoculum of size 103, containing approximately 5 CFU of each of the seven WITS

(see data tables A.2 andA.3). The final experimental values for the variance after one

day is shown on the three dashed contour curves, and the average on the three mice is

represented in solid line. It corresponds to the sets of parameters (β, c) authorized by

the variance.

Then some uncertainties on the estimates can be added to the picture. For
the variance, we can get the coordinates of the points on the contour line, and
calculate the expected variance on the variance as in 2.14 and renormalize it with
the expected growth rate 2.9 to the power four, each of them calculated with
rmax. For each point on the variance contour line we thus have a confidence
interval of +/− the square root of this variance of the variance on the analytical
figure. Since we do not know a priori the shape of the variance distribution,
on the figure with the simulations we also add the 10% and 90% quantiles of
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the distribution of the variance resulting from additional simulation runs for
the (β, c) coordinates of the variance contour curve. Then, let us write p the
probability for one WITS to be lost (which we estimate by the proportion of
WITS lost experimentally). The number of WITS lost follows a binomial law
(each WITS being seen as an independent draw of the same Bernouilli variable)
which standard deviation writes

√
hp(1− p) '

√
hp, and the standard deviation

on the proportion thus writes
√
p/h. We thus add the contour lines corresponding

to the experimental lost proportion +/− this standard deviation on the landscape
maps of the lost proportion. On the simulations figure we also add the 10%
and 90% quantiles of the distribution of the proportion of WITS lost resulting
from additional simulation runs for the (β, c) coordinates of the experimental loss
contour curve. All of this is shown on figures 2.7 and 2.8.
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Figure 2.7 – Contour curves for the experimental values of the observables in the pa-

rameter space (β, c). Same experiment as in figure 2.6.

On the simulated variance landscape: red dashed: contour for the final experimental vari-

ance in three mice, and red solid line: for the mean value. Pink two-dashed lines: contour

for the mean experimental variance +/− the square root of the theoretically expected

value for the renormalized variance of the variance at this place of the parameter space

(one line for each coordinate extracted from the contour line). The upper line does not

show because for these values of the parameters the variance is so high that the average

is smaller than the square root of the variance. Orange two-dashed lines: contour for

the 10% and 90% quantiles of the variance distribution resulting from additional runs of

simulations (5000 iterations for each point) for the coordinates extracted from the vari-

ance contour line (one line for each coordinate). The upper line does not show because

its corresponding value does not appear in this range of parameters.

Relative to the WITS loss: Blue line: β(c) as calculated from the log-likelihood maxi-

mization (option 1). Green line: contour of the experimental proportion of WITS lost

(combining the data on the three mice) on the simulated proportion of WITS lost land-

scape (option 2). Green doted lines: on the same landscape, contour lines for the pro-

portion of WITS lost +/− the expected binomial standard deviation. Cyan: on the

same landscape, contour for the 10% and 90% quantiles of the proportion of WITS lost

distribution resulting from additional runs of simulations (5000 iterations for each point)

for the coordinates extracted from the experimental WITS loss contour line (in green).

The upper line does not show, because its corresponding value is not found on the map.

On the growth factor landscape: Black: using the analytical expression β2Ge−ct, con-

tour for the growth factor experimental value in the three mice (dashed lines) and for

the average (solid line).
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B. Contour lines on the theoretical
landscapes

Figure 2.8 – A. is a repetition of figure 2.7, repeated to ease visual comparison. B.

Everything as in A, except that the contour curves for the variance and the WITS loss

are taken on the landscapes analytically inferred, instead of the simulated ones, and that

the cyan and orange lines corresponding to simulated confidence intervals (see figure 2.7)

are not shown here. Note that the grid pattern is finer (since analytics do not require

high calculation times), which accounts for the smoother aspect of the lines (in particular,

note that in both figure the contour for the growth factor is on the analytical landscape,

the only difference for the black lines is thus the grid pattern).

60
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2.5.3 Discussion

In this chapter, I have presented a one-population model of early infection of
the gut. I first exposed the biological grounds to this model, and made a first
oversimplified approximation that allowed me to present simply the principles
underlying my approach. I then looked for an observable to characterize the
distribution of the genetic tags to complement the tags loss, and settled for the
renormalized variance over the growth factor, which is derivable analytically and
allows to take properly into account the initial variability in the tags distribution.
I then reviewed how the experimental data of the three observables (growth factor,
variance and WITS loss) constrains the parameters of our model, and presented
parametric maps of these constraints materialized in contour curves in the last
section.

What we observe first is that simulations and analytics give very similar re-
sults, despite the fact that in the analytic study we neglect the saturation of
growth. What counts for the WITS distribution is the initial dynamics, when
the absolute numbers are low enough so that the effects of stochasticity are im-
portant, and when the carrying capacity is, indeed, far from being reached (the
inoculum size varies from 103 to 107 and the carrying capacity is of the order
of 109). Thus we bypass successfully the problem risen by this no-saturation
analytic approximation by using either a replication rate corresponding to the
initial rate, rmax, when it comes to the observables on the WITS distribution,
and the mean replication rate rmean (or, equivalently, (G ln 2)/t with G the mean
number of replications estimated by the plasmids dilution data) when it comes to
calculating the growth factor. The only noticeable difference between analytics
and simulation results is for the WITS loss contours (green curves), but this is
explained by the fact that in the simulations, we can start from an uneven dis-
tribution, while for the theoretical parametric map, the approximation that we
start from an even distribution of same mean was made.

We also observe that the data of the experimental growth factor constrains
the range of possible values for c to small values in front of rmax, which is coherent
to what we expected, regarding the fact that we focus on the beginning of the
infection. The fact that these contour lines are not parallel to the others shows
very well that this observable contains another information on the parameters,
through a dependence in βe(r−c)t (see equation 2.9) rather than in ũ = r

β(r−c)
like the two others (see equations 2.13 and 2.7). On the contrary, the curves for
the variance and the WITS loss are parallel, which was expected since we showed
that the two observables depend on the same combination of the parameters ũ.
They are not superposing either, however. The question thus remains to know if
the gap between the two curves is coherent with the level of noise expected in the
framework of our model or if it surpasses it. The fact is that the answer to this
question does not seem so clear for some experiments (see figure 2.9). It might
indicate that the frame imposed by the choice of our model is too restricted
to actually explain what is observed in vivo. In particular, we would like to
consider models that allow for a higher variability in the WITS distribution. We
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thus turned to models with several subpopulations, which are presented in the
following chapter.
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Figure 2.9 – Contour curves for the experimental values of the observables in the param-

eter space (β, c) for the experiment with the strain “SB300” and the inoculum size 105.

Same color code: on the theoretical variance landscape, red dashed: contour for the final

experimental variance in three mice (only one appears, because all the WITS were lost

in the two other mice and a null variance does not appear on this grid of parameters),

and red solid line: for the mean value. Pink two-dashed lines: contour for the mean

experimental variance +/− the square root of the theoretically expected value for the

renormalized variance of the variance at this place of the parameter space (one line for

each coordinate extracted from the contour line). The upper line does not show because

for these values of the parameters the variance is so high that the average is smaller than

the square root of the variance. Blue line: β(c) as calculated from the log-likelihood

maximization (option 1). Green line: contour of the experimental proportion of WITS

lost (combining the data on the three mice) on the simulated proportion of WITS lost

landscape (option 2). Green doted lines: on the same landscape, contour lines for the

proportion of WITS lost +/− its square root. Black: contour for the growth factor ex-

perimental value in the three mice (dashed lines) and for the average (solid line). In this

experiment, the contour lines for the variance are situated above the ones for the WITS

loss on the parametric map. With our confidence interval estimates, the two contours of

the WITS loss and the variance seem to be further appart than the noise allowed in the

framework of the one-population model.
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We have seen in the previous chapter that in some experiments, there was an
incompatibility in the parameters estimates inferred from the experimental values
of the different observables, in the framework of the one-population model. In
this chapter, we will consider bacterial populations composed of several subpop-
ulations, each following the same type of dynamics as in the null model exposed
at the beginning of section 1.2: a Poissonian selection corresponding to the sam-
pling in the inoculum and the possible bottleneck of the establishment in the
cecum (other bacteria being directly eliminated or not surviving the acidity of
the stomach), followed by a Markovian process with death and growth. What
distinguishes the different subpopulations are the parameters, e.g. rates, associ-
ated to these processes. In a first subsection (3.1), we will see the various reasons
why studying such models. Then we will see how the analytical study presented
in the last section adapts to the new configuration of two subpopulations (section
3.2). We will see how to infer a maximum of parameters from the data and what
strategy to adopt to determine the remaining free parameters, both analytically
and with simulations (section 3.3). Finally, we will present and discuss the results
obtained with this class of models (section 3.4).
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3.1 Arguments for a two-subpopulations model

3.1.1 Biological arguments

Various biological factors could account for the simultaneous existence of bacteria
of a same strain undergoing different dynamics in the cecum of a same mouse.
I do not intend to discuss an exhaustive list of those factors here, but only to
present a few ideas on the subject.

The first idea that comes to a physicist’s mind is the idea of spatiality. In our
models, we never take space into account, but always make the approximation
that the cecum is a well-mixed, homogeneous environment. But various factors
could easily contradict this hypothesis. First of all, nutrients could be inhomoge-
neously spread, and since it is well established that bacteria division rates highly
depend on nutrients concentration [53], this could account for the coexistence
of two different replication rates. Then, the anatomy of the cecum itself is not
homogeneous either: there is an entry and a way out ([40], see also figure 1.1).
One could thus imagine that bacteria located closer to the way out undergo a
higher clearance rate. However, since the hydrodynamics of the cecum is not very
well known – complicated peristaltic contractions of the wall muscles playing an
important role in the mixing of the highly non-Newtonian digesta, in order to
favor nutrients absorption [9, 10] – one can hardly speculate more on that matter.

Another possibility is that bacteria are in different phenotypic states (i.e.
non-genetic diversity, mostly due to stochastic gene expression). For instance, a
study from Sturm et al. [54] shows that under certain conditions in vitro, there is
a bistable expression of a gene coding for a virulence factor: although all bacteria
are isogenic, a part of the population expresses this gene and the rest does not. It
is also established in this paper that the expression of this virulence factor comes
at a cost: a reduced replication rate for those bacteria1. This is typically the type
of phenotypic bi-expression which could explain different dynamics, but it is only
one possibility among many others. Stewart et al. [55] reviews some of these
other possibilities. For example, it has also been shown that not all Salmonella
Tyhimurium express a flagella during infection2. We can speculate that there
may be a link between replication rate and motility, either through an enhanced
nutrients search for motile bacteria, or on the contrary, that flagella expression
comes at a cost. In any case, non genetic diversity can effectively be responsible
for the coexistence of different subpopulations of isogenic bacteria with different
dynamics.

3.1.2 Qualitative argument

The other argument motivating our interest for two sub-populations models is
our analysis of the data in the previous section. For instance on figure 2.7,

1On the whole population level however, this expression favors virulence by triggering the
inflammation which clears the niche from a part of the Salmonella population, but more impor-
tantly, other species: it is thus a case of bet-hedging or of cooperation.

2It might be that the bacterial population divides labor, so that the more motile bacteria
can better approach the epithelium to trigger systemic infection.
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the contour curve of the proportion of WITS lost is situated above the contour
curve of the variance on our parametric map (it is the case in almost all the
experiments we consider), which as we can check on figure 2.6, is an area of
lower variance than the experimental one. That means that in the framework
of our one-population model, at fixed WITS loss proportion, the model does
not allow for a high enough variance in the WITS distribution to get perfectly
coherent parameters estimate. We are thus looking for models allowing for a
higher variance in the WITS distribution for the same WITS loss. A model where
two subpopulations replicate at different rates should allow it, providing that the
initial WITS population sizes are low enough, as it is qualitatively discussed on
figure 3.1.

Figure 3.1 – As the initial WITS populations are taken to be low enough so that

the effects of stochasticity can be observed on their distribution, and since bacteria

are indifferentially genetically tagged, it might happen that the distribution of fast-

replicating bacteria versus slow-replicating ones is specifically uneven in one of the WITS

population, resulting after some replicating time in very different final sizes depending

on the initial ratio, providing that the dynamics are otherwise identical.

3.1.3 Summary of the arguments for a two-subpopulations model

There are biological reasons that could make that genetically identical bacte-
ria replicate at different rates. Qualitatively, having such subpopulations could
increase the variance in the WITS for a given probability of WITS loss.
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3.2 Analytical approach

In this section, we are going to see how the analytical study of the one-population
model can be adapted to the case with two sub-populations: we will calculate
the new generation function, and derive the expressions for the three observables
(growth factor, WITS loss and variance).

3.2.1 Generating function

First of all, we need to write a generating function describing the whole population
composed of the two sub-populations at once. Each of the subpopulations can be
described by the generating function 1.8, providing that we replace the parameters
(N0, β, r, c) by the corresponding ones. We will write q (resp. (1− q)) the initial
proportion of bacteria of type 1 (resp. type 2), so that (qN0, β1, r1, c1) are the
parameters to describe the dynamics of population 1 (resp. ((1− q)N0, β2, r2, c2)
to describe population 2). To write a single generating function describing both
populations at once, one needs two silent variables z1 and z2 and needs to use
the simultaneous probability that n1 bacteria of type 1 and n2 bacteria of type 2
are present in the cecum, P (n1, n2):

g(z1, z2) =
∑
n1,n2

P (n1, n2)zn1
1 zn2

2

Now P (n1, n2) = P (n1)P (n2) if we assume the populations to be evolving inde-
pendently. In our model, if we neglect the growth saturation as we have done
already in our analytical study, this is the case. Thus,

g(z1, z2) =g(z1)g(z2)

= exp

[
β1qN0(r1 − c1)(z1 − 1)e(r1−c1)t

r1z1 − c1 − (z1 − 1)r1e(r1−c1)t
+
β2(1− q)N0(r2 − c2)(z2 − 1)e(r2−c2)t

r2z2 − c2 − (z2 − 1)r2e(r2−c2)t

]

3.2.2 Observables calculations

For this class of models, we will use the same observables as developed in the
one-population model case, adapted to the fact that we start with an uneven
distribution of WITS: the mean growth factor, the WITS loss and the renormal-
ized variance on the growth factor. In order to calculate them, we will use the
same relations between the moments of the distribution and the derivatives of the
generating function as in sections 1.2.1.4 and 2.3.4, but using the new generating
function 3.2.1. Note that this new generating function can be adapted either to
the whole population, or to each of the h WITS population by replacing N0 by
ni (as was already done for the one-population model).
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3.3. Parameters search strategy

3.2.2.1 Mean growth factor

With mi the final number of WITS of type i and mi1 (resp. mi2) the final number
of WITS of type i from population 1 (resp. 2), so that mi = mi1 +mi2:〈

mi

ni

〉
=

1

ni
(〈mi1〉+ 〈mi2〉) =

1

ni

(
∂g

∂z1

∣∣∣∣
z1=1,z2=1

+
∂g

∂z2

∣∣∣∣
z1=1,z2=1

)
= qβ1e

(r1−c1)t + (1− q)β2e
(r2−c2)t

3.2.2.2 WITS loss

The extinction probability of WITS i now writes:

g(0, 0) = exp

(
−β1qni

(r1 − c1)e(r1−c1)t

r1e(r1−c1)t − c1
− β2(1− q)ni

(r2 − c2)e(r2−c2)t

r2e(r2−c2)t − c2

)
(3.1)

3.2.2.3 Variance on the growth rate

In our analytical study, mi1 and mi2 are independent random variables (no sat-
uration). Thus the variance of mi

ni
= mi1

ni
+ mi2

ni
is the sum of the variance for

each subpopulation. We thus use expression 2.12 and replace the parameters
accordingly:

〈var〉 =
1

h

[
qβ2

1e
2(r1−c1)t 2r1 − (r1 + c1)e−(r1−c1)t

β1(r1 − c1)

+(1− q)β2
2e

2(r2−c2)t 2r2 − (r2 + c2)e−(r2−c2)t

β2(r2 − c2)

](
h∑
i=1

1

ni

)

One can check that taking q = 0 or 1, one recovers the one-population expression
2.12.

3.3 Parameters search strategy

In the following, we will focus on the models where the two subpopulations differ
only by their replication rates r1 6= r2. The replication rate is indeed biologically
the most likely parameter to differ between subpopulations, for the various rea-
sons exposed in section 3.1.1. In comparison, it is less likely that the parameter β,
which corresponds to the probability for one bacteria to cross the acidity barrier
of the stomach and settle in the cecum, should take different values for different
individuals of the same isogenic bacterial population. This possible bottleneck
corresponds indeed to a physical barrier that all bacteria have to pass, and known
possible phenotypic differences are very unlikely to impact β. Different c could
also be plausible (for example with the argument of spatiality presented in section
3.1.1) and have their importance, but since the c values are expected to remain
small, this should have a negligible effect compared to changing the replication
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rates. We will thus study a model of two subpopulations of respective parameters
(qN0, β, r1, c) and ((1−q)N0, β, r2, c) (with N0 the total number of bacteria in the
inoculum). We will write the ratio between the two replication rates α = r1/r2

and denote the faster-growing population 1, so that we will always have α ≥ 1.

Compared to the one-population case, we have thus added two dimensions to
the parameter space, adding the two parameters α and q. In the former case, we
fixed only the parameter r (either with rmean estimated by the plasmid dilution
or with rmax experimentally measured), and, for the simulation, the additional
parameter K with the final number of bacteria. The two other parameters (β and
c) remained free, and none of the three observables (mean growth rate, WITS loss
and variance) were fixed. Here, we propose to fix all the parameters but α and
q by enforcing the values of the experimental WITS loss and the experimental
mean growth rate (we will see how below), so that only the variance remains free.
We will thus explore the parameter space (q, α). The values α = 1, q = 0 or q = 1
recover the one population case. Thus for these values, it should be impossible
to recover the experimental variance when there was a gap in our parameters
estimate from the different observables. But if other sets of parameters (q, α)
allow the recovery of the experimental variance level, then it will mean that it is
plausible that there actually are two subpopulations. Now let us see how to fix
the other parameters values with the experimental values for the WITS loss and
the mean growth rate.

3.3.1 Carrying capacity and replication rates

We will arbitrarily take K = 109 in the following (the order of magnitude of
all the values for K calculated as exposed in section 2.5.1 in the one-population
case), since we have seen that the exact value for K did not have much impact on
the observables. Then we fit the initial growth rates rmax,1 and rmax,2 so that the
growth of the whole population is on average of rate rmax. Since at the beginning
of the experiment growth is exponential, this condition writes:

ermaxt = qermax,1t + (1− q)ermax,2t. (3.2)

Since we have parametrized rmax,1 = αrmax,2, the upper equation has only one
unknown at fixed (q, α) and can thus be numerically solved for each new point
of the parameter space.

3.3.2 β and c with plasmid dilution, mean growth factor and
WITS loss

Then, to fix the parameters β and c, we will use a combination of three informa-
tions: the mean replication rate given by the plasmid dilution, the mean growth
factor measured in the experiments and the WITS lost in the experiments. The
mean growth factor indeed writes as

Bf
N0

= β2Ge−ct = βe(rmean−c)t
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with G the number of replications from the plasmids (see section 2.2.1), Bf and
N0 the final and initial experimental total numbers of bacteria, which are all the
three experimental measures we have at our disposal apart from the WITS data.
Consequently, this gives a first relation between the parameters β and c, that we
can inject in the maximization of the log-likelihood (presented in sections 1.2.1.5
and 2.4) which now writes, with the loss probability of WITS i expressed above
(3.1):

d ln(L(β))

dβ
= 0 = −

n∑
i=1

ni0θi

[
q

(r1 − c)e(r1−c)t

r1e(r1−c)t − c
+ (1− q)(r2 − c)e(r2−c)t

r2e(r2−c)t − c

]

+
n∑
i=1

(1− θi)ni0

[
q

(r1 − c)e(r1−c)t

r1e(r1−c)t − c
+ (1− q)(r2 − c)e(r2−c)t

r2e(r2−c)t − c

]

×
exp

(
−βni0

[
q (r1−c)e(r1−c)t
r1e(r1−c)t−c

+ (1− q) (r2−c)e(r2−c)t
r2e(r2−c)t−c

])
1− exp

(
−βni0

[
q (r1−c)e(r1−c)t
r1e(r1−c)t−c

+ (1− q) (r2−c)e(r2−c)t
r2e(r2−c)t−c

])
with θi taking the value 1 if the population of WITS i got extinct in the process
and 0 otherwise, and taking r1 = rmax,1 and r2 = rmax,2 as the WITS loss depends
mainly on the early dynamics. Those two constraints allow for an estimate of
parameters β and c, which completes the set of parameters we wanted to fix with
the experimental data. We can now switch to the exploration of the variance in
the parameter space (q, α).

3.4 Simulations and results

In this section I will review the results obtained when applying a two-subpopula-
tions model (with two subpopulations replicating at different rates), both an-
alytically and with simulations, to the data set we are interested in. The full
code for simulations is printed in annexe appendix C. As explained in the previ-
ous section, we fix the values of the parameters (β, rmax,1, rmax,2, c,K) with the
experimental values of the plasmids dilution, the growth factor and the propor-
tion of WITS lost, and will explore the values allowed for the variance in the
parameter space (q, α). The values fixed for β and c also depend on those pa-
rameters, so for each set of parameter (q, α) we will also check their estimated
values for consistency with the range of values that is biologically expected. We
will see in the next chapter (4) that c can be mechanically estimated if we con-
sider the feces production, that are of 10% of the cecum content every 15min.
This corresponds to a survival probability of (0.9)4×24 for a bacteria in the ce-
cum after a day, which with our parameters expresses as e−ct, and thus allows
an estimate of c = −96 ln(0.9) ' 10day−1. Then an underestimate of β can be
obtained considering that all the WITS were lost during the Poisson process, as
explained in section 2.2, which gives a range of estimated lower bounds for β
between 0.01− 0.4.

For q = 0, q = 1 or α = 1, the same value for the variance is found everywhere,
as expected because we recover the one population case. For intermediate values
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of the parameters, we obtain higher ranges of variance, as predicted. We first
check that simulations and analytics give similar results (see for example figure
3.2). There is an excellent concordance between the variance calculated on the
final numbers resulting from the Gillespie algorithm and the analytical variance,
despite the approximation of no saturation we made in our analytical study. As
we explained in the one-population model, this is because the variance depends
mostly on the initial dynamics: when the WITS populations have reached a large
enough size, then the distribution cannot change much. In the following we will
thus only present analytical maps of the variance, since this allows a sharper
exploration of the parameter space (without requiring a high calculating time).
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Figure 3.2 – Maps of the expected renormalized variance over the growth factor (color

scale), in the framework of the two-subpopulations model, using the data from the ex-

periments with “SB300” strain and 103 inoculum size to constraint the values of β and

c. “x” axis is q, the initial proportion of subpopulation 1 that replicates faster. “y” axis

is α, the authorized ratio between the two replication rates. The contour curves show

the points of the parameter space where the experimental value of the variance is met

(dashed lines for the three mice and solid for the mean). The fact that these lines appear

on the map indicates that some combinations of the parameters (q, α) allow to recover all

the experimental values for the three observables at once. The variance takes the same

value for q = 0, q = 1 or α = 1 because we recover the one-population case.
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Note that there is a sharp transition of the variance when q is small (there
is no discontinuity). Infinitesimal values of q in equation 3.2 give rise to very
unlikely values for rmax,1 (essentially, if q is small enough, then rmax,2 equals
rmax and rmax,1 = αrmax). From the biological point of view, it is very unlikely
that a subpopulation might replicate more than 50% faster than the maximum
replication rate observed in the experiments. We could check by zooming on
these very low q values that this part of the contour corresponds to areas where
the values of rmax,1 exceed by far this limit. Thus this part of the contour is an
artifact of our model coming from the fact that we put no bound in the values of
the replications rates, and should be ignored.

Now, we do not expect the two-subpopulations model to apply well in the 6
types of experiments we are considering (two different strains and three different
inoculum sizes). First of all, the experiment with strain “M2702” and inoculum
size 105 had a defect in the WITS dilution, and thus we lack the information
of a proportion of lost WITS, which prevents us from exploiting it. Then in
the experiment with strain “SB300” and inoculum size 105, the experimental
variance is lower than the variance allowed if the WITS loss is fixed (because
the contour curve for the variance is situated above the one for the loss in the
parametric map, see figure 2.9). Since the two-subpopulations model generates
higher variances than the one-population model, it will not help bridging the
gap between the estimates in this particular experiment. Finally, regarding the
two experiments starting with the inoculum size 107 with strain “SB300” or
“M2702”, the model does not achieve to find positive values for c and a value of β
comprised between 0 and 1 using the WITS loss and the growth factor. Looking
further into these data, it appears that in these experiments, the value of the
experimental growth factor measured by the ratio between the final and initial
total numbers of bacteria Bf/N0 is close in order of magnitude to the maximum
possible growth rate allowed by the data of the plasmids dilution ermeant = 2G.
If we take arbitrarily a c value of one third of the lower bound estimated from
the mechanical loss in the feces, we even have 2Ge−ct <

Bf
N0

, which means that
no value of β comprised between 0 and 1 will allow to recover the experimental
value for the growth rate.

Then, in the two last experiments (starting with inoculum size 103), positive
values of c and β comprised between 0 and 1 are found, and the parametric
map of the variance displays the contour curve for the value of the experimental
variance (see figure 3.3). It means that some combinations of the parameters
(q, α) allow to recover all the experimental values for the three observables at
once. In both cases, a value of α around 1.2 with values of q smaller than 0.5
seem to allow an optimal recovery of the experimental variance. Higher values
of α also give some possibilities, but then very high values of α would probably
not be very realistic from the biological point of view. For that matter, in the
experiment with “SB300”, too high values of α (around 6, 7) combined to low
values of q lead to estimate of β over 1, indicating that the model is not relevant
anymore in this region of the parameter space. In these experiments, the β
estimated are around 0.5 in the “SB300” case and 0.05 in the “M2702” case (the
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values of the parameters do not vary much over the part of the parameter space
explored). If both estimates are plausible, since we estimated a lower bound of
0.12 on average, we would however rather expect similar estimates from those
two experiments, because the β selection has a priori few reasons to depend on
the type of strain inoculated. Then the c values are around 0.01day−1 in the
“M2702” strain and 3day−1 in the “SB300” case. If the later recovers the order
of magnitude we expected (we estimated a loss of around c = 10day−1 just from
mechanical loss in the feces), the first is surprisingly low. There might be some
biological reasons that would explain a lower loss than the one expected from the
mechanical loss, for example bacteria might stick to the wall and not go along
with the feces. But then again, nothing would explain why so different estimates
would be retrieved from two experiments supposedly very similar (and moreover,
virulent bacteria from strain “SB300” would be more likely to interact more with
the epithelium). Thus only one of the six experiments under consideration here
could be explained by the two-subpopulations model. However, more data would
be required to conclude more generally on the subject, as will be further discussed
in the following conclusion of this part.

74



3.4. Simulations and results

-2.0 -1.5 -1.0 -0.5 0.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

Theoretical variance_SB300 10^3

log10(q)

lo
g1
0(
al
ph
a-
1)

0.5 1.0 1.5 2.0

scale variance

min.local3 + (0:(n.couleurs - 1) - 0.5) * (max.local3 - min.local3)/(n.couleurs - 
    1)

1

log10(q) 

A. Variance map for the 
“SB300” strain, 103 inoculum 

Renormalized variance log scale 

lo
g1

0(
α-

1)
 

-2.0 -1.5 -1.0 -0.5 0.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

Theoretical variance_M2702 10^3

log10(q)

lo
g1
0(
al
ph
a-
1)

1.0 1.5 2.0 2.5

scale variance

min.local3 + (0:(n.couleurs - 1) - 0.5) * (max.local3 - min.local3)/(n.couleurs - 
    1)

1

log10(q) 

B. Variance map for the 
“M2702” strain, 103 inoculum 

lo
g1

0(
α-

1)
 

Renormalized variance log scale 

Figure 3.3 – Maps of the expected renormalized variance over the growth factor (color

scale), in the framework of the two-subpopulations model, using the data from the exper-

iments with 103 inoculum size and “SB300” strain (A) or “M2702” strain (B). “x” axis

is log10(q), with q the initial proportion of subpopulation 1 that replicates faster. “y”

axis is log10(α− 1), with α the authorized ratio between the two replication rates. The

contour curves show the points of the parameter space where the experimental value of

the variance is met (dashed lines for the three mice and solid for the mean). The fact that

these lines appear on the map indicates that some combinations of the parameters (q, α)

allow to recover all the experimental values for the three observables at once. Note that

the two color scales are slightly different (the variance is globally higher on the “M2702”

map, which is coherent with the fact that the estimated β is smaller, see detailed values

in the text).
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Conclusion

In this part, I presented my work concerning the colonization dynamics of bac-
terial populations in early infection of the gut. I developed stochastic models
of population dynamics in an open system, which aim to infer biologically rele-
vant parameters of the infection (such as replication and elimination rates, and
the probability for one bacteria to settle in the organism and participate in the
infection) from indirect data. In a first chapter, I presented the quantitative
data on Salmonella colitis in mice that motivated the study (essentially initial
and final numbers of bacteria, as well as initial and final distributions of ge-
netic tags), along with the general methods used subsequently (mostly branching
processes and agent-based Gillespie simulations). In a second chapter, I stud-
ied one-population models initialized with a Poissonian draw and following a
continuous-time birth-death Markovian process. In this framework, I looked for
the optimal observable to characterize the variability in the distribution of ge-
netic tags, which have the particularity of starting from unequal population sizes,
and showed that the renormalized variance on the growth factor was a suitable
measure of variability. I checked for consistency between the parameter estimates
based on the observables of the mean growth rate, the renormalized variance over
the growth rate and the proportion of genetic tags lost, and showed that in some
cases, it is not clear whether these estimates are truly coherent. Based on biolog-
ical arguments and the qualitative idea that it could lead to broader possibilities
of observables combination, and in particular, to a higher variance, I then de-
veloped in a third chapter models with two subpopulations following the same
kind of dynamics, but with different replication rates. I showed that this kind of
model explains very well some experiments, but not all of them, and due to the
small quantity of data no clear conclusion can be drawn as to the coexistence of
several subpopulations.

In these models, we have always considered a fixed replication rate for the sake
of simplicity. However, fixed replication times are closer to the reality of bacterial
replication. In appendix D I study a simple model with one population, identical
to the null model defined at the beginning of section 1.2, but with all the bacteria
that divide after a fixed replication time τ instead of at a fixed rate r. I scale the
new parameters so that the population size is identical to the constant replication
rate case, and I derive the new expressions for the renormalized variance over the
growth factor and the loss probability, which are both modified: in the limit
of large time and small elimination rate compared to the growth, the variance is
reduced by a factor two, and the loss probability is also reduced in a more complex
fashion. However, the effects on parameters estimation on the data set are hard
to predict, and depend on the experiment: in some cases, the new observables
expressions pull the estimates further apart, while in some others, it gets them
closer together. Thus, no clear conclusion can be drawn on the impact of the
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fixed replication rate hypothesis on our study.

Another track of investigation concerns a step of the experiments that has been
identified as a source of additional variability. Before the q-PCR measurements
of the relative abundances of WITS, there is a previous state of amplification:
the cecum content is diluted and nutrients are added. The aim is to allow the
detection of WITS that were initially present in very small quantities, that would
otherwise not be sequenced properly. The problem is that the measure of variabil-
ity is different whether the q-PCR is actually done right away (just after dilution)
or after this enrichment phase. This could be at the origin of a part of the in-
consistency observed between the parameters estimates in the one-population
model at section 2.5.2. One hypothesis could be that a part of the population is
“dormant” when it is extracted from the cecum, and that it experiences a delay
before starting to replicate again. However, at the end of the experiment, the
WITS populations before enrichment are already of important sizes. Therefore
the effects of stochasticity are negligible, and the amplification step should not
have any effect on the distribution of WITS. The only case for which we could
observe an increase of variability over the amplification process is the case where
almost all the bacteria are dormant, and only a tiny proportion of bacteria (rapid
simulation allowed me to estimate a proportion of ' 10−5) replicate with a very
high rate to compensate for the other bacteria not replicating. But this situation
is extremely unlikely from the biological point of view. If there was a bias in the
q-PCR measurements, it should be systematic, and thus should not be a source of
additional noise. The effect of amplification would therefore deserve to be further
investigated.

Then, a question that comes naturally is the question of a higher number of
subpopulations. Intuitively, in terms of variability of the WITS distribution, the
limit case must be the one with two subpopulations, with one that does not repli-
cate at all, and the other replicating with a high rate to compensate and keep
the final number of bacteria unchanged. This should be the most efficient way
to obtain the most unequal distributions: if a WITS population (starting with a
small initial number) is all taken from the pool of non-replicating bacteria, while
another WITS population is entirely taken from the pool of fast-replicating bac-
teria, that will allow the higher difference possible in final population sizes. Some
very preliminary simulations with three subpopulations indeed showed that no
higher variance could be reached compared to the case with two subpopulations,
but the question would deserve to be resolved more formally.

To conclude on the data set on which we tested our methods, one of the biggest
difficulty is that it seems that the observable that conveys the more information,
i.e. the proportion of WITS lost in the experiment, is not measured with a
sampling important enough so that it can be completely reliable. A good way
to overcome this issue without requiring a higher number of experiments (and
thus, mice), would be to develop a higher number of genetic tags (in the data we
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studied, there are only seven different labels), so that the loss probability and the
distribution measured become more statistically relevant. However, even if there
is no clear conclusion regarding the data set under examination here, there is no
doubt that the kind of models developed are sufficiently general to be applicable
in other situations of population dynamics.
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Part II

Mechanisms of the IgA
immune response in the gut
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Introduction

The digestive system has a large surface area[30][31], covered by a single layer
of epithelial cells, essential for nutrient absorption, but also a gateway for many
pathogens. Contrary to the inside of the body, where the presence of any bacte-
ria is abnormal, the lumen of the digestive system is home to a very important
microbiota : there are at least as many bacteria in the human digestive system
as there are human cells composing the body [1]. The microbiota is thus im-
portant in numbers, but also in function: bacteria are necessary to break down
and absorb certain nutrients, and can compete against potentially pathogenic
intruders[2]. Inside the organism, the immune system can and must be able to
eliminate generically any bacteria. On the other hand, in the digestive system,
the host has to find alternative ways to fight dangerous bacteria while sparing
beneficial ones.

The adaptive immune response is the only strong handle that the host has on
directly controlling microbiota composition at the species level[56][57]. The main
effector of the adaptive immune response in the digestive system is secretory IgA,
an antibody. sIgA specifically bind to targets (i.e. antigens) that the organism
has already encountered via infection or vaccination. It was observed more than
40 years ago that this prevents infection[32]. Many studies have focused on the
complex molecular and cellular pathways that trigger an immune response on the
host side of the digestive surface[33]. However, we are only just beginning to un-
derstand by which physical mechanisms the immune effectors act once secreted
into the intestinal lumen. For example, the influence on bacteria dynamics of
abiotic factors such as the flow in the gut has only recently started being quan-
titatively studied [42, 58]. The aim of this part of my thesis is to enlighten some
aspects of these physical mechanisms.

In the following, I will first expose a new concept in immunology named en-
chained growth, the process through which dividing bacteria remain clumped in
clonal aggregates, preventing them to approach the gut epithelium and colonize
the rest of the organism. I will review the different elements produced to ev-
idence this phenomenon in the study from Moor et al. [19], and in particular
my contribution with a model based on genetically labeled bacteria data. In a
second chapter, we will explore the consequences of this phenomenon at the host
level, and see how this phenomenon could be a way for the immune system to
discriminate dangerous bacteria from the others by targeting preferentially fast
replicating bacteria. Finally, in a last chapter, we will explore the evolutionary
consequences of enchained growth at the population level, namely in the context
of antibiotic resistance spread, through the study of cross scale models of infection
propagation.
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Chapter 4

A new idea in immunology:
enchained growth
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In this chapter, I will review the different elements produced to evidence the
phenomenon of enchained growth in the study from Moor et al. [19]. I will
first explain how the production in high quantities of Immunoglobulin A can be
triggered by vaccination. Then I will show that random encounters of bacteria
are rare in the gut at the beginning of infection, so that another mechanism than
classical agglomeration must account for the protection of the vaccinated mice.
I then present my contribution with a model predicting the loss of variability
resulting from enchained growth and conclude.

4.1 Vaccination triggers sIgA production

Our collaborators from the Wetter-Slack group have developed a vaccination
protocol based on the oral inoculation of large quantities of bacteria killed by
peracetic acid [34]. In this process, the organism is put in contact with large
quantities of specific antigens marking the surface of bacteria, without risking
an infection. It triggers the production in large quantities of sIgA in the gut
lumen, and when mice are later inoculated with active S. Thyphimurium, it is
observed that they do not become sick and there is no inflammation. However,
the mechanisms through which this sIgA production protects the mice are not
immediately obvious. Indeed, sIgA are not able to kill bacteria. In fact, the
dynamics of the infection in the gut remain quite unchanged in vaccinated mice
compared to naive ones the first day. In particular, the intestinal bacterial load
is very similar in both cases (see fig. 4.1). Less bacteria however are crossing the
epithelium barrier and migrating to the lymph nodes.
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Figure 4.1 – Six mice per group were either vaccinated with peracetic-inactivated bac-

teria or mock-vaccinated with a buffer solution before being pre-treated with antibiotic

and later inoculated with 105 CFU of wild type Salmonella Typhimurium. The bacte-

rial load per gram of feces is shown during the 24h following inoculation. There is no

significant difference between vaccinated and naive mice (from fig. 1h of [19]). Note that

samples were systematically agitated with bead-beating before plating and CFU count

(see section 1.1.1). This allows to break the potential IgA-mediated clumps (see the

following) and permits a correct count in any case.

Most bacteria are actually observed to be agglomerated together in the gut
lumen, far from the epithelium. It has been known for a long time that high-
avidity sIgA are able to bind specific target-bacteria together. This is due to
their structure with several binding sites (see fig. 4.2). However, agglutination
was classically thought as a process driven by the diffusion of bacteria in the gut:
there are random encounters of bacteria of the same strain. If the concentration
of sIgA targeting this bacterial strain is high enough, then those bacteria will
be coated by sIgA and will remain attached to each other upon encounter. But
at the realistic initial concentrations of bacteria following food poisoning, how
frequent are those encounters?

4.2 Limit of the classical agglomeration idea

Order of magnitude of the encounter time between two bacteria Ac-
cording to [59], 105 is a realistic estimate of the number of bacteria ingested by
a human victim of typical food poisoning. The corresponding number should
be much smaller for mice, but we will keep this number as a higher limit. The
typical time to find one target of radius a in a sphere of radius b by diffusion is of
the order of b3/(Da), with D the diffusion coefficient, so the typical time for one
bacteria to find another when there are N bacteria in a volume V is of the order
of V/(NDa). For bacteria, a is in the micrometer range. Bacteria typically swim
at 10µm/s, and change direction every second, which gives a diffusion coefficient
of the order of 10−10m2/s (the peristaltic motions of the digesta are large scale
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Figure 4.2 – Schematic diagram of IgA-mediated bounds between bacteria (scale is not

respected). It has been observed (fluorescent imaging [19]) that IgA (here represented

in red) are present in high enough concentrations, so that they can coat the surface of

bacteria by attaching the specific antigen (here in purple). The structure of IgA allows

the cross-binding of two bacteria together.

movement rather than local diffusion, so we assume they have a smaller effect on
diffusion). The mouse’s cecum has a volume of the order of 1cm3. The smallest
inoculum in the experiments is N0 = 105 bacteria. With these numbers, the typ-
ical encounter time is of the order of 105s, i.e. 30h, about ten times longer than
the typical digestion time in mice. Mice are nevertheless protected in these ex-
periments, thus, classical agglomeration cannot be the mechanism through which
mice are protected after vaccination, because it is inefficient at the initial low
bacterial densities.

Other hypothesis Other hypothesis were tested. It was checked that sIgA
does not kill bacteria nor prevents them from growing. Another hypothesis is
that IgA could act on flagella. However, experiments with a bacterial strain
missing flagella show that they still make naive mice sick, while vaccinated mice
are protected.

Enchained growth hypothesis Bacteria may remain stuck together upon di-
vision. Vaccinated mice were infected with a 1:1 mixture of GFP-tagged (green
fluorescence) and mCherry-tagged (red fluorescence). In mice inoculated with
small quantities of bacteria (105), only monochromatic clumps of bacteria were
observed (see fig. 4.3). When larger quantities of bacteria are inoculated (from
108 on), then the initial densities are high enough so that classical diffusion-
driven encounters play an important part, and randomly-colored clusters are
observed. For intermediate inoculum sizes, at first the dominating effect is en-
chained growth, and when high enough densities are reached, monochromatic
clusters start to regroup randomly, forming oligoclonal structures.

Modeling showed that enchained growth can account for the observed ratio
of clumped bacteria versus planktonic ones. In the experiments with vaccinated
mice, it has been observed that only planktonic bacteria approach the epithelium
and can interact with it; agglomerated bacteria, on the contrary, remain far from
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Figure 4.3 – Vaccinated mice were infected with 105 CFU inoculum of attenuated strains

(attenuated mutant used to avoid inflammation in mock-vaccinated controls). Live mi-

croscopy shows that most bacteria are trapped in monochromatic clusters, particularly

when bacterial densities remain below 108 (fig. 1i from [19])

the wall, deep in the lumen. Modeling has also shown that the observed ratio
of clumped bacteria versus planktonic ones can account for the reduced level of
lymph node colonization[19].

4.3 Modeling clonal loss with enchained growth

To confirm the existence of enchained growth, I developed a model based on the
data of the genetically labeled bacteria called WITS (see section 1.1.3). Indeed,
if bacteria develop and are eliminated in clonal clusters, then everything happens
as if the effective population size were reduced. A higher clonal loss should thus
ensue, as schematically explained in figure 4.4. Our model aims at predicting the
amplitude of this increased clonal loss.

To estimate the effect of enchained growth on clonal loss, we simulated a sim-
ple scenario on the basis of the following experiment : vaccinated and naive mice
were infected with 105 CFU of the attenuated strain, spiked with an average of 10
copies of each of the seven WITS strains, as in the experiments. WITS frequen-
cies were determined by plating, enrichment culture and qPCR as described in
section 1.1.3. The evenness of the final distribution was calculated as described
in section 2.3.1. Only tagged bacteria need to be tracked in the simulation1. It
starts from the numbers of the seven barcoded bacteria strains in the inoculum.
These bacteria establish in the cecum following a Poisson process with a prob-
ability β (as in the null model in section 1.2). We reasonably assume that the
established bacteria become uniformly spatially distributed in the cecal content
by peristaltic mixing and that the untagged bacteria have no effect on the bar-

1contrary to what was done in the previous part, here we will not include a saturating term,
which would have required to keep track of the whole population size, but will rather consider
two successive phases for the growth, which will be described in the following
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extinction 

Normal growth IgA-driven enchained growth 

partial loss 

Figure 4.4 – Bacterial growth in naive versus vaccinated mice. Colours represent the

different strains of WITS. Blue lines represent sIgA coating. From figure 2a in [19].

The zoom-in boxes show how clustered bacteria are prevented from interacting with the

epithelium, one of the hypothesis to explain this being steric: clusters might be too big to

penetrate the crypts forming the surface. Another hypothesis is that the mucus covering

the epithelium prevents the bacterial clusters, too large compared to the mucus mesh

size, to approach the wall.

coded clonal distribution. The growth is taken as deterministic, with replication
every τ during the first phase of fast replication, until the carrying capacity is
reached and growth only compensates the loss so that the population size remains
stable. Bacterial loss is taken to be random : at each time step, a proportion pc
of the population is lost on average. I simulated the two extreme cases, which
differ only in the way bacteria are lost:

• The “normal growth” case, with no enchained growth and where all bacteria
remain independent (mimicking what should happen in naive mice). In this
case, we simply track the numbers of bacteria, and at each time step, each
bacteria has the probability pc to be eliminated.

• The “perfect enchained growth” case, where individual clones never seg-
regate, meaning that bacteria get eliminated in the feces in perfect clonal
clusters. In this case, we track the numbers of clusters, and at each time
step, each cluster has the probability pc to get eliminated.

In these simulations, there are thus three important parameters for the dy-
namics of the bacterial population that need to be inferred from experimental
data: β, τ and pc.

1. The probability to seed the cecum β is estimated using WITS loss in the
mock-vaccinated mice data. Indeed, in this case clonal loss can be mainly
attributed to this initial Poisson bottleneck, as subsequent bacterial loss is a
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small effect compared to the division rate (because of the first phase of fast
replication). Thus as if in section 2.2.2, we consider that the experimental
proportion of WITS lost equals exp(−β〈n0〉), with a cutoff on the final
WITS numbers (the frequencies below 10−2 are considered to actually be
zero, based on a separation of the frequencies). With this approximation
we find β = 0.115.

2. The growth kinetics in the cecal lumen is based on the plasmid dilution data
from figure 2.1B (see also extended data figure 1 from [19]). When strep-
tomycin pretreated mice are infected with 105 CFU of S. Typhimurium,
bacteria divide twice per hour until 12h after infection, when they reach
the cecal carrying capacity of approximately 1010 and net growth stops
(that is, the growth rate equals the clearance rate).

3. The kinetics of clearance is only thought here as mechanic: to maintain
feces production, approximately 10% of the cecal content is cleared to the
colon and lost in the feces every 15 min.

The results of these simulations are shown on figure 4.5. Note that in the
normal growth case (black line), the evenness stabilizes after 1h. The final value
estimated by the simulation is close to the experimental value for unvaccinated
mice2. On the other hand, evenness continues to drop in the perfect enchained
growth case (cyan line), indicating on-going clonal extinction. The experimental
evenness values of the tags distribution at 18h post-infection in the vaccinated
mice (cyan points) are on average located between the simulated final values of
evenness with no enchained growth and with perfect enchained growth. This is
qualitatively consistent with the idea that enchained growth in vivo might be
imperfect : IgA may be not perfectly sticky, and clusters may break at some
point (the idea will be elaborated in the following chapter).

4.4 Conclusion

Thus, we have seen in this chapter that enchained growth is the key element
which allows a vaccinated mice to be protected from infection. Even at low ini-
tial concentrations, bacteria remain bound together by IgA-mediated links upon
replication, resulting in clonal clusters prevented from interacting with the ep-
ithelium to trigger inflammation and invade the lymph nodes : this explains
immune exclusion. Moreover, clumped bacteria are likely to be more easily evac-
uated in the feces [19], and the absence of inflammation preserves the rest of
the intestinal flora and thus favors elimination through competition with other
pathogens. This mechanism is thought to be quite generic: the immune system
of a mice is quite similar to the ones of other animals such as humans, and the
sIgA-binding is valid for a large panel of bacteria (for instance, E. coli has also
been tested and found to behave likewise in [19]). It therefore constitutes an

2In this dataset with non-vaccinated mice, WITS loss (used to calculate β) and WITS vari-
ability (here the evenness) are compatible.
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buffer buffer 

buffer 
vaccine 

vaccine 

Figure 4.5 – Simulation of the two extreme cases (“normal growth” and “perfect en-

chained growth”) and comparison with the experimental data described at the beginning

of this section. The simulated mean evenness is an average over 300, 000 realizations of

the same process. Note that the final simulated evenness with normal growth matches

the experimental value in naive mice, as expected. The experimental values in naive

mice are situated somewhere between the two extreme cases, indicating that in vivo,

enchained growth may not be perfect. From extended data figure 8 in [19].

important mechanism of protection of the intestinal ecosystem. The dynamics
of these clusters may be important for their functions, this will be the object of
chapter 5. Moreover, the structure of the bacterial population decreases diversity,
which may have evolutionary consequences. This will be the object of chapter 6.
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Chapter 5

Enchained growth as a way to
regulate microbiota
homeostasis
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We have seen in the previous chapter that in immune animals, daughter bac-
teria remain enchained by sIgA upon replication. In this chapter (which, in a
modified form, is submitted [20]) we argue that this enchained growth process can
be a way for the immune system to regulate the microbiota composition, through
the interplay between clusters growth and fragmentation. In a first section, I
expose this qualitative idea in more details. I a second section, I present different
plausible models of bacteria clusters dynamics, and the methods to study them.
Then I give, for each model, the resulting dynamics and cluster size distribution,
before putting these results in perspective with experimental data. Eventually, I
discuss the results.
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5.1 Interplay between clusters growth and fragmen-
tation

As closely related bacteria (for example, Salmonella spp. and commensal E.
coli) can show highly variable behaviors in the intestine, the task that falls to
the immune system in the gut of identifying which bacteria are noxious among
the beneficial ones is challenging. Besides, the overgrowth of any type of bac-
teria, even those that do not cause acute pathology, can actually impair the
functionality of the microbiota. Thus the host needs mechanisms to maintain
gut microbiota composition homeostasis.

We have seen in the previous chapter that mice vaccinated with inactivated
Salmonella Typhimurium do produce specific sIgA which bind to S. Typhimurium,
but this neither kills them nor prevents them from reproducing[60][19]. These
mice are nevertheless protected against pathogen spread from the gut lumen to
systemic sites like lymph nodes, liver or spleen. We have contributed to show
that the main effect is that upon replication, daughter bacteria remain attached
to one another by sIgA, driving the formation of clusters derived from a single
infecting bacterium[19]. This “enchained growth” process is effective at any bac-
terial density. Clustering has physical consequences: the produced clusters do not
come physically close to the epithelial cells, and as interaction with the epithelial
cells is essential for S. Typhimurium virulence, this is sufficient to explain the
observed protective effect.

Now if sIgA were perfectly sticky, we would expect all bacteria to be in clusters
of ever increasing size. In these experiments, despite observing S. Typhimurium
clusters in the presence of sIgA, there are still free planktonic bacteria, and clus-
ters of small sizes. One possible explanation would be that the concentrations
of sIgA are insufficient, and that not all bacteria are coated with it. But in
these experiments, it has been demonstrated (with IgA fluorescent staining and
flow-cytometry analysis) that they are (see extended figure 2c of[19]). This was
expected. Indeed, a gram of digestive content contains at most 1011 bacteria, and
typically 50 micrograms or more of sIgA[61], of molecular mass of about 385kD.
This leads to about 800 sIgA per bacteria. sIgA may not be all bound to bacte-
ria, and sIgA for different specific antigens may be produced in proportions not
matching the proportions of antigens present in the digestive system, so that not
all bacteria are coated with 800 sIgA. Nevertheless, most bacteria already encoun-
tered by the organism will be coated with many sIgA, and thus the clusters sizes
are not limited by the number of available sIgA. The other possible explanation is
that the sIgA-mediated links break. Before plating bacteria to count them, they
are subjected to bead beating, and this has indeed been observed to break the
clusters (see extended data figure 3 of [19]). In related systems, the breaking of
such links has been demonstrated to be dependent on the applied forces [62][63].
As there is shear in the digestive system, because mixing is needed for efficient
nutrients absorption, it is plausible that links break over time.

Moreover, it has been observed that the small clusters are linear chains of
bacteria, bound by sIgA. As bacteria are similar to each other, it is, at another
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5.2. Interplay between clusters growth and fragmentation

scale, analogous to other physical systems[64], such as polymers breaking under
flow[65]. The main difference is that these chains grow by bacterial replication.
Growth and fragmentation are competing effects, and the modelling of these
clusters can be addressed as a statistical physics problem, where one wants to
predict their size distribution, whether there is a typical cluster size, or if large
clusters of ever-increasing size dominate the distribution, and how the growth in
the number of free bacteria depends on the bacterial replication rate.

This could also have very important biological consequences. To illustrate
this point, let us consider a simplified model (see figure 5.1): bacteria remain
enchained by sIgA when they grow (replication time τdiv), and the sIgA-link be-
tween 2 bacteria breaks exactly after a time τbreak (although this latter hypothesis
is not realistic, we make it for now for the sake of simplicity in getting the gen-
eral idea). If τdiv > τbreak, then when a bacterium divides, it forms a 2-bacteria
cluster, which dislocates into two free bacteria before the next replication step,
so that bacteria remain in the state of free or 2-bacteria clusters and there are no
larger clusters. If τdiv < τbreak, when a bacterium divides, it forms a 2-bacteria
cluster, which becomes a 4-bacteria cluster before the first link breaks, so that
there cannot be free bacteria anymore. In this model, the fast-growing bacte-
ria are selectively targeted by the action of the immune system. The immune
system does not need to sense which bacteria are growing faster, it only has to
produce sIgA targeted to all the bacteria it has ever encountered, and bacteria
with τdiv > τbreak are unaffected, whereas bacteria with τdiv < τbreak are trapped
in clusters. That could be a simple physical mechanism to target the action
of the immune system to the fast-growing bacteria which are destabilizing the
microbiota, and thus to preserve microbiota homeostasis.

τdiv < τbreak 

Ø  No free bacteria 

Ø  Either free bacteria or 2-bacteria clusters 

τdiv > τbreak 

Figure 5.1 – Simplified model of clusters dislocation, where all bacteria divide at τdiv
and all link break after τbreak. Larger clusters form only if bacteria have time to divide

before the links break, that is if τdiv < τbreak.

In the following, we present different plausible models of bacteria clusters
dynamics, and the methods to study them. Then we give, for each model, the
resulting dynamics and cluster size distribution, before putting these results in
perspective with experimental data. Eventually, we discuss the results.
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5.2 Models and methods

We consider low bacterial densities, so encounters between unrelated bacteria and
thus classical agglomeration are negligible. Thus, we consider each free bacteria
and each cluster of bacteria independently of the others. Salmonella are rod-
shaped bacteria, which divide at the middle of the longitudinal axis. Thus if the
daughter bacteria remain enchained, they are linked to each other by their poles.
With further bacterial replications, the cluster will then be a linear chain. This
is consistent with experimental observations, in which clusters are either linear
chains, with bacteria attached to one or two neighbors by their poles, or larger
clusters which seem to be formed as bundles of such linear clusters (see pannel
A figure 5.2). Our aim is to model the dynamics of these clusters.

5.2.1 Elements of the various models

A first element is bacterial replication (see figure 5.2 C). One way to model it is
to assume that bacteria replicate every τdiv. Another way, that we will generally
use, less realistic but easier for calculations, is to assume that there is a fixed
replication rate r.

A second element is that when bacteria replicate, they may be able to escape
enchainment (see figure 5.2 B), but likely with low probability (see discussion
in the next section 5.2.3). In most cases, we will take the limit with perfect
enchainment upon replication.

A crucial element is the possibility for the links between bacteria to break. We
usually assume that the breaking rate α is the same for all links and over time.
But we will also explore the case where the links breaking rate is force-dependent,
in which case not all the links have the same breaking rate.

Another crucial element, is to model what happens when the chain breaks (see
figure 5.2 D). If the subparts come in contact again at the same poles and get
linked again, then this could simply be modeled by an effectively lower breaking
rate. More likely, if the subparts come in contact again, they do so laterally,
forming larger clusters of more complex shapes. Because in these clusters, most
bacteria have more than two neighbors, and more contact surface, they are much
less likely to escape. To simplify, we will consider that these clusters do not
contribute anymore to releasing either free bacteria or linear chains. Thus when
a link breaks, either the two subparts move sufficiently away and become two
independent chains (probability q); or they collide and become a more complex
cluster which does not contribute anymore to either free bacteria or linear chains
dynamics (probability 1−q). For simplicity, we consider that when an outermost
link breaks, the single bacteria, more motile, always escapes (qoutermost = 1), but
that else q is size independent. We will take q = 0 for the base model.

As digestive content leaves the digestive system, or the part of the digestive
system under consideration, due to flow, we define c the loss rate of free bacteria,
and c′ the loss rate of clusters. We assume no death (which could break clusters).
As free bacteria have more autonomous motility, enabling them to swim towards
the epithelial cells, it is likely that c′ ≥ c. We will usually take c = c′. Crucially,
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in this latter case, free bacteria and all clusters are lost at the same rate. The
c value has a complex effect on stochastic quantities, such as the probability to
have at least one cluster of a given size. However, here we study only the mean
numbers of free bacteria and clusters of different sizes, so that the case with c = c′

is equivalent to c = c′ = 0, with all numbers of bacteria and clusters multiplied
by exp(−ct).

We start with the most basic model, with a replication rate r, bacteria per-
fectly bound upon replication, a fixed breaking rate per link α, and bacterial
chains always binding into a more complex cluster when a link breaks (except
for the outermost links) (q = 0). We then study variations of this base model
to test the robustness of the results: with an non-zero escape probability upon
replication and c 6= c′; with a replication time τ instead of a replication rate r;
with the possibility for chains to escape when an inner link breaks (q > 0); with
a force-dependent breaking rate.

5.2.2 Methods

We consider the beginning of the process, early enough so that the carrying
capacity is far from reached, and thus the replication rate is constant. We do not
consider generation of escape mutants which are not bound by IgA. We consider
only the average numbers of free bacteria and linear clusters of different sizes,
and we do not count more complex clusters, as they do not contribute to free
bacteria dynamics in our model.

For each model, we write the equations for the derivative of these numbers
with respect to time. With N the vector of the mean number of free bacteria
and linear clusters of higher sizes (the ith component being the mean number
of clusters of size i) these equations give the coefficients of the matrix M , such
that dN/dt = MN . The results are obtained in part via analytical derivations
and in part via numerical studies. The latter are obtained in Mathematica by
numerically solving the eigensystem written for clusters up to an arbitrary size
nmax, chosen large enough not to impact the results. In the large time limit,
N(t)→ eλtX, with λ the largest eigenvalue of M and X the corresponding eigen-
vector. For each model, we study how the growth of the free bacteria population
size – the ones which are capable of causing systemic infection[19] – i.e. λ in the
steady state, depends on the bacterial replication rate. Besides, we obtain distri-
butions of the cluster sizes, which could be compared to experimentally observed
distributions.
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Figure 5.2 – Bacterial clusters modeling. A. Examples of experimental images
of bacterial clusters in cecal content of vaccinated mouse at 5h post-infection
with isogenic GFP and mCherry expressing S. typhimurium. The scale bar is
10µm. Top Figures: complex clusters made from bundles of linear clusters, which
could be re-attached single chains (left) or formed from at least two independent
clones (indicated by fluorescence, right). Bottom Figures: linear clusters which
dynamics we aim to model. B. Potential bacterial escape upon replication (in
the base model, δ = δ′ = δ′′ = 0). C. Fixed replication time or fixed replication
rate (the latter is chosen for the base model). D. Consequences of link breaking.
In the base model, q = 0.
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5.2.3 Argument for a low escape probability

When a bacterium replicates, the time for septation is of the order of a few
minutes. We intuitively think that this time is much larger than the time required
for bacteria to stick when they randomly meet. The aim of this section is to give
an overestimate of the typical time τk it takes for a bacterium to stick to another
when they meet.

We use the data on figure 1k of [19] about non-dividing bacteria (so the only
sticking is from random encounters). The majority of them are aggregated after
a few hours for a concentration of 107 − 108 bacteria. As we will calculate an
overestimate of τk, we take the highest concentration and the maximum time, i.e.
N = 107 bacteria in V = 1cm3 (cecum volume) and τexp = 8 hours.

If the diffusion coefficient is high enough, the time for bacteria to cluster will
be limited by the rate k at which bacteria stick to each other when they are in
close vicinity. k is the inverse of τk. If the diffusion coefficient is smaller, then the
time to first encounter will also play a role, but as we calculate an overestimate
of τk, we can neglect this.

Note that this is a large overestimate. Indeed, when bacteria get clumped
to each other, their effective concentration decreases, thus it takes longer for the
last bacteria to meet others, and thus the time for most bacteria to be clumped
will be significantly larger than the inverse of the early clumping rate.

The bacteria typical size is of a few micrometers; let us take 3µm as an
overestimate of the maximum bacterial size. To be in close contact, two bacteria
must be at at most a = 3µm away. Let us assume that then the volume of possible
contact is 4/3πa3, which is an overestimate, because only certain orientations will
allow bacteria to touch each other. Then, the proportion of time spent in close
contact will be of the order of (N4πa3)/(3V ), and the typical time to stick to each
other will be τexp = τk3V/(N4πa3). Then τk = τexpN4πa3/(3V ). Numerically,
we obtain about 5 minutes as an overestimate of τk.

With all these highly conservative estimates, we find τk at the very most of
the same order of magnitude as the septation time, and very likely much smaller.
Hence the probability for bacteria to escape enchainment is small, which justifies
that we take in general the limit of no escape.
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5.2.4 Table of the symbols used

Base model

r Bacterial replication rate

α Breaking rate of the link between two bacteria

ni(t) Number of linear clusters of length i at t (n1: free bacteria)

λ Largest eigenvalue of the matrix, which is the growth rate of the free
bacteria in the steady state

Model with bacterial escape and bacterial loss
(all these parameters are taken as 0 in the base model)

δ When a free bacteria replicates, the probability that this will lead to 2
free bacteria

δ′ When a bacterium at the tip of a cluster replicates, the probability that
the daughter cell at the exterior side escapes

δ′′ When a bacterium replicates within a cluster, the probability that the
daughter bacteria will not be bond to each other, resulting to the cluster
breaking in two

c Loss rate for the free bacteria

c′ Loss rate for the clusters

Model with fixed replication time

τ Time between one bacterial division and the next (the bacterial growth
rate is reff = log(2)/τ)

N Largest eigenvalue of the matrix in this model. N = exp(λτ)

Model with linear chains independent after breaking

q Probability that when an inner link of a cluster breaks, the two subparts
become independent linear clusters. In the base model, q = 0.

Model with force-dependent breaking rates

β A constant expressing the strength of the coupling between hydrody-
namic forces and link breaking. In the base model, β = 0.

5.3 Clusters dynamics and distributions of sizes

5.3.1 Base model

5.3.1.1 Equations

In the base model, bacteria have a replication rate r, daughters are perfectly
bound upon replication, each link has a breaking rate α, and when a link which
is not at a tip breaks, the resulting two chains of bacteria always bind into more
complex clusters and thus do not contribute to free bacteria dynamics anymore
(q = 0). With ni(t) the number of linear clusters of size i as a function of time,
(n1 is the number of free bacteria),

dn1

dt
= −rn1 +

∞∑
i=2

2αni
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and for i ≥ 2,

dni
dt

= rni−1(i− 1)− irni − (i− 1)niα+ 2αni+1 (5.1)

5.3.1.2 Free bacteria growth rate as a function of the bacterial repli-
cation rate

A. Growth rate λ as a function of the
replication rate r, both in units of α.

Numerical result (green solid line), and
limit with no clusters (λ = r, black

dotted line).

B. Distribution of the cluster sizes, for
different r. Solid lines: numerical

results, dotted lines: approximation
(5.3) (almost overlaid with the

numerical results for r/α = 0.1).

Figure 5.3 – Base model. For the numerical calculations, nmax = 40.

Even for this simple version, the system of equations is hard to solve in the
general case. We start by studying numerically the growth rate in the long term
(the maximum eigenvalue λ of the matrix of coefficients mi,j = r(i − 1)δi−1,j −
irδi,j−(i−1)αδi,j+2α(δi+1,j+δi,1(1−δj,1−δj,2))), as a function of the replication
rate (see figure 5.3 A). The growth rate has a maximum for a finite replication
rate, of the order of α (the link breaking rate): the higher the replication rate,
the higher the potential for growth in the number of free bacteria, but when the
replication rate becomes too large compared to the breaking rate, the bacteria
get trapped in clusters, which break and re-attach in more complex clusters from
which independent bacteria cannot escape.

5.3.1.3 Chain length distribution

In the long time limit, the number of clusters of size i is of the order of bi exp(λt),
with λ the largest eigenvalue. Equation (5.1) simplifies to:

λbi = −irbi + rbi−1(i− 1)− (i− 1)biα+ 2αbi+1

Assuming that i is large,

bi '
r

r + α
bi−1 (5.2)

is required. Using this approximation for all i, the probability that a randomly
chosen chain is of size k is:

pk =

(
1− r

r + α

)(
r

r + α

)k−1

(5.3)
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(note that to renormalize this probability, the sum of the geometric progression
is taken from 1 to infinity). This approximation works relatively well, especially
for smaller r/α values (see figure 5.3 B). Part of the discrepancy is that equation
(5.2) is an approximation for large i, and thus does not hold at small clusters
sizes.

5.3.2 Model with bacterial escape and differential loss

5.3.2.1 Equations

This is similar to the base model presented before, except that we take into ac-
count that upon replication, bacteria may not be perfectly bound, and may escape
(pannel B of figure 5.2). We note δ the probability for the two daughter bacteria
to remain free after the replication of a free bacteria. We note δ′ the probability
that when a bacterium at the tip of a cluster replicates, the daughter cell on the
outside of the cluster escapes the enchainment. We note δ′′ the probability that
when a bacterium at the interior of the cluster divides, the daughter cells will not
be enchained, effectively clipping the cluster in two. As free bacteria are more
motile than clusters, then δ ≥ δ′ ≥ δ′′. We also add here the possibility that
the loss rate c for free bacteria and c′ for clusters are different. Then the base
equations are:

dn1

dt
= r(−1 + 2δ)n1 +

∞∑
i=2

2rδ′ni +

∞∑
i=2

2αni − cn1

dn2

dt
= r(1− δ)n1 − 2r(1− δ′)n2 − αn2 + 2n3α− c′n2

and for i ≥ 3,

dni
dt

= r(2δ′−i)ni+rni−1(i−1−2δ′+3δ′′−iδ′′)−(i−1)niα+2αni+1−c′ni. (5.4)

5.3.2.2 Free bacteria growth rate as a function of the bacterial repli-
cation rate

Similarly to the base model, we study numerically the growth rate as a function
of the replication rate (see figure 5.4 A). The larger the replication rate, the more
the deviation between the growth rate and the replication rate, which would be
its value in the absence of clusters. If δ, δ′, δ′′ are small enough, the qualitative
behavior is similar to the base model. But for larger δ, δ′ and δ′′, the growth
rate continues to increase monotonously with the replication rate. The same is
true when δ, δ′ and δ′′ are different (see figure 5.5). If c = c′, the growth rate
is simply offset by minus the loss rate (see figure 5.5), and if c 6= c′, the effect is
more complex, but for small r/α values it corresponds to an offset of −c.
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A. Growth rate λ as a function of the
replication rate r, both in units of α.

Numerical results (colors), with
δ = δ′ = δ′′. Black dotted line: limit

with no clusters (λ = r).

B. Cluster size distribution, for different
r. The solid lines are the numerical
results (for δ = δ′ = δ′′.), the dotted

lines are the approximation (5.5).

Figure 5.4 – Model with bacterial escape (δ > 0). δ = δ′ = δ′′ = 0, 0.1, 0.2, 0.3.

c = c′ = 0. For the numerical calculations, nmax = 40.
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Figure 5.5 – Growth rate λ as a function of the replication rate r, both in units of α.

Numerical results (colors), with δ = δ′ = δ′′ (solid lines), δ = δ′, and δ′′ = 0 (dashed

lines), δ′ = δ′′ = 0 (dotted lines). δ = 0, 0.1, 0.2, 0.3, 0.5. The black dotted lines are

either r/α, (r − c)/α or (r − c′)/α. As expected, if c = c′, the resulting growth rate are

the same than when c = c′ = 0, minus c. If c 6= c′, the results are closer for small r/α to

the results if both c and c′ had the c value. For the numerical results, nmax = 40.

5.3.2.3 Chain length distribution

We can reason similarly to the base model to obtain the approximation for the
cluster size distribution. In the long time limit, the number of clusters of size i is
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of the order of bi exp(λt), with λ the largest eigenvalue. Equation 5.4 simplifies
to:

λbi = r(2δ′ − i)bi + rbi−1(i− 1− 2δ′ + 3δ′′ − iδ′′)− (i− 1)biα+ 2αbi+1 − c′bi

Assuming that i is large,

bi ' (1− δ′′) r

r + α
bi−1

is required. Using this approximation for all i, the probability that a randomly
chosen chain is of size k is:

pk =

(
1− (1− δ′′) r

r + α

)(
(1− δ′′) r

r + α

)k−1

(5.5)

This approximation works relatively well (figures 5.4 B and 5.6 ). The ap-
proximation (5.5) depends on δ′′, but neither on δ nor δ′, but δ and δ′ could
actually matter when i is small, and indeed we observe (see figures 5.7 and 5.8)
that the approximation (5.5) works slightly less well when δ′′ is different from δ
or δ′. If c = c′, the distribution does not change, and if c 6= c′, the distribution
changes very little (see figure 5.9 ).

Free bacteria are released at a rate 2rδ′ + 2α per cluster. This rate is in-
dependent of the cluster size. The direct contributions to the increase of free
bacteria from clusters of size i compared to all the larger clusters will be (with
K = (1− δ′′)r/(r + α)):

contribution larger

contribution i
=

(2rδ′ + 2α)
∑∞

j=i+1(1−K)Kj

(2rδ′ + 2α)(1−K)Ki

=
∞∑
j=1

Kj =
K

1−K
=

(1− δ′′)r
α+ rδ′′

If r is small compared to α (replication rate � breaking rate), then this ratio
is small. Thus the larger clusters are quickly negligible. Indeed, in this regime,
clusters typically dislocate before new replications, so there are few larger clusters.
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Figure 5.6 – Distribution of the cluster sizes. All as in figure 5.4 B, except that the

approximation 5.5 is rescaled by the numerical value at n = 10. This shows that the

approximation captures well the distribution of large clusters.
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Figure 5.7 – Distribution of the cluster sizes. All as in figure 5.4 B, except the values

of δ′ and δ′′. The distribution is close to the result for δ = δ′ = δ′′ = 0, which is in line

with approximation 5.5 which is independent of δ and δ′.
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rescaled by the numerical value at

n = 10.

Figure 5.8 – Distribution of the cluster sizes, for δ = δ′ = 2δ′′. Other parameters as in

figure 5.4 B. The approximation does not work as well as when δ = δ′ = δ′′.
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Figure 5.9 – All as in figure 5.4 B, except c = 0.2α, c′ = 0.5α. There is very little

change in the cluster size distribution.
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5.3.3 Model with fixed replication time

In this variant of the base model, bacteria divide every τ , and there is no bacterial
escape nor elimination. The effective growth rate is reff such that exp(reff t) =
2t/τ , thus reff = log(2)/τ .

5.3.3.1 Equations

Let us start by considering a chain of n bacteria at t = 0, right after a replication
event. During the time interval between two replication events, with l(n, i, t) the
probability that at t, the chain has lost i bacteria in total on the extremities, and
consequently is of size n− i at t (since we assume q = 0 as in the base model, if
the chain breaks somewhere else, the subparts form a more complex cluster and
thus are “lost” for the system):

dl(n, i, t)

dt
= −α(n− 1− i)l(n, i, t) + 2αl(n, i− 1, t).

At t = 0, l(n, 0, 0) = 1 and for 0 < i < n− 1, l(n, i, 0) = 0. The solution for any
0 ≤ i ≤ n− 2 is:

l(n, i, t) =
2i

i!
exp(−αt(n− 1− i))(1− exp(−αt))i (5.6)

For any chain of size > 2, there are two outermost links, each breaking at rate α,
liberating one free bacteria; and a chain of size 2 breaks at rate α, but liberates
two free bacteria. Consequently, the average number of free bacteria generated
during τ by this chain of n bacteria is:

l(n, free, τ) =

∫ τ

0

n−2∑
i=0

l(n, i, t)2αdt = 2α
n−2∑
i=0

∫ τ

0

2i

i!
exp(−αt(n−1))(exp(αt)−1)idt.

A chain of length n right before replication becomes a chain of length 2n upon
it, and will have contributed to chains of size k by l(2n, 2n− k, τ) and to the free
bacteria by l(2n, free, τ) right before the next replication event. Writing u(i, t)
the number of chains of size i at time t (right before a replication event), we can
write the matricial relation between the u(i, t) and u(i, t + τ) (right before the
next replication event) as follows:
u(1, t+ τ)
u(2, t+ τ)
u(3, t+ τ)
u(4, t+ τ)

...

 =



l(2, free, τ) l(4, free, τ) l(6, free, τ) ... ...
l(2, 0, τ) l(4, 2, τ) l(6, 4, τ) ... ...

0 l(4, 1, τ) l(6, 3, τ) ... ...
0 l(4, 0, τ) l(6, 2, τ) ... ...
0 0 l(6, 1, τ) ... ...

0 0
...

. . .
. . .




u(1, t)
u(2, t)
u(3, t)

...

...


The elements of this matrix can otherwise be written as:

Mij =


l(2j, free) for i = 1
l(2j, 2j − i) for i > 1 and 2j ≤ i

0 otherwise
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Chapter 5. Enchained growth to regulate microbiota composition

This matrix is then cut to size nmax× nmax, and we numerically solve the eigen-
system.

5.3.3.2 Free bacteria growth rate as a function of the bacterial repli-
cation rate

A. Growth rate, as a function of
reff = log(2)/τ (replication every τ ,

solid brown line) or as a function of r
(base model with fixed replication rate
r, green dashed line), all in units of α.

The dotted black line is the expectation
in the absence ofclusters.

B. Cluster size distribution, numerically
solved (solid lines), compared with the
analytical approximation (5.7) (dashed
lines), and the numerical result in the
base model (dotted lines). r/α = 0.2,

0.5, 1, 2, 5.

Figure 5.10 – Fixed time between replications. For the numerical calculations, nmax =

32

The shape of the relation between the free bacteria growth rate and the (ef-
fective) replication rate is very similar in the fixed replication time versus fixed
replication rate model (see figure 5.10 A, with a maximum of the growth rate
for a finite value of the (effective) replication rate, at close values (reff = 1.15α
versus r = 1.09α in the fixed replication rate model). When the replication is at
fixed time intervals instead of a fixed replication rate, the maximum growth rate
is higher, and it dips faster at increasing effective replication rate. Indeed, in the
case of fixed replication rate, the distribution of durations between two replica-
tions is exponential, thus more spread. Close to the maximum, the presence of
short replication intervals makes that there can be more cluster formation, and
conversely, at higher replication rates, the presence of longer replication intervals
results in more production of free bacteria.

5.3.3.3 Chain length distribution

We show here the assumptions and calculations to obtain an analytical approxi-
mation for the chain size distribution. We define u(N, t) the number of chains of
size N at time t. Assuming N even,

u(N, t+ τ) =

∞∑
i=0

u

(
N

2
+ i, t

)
l(N + 2i, 2i, τ).
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5.3. Clusters dynamics and distributions of sizes

In the long time, u(N, t) = f(N) exp(λt), with λ the long term growth rate, that
is such that exp(λτ) = N , with N the largest eigenvalue of the matrix. Then
replacing l(N + 2i, 2i, τ) by its expression 5.6 in the previous equation leads to:

N f(N) =

∞∑
i=0

f(
N

2
+ i) exp (−ατ (N − 1 + 2i)) (exp(ατ)− 1)2i 22i

(2i)!
.

We compare the 1st term of the sum to the rest of the sum. The first term is
f(N2 ) exp (−ατ (N − 1)), the rest of the sum is:

∞∑
i=1

f(
N

2
+ i) exp (−ατ (N − 1 + 2i)) (exp(ατ)− 1)2i 22i

(2i)!
.

We divide both by exp (−ατ (N − 1)). Then this is equivalent of comparing
f(N/2) with:

S =

∞∑
i=1

f(
N

2
+ i) exp (−2iατ) (exp(ατ)− 1)2i 22i

(2i)!
.

When ατ is large, links typically break before the next replication, so there is little
cluster formation, so it is expected that the chain length distribution decreases
fast with N , so that for i > 0, f(N2 + i)� f(N/2). When ατ is small, replication
is slow compared to the typical time for one link to break. However, for a chain of
length N/2, τ has to be compared to (N/2− 1)/α, the typical first link breaking
time, thus for N large enough, we expect the number of large cluster to decrease,
thus f(N2 + i) . f(N/2) for i > 0. We define B such as f(N2 + i) ≤ B, ∀i > 0.
For ατ large, B � f(N/2), and for ατ small, if N is large enough, B . f(N/2).
Then:

S ≤
∞∑
i=1

B(1− exp(−ατ))2i 22i

(2i)!
= B (cosh (2(1− exp(−ατ)))− 1)

For ατ large, (cosh (2(1− exp(−ατ)))− 1) ' cosh(2) − 1 ' 2.7. For ατ small,
(cosh (2(1− exp(−ατ)))− 1) ' 2(ατ)2 � 1. Thus in the case of ατ large, S is
small relative to f(N/2) because S is smaller than a few units times B, with B
much smaller than f(N/2). In the case of ατ small, S is small relative to f(N/2)
because S is of the order of (ατ)2B, with B of the order of f(N/2). Then this
justifies the assumption that only the first term of the sum matters:

f(N) ' 1

N
f

(
N

2

)
exp (−ατ (N − 1))

We assume N = 2k, with k an integer. This is obviously true only for a very
restricted set of N , but as we are interested on how the distribution depends on N
for large N , looking at these specific points is good enough. Then, by recursion,

f(N) ' 1

N k
f(1) exp

(
−ατ

(
N(1 + 1/2 + 1/22 + ...+ 1/2k)− k

))
.
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If N is large enough, 1 + 1/2 + 1/22 + ... + 1/2k ' 2. Remembering that k was
defined as N = 2k, the result is:

f(N) ' f(1)N
ατ−log(N )

log(2) exp (−2ατN) .

When ατ � 1, links typically break before the next replication, thus there is
little impact of the clustering on the growth, and thus the growth will be close
to its value in the absence of clustering, i.e. doubling every τ , thus in this limit
N = 2:

f(N) ' f(1)N
ατ

log(2)
−1

exp (−2ατN) . (5.7)

This rough approximation allows to explain the core of the observed distribution
(figure 5.10). There are bumps, due to the replication every τ (which in the
absence of link breaking would results in clusters of size 2k only), which makes
that clusters of power-of-two length are over-represented. Compared to the case
with fixed replication rate, the distribution is much narrower.

5.3.4 Model with linear chains independent after breaking (q > 0)

5.3.4.1 Limit case: subchains always independent after breaking

In this model, when a cluster breaks, the two resulting clusters remain indepen-
dent and can thus continue to participate in the dynamics of the system:

dni
dt

(t) = (i− 1)r ni−1(t) + (−α(i− 1)− ir) ni(t) + 2α
∞∑

j=i+1

nj(t)

We recognize here the equation studied in [21], where they described chains of
growing unicellular algae. As it has been shown, the steady state solution of the
system is:

ni(t) = C exp(rt)

(
r

α+ r

)i
.

In the steady state, the growth rate is equal to the replication rate. The average
cluster size is 1 + r

α , which shows that, as expected, if the link breaking rate is
high compared to the replication rate (r/α � 1), the average length is close to
one as no cluster has the time to form: all the bacteria remain free.

5.3.4.2 Intermediate case: chains independent or trapped after break-
ing

More realistically, after breaking, chains will have some probability to either
encounter each other and remain trapped in more complex clusters, or to escape
and become independent. We will assume in the following that if a chain of size
N breaks at a link at the extremity, releasing a cluster of size N − 1 and a free
bacteria, then the free bacteria, smaller and likely more motile, will escape in all
cases; but that if the link that breaks is elsewhere, the probability for the new
clusters of sizes N − k and k (k > 1) to escape and continue as two independent
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5.3. Clusters dynamics and distributions of sizes

A. λ/α as a function of r/α. The dotted
black line is the case q = 1, for which
λ = r, like in the absence of clusters.

The colored dotted lines are the
analytical approximation (5.10).

B. Distribution of cluster sizes. The
dotted black lines are the approximate
distribution (5.9) for each r/α, which is

the exact distribution for q = 1. The
colours represent the same q values than
for the left panel. All curves are almost

overlaid for small r.

Figure 5.11 – Model with linear chains independent after breaking. Numerical results:

nmax = 100

linear clusters will be q, and the probability that they bind and form a more
complex cluster will be 1 − q, with q independent of k. We write the equations
for the number ni(t) of cluster of i bacteria:

dn1

dt
= −rn1 + 2α

∞∑
j=2

nj

dni
dt

= −rini + r(i− 1)ni−1 − α(i− 1)ni + 2αni+1 + 2αq

∞∑
j=2

ni+j .

In the long time, ni → fi exp(λt) with λ the largest eigenvalue.

λfi = −rifi + r(i− 1)fi−1 − α(i− 1)fi + 2αfi+1 +

∞∑
j=i+2

2αqfj (5.8)

This is valid for any i. We assume that fi decreases fast enough with i so that the
sum from i+ 2 to ∞ of the fi is an order of magnitude less than ifi. Then, the
largest elements of equation (5.8) when i is large enough are the terms multiplied
by i, and consequently:

0 ' −rfi + rfi−1 − αfi

Leading to:

fi '
r

α+ r
fi−1

and then by recursion,

fi ' C
(

r

α+ r

)i
.
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If this is valid for any i, the probability that a cluster taken at random is of size
i is:

pi =
α

α+ r

(
r

α+ r

)i−1

. (5.9)

We compare this approximation with the numerical results and they are in good
agreement (figure 5.11 B), except when both q is small and r/α is large, and even
in this case it gives a reasonable approximation.

Replacing fi by C
(

r
α+r

)i
, equation (5.8) simplifies to:

λ ' −r
(

1 +
α

r

)
+ α+ 2α

(
r

α+ r

)
+

∞∑
j=2

2αq

(
r

α+ r

)j
which after simplifications leads to:

λ ' rα+ (2q − 1)r

α+ r
. (5.10)

This approximation does not work for q < 0.5, but it works well for q close
to 1, and gives the right dependence for r/α large for q > 0.5 (figure 5.11 A).
Intuitively, if q > 0.5, when a cluster breaks it leads to more than one independent
linear cluster, thus the population of linear clusters and thus free bacteria may
continue to increase with r/α, whereas if q < 0.5, clusters that break lead to less
than one independent cluster on average, and thus, as the breaking rate increases
with the size, the growth of the population is stunted when r/α increases.

5.3.5 Model with force-dependent breaking rates

5.3.5.1 Equations

What drives link breakage? The links could break if there was some process
degrading the sIgA, but the sIgA are thought to be very stable[66]. Another
possible explanation for link breaking is that the bound antigen can be extracted
from the bacterial membrane, at a rate which may vary exponentially with the
force[67][63]. The forces applied on the links are likely mostly due to the hydro-
dynamic forces exerted by the digesta flow on the bacterial chain. Taking the
linear chain as a string of beads, as done for polymer chains, and in a flow with a
constant shear rate, the force is predicted to be larger as the chain grows longer,
and the largest at the center of the chain[65]. A more detailed discussion and the
calculations can be found in section E in the appendix. Taking α as the breaking
rate in the absence of shear, and β a constant expressing the strength of the
coupling between hydrodynamic forces and link breaking, the resulting equations
for this minimal model taking into account the forces are:

dn1

dt
= −rn1 + 2

∞∑
i=2

αni exp

(
β
i− 1

2

)
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5.3. Clusters dynamics and distributions of sizes

and for i even,

dni
dt

= −rini − αnieβi
2/8

1 + 2

i/2∑
k=2

e−(k−1)2β/2

+ r(i− 1)ni−1 + 2αni+1e
βi/2

(5.11)
and for i > 1 odd,

dni
dt

= −rini−2αnie
βi2/8

(i−1)/2∑
k=1

e−(k−1/2)2β/2 +r(i−1)ni−1 +2αni+1e
βi/2 (5.12)

5.3.5.2 Free bacteria growth rate as a function of the bacterial repli-
cation rate

A. λ/α as a function of r/α. The dotted
black line is the case with no clusters.

B. Distribution of the cluster sizes. The
solid lines are the numerical results, the

colored dotted lines the analytical
approximation (5.13), and the black

dotted line the approximation for the
base model (5.3).

Figure 5.12 – Model with force-dependent breaking rates. The solid colored lines rep-

resent the numerical results. Each color represents a different β : β = 0.01 (nmax = 20),

β = 0.1 (nmax = 15), β = 0.2 (nmax = 15), β = 0.5 (nmax = 15), β = 1 (nmax = 15),

β = 2 (nmax = 10), β = 3 (nmax = 10). The black dashed lines are the numerical results

for the base model, equivalent to β = 0. The curves for β = 0.01 (dark green) are almost

overlaid with the curves for β = 0.

The growth rate as a function of the replication rate has a qualitatively similar
shape as for the base model (figure 5.12 A), with a finite replication rate max-
imizing the growth rate. The limit β → 0 corresponds well to the base model,
as expected. When β increases, the replication rate maximizing the growth rate
increases, as the effective breaking rate is higher. Numerically, we find (see figure
5.13) that the replication rate maximizing the growth rate scales as α exp(0.8β).
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Figure 5.13 – Log of the value of r/α maximizing the growth rate in the force-dependent

breaking rate model as a function of β. The points are numerical maximums, the line

is 1.09 × exp(0.8β). 1.09 is the value of (r/α) maximizing the growth rate for the base

model (i.e. for β → 0).

5.3.5.3 Chain length distribution

Similarly to the other models, we start from equations 5.11 and 5.12, and assume
that for t long enough, ni ' pi exp(λt) (with λ the largest eigenvalue). Then,

λpi = −ripi − αpi exp(βi2/8)X + r(i− 1)pi−1 + 2αpi+1 exp(βi/2)

with X = 1 + 2
∑i/2−1

j=1 exp(−βj2/2) (i even) or X = 2
∑(i−1)/2

j=1 exp(−β(j −
1/2)2/2) (i odd). For i large enough, λ � ri. X will tend to a finite number
(converging sum) (to Y = θ3(0, exp(−β/2))) for i even, Z = θ2(0, exp(−β/2)))
for i odd, and θi the Jacobi Theta functions), thus, because β is positive, for
i large enough, ri � α exp(βi2/8)X. Then we have to determine which of
r(i − 1)pi−1 and 2αpi+1 exp(βi/2) dominates. If the second one dominates,
αpi exp(βi2/8)X ' 2αpi+1 exp(βi/2), thus pi+1/pi ' α exp(βi(i/8 − 1/2))X,
which for i large enough means that the larger the cluster, the more of it, which
would diverge and does not make sense in this system. Thus αpi exp(βi2/8)X '
r(i− 1)pi−1,

ni
ni−1

→ pi
pi−1

' r

α

i− 1

X
exp

(
−β i

2

8

)
.

This approximation is valid for large i. Assuming that it is valid for any i ≥ 2,
and using

∑n
i=2 i

2 = n+3n2+2n3

6 − 1:

pi,even '
( r
α

)i−1 (i− 1)!

Y i/2Zi/2−1
exp

(
−β

8

(
−1 +

i+ 3i2 + 2i3

6

))

pi,odd '
( r
α

)i−1 (i− 1)!

Y (i−1)/2Z(i−1)/2
exp

(
−β

8

(
−1 +

i+ 3i2 + 2i3

6

))
These two equations can be combined, and ultimately lead to:

pi '
( r
α

)i−1 (i− 1)!

Y floor(i/2)Zfloor((i−1)/2)
exp

(
−β

8

(
−1 +

i+ 3i2 + 2i3

6

))
(5.13)
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This approximation works well, except for small β (figures 5.12 B and 5.14).
Compared to the base model, the number of clusters decreases much faster with
their size. Indeed, the breaking rates for each link increase importantly with the
cluster size, thus larger clusters are much less stable than in the base model.

0 2 4 6 8 10 12 14

10
-7

10
-5

0.001

0.100

r/α = 1/3

2 4 6 8 10 12 14

10
-7

10
-5

0.001

0.100

r/α = 3

Figure 5.14 – Distribution of the cluster sizes, as in figure 5.12, except for the value of

r/α

5.4 Comparison with experimental data

We analyzed experimental data from [19]: mice, which were previously vacci-
nated with a peracetic-acid inactivated S.Typhimurium strain (PA-S.Tm), were
pretreated with 0.8g/kg ampicillin sodium salt in sterile PBS. 24h later, mice
received 105 CFU of a 1:1 mix of mCherry-(pFPV25.1) and GFP-(pM965) ex-
pressing attenuated S. Tm M2702. For imaging, cecum content was diluted gently
1:10 w/v in sterile PBS containing 6µg/mL chloramphenicol to prevent growth
during imaging. 200µL of the suspension were transferred to an 8-well Nunc
Lab-Tek Chambered Coverglass (Thermo Scientific) and imaged at 100× using
the Zeiss Axiovert 200m microscope. To determine the distribution of bacteria
in aggregates, n = 25 high power fields per mouse were randomly selected and
imaged for mCherry and GFP fluorescence. For some mice, sequential sampling
was done: these mice were terminally anaesthetised and artificially respirated.
Cecum content was sampled by tying off parts of the cecum each hour for 3h.
More details about the experimental procedures can be found in [19].

We analyzed all the images for the early data points (4 and 5 hours) of
experiments starting from a low inoculum (105), to minimize the clustering from
random encounters. Still, most clusters are large, and of complex shape. But
only smaller linear clusters were counted. Figures are for the red and green
fluorescence, so complex clusters with two colors were not counted. The data
were analyzed manually. Below, the table of the linear clusters counted on the
images from several experiments, either with mice sampled once (o), or with mice
sequentially sampled (s).
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cluster size 4h PI o
(7 mice)

4h PI s
(3 mice)

5h PI o
(4 mice)

5h PI s
(2 mice)

total

2 21 30 17 38 106
3 22 4 9 5 40
4 51 9 25 9 94
5 7 0 1 3 11
6 5 3 3 4 15
7 10 1 5 3 19
8 12 0 4 3 19
9 1 0 0 0 1
10 1 0 0 1 2
11 1 0 0 0 1
12 0 0 1 1 2
13 0 0 1 1 2
14 0 0 1 0 1Feuille1
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Figure 5.15 – Histogram of the linear cluster sizes 4 to 5 hours post infection

The data may be biased, as longer chains may not be fully in the focal plane.
Because of gravity, they would fall close to the cover slip. The mass of one
bacterium is about one pg, and its density is about 10% more than the water
density[68, 69]. The thermal energy at ambient temperature is of the order of
4.10−21J , and gravity g is of the order of 10m/s2, thus thermal fluctuations will
lift a bacterium by typically 4 µm higher than the bottom. Thus parts of the
chains may be out of focus, as this is confocal microscopy, which typical optical
section is less than 1µm.

As there are not enough data points, we cannot quantitatively fit the data,
in particular for larger chain lengths. We can nevertheless give some qualitative
points. The larger value at 4 is in line with a fixed time between divisions.
Clusters of uneven size could be evidences that linear chains do break. The
distribution is relatively narrow, which could be compatible with force-dependent
breaking rates.
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5.5 Summary of the results and discussion

Growth rate Cluster size distribution

Base model

A B

Model with bacterial escape (δ > 0)

C D

Fixed time between replications

E F

Model with linear chains independent after breaking

G H

Model with force-dependent breaking rates

I J

Figure 5.16
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5.5. Summary of the results and discussion

Figure 5.16: A,C,E,G,I: Growth rate λ of the free bacteria as a function of the
bacteria replication rate r, both in units of α. Numerical results (solid colored
lines), and limit with no clusters (λ = r) (black dotted line). B,D,F,H,J: Cluster
size distribution. Solid lines: numerical results. A,B: Base model, nmax = 40.
B. dotted lines: approximation (5.3) (almost overlaid with the numerical results
for r/α = 0.1). C,D: Model with bacterial escape. δ = δ′ = δ′′ = 0, 0.1, 0.2,
0.3. c = c′ = 0, nmax = 40. D. dotted lines: approximation (5.5). E,F: Fixed
time between replications. reff = log(2)/τ . nmax = 32. F. approximation (5.7)
(dashed lines), numerical result in the base model (dotted lines). r/α = 0.2, 0.5,
1, 2, 5. G,H: Model with linear chains independent after breaking. nmax = 100.
G. The dotted black line is the case q = 1, for which λ = r, like in the absence
of clusters. The colored dotted lines are the analytical approximation (5.10). H.
The dotted black lines are the approximate distribution (5.9) for each r/α, which
is the exact distribution for q = 1. The colours represent the same q values than
for the left panel. All curves are almost overlaid for small r. I,J: Model with
force-dependent breaking rates. Each color represents a different β: β = 0.01
(nmax = 20), β = 0.1 (nmax = 15), β = 0.2 (nmax = 15), β = 0.5 (nmax = 15),
β = 1 (nmax = 15), β = 2 (nmax = 10), β = 3 (nmax = 10). The black dashed
lines are the numerical results for the base model, equivalent to β = 0. The
curves for β = 0.01 (dark green) are almost overlaid with the curves for β = 0.
J. Distribution of the cluster sizes for r/α = 1. The colored dotted lines the
analytical approximation (5.13), and the black dotted line the approximation for
the base model (5.3).
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We started from the recent finding [19] exposed in chapter 4 that the protec-
tion effect of sIgA, the main effector of the adaptive immune system in the gut,
can be explained by enchained growth. Because sIgA are multivalent, they can
stick identical bacteria together if they encounter each other. Early in infection,
bacteria of the same type are at low density, thus typical encounter times are
very long, but when a bacterium replicates, the daughter bacteria are in contact
and thus can remain enchained to each other by IgA. Bacteria in clusters are
less motile than individual bacteria, and in particular, are not observed close to
the epithelial cells. In the case of wild type S. Typhimurium, only free bacteria
which can interact with the epithelial cells contribute to the next steps of the
infection process. Despite the presence of sIgA, some free bacteria are observed.
It could be that they escape at the moment of replication. But, along with the
observation that clusters do not grow indefinitely, it could also be a sign that the
links between bacteria break. It is also physically expected that the links have
some finite breaking rate. If the typical time between two bacterial divisions is
much larger than the typical time for the link to break, then there would be no
cluster. Conversely, in the inverse case, bacteria will be very likely to be trapped
in large clusters. Then, even if sIgA are produced against all bacterial types, the
bacteria dividing faster will be disproportionately affected.

We investigated whether this qualitative idea holds with more realistic mod-
els. We started from a base model in which bacteria replicate at a fixed rate and
remain enchained upon replication, until the link between them breaks at a given
fixed breaking rate, identical for all links. Considering that because of the way
bacteria such as Salmonella or E.coli divide, the early clusters are linear chains
of bacteria, it is also considered in the base model that when the chain breaks
at an outermost link, the free bacteria will escape, while when the chain breaks
elsewhere, the two resulting sub-chains encounter each other quickly and form
clusters of more complex shapes from which individual bacteria do not escape.
We studied this base model with a combination of analytical and numerical ap-
proaches. We also tested the robustness of our findings by studying separately
several variations of the base model: a probability of escaping upon replication,
loss rates, fixed replication time, non-zero probability for the subchains to escape,
and force-dependent breaking-rates. For each model, we studied how the growth
rate of the free bacteria varies with the replication rate (which would be equal if
there were no clusters), and the distribution of cluster sizes. As a reminder, clus-
ters seem unable to come close to the epithelial cells[19], thus only free bacteria
interact directly with epithelial cells and may lead to systemic infections.

We find that, except in the very specific case in which subchains always escape
upon link breaking, the growth rate of the free bacteria population is lower than
the replication rate. And more spectacularly, in most of the models studied (but
not if more than half of the subchains escape upon link breaking, or if there is
a significant probability for bacteria to escape enchainement upon replication),
the growth rate of the number of free bacteria is non-monotonous with the repli-
cation rate : there is a finite replication rate which maximizes the growth rate
of non-clustered bacteria. At very high replication rates, bacteria get trapped
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in more complex clusters and cannot contribute anymore to the free bacteria
dynamics and thus to the next steps of the infection process. The replication
rate maximizing the growth rate is of the order of the breaking rate, though its
specific value depends on the details of the model.

The cluster size distribution is dependent on the model. In most cases, the
probability for a linear cluster to be of size k decreases as γk, with γ some constant
smaller than 1. When replication occurs at fixed time, and when breaking rates
are force-dependent, the probability of larger clusters decreases faster. There are
models with different cluster size distributions but qualitatively similar depen-
dence of the growth rate on the replication rate, and the opposite is also true.
This shows that large clusters have little importance for free bacteria production,
what matters most is the small clusters dynamics. It is reassuring, as we did
not consider buckling, which would make long linear chains fold on themselves
and produce more complex clusters, and may bias the linear cluster distribution
for very large sizes. It should also be noted that with fixed division time, not
only is the distribution bumpy, as clusters comprising a power of two number
of bacteria are more frequent than others, but the distribution is also narrower.
Bacteria divide at approximately fixed division times, while replication is most
often taken as occurring at fixed rates, because this makes calculations easier.
Sometimes this modeling choice can lead to significant differences.

We analyzed experimental data on clusters of S. Typhimurium in the cecum
of vaccinated mice. We have not enough data to quantitatively fit the cluster size
distribution, but the distribution is qualitatively plausible with the fixed division
time model (which is indeed more realistic for bacteria), and with force-dependent
breaking rates. With more data, the shape of the distribution could be fitted to
compare which model is the most plausible. To test the dependence of the growth
rate with the replication rate, an ideal experiment would be to compare similar
bacterial strains, but with differing replication rates, and compete them in the
same individual. It is however very challenging to obtain bacteria that differ only
by their replication rate, particularly in vivo.

sIgA-enchained bacterial clusters could be studied in vitro to measure how
they break. However, using in vitro results to draw conclusions on in vivo systems
is limited. First, there could be chemical or enzymatic components of the lumen
that could facilitate or hinder link breaking, and the non-Newtonian viscosity of
the digesta could play a role in the mechanic forces felt by the links, thus a simple
buffer may not mimic well the real conditions. More crucially, the exact forces
felt by particles of the size of bacterial clusters are not well characterized. Most
studies of the flow characteristics in the digestive system rely either on external
observations of the peristaltic muscles[10] or indirect measures of times for a
marker to exit some section of the digestive track[70]. More quantitative study of
the digestive flow at small scales is just beginning[9, 71, 72, 41, 73, 42, 58] and in
the future it may give more clues to assess to which forces bacteria are subjected
to in the digestive track.

The mechanism we propose is nevertheless plausible. The observation in vac-
cinated mice of the existence of single bacteria and small clusters, and particularly
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small linear clusters with an odd number of bacteria, are pieces of evidence that
clusters do break in these in vivo conditions. An alternative explanation could
be that some bacteria escape enchainement upon replication. However, at higher
bacterial densities, we have evidence of independent bacteria binding when they
encounter, thus sIgA coated bacteria are adhesive. When two daughter bacteria
divide, they are in contact, thus if sIgA is adhesive, escape is unlikely (see section
5.2.3). Importantly, even though our results show that specific conditions are
needed for the growth rate to decrease with high replication rates, we almost
always find that the higher the replication rate, the higher the proportion of bac-
teria trapped in clusters. Thus, even when it does not reverse the relationship
between the growth rate of the free bacteria and the replication rate, it is at least
dampening this relationship, and can be a tool both to control pathogenic bacte-
ria, but also to maintain homeostasis of the gut microbiota. It is also interesting
that there are other host effectors besides sIgA that bind bacteria together (neu-
trophil extracellular traps for instance[74]), and there could also be an interplay
between replication rates and the breaking of the links mediated by these other
effectors, as the mechanism we propose here is generic.

As for any mechanism to fight against bacteria, how easily resistance can be
evolved is crucial. On the one hand, the replication rate could evolve. But a
bacterial strain replicating slower would be less competitive with other bacteria
in the absence of sIgA, and a slower growth leaves more time for further host
response. On the other hand the typical link breaking time could evolve. On
the host side, sIgA is thought to be mechanically very stable, and experiments
about the bonding of cells by sIgA seem to point to the link failing because of
the extraction of the antigen rather than because of sIgA breaking, and rather
than the sIgA/antigen bond detaching[67][62]. In the case of IgA defficiency,
there is more secretion of IgM, and microbiota is disturbed[75]: we may specu-
late that IgM being less powerful for microbiota homeostasis is related to these
immunoglobulins being more protease-sensitive than IgA and thus cleaved on
shorter time scales[76]. On the other side, bacteria could evolve surface antigens.
It could be interesting to think that bacteria could produce decoy antigens with
no functional value, but against which the immune system will mount an immune
response, and that are more easily released from the bacteria, thus disabling the
main sIgA mode of action (being easily evolvable would also be a benefit). Such
decoys would however be a metabolic cost for the bacteria, and when breaking,
may unmask other antigens corresponding to crucial functions of the bacteria. It
could be argued that the capsule around bacteria such as Salmonella spp., and
also common in pathogenic E.coli, may behave as a decoy, though it has also other
functions. Along the same lines, we may speculate whether mechanical aspects
could be a reason why sIgA against some antigens are not efficient for protection.
For instance, while anti-flagella sIgA aggregate very well Salmonella Enteriditis
together, they are not efficient for protection[77]. A main reason could be that
as Salmonella can switch flagella production on and off, then some Salmonella
will always escape these sIgA, and seed the infection[78]. An additional possibil-
ity could be that flagella may more easily break, especially as distance between
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bacteria bound by flagella (long) is likely larger than for bacteria bound by O-
antigens (on chains shorter than flagellas), and thus the shear forces would be
larger. Further, the mechanical properties of the outer sugar layer of the gram
negative bacteria could vary, and thus could be used to tune interactions. How-
ever, it would add another constraint on bacteria, and the general result that the
growth rate compared to the replication rate is at least dampened by the cluster
formation would remain.

In the crowded environment of the gut, it is hard for the host to identify the
‘good” and the ”bad” bacteria. That vaccination with dead bacteria is sufficient
to produce sIgA and protection, shows that the host does not discriminate well
against which bacteria they produce sIgA, as these dead bacteria do not harm.
Linking the effect (here the clustering) of the immune effectors with a property
directly relevant to the potential bacterial pathogenicity (here the replication
rate) saves the immune system from having to make complex decisions about
which bacteria to produce effectors against.
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Chapter 6

Consequences of enchained
growth on the evolution of
antibiotic resistance
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6.1 Introduction

Since the discovery of penicillin, every release of a new antibiotic has been followed
a few years later by the emergence of bacteria resistant to it [4]. Antibiotics are
an essential tool for medicine, thus the spread of resistance is problematic. If
bacteria are sensitive, antibiotic treatment can kill them. But if some of them
are resistant, then treatment will increase the proportion of antibiotic resistant
bacteria in the host. Furthermore, the body is home to a diverse microbiota, most
of it in the gut [1], important both in numbers and in function [57, 2]. Taking
an antibiotic treatment against one pathogenic bacteria can favor the evolution
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of drug resistance in other bacteria, in particular in the gut, and it can then be
transmitted via the fecal oral route. Antibiotic use is widespread: for instance,
about a quarter of French people are treated with antibiotics every given year
[35, 36]. Besides, antibiotics are often routinely given to farm animals, and the
drug resistance in bacteria they harbor may spread to humans [79, 80], though
the magnitude of this effect is disputed [81]. The interaction between antibiotic
use and spread of resistance in a population has been the subject of many models.
Here, we develop a multiscale model, with more realistic within-host dynamics,
integrating an important aspect of immunity.

Immunity could interfere with the spread of resistance. If the immune system
in the gut were massively killing bacteria, it could destabilize the microbiota.
Thus, it has to resort to other strategies. We have seen in chapter 4 that IgA
neither kills its target bacteria nor prevents them from reproducing, but enchain
daughter bacteria upon division [19], in a process we called enchained growth.
Clusters of bacteria cannot come close to epithelial cells and thus this prevents
systemic infection and protects the host. Besides, interaction of pathogenic bac-
teria with the epithelial cells can trigger inflammation, which can turn on the
bacteria SOS response, enabling more horizontal gene transfer between bacteria.
Enchained growth is thus one possible mechanism for the immunity (acquired ei-
ther through previous encounters or vaccinations) to dampen horizontal transfer
in the gut [82]. Furthermore, the simple fact that such IgA-mediated clusters
of bacteria are mostly clonal, makes that even if there is horizontal transfer, it
most likely occurs between bacteria close in space, and thus probably between
very closely related bacteria, which will be inefficient for getting new genes. These
effects will work unequivocally towards reducing the emergence of antibiotic resis-
tance within the host. In this chapter, we look at another subtler effect: because
bacteria will be in clonal clusters, there will be less effective genetic diversity
within the host, and thus transmission will be less diverse too. We suspect that
this will also decrease the probability of emergence of antibiotic resistance at the
scale of the host population. The aim of this chapter is to study this effect.

New mutations occur upon replication within the host. What is crucial is
whether resistant bacteria can spread among the host population. We thus need
a multiscale model. We will use a minimal model, with deterministic within-
host dynamics (as the number of bacteria within a host is very large), and with a
simple stochastic branching process at the between-host scale. This is appropriate
for the beginning of an epidemic, when very few hosts have been infected. The
kind of scenario we have in mind is when there is an individual infected with a
bacterial strain, similar enough to other circulating strains so that a portion of the
population has immunity against it, but on which a mutation conferring resistance
to an antibiotic can occur. Thus, what we will compute is the probability that,
starting from an infected individual, the bacteria can invade the population or
not.

This chapter presents a work in progress developed in collaboration with Löıc
Marrec and Anne-Florence Bitbol from Laboratoire Jean Perrin, Paris. In a first
section, we introduce all the components of the model : within-host dynamics,
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transmission step, and between host transmission rules. Then we present the
main methods, both analytical and numerical, and write the complete equations
for the system. We then study the simplest model, in which naive and immune
hosts only differ by how grouped are the bacteria they transmit, and no mutation
is allowed. Then mutations and fitness cost of resistance are introduced, and we
compare the probability of the emergence of infection in the whole immune and
whole naive cases. We then introduce very briefly the case where the immune
hosts may have a different number of contacts, and a different probability of
treatment, e.g. if immune hosts are less sick and thus silent carriers of the
bacteria. Finally, the results are discussed.

6.2 Model

6.2.1 Within-host dynamics

There is often a typical number of bacteria transmitted from one host to the next
for successful infection, called the bottleneck size Nb. For instance, 105 is the
typical number of Salmonella for food poisoning in humans [59]. Here we will
assume that an infection within a host always starts with the same number Nb of
infecting bacteria. Within the host, the number of bacteria is typically very large.
For instance with a Salmonella infection, its density can reach 1010 bacteria per
gram of gut content [19]. Then, stochastic fluctuations are likely small, which
justifies using a deterministic model.

6.2.1.1 Types of bacteria

We assume that there are two types of bacteria, a sensitive type, growing at
rate r within the host, and a resistant type, growing at rate r(1 − s) without
antibiotics. It is often the case that resistance comes at a cost, with typical
values for s from 0.005 to 0.3 [83, 84, 85, 86] (though it can sometimes be larger,
see for instance [87]). Here we assume that the fitness difference only affects the
within-host growth rate, but not the transmissibility [88, 89]. We assume that
for each replication, the probability that each daughter bacteria is mutant is µ1

from sensitive to resistant, and µ2 from resistant to sensitive. Typical mutation
rates for bacteria are in the range of 10−10− 4.10−9 per base pair per replication
[90]. There are often several mutations conferring resistance, so the sum of these
different pathways will result in µ1 of the order of 10−6 − 10−10 per replication
[85], and µ2 possibly smaller as the exact same mutation has to be reverted [83].
Thus we will assume that 1� s� µ1, µ2.

6.2.1.2 Treatment

When the host is treated with an antibiotic, we will assume that if it was initially
infected with sensitive bacteria only, the treatment is very efficient and kills all
bacteria before resistant bacteria appear via mutations, and before transmission
to other hosts. But if there was at least one resistant bacteria at the beginning of
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the infection, then the resistant strain will take over, and eventually the infection
within the host will be made of resistant bacteria only.

When the host is not treated, there can be both resistant and sensitive bac-
teria. We write the differential equations for the mean numbers of resistant and
sensitive bacteria in function of time and look at their relative proportions in the
following section.

6.2.1.3 Within-host growth equations

Discrete vs. continuous time representation

Let us first consider the case without mutations, with S the number of sensi-
tive bacteria, R the number of resistant bacteria, s the fitness cost of resistance.
If there are G generations for the sensitive strain, there are G(1− s) generations
for the resistant strain. With r the growth rate of the sensitive bacteria, the
representation in ordinary differential equations is:

dS

dt
= rS

dR

dt
= r(1− s)R

The solutions of these equations are S(t) = S0 exp(rt), R(t) = R0 exp(r(1− s)t).
If we start from one bacteria of each type, after a time τ corresponding to G
generations of the sensitive bacteria, there are 2G = exp(rτ) sensitive bacteria,
and 2G(1−s) = exp(r(1− s)τ) resistant bacteria. Thus:

G log(2) = rτ. (6.1)

Then, let us look at the case with mutations. When a sensitive bacteria
divides, each of the daughter cells has a probability µ1 to have mutated (and thus
to have become resistant in this simplified system). When a resistant bacteria
divides, each of the daughter cells has a probability µ2 to have mutated (and thus
to have become sensitive in this simplified system). Let us denote µ̃1 and µ̃2 the
mutation rates for the system of differential equations, such that:

dS

dt
= r(1− µ̃1)S + µ̃2r(1− s)R

dR

dt
= r(1− s)(1− µ̃2)R+ µ̃1rS (6.2)

We then look for the relation between µi and µ̃i. The accumulation of mutants
in the early dynamics has to be the same. Starting from sensitive bacteria only,
neglecting back mutations, and taking the limit of s very small; when considering
a bacteria after G generations, there was G opportunities for mutation, i.e. the
proportion of resistant bacteria will be Gµ1. If there were S0 sensitive bacteria
(and no resistant bacteria) at t = 0, and still neglecting back-mutations, S(t) =
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S0 exp(r(1− µ̃1)t), and, replacing S(t) by this expression in (6.2), and solving for
R(t) with R(0) = 0:

R(t) = S0µ̃1 exp(r(1− µ̃1)t)
exp(r(µ̃1 + µ̃2(−1 + s)− s)t)− 1

µ̃1 + µ̃2(−1 + s)− s
.

In the limit of small t,

R(t) ' S0µ̃1rt exp(r(1− µ̃1)t)

and the proportion of resistant bacteria then reads:

p(t) =
R(t)

R(t) + S(t)
' R(t)

S(t)
= µ̃1rt

Thus Gµ1 = µ̃1rτ = µ̃1G log(2) (the latter because of (6.1)), and consequently
we have to take µ̃1 = µ1/ log(2) for consistency.

Resolution of the continuous time system

When the host is not treated, the dynamics within the host can be complex.
The growth could be limited by some carrying capacity and taken as logistic,
there could be a loss term, etc. In the limit of small s, as we want to calculate
the proportions of sensitive and resistant bacteria, the following equations will
give the same results than equations with a carrying capacity:

dS

dtg
= (1− µ1/ log(2))S + (1− s)Rµ2/ log(2), (6.3)

dR

dtg
= (1− s)(1− µ2/ log(2))R+ µ1S/ log(2), (6.4)

with tg the time rescaled by the generations. The aim is to obtain the propor-
tion of sensitive and resistant bacteria at the end of the infection within a host,
depending on the initial composition of the infection. The total number of repli-
cations within a host G can vary. Typical minimal doubling time for bacteria
is half an hour [53], but it can also be as large as a few hours [91]. Bacterial
carriage can last several days or even more, but when close to carrying capacity,
the growth rate decreases. As a portion of the bacteria will be lost in feces, there
will be ongoing replication, though at a lower rate. Thus G can take a wide range
of values. For instance, in experimental infection of mice by Salmonella starting
at different inoculum sizes, the number of replications is typically 10 (inoculum
of 107 bacteria) to 35 (inoculum of 103 bacteria) after 24h [19].

Solving the equations 6.3 and 6.4 with the initial conditions S(0) = N − i
and R(0) = i, we find for all i between 0 and N the following exact expression
for the proportion R

R+S of resistant bacteria after G generation, knowing that the
infection was seeded with i resistant and N − i sensitive bacteria at time t = 0:

pi =
(2∆G − 1)(2µ1N + i(−µ1 − µ2 − s log(2) + µ2s)) + i∆ log(2)(2∆G + 1)

N((2∆G − 1)(µ1 + µ2 + s log(2)− 2is log(2)/N − µ2s) + log(2)∆(2∆G + 1))
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with

∆ =

√
s2
(

1− µ2
log(2)

)2
+ 2s

(
− µ1

log(2) + µ2
log(2) −

µ1µ2
log2(2)

− µ22
log2(2)

)
+ (µ1+µ2)2

log2(2)
.

Let us look at some particular limits:

Case where there was no resistant initially: In this case, as 1� s�
µ1, µ2, the final proportion of resistant bacteria can be approximated to:

p0 ' µ1
1− 2−sG

s log(2)
. (6.5)

Case with mixed inoculum: Let us distinguish two cases:

• If sG � 1, when starting with both strains, their relative proportion will
have little time to change. If there is one resistant bacteria initially, then
let us neglect mutations in both ways, as the mutation rate is small, and
then the final proportion of resistant bacteria is:

p1 '
1

1 + (Nb − 1)(1 +G log(2)s)
(6.6)

• If sG� 1, then if there was at least one resistant and one sensitive initially,
the mutation selection balance is reached within the infected host. The final
proportion of resistant bacteria pMSB is obtained by writing the differential
equation on R

R+S and looking for its equilibrium. In the limits we are
considering, pMSB tends to µ1/(s log(2)).

Case starting from resistant bacteria only : In this case, the final
proportion of resistant bacteria will be:

pN = 1− 2(2∆G − 1)µ2(1− s)
(2∆G − 1)(µ1 + µ2 − s log(2)− sµ2) + (1 + 2∆G)∆ log(2)

with

∆ =

√
s2
(

1− µ2
log(2)

)2
+ 2s

(
− µ1

log(2) + µ2
log(2) −

µ1µ2
log2(2)

− µ22
log2(2)

)
+ (µ1+µ2)2

log2(2)
.

For G not too large, as 1� s� µ1, µ2, then ∆ ' s. Consequently:

pN ' 1− (2sG − 1)µ2(1− s)
2sGµ2(1− s) + s log(2)

. (6.7)

For G very small, pN ' 1−Gµ2 (simply the accumulation of mutations).
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6.2.2 Transmission

We will consider that for each transmission, transmitted bacteria are chosen from
the donor host using these probabilities, without correlation between two trans-
missions from the same host (we will notably suppose that selections are done
with replacement).

For naive individuals, bacteria will remain independent from each other,
whereas for hosts who are immune to this bacteria, they will be bound together
by the secreted IgA. However, as forces grow significantly larger on larger clus-
ters, or because there may be some lifetime of the bounds, clusters getting to
a certain size will break [62, 63, 64, 65, 20]. Thus at the end of the infection,
clusters will be of a typical size Nc. We will take the limit in which Nc = Nb = N .
It may be more realistic that Nc < Nb, i.e. multiple clusters are transmitted to
a recipient. However, we want to focus on the effect of clustering, and a more
comprehensive model, taking into account Nb/Nc clusters transmitted, would be
more complex without adding much to the comprehension of this effect. The
limit Nc = Nb = N gives an upper bound of the effect of clustering.

We assume that the concentration of the studied bacteria remains small in
the gut, so that the typical encounter time between clusters is large, thus the
clusters present are of the same lineage, as bacteria get enchained by IgA upon
replication. Then, in the absence of mutations, or when they are negligible (when
the initial inoculum was mixed), clusters are made of bacteria of the same type,
either all sensitive or all resistant. A simplified view of the process of cluster
growth and breaking is that clusters break once a certain size is reached, then
grow, then break again, and so on. As daughter bacteria are physically close in
the clusters, then the subclusters formed after a larger cluster breaks will be of
related bacteria. Let us assume that there are G generations in total during a
host infection, and that the maximal cluster size is 2g = Nc = N (achieved in g
generations; g ≤ G).

Let us study what happens when bacteria are initially of one type and a
mutation occurs: if a mutation occurs at one replication, the cluster will be
of mixed bacterial types, until after g generations, when the cluster will be all
made of descendants of this mutant (see figure 6.1). In the limit of Gs � 1, for
a mutation rate µ for each daughter bacteria per replication, the proportion of
clusters made of mutant bacteria only will be the probability for the bacteria that
seeded this cluster to have been mutant, i.e. µ(G − g) (as G − g is the number
of replications this bacteria has gone through before seeding the cluster). The
proportion of mixed clusters will be equal to the probability for a mutation to
have occurred during the replications between this seeding bacteria and the final
cluster, and thus 2µ(2g − 1) = 2µ(N − 1) (see equation F.4). For a more detailed
discussion, see appendix section F. We will consider two limit cases for when
the host was initially infected with sensitive bacteria only: when the number of
mixed clusters is small compared to the number of fully mutant clusters (then the
probability to transmit a fully mutant cluster will simply be the mean proportion
of mutants in the donor host p0), and the case when most transmissions of mutant
bacteria are through mixed clusters.
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Figure 6.1 – Schematic of growth and mutations in clusters. Represented here is the

case of simple linear clusters. For more complex clusters, it will remain true that more

closely related bacteria will be close to each other, as daughter bacteria remain bound

together after replication.

6.2.3 Between hosts

We focus on the effect of clustering on the apparition of antibiotic resistance. We
thus take a simple model in which there is no population structure. Each host
has a probability w to be immune to the bacteria studied (and thus 1 − w of
being naive) (we will also compare the results for w = 0 and w = 1, i.e. fully
naive vs. fully immune host population). The rationale is that we are interested
in the spread of a strain with resistance risk, and, while this strain is new, it is
similar enough to other strains present in the population so that there is some
cross immunity. We look at the beginning of the spread of this strain, so that
we neglect the effect that over time, w will increase, as infected hosts become
immune to this new strain.

In addition to the clustering of bacteria, immune hosts may differ in other
ways from naive hosts.

First, the mean number of other hosts infected by a donor host (that we will
denote as λ for a naive donor host, and λ′ for immune donor host) may differ. On
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the one hand, because clustering prevents direct interaction with the epithelial
cells and thus inflammation for some pathogenic bacteria, the infection may be
cleared faster, by competition with other bacteria of the microbiota for instance.
Thus an infected host would infect on average fewer contacts, and that would
decrease the probability of resistance emergence. On the other hand, in the case
of a pathogenic bacteria, an immune host may be less sick while still shedding
bacteria, and be a silent carrier, thus its number of contacts may be increased
in comparison to a visibly sick host. In this case, there would be competition
between the different effects. We assume that the number of transmissions to
recipient hosts from one donor host is Poisson distributed [92, 93, 94, 95, 89].

Secondly, immune hosts and naive hosts may not be treated at the same
frequency (here the probability of antibiotic treatment is q for naive hosts, q′

for immune hosts). If antibiotics are given for another reason (to fight another
bacteria, or for growth-enhancement in farm animals), then the probability of
treatment will be the same for all. But if antibiotics are given specifically when
a host displays symptoms linked to the infection we model, then an immune
host, less sick, will be less likely to be treated. Then an immune host could
be a reservoir of sensitive bacteria, which can either increase the emergence of
resistance just by enabling spreading to more hosts, or decrease the emergence of
resistance due to a reduced use of antibiotics and thus less competitive advantage
of resistant versus sensitive bacteria. We will consider both q = q′ and q 6= q′,
with in all cases both q and q′ finite and not too small.

6.3 Methods and equations

6.3.1 General methods

Since we focus on the beginning of the spread, we use the framework of branching
processes [37, 38, 39]. The probability for a host initially infected by i resistant
and N − i sensitive bacteria to infect n0 hosts with 0 resistant and N sensitive
bacteria, n1 hosts with 1 resistant and N − 1 sensitive bacteria, and so on, is
℘i,{n0,n1,....,nN}. We write the equations for the generating functions:

gi(z0, ..., zn) =
∑

{n0,n1,....,nN}

℘i,{n0,n1,....,nN}z
n0
0 ....znNN

As there is no correlation between transmissions, and as the number of infected
contacts is Poisson distributed, of mean λ̃ (with λ̃ = λ for naive hosts and λ′ for
immune ones), then:

gi(z0, ..., zn) =

∞∑
k=0

λ̃ke−λ̃

k!

 N∑
j=0

fi,jzj

k

= exp

−λ̃
1−

N∑
j=0

fi,jzj



= exp

−λ̃ N∑
j=0

fi,j(1− zj)


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with fi,j the probability that when a host, initially infected with i resistant bac-
teria and N− i sensitive ones, infects another host, it transmits to this other host
j resistant bacteria and N − j sensitive ones. We can write the equations for all
gi with i between 0 and N .

We calculate the probability that this new strain spreads in the population,
i.e. one minus its extinction probability. Our model is adequate for the early
steps of spread, more complex models are needed for studying the later stages of
an epidemic. The extinction probabilities ei, starting from an individual infected
with i resistant and N − i sensitive bacteria, are the fixed point of the generating
functions, and thus solutions of ei = exp(−λ̃(1 −

∑N
j=0 fi,jej)) [38]. Either the

bacterial strain will have a limited spread in the host population and go extinct,
or it will transmit to an ever increasing number of hosts, acquiring resistance on
the way, and spread resistance.

Our starting point will be these equations for the extinction probabilities.
Because when the host is treated, if it was initially infected with no resistant

bacteria then it does not transmit anything, the general equations write:

ei = (1− w)(1− q)gnaive,i(e0, e1, ..., eN ) }non immune non treated

+w(1− q′)gimmune,i(e0, e1, ..., eN )
}

immune non treated

+(1− w)q(δ(i, 0) + (1− δ(i, 0)) exp(−λ(1− eN ))) }non immune treated

+wq′(δ(i, 0) + (1− δ(i, 0)) exp(−λ′(1− eN )))
}

immune treated

We solve numerically the system of equations giving the values of ei and look
for analytical approximations.

6.3.2 Naive hosts

In naive hosts initially infected with imutant bacteria, when there is transmission,
the probability to transmit j resistant bacteria and N − j sensitive ones will be:

fi,j =

(
N

j

)
pji (1− pi)

N−j .

Then, for all i between 0 and N :

gnaive,i(e0, e1, ..., eN ) = exp

−λ
 N∑
j=0

(
N

j

)
pji (1− pi)

N−j(1− ej)

 .

6.3.3 Immune hosts

In immune hosts, there is the question of whether the clusters are of one bacterial
type, or mixed. As explained in appendix section F, the clusters are made of
daughter cells enchained together, thus in the absence of mutations, clusters will
be made of bacteria of one type only. As the mutation rates are very small, when
the initial inoculum was mixed, the frequency of mixed clusters will be very small
compared to the frequency of clusters of one type only. We thus neglect mixed
clusters when the initial inoculum was mixed. Thus for all i between 1 and N−1,

gimmune,i(e0, e1, ..., eN ) = exp
(
−λ′ ((1− pi)(1− e0) + pi(1− eN ))

)
.
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6.3.3.1 Limit G� N

In this limit, we neglect mixed clusters in all cases (see section F). Thus for all i
between 0 and N :

gimmune,0(e0, e1, ..., eN ) = exp
(
−λ′ ((1− p0)(1− e0) + p0(1− eN ))

)
.

gimmune,N (e0, e1, ..., eN ) = exp
(
−λ′ ((1− pN )(1− e0) + pN (1− eN ))

)
.

6.3.3.2 Limit G� N

In this limit, we will consider only the mutants in the mixed clusters (see section
F). We assume s small enough so that sg � 1 and we can neglect the differences
in growth time between the different types of clusters. A cluster at generation G
was founded by one bacteria at generation G−g. Since we count only mixed clus-
ters, at the earliest, a mutation occurred when this founding bacteria duplicated
with probability 2µ, resulting in a cluster of size 2g containing 2g−1 mutants. The
probability for mutation will be 22µ at next round, and so on. Thus, the probabil-
ity for a cluster to include one mutant is 2gµ = Nµ, 2 mutants is 2g−1µ = Nµ/2,
4 mutants is 2g−2µ = Nµ/22, ... , 2g−1 mutants is 2µ. Then:

gimmune,0(e0, e1, ..., eN ) = exp

−λ′
(1− 2µ1(N − 1))(1− e0) +

g−1∑
j=0

Nµ1
1− e2j

2j



gimmune,N (e0, e1, ..., eN ) = exp

−λ′
(1− 2µ2(N − 1))(1− eN ) +

g−1∑
j=0

Nµ2
1− eN−2j

2j


General case We can take both cases into account. The probabilities p0 and
pN should be computed at G− g instead of G. We denote that p′0 and p′N . Then:

gimmune,0(e0,e1,...,eN )=exp

−λ′
(1−2µ1(N−1)−p′0)(1−e0)+

g−1∑
j=0

Nµ1
1−e2j

2j
+p′0(1−eN )



gimmune,N (e0,e1,...,eN )=exp

−λ′
(p′N−2µ2(N−1))(1−eN )+

g−1∑
j=0

Nµ2
1−eN−2j

2j
+(1−p′N )(1−e0)


The numerical resolution of the system will be used to explore its behavior,

and will be compared to analytical approximations.

135



Chapter 6. Enchained growth and the evolution of resistance

6.3.4 Table of the symbols used

Parameters specific to the infection

G Duration in number of replications of the intra-host infection

Nb Typical bottleneck size, i.e. the number of bacteria seeding the infection
in a new host

Nc = 2g Maximum clusters size (when they reach it, they break in half
before the next replication). In general we take Nc = Nb = N = 2g

Intra-host dynamics

S(t) Number of sensitive bacteria within a specific host at time t

R(t) Number of resistant bacteria within a specific host at time t

µ1 Probability for one of the two daughter bacteria of a sensitive bacterium
to have become resistant because of a mutation during the replication

µ2 Probability for one of the two daughter bacteria of a resistant bacterium
to have become sensitive because of a mutation during the replication

pi Proportion at transmission of resistant bacteria within a host that was
initially infected with i resistant and N − i sensitive

pMSB Proportion of resistant bacteria in the mutation-selection balance (i.e.
when equilibrium in proportions is reached)

Immune vs. Naive hosts

w Probability for a host to be immune

q Proportion of naive individuals in the host population who are antibiotic-
treated

q′ Proportion of immune individuals in the host population who are
antibiotic-treated

λ Mean number of contacts a naive host transmits the infection to

λ′ Mean number of contacts an immune host transmits the infection to

Systems of equations

ei Probability of extinction for an infection that was seeded in patient zero
by i resistant bacteria and N − i sensitive bacteria

fi,j Probability that when a host, initially infected with i resistant and N−i
sensitive bacteria, infects another host, it transmits j resistant bacteria
and N − j sensitive ones.

6.4 Results

6.4.1 Impact of clustering in the absence of mutations

We first study the simplest case, in which there is no mutation, and no fitness
cost of the resistance (so the proportion of resistant bacteria is the same at the
beginning and at the end of the infection within a host). If all the hosts in the
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Figure 6.2 – Extinction probability of the epidemic as a function of the number of

resistant bacteria i in the first infected individual. Here µ1 = µ2 = 0, s = 0, N = 100,

λ = λ′ = 2 and q = q′ = 0.55, and i is varied from 0 to N = 100. Results come

from numerical resolution of the system of equations and from numerical simulation of

the branching process (designed by Löıc Marrec and Anne-Florence Bitbol, not detailed

here), with an averaging on 105 replicates.

population are naive, then:

e0 = q + (1− q) exp [−λ(1− e0)] , (6.8)

ei = q exp [−λ(1− eN )] + (1− q) exp

−λ N∑
j=0

fi,j(1− ej)

 ∀i ∈ [1, N − 1],

eN = exp [−λ(1− eN )] , (6.9)

with fi,j =
(
N
j

) (
i
N

)j (N−i
N

)N−j
.

If all the hosts in the population are immune, then we should solve:

e0 = q′ + (1− q′) exp
[
−λ′(1− e0)

]
, (6.10)

eN = exp
[
−λ′(1− eN )

]
, (6.11)

and then ei can be obtained from e0 and eN via

ei = q′ exp
[
−λ′(1− eN )

]
+ (1− q′) exp

[
−λ
′i

N
(1− eN )

]
exp

[
−λ
′(N − i)
N

(1− e0)

]
= q′eN +

[
(1− q′)eN

] i
N (e0 − q′)1− i

N .

after replacing the expressions from 6.10 and 6.11.

One can notice that if λ = λ′, eN and e0 do not depend on whether the
population is naive or immune. Numerically (see figure 6.2), for the other values
of i, extinction is more likely when the population is immune than when the
population is naive.
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6.4.2 Impact of clustering with mutations

We now take into account mutations, and the fitness cost of the resistance. We
will compare the probability of emergence of an infection at the scale of the host
population when we start from a host infected with sensitive bacteria only. We
will compare the case of a whole naive vs. all immune population, i.e. study the
ratio:

1− e0,naive

1− e0,immune
.

Figure 6.3 shows this ratio calculated with the numerical solving of the complete
systems of equation presented in the previous part, for different values of the
parameters in function of G, the number of generations. The first observation is
that this ratio is always bigger than 1 in the range of parameters chosen, meaning
that emergence probability is reduced in the immune population compared to the
naive one. We then make some approximations to grasp the general behavior of
the system in certain limits, as will be shown thereafter, and compare them with
the numerical solutions.

Regarding the fitness cost s, we can consider two limits. Either the number of
generations within a host G is large enough (sG � 1) so that infections started
with a mixed inoculum end up at proportions close to the mutation selection
balance, or the number of generations is small (sG � 1) so that the final pro-
portions of bacterial types is close to the initial values. Another matter is that,
starting from a fully sensitive infection, mutations in an immune host could lead
to either fully resistant clusters or mixed clusters. When comparing the number
of these two types of transmissions, when G� N , then most transmissions con-
taining resistant bacteria will be from clusters containing only resistant bacteria;
and when G� N , then most transmissions containing resistant bacteria will be
from mixed clusters. We present here the limit with few generations, with both
sG � 1 and G � N , and the limit with many generations, with both sG � 1
and G� N , and give the main steps for the approximations.The details of these
approximations can be found in appendix section G.

6.4.2.1 Small number of generations

In the case of small number of generations (with both sG � 1 and G � N),
starting from a host infected with only sensitive bacteria, the main path to re-
sistance will be that, through mutations, resistant bacteria appear. But as their
proportion will remain small, and the number of within-host generations is small,
for both naive and immune hosts, in most cases transmission will be of either
zero resistant and N sensitive or 1 resistant and N − 1 sensitive. The frequency
of resistant will change little in hosts infected with one resistant bacteria, except
if the host is treated, in which case the infection will become fully resistant. Un-
treated naive hosts will transmit either one or no resistant bacteria. Untreated
immune hosts initially infected with one resistant bacteria will mostly transmit
fully sensitive clusters of bacteria, with some occurrences of transmission of fully
resistant clusters of bacteria. Most paths to resistance will thus involve princi-
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Figure 6.3 – Ratio of probability of emergence in a fully naive population relative to

a fully immune population. Full system (black solid lines) (see section 6.3.3.2), system

with only mixed clusters or only fully resistant clusters for transmissions from immune

hosts initially infected with sensitive bacteria only (see section 6.3.3.1 and 6.3.3.2) (black

dashed lines). Approximations for G small (sG � 1 and G � N): resolution of system

(6.12) (6.13) (6.14) (solid blue line), expression (6.17) (solid dark green line) and limit

G/2 (dashed green line). Approximations for G large (sG � 1 and G � N): system

(6.18) (6.19) (6.20) (orange line) and limit Nq (red dashed line). The dotted gray line

indicates 1, i.e. everything above this line shows that emergence is more likely in a naive

population than in an immune population. µ1 = 10−6, µ2 = 10−8.

pally hosts initially infected with 0, 1, or N resistant bacteria, and taking into
consideration only the most likely paths, we find that:

eN = (1− w) exp(−λ(1− eN )) + w exp(−λ′(1− eN )). (6.12)

e1 =(1− w)q exp(−λ(1− eN )) + wq′ exp(−λ′(1− eN ))

+ (1− w)(1− q) exp [−λ(exp(−Np1)(1− e0) + (1− exp(−Np1))(1− e1))]

+ w(1− q′) exp(−λ′((1− p1)(1− e0) + p1(1− eN )))

(6.13)
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e0 =(1− w)q + wq′ + (1− w)(1− q) exp(−λ((1−Np0)(1− e0) +Np0(1− e1)))

+ w(1− q′) exp

(
−λ′

((
1− 2Np0

G

)
(1− e0) +

2Np0

G
(1− e1)

))

(6.14)

Remarkably, equation (6.12) does not depend on neither q nor q′. If λ = λ′, it also
does not depend on w. It also does not depend on either e0 or e1, and thus can be
numerically solved independently. Then the result can be imported to equation
(6.13) and the system of equations (6.13) and (6.14) can be solved numerically.
It is still numerical, but less complex than the system of N equations.

When there is no mutation, and if an individual is infected only with sensitive
bacteria, the mean number of recipients it infects is R0,WT = (1− w)λ(1− q) +
wλ′(1− q′). If this is smaller than one, then the probability to start an epidemic
is zero. It is in this limit that we expect the most important effect of and immune
population vs. a naive one. In this limit (R0,WT < 1), then 1− e0 is of the order
of µ1, and further simplifications can be made. Then, comparing the probability
of spread of the strain in a fully naive relative to a fully immune population,

ratio =
1− e0,naive

1− e0,immune
=
G

2

λ(1− λ′(1− q′))
λ′(1− λ(1− q))

(1− q)
(1− q′)

(1− e1,naive)

(1− e1,immune)

with

e1,naive ' qeN,naive + (1− q) exp(−λ(1− e−Np1)(1− e1,naive)).

e1,immune = q′eN,immune + (1− q′)ep1N,immune

eN,naive = exp(−λ(1− eN,naive)). (6.15)

eN,immune = exp(−λ′(1− eN,immune)). (6.16)

Then, taking further q = q′, and λ = λ′, then 6.15 and 6.16 are the same
equations, thus in this regime eN,naive = eN,immune = eN . In this regime we can
further show that e1,naive < e1,immune, and that:

ratio =
1− e0,naive

1− e0,immune
=
G

2

1− e1,naive

1− e1,immune
>
G

2
(6.17)

6.4.2.2 Large number of generations

In the case of a large number of generations (with both sG � 1 and G � N),
we consider that hosts can be categorized by inoculum counting 0, 0 < i < N or
N resistant bacteria. Indeed, Because sG � 1, then mutation selection balance
will be attained in hosts infected with a mixed inoculum. But as µ1, µ2 are very
small, µisG may not be large, thus infections starting with one type of bacteria
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have to be considered separately. Then, considering the main paths:

1−eN=(1−w)(1−q)(1−exp(−λ((1−ei)(1−pNN−(1−pN )N )+pNN (1−eN )+(1−pN )N (1−e0))))

+(1−w)q(1−exp(−λ(1−eN )))

+wq′(1−exp(−λ′(1−eN )))

+w(1−q′)(1−exp(−λ′(pN (1−eN )+(1−pN )(1−e0))))

(6.18)

1−ei=(1−w)q(1−exp(−λ(1−eN )))+wq′(1−exp(−λ′(1−eN )))

+(1−w)(1−q)(1−exp(−λ((1−pMSB)N (1−e0)+(1−(1−pMSB)N )(1−ei)))
+w(1−q′)(1−exp(−λ′(1−e0+pMSB(1−eN ))))

(6.19)

1−e0=(1−w)(1−q)(1−exp(−λ((1−p0)N (1−e0)+(1−(1−p0)N )(1−ei))))
+w(1−q′)(1−exp(−λ′(1−e0+p0(1−eN )))) (6.20)

Though much simpler than the whole system (only 3 equations), this system
has the disadvantage that all 3 equations depend on all the three extinction
probabilities.

Then, taking similarly the limit when there is limited spread of the bacterial
strain in the absence of mutations ((1−w)λ(1− q)+wλ′(1− q′) < 11, then 1−e0

is of the order of µ1, and further simplifications can be made. We also here take
the assumption that pNN remains close to 1 even at the longest G considered, i.e.
that µ2 is very small. Then, comparing the probability of spread of the strain in
a fully naive population relative to a fully immune population, and taking q = q′,

1− eN = 1− (1− w) exp(−λ(1− eN ))− w exp(−λ′(1− eN ))

and
1− e0,naive

1− e0,immune
' Nq λ

λ′
1− eN,naive

1− eN,immune

when λ = λ′, this ratio converges to Nq.

6.4.2.3 Conclusion

We have shown in two different regimes that when the bacterial strain cannot
spread in the absence of resistant mutations, then clustering decreases the prob-
ability of spread of this strain and thus of resistance emergence, by a factor
which depend on the details of the infection, but will typically be of several fold
difference.

1without mutations all transmissions are of sensitive bacteria, which are wiped out when the
recipient host is treated
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6.4.3 But this effect can be countered by silent carrier effect

It is possible that if an immune host feels less sick, it may have more contacts,
and thus λ′ > λ; and it could be less likely to be treated, i.e. q′ < q.

Let us first look at the results in the absence of mutations, comparing a fully
immune with a fully naive population. When λ = λ′ and q = q′, e0 and eN have
the same values for a naive and an immune population (and e0 > eN if q > 0). If
λ′ > λ, then eN,immune < eN,naive (see equations (6.11) and (6.9)). Also, if q′ ≤ q,
then λ′(1 − q′) > λ(1 − q), leading to e0,immune < e0,naive (see equations (6.10)
and (6.8)). Numerically, we can see (figure 6.4) that despite immune population
leading to more spread when the first infected host was infected with bacteria of
only one type, for a wide range of parameters, the reverse is true when the first
host was infected with a mix of different types of bacteria. Thus this is a case
where there is a trade-off.
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Figure 6.4 – Probability of extinction ei in function of the initial number of re-

sistant bacteria i, for mixed populations of proportions of immune individuals w =

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 (from purple to red). Numerical resolution for

the whole system of equations 6.3.3.1 in the absence of mutations: the proportion of

resistant bacteria within a host remains identical to the proportion with which it was

inoculated, and thus, in immune hosts, only clusters of one type will be found. Other

parameters: N = 100, λ = 1.7, λ′ = 2, q = q′ = 0.55.

Then let us look at the case with mutations, starting from an host infected
with sensitive bacteria only. When both λ(1 − q) > 1 and λ′(1 − q′) > 1, both
types of bacteria may survive in the absence of mutations, so mutations will have
little impact on the survival probability and we will be back to the case of the
previous paragraph. When λ(1 − q) < 1 and λ′(1 − q′) > 1, then immunity will
make a large difference in survival. When all hosts are naive, the bacteria cannot
spread in the absence of mutations. When there are enough immune hosts, the
bacteria may spread to many individuals, mutations will eventually occur and
lead faster to widespread resistance. The tipping point will be for w such as
(1−w)λ(1− q) +wλ′(1− q′) = 1 because 1 is the threshold of possible epidemic
propagation. When both λ(1 − q) < 1 and λ′(1 − q′) < 1, mutations are always
needed for the epidemic to spread. We could study the details as in section 6.4.2.
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6.5 Discussion

In this chapter, we have studied the consequences of enchained growth at the
scale of a host population: in immune individuals, bacteria grow in clusters
of enchained daughter-bacteria. In the context of the evolution of resistance,
we propose a model with within-host deterministic dynamics, and compute the
proportion of resistant bacteria in the host at the end of its infection, when it
transmits bacteria to other recipient hosts, in function of the initial number of
resistant bacteria it was seeded with. The transmission is stochastic and de-
scribed in the framework of branching processes. We first study the simple case
with no mutation allowed, and find that if the host is originally seeded with a
mixed inoculum, the extinction is more likely in an all-immune population than
in a all-naive population. Then we introduce mutations, and a fitness cost for
resistance, and focus on the emergence of infection starting from a individual
seeded with only sensitive bacteria. In this case, there are different regimes: in
the immune individuals, when the number of generations is small, clusters are
mostly of mixed composition. On the contrary, when the number of generation
is large, then most clusters transmitted are of one type only, and within the host,
the proportion of resistant bacteria reaches the mutation-selection balance. In
both regimes, in the limit where sensitive bacteria cannot successfully seed an
infection in the absence of resistant mutations, the probability of spreading the
infection is reduced several folds in an immune population compared to a naive
one. However, when taking into account other differences that might be linked
to the status “immune” or “naive” of the host, and in particular, the fact that
immune individuals may be silent carriers because they feel less sick, this effect
can be dampened or even reversed.

In most cases though, we observe a reduction in the emergence probability
when the host population is immune. The main reason for that is that, as in
the case of immune hosts the transmissions are of bacteria of the same type,
then, with the same average number of transmitted resistant bacteria, the pro-
portion of transmissions with at least one resistant bacteria transmitted is lower
for immune donor hosts. This system thus presents some similarities with the
concept of bet-hedging, which could be summarized in the saying “don’t put all
your eggs in one basket”[96]. Indeed, microbial populations are typically very
large, and experience high replication rates, even though the spread of mutants
(like antibiotic-resistant ones) is less frequent. One reason is that upon trans-
mission, not all the diversity of the bacterial population is transmitted, since it
goes through important bottlenecks. Thus the details of the way bacteria are
transmitted between the hosts really matter to understand properly the behavior
at the scale of the population.

This chapter presents a work in progress that will be elaborated in the future.
For example, we considered here that for each transmission, transmitted bacteria
are chosen from the donor host using average probabilities, without correlation
between two transmissions from the same host. In reality, there are hosts with
similar starting bacterial composition, and different end composition, for instance
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when a mutation occurred very early vs. no mutation occurred at all. Thus there
would be correlations between two recipients of the same donor host. We want
to check with stochastic simulations that these effects are negligible, and that
the assumptions we made are valid. Then we could also study the case where
a first mutation confers resistance but with a decreased fitness, and a second
one restoring it. Integrating more realistic within-host dynamics and especially
a more detailed description of the action of the immune system is essential to
broaden our understanding of the interactions between antibiotics use and the
spread of resistance in a population.
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Conclusion
In this thesis, I presented a first part of my work focusing on the colonization

dynamics of bacterial populations in early infections of the gut. I developed
stochastic models of population dynamics in an open system, using analytical
methods such as branching processes, and numerical methods such as agent-based
Gillespie simulations. The aim is to infer biologically relevant parameters of the
infection (such as replication and elimination rates, and the probability for one
bacteria to settle in the organism and participate in the infection) from indirect
data (dilution of plasmids that do not replicate inside the mice, initial and final
numbers of bacteria, as well as initial and final distributions of genetic tags).
First, I studied one-population models initialized with a Poissonian draw and
following a continuous-time birth-death Markovian process. In this framework, I
looked for the optimal observable to characterize the variability in the distribution
of genetic tags, which have the particularity of starting from unequal population
sizes, and showed that the renormalized variance on the growth factor was an
adequate and suitable measure of variability. I checked for consistency between
the parameter estimates based on the observables of the mean growth rate, the
renormalized variance over the growth rate and the proportion of genetic tags
lost, and showed that in some cases, it is not clear whether these estimates are
truly coherent. Based on biological arguments and the qualitative idea that it
could lead to broader possibilities of observables combination, and in particular,
a higher variance, I then developed models with two subpopulations following
the same kind of dynamics, but with different replication rates. I showed that
this kind of model explains very well some experiments, but not all of them, and
due to the small quantity of data no clear conclusion can be drawn as to the
coexistence of several subpopulations.

The second part of my thesis concerns the mechanisms that make the immune
response effective. I first reviewed the study from Moor et al. [19] to which I
contributed. It shows that sIgA, a specific kind of antibody and main effector
of the immune system in the gut produced in high quantities after vaccination,
enchains daughter bacteria in clonal clusters upon replication, while this aggre-
gation process was previously thought to happen through the random encounters
of bacteria in the gut, which are actually rare at typical initial concentrations
after food poisoning. This mechanism called enchained growth suffices to protect
the mice by preventing bacteria to approach the epithelium and cross it to colo-
nize the rest of the organism. I contributed to evidence the phenomenon with a
model predicting the reduction of diversity in the bacterial population it causes.
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I then investigated the consequences of this process. At the scale of the host, I
studied the interplay of cluster growth and fragmentation in immune individuals,
with models based on differential equations, studied by a mixed approach of an-
alytical approximations and numerical solving. I showed that enchained growth
likely preferentially targets fast-growing bacteria – which are the most suscep-
tible to disrupt the gut flora equilibrium – and that this process could thus be
a way for the immune system to regulate the microbiota composition. At the
scale of the hosts population, in the context of evolution of antibiotic resistance,
if bacteria are transmitted via clonal clusters (being either completely resistant
or completely sensitive) rather than via random collections of resistant and sensi-
tive bacteria, the probability that resistant bacteria are transmitted to a specific
individual is decreased. With cross-scale models using branching process, I quan-
tify how the probability of infection emergence is modified in immune population
compared to naive ones.

Both parts of this thesis were motivated by the study of quantitative data on
Salmonella infection in the mice gut. The immune mechanisms we propose here
are of very general scope: the mice immune system is indeed close to the one
of many other vertebrates (including humans), and enchained growth is not a
process limited to Salmonella but has already been evidenced in E. coli [19] for
example. Of course, complementary experiments should be carried out to draw
more general conclusions on the actual impact of this phenomenon, but in the long
run, enchained growth may be harnessed, through oral vaccination, to reduce the
use of antibiotics and thus decelerate the evolution and spread of antimicrobial
resistance. Besides, the results presented here go beyond the scope of mere data
interpretation. In the first part, the population dynamics tools developed could
be applied to larger sets of data concerning bacterial infection of the gut with
various strains in various animals, but could also easily be translated to different
systems in ecology, not necessarily at the same scale. Then in the second part, the
study of clusters growth and fragmentation is a more general statistical physics
problem which had already proved to be useful in other contexts and at other
scales (for example to the study of a specific kind of algae, see [21], or to explore
reproduction modes [22]). We thereby use statistical physics to identify some
generic mechanisms, and the core properties needed to understand the range of
situations where these mechanisms may be of importance.
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Appendix A

Experimental data tables

These are the data used in the part I. As it was a simple experiment (no vacci-
nation, etc.), we used it as a test for our general methods.

Strain Dilution
from 107

final number initial number PAmpR

SB300 10 3200000000 42880000 3.0E-003
SB300 100 3840000000 4288000 2.2E-002
SB300 1000 2400000000 428800 7.7E-005
SB300 10000 2560000000 42880 6.3E-006
SB300 100000 3360000000 4288 1.1E-006
SB300 1000000 1920000000 428.8 2.1E-007
SB300 10000000 1440000000 42.88 1.8E-008
SB300 100000000 800000000 4.288 2.5E-009

M2702 10 1280000000 40640000 2.5E-003
M2702 100 1760000000 4064000 7.3E-004
M2702 1000 1600000000 406400 1.2E-004
M2702 10000 1760000000 40640 4.1E-005
M2702 100000 1600000000 4064 2.0E-006
M2702 1000000 1440000000 406.4 6.7E-007
M2702 10000000 480000000 40.64 7.4E-008
M2702 100000000 1120000000 4.064 1.4E-009

Table A.1 – Data for the plasmid dilution standard curve: for each strain,
several dilutions were prepared. The initial and final numbers of bacteria were
estimated with plating and CFU count (see section 1.1.1), and the final propor-
tions of ampicilin-resistant bacteria were measured with plating following antibi-
otic addition. In section 1.1.2 we take xi as the ratio of the final number over
the initial number, and yi as the final proportion of Ampicilin-resistant bacteria
(last column).
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Appendix A. Experimental data tables

Strain Inoculum CFU
count

n1 n2 n3 n4 n5 n6 n7

SB300 103 1472 8.72 9.97 3.82 2.85 3.68 3.64 5.31
SB300 105 281600 13.32 15.22 5.84 4.36 5.62 5.55 8.10
SB300 107 42880000 16.53 18.90 7.25 5.41 6.97 6.89 10.05
M2702 103 4400 17.61 23.80 8.61 5.66 13.92 36.62 5.78
M2702 105 220800 1069 1444 522 343 845 2223 350
M2702 107 40640000 9.75 13.17 4.76 3.14 7.71 20.27 3.20

Table A.2 – Inoculum data: There are six different experiments (with two different strains and three
possible inoculum sizes). The inoculum have been plated and the CFU load was counted as explained
in 1.1.1 to get a more precise estimate. The initial WITS numbers {n1, ...n7} were counted as explained
in 1.1.3 (plating for the total number + q-PCR for the proportions) and correspond to an estimate of
the numbers given to each of the 3 mice per experiment. WITS were given in too high numbers for the
“M2702-105” experiment, consequently the WITS data on this experiment could not be used.

St. I total m1 m2 m3 m4 m5 m6 m7 PAmpR
S 103 101184000 65.98 172561 1.60 1.86 5.05 21.82 769742 4.9E-09
S 103 56940800 321.17 6.95E6 5.79 14.47 20.25 114.29 100272 1.0E-06
S 103 68428800 2.28 861651 0.18 0.11 0.53 4.91 259813 1.7E-07

S 105 67328000 0 0 0 0 0 0 0 7.4E-09
S 105 73920000 0 0 0 0 0 0 0 6.8E-09
S 105 69888000 55638 2289 4E-03 0.02 2968 45751 874.26 4.8E-05

S 107 89523200 6E-05 18.50 2E-06 3E-05 8E-06 4E-04 3.02 2.4E-03
S 107 97216000 1E-04 4E-05 9E-06 37.20 4E-05 6E-04 3E-05 0.3E-02
S 107 42649600 0 0 0 0 0 0 0 5.1E-04

M 103 644160000 17.33 2.36 0.39 0.79 0.79 863737 1.77 7.1E-07
M 103 1380192000 0.0987 0.029 0.0058 0.0174 0.0058 10456 0.0348 4E-08
M 103 1431091200 118.95 1.18E7 14.42 54.07 14.42 4938 115.35 1.3E-08

M 105 1099929600 2.4E6 1.0E6 4.5E5 4.2E6 6.3E5 86129 393992 2.6E-05
M 105 1107302400 2.97E6 2.1E6 1.2E6 1.6E6 1.8E6 999479 2.5E6 8.5E-05
M 105 820838400 2.4E6 762835 601341 707152 2.6E6 1.0E6 1.7E6 5.9E-05

M 107 2005785600 5066 3391 2764 1279 2720 844.45 2282 1.9E-02
M 107 772608000 15.76 20.70 18.53 4E-04 5E-04 0.477 85.37 2.2E-04
M 107 3374771200 3200 0.0104 0.0057 0.0057 0.0062 2664 0.0073 1.3E-03

Table A.3 – Final data for the experiments: Data measured 24h post-infection, after mice euthanasia.
The same experiment is repeated in three different mice. The strain names have been abbreviated (“S”
for “SB300” and “M” for “M2702”), and “I” stands for the inoculum size (see the precise count in table
A.2). {m1, ...m7} are the final numbers of WITS (infered from a measure of their relative proportions
with q-PCR plus a total count by plating, which explains that we can get numbers below 1, that probably
correspond to noise in the q-PCR measurement and for which we define a cutoff), and PAmpR is the final
proportion of bacteria carrying a plasmid.
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Appendix B

Variance of the variance

B.1 Variance of the simple variance

The expected variance of the variance from section 2.3.2.3 writes as follows:

〈varvar〉 =

〈 1

h− 1

h∑
i=1

mi −
1

h

h∑
j=1

mj

2

−
(
〈m2〉 − 〈m〉2

)2〉

To perform this calculation, one has to keep in mind that all WITS have the
same distribution and are independent. Thus 〈mi〉 = 〈mj〉 = 〈m〉 for all i, j,
and 〈mimj〉 = 〈mi〉〈mj〉 = 〈m〉2 for i 6= j, but 〈mimi〉 = 〈m2〉. Developing the
outermost square in the previous expression, one gets:

〈varvar〉 =
1

(h− 1)2

〈 h∑
i=1

mi −
1

h

h∑
j=1

mj

22〉
︸ ︷︷ ︸

A

(B.1)

− 2

h− 1

(
〈m2〉 − 〈m〉2

)〈 h∑
i=1

mi −
1

h

h∑
j=1

mj

2〉
︸ ︷︷ ︸

B

+
(
〈m2〉 − 〈m〉2

)2
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Appendix B. Variance of the variance

Let us first calculate the term B:

B =

〈
h∑
i=1

mi
h− 1

h
− 1

h

h∑
j=1
j 6=i
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Now,

〈h−1∑
j=1
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2〉
=

〈
h−1∑
j=1

m2
j +

∑
j,k
j 6=k
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〉
= (h− 1)〈m2〉+ (h− 1)(h− 2)〈m〉2

thus

B = (h− 1)
(
〈m2〉 − 〈m〉2

)
Now for A:
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〈
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h
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〉
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B.2. Variance of the simple variance

with SMI = 1
h

∑h
j=1
j 6=i

mj and SMJK =
∑h

j=1
j 6=k
j 6=l

mj . We calculate



〈SMI〉 =

〈∑h
j=1
j 6=i

mj

〉
= (h− 1)〈m〉

〈SMI2〉 =

〈∑h
j=1
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m2
j +

∑
j,a
j 6=a

mjma

〉
= (h− 1)〈m2〉+ (h− 1)(h− 2)〈m〉2

〈SMI3〉 =

〈 h∑
j=1
j 6=i

mj
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3〉

= (h− 1)〈m3〉+ (h− 1)(h− 2)(h− 3)〈m〉3 + 3(h− 1)(h− 2)〈m2〉〈m〉

〈SMI4〉 =

〈 h∑
j=1
j 6=i

mj


4〉

=(h− 1)(h− 2)(h− 3)(h− 4)〈m〉4 + 6(h− 1)(h− 2)(h− 3)〈m2〉〈m〉2

+ (h− 1)(h− 2)
[
3〈m2〉2 + 4〈m3〉〈m〉

]
+ (h− 1)〈m4〉

Because in SMI3, among the (h − 1)3 terms of the form mambmc, there are
(h− 1) terms where all the m are identical, (h− 2)(h− 2)(h− 3) where they are
all different, and 3(h−1)(h−2) with two different indexes (there are (h−1)(h−2)
pairs of distinct indexes, and then

(
3
1

)
= 3 ways of attributing this pair of index

to three elements). For the power four it works the same except that the count
is slightly more complicated. And exactly the same for SMJK and the higher
powers (the sums of the powers of mi where i is different from j and k), except
with one term less in the sums, so one just needs to replace all the h with h− 1.

Replacing everything in equation B.1, one finally gets the variance of the vari-
ance in function of the different moments of the final WITS numbers distribution:

varvar =
1

h(h− 1)

(
(h− 1)〈m4〉 − 2(2h− 3)〈m〉4 − (h− 3)〈m2〉2

−4(h− 1)〈m〉〈m3〉+ 4(2h− 3)〈m〉2〈m2〉
) (B.2)

With eq. (1.8), it ultimately leads to:

〈varvar〉 =
(
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)4 2r − (r + c)e−(r−c)t

h(h− 1)(r − c)2(n0β)2
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(r − c)βn0
− 12(h− 1)r(c+ r)e−(r−c)t

(r − c)βn0

−2h(r + c)e−(r−c)t + 4hr +
12r2(h− 1)

n0β(r − c)

)
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Appendix B. Variance of the variance

B.2 Variance of the variance on the growth factor

The only difference from the simple variance case is that if the mean value
〈
mi
ni

〉
is the same for all i, it is not the case of the higher moments

〈(
mi
ni

)p〉
(cf.

eq. (2.11)) which depends on ni. Thus the aim is to express everything in terms
of sums of the moments. Let us note:
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And another identity which will prove extremely useful:
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h∑
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h∑
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Writing directly that the variance is the mean of the squares minus the square
of the mean:
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Developing the square in A and separating the terms in i and different from i:
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B.2. Variance of the variance on the growth factor

Let us deal with B first. As for what was done for the simple variance, one must
correctly count the terms when developing (a − b)4 where there are zero, one,
two, three or four a. The two first terms are easy, but the higher powers of the
sum will be more delicate to deal with:
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Then, as always, separating the terms where all the coefficient are two by two
different from the others, one gets:



B3 = 6(h−1)2

h3

[
(S[2])2 − S[22] + (h− 1)(h− 2)M2S[2]

]
B4 = −4(h−1)

h4
M
[
(h− 1)S[3] + h(h− 1)(h− 2)(h− 3)M3 + 3M(h− 2)(h− 1)S[2]

]
B5 =

h− 1

h4
S[4] +

4(h− 2)(h− 1)

h4
MS[3] +

3

h4
(h− 2)

(
S[2]2 − S[22]

)
+

6

h4
(h− 3)(h− 2)(h− 1)M2S[2] +

h

h4
(h− 1)(h− 2)(h− 3)(h− 4)M4

Then going back to C:
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Now, by symmetry,
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Then, still following the rules of terms separation:

∑
l,q
l 6=q

C1 = S[2]2 − S[22]

∑
l,q
l 6=q

C2 = − 2
h

[
(h− 2)(h− 1)M2S[2] + (h− 1)MS[3] + S[2]2 − S[22]

]
∑

l,q
l 6=q

C4 = h−1
h2

[
S[2]2 − S[22] + S[4] + (h− 1)(h− 2)M2S[2] + 2(h− 1)MS[3]

]
∑
l,q
l 6=q

C5 =
4

h2

[
5(h− 2)(h− 1)M2S[2] + 2(h− 1)MS[3] + 2(S[2]2 − S[22])

+h(h− 1)(h− 2)(h− 3)M4
]

∑
l,q
l 6=q

C7 =− 2

h3
(h− 1)

[
S[4] + 4(h− 1)MS[3] + 6(h− 2)(h− 1)M2S[2]

+3(S[2]2 − S[22]) + h(h− 1)(h− 2)(h− 3)M4
]

∑
l,q
l 6=q

C9 =
h− 1

h

[
S[4] + 4M(h− 1)S[3] + 3(S[2]2 − S[22])

+6M2(h− 2)(h− 1)S[2] + h(h− 1)(h− 2)(h− 3)M4
]

Finally summing all the terms of A and substracting the expression of the
mean variance square, one finds:

〈varvar〉 =
4(2h− 3)

(h− 1)h2
M2S[2]− 4

h2
MS[3] +

2

(h− 1)2h2
S[2]2

−
(
h2 − 2h+ 3

)
(h− 1)2h2

S[22] +
S[4]

h2
+

2(3− 2h)

(h− 1)h
M4
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B.2. Variance of the variance on the growth factor

Notice that if one replaces all the ni by n0 one finds the same result as what was
found for the variance over the simple variance in B.2, devided by n4

0.
And finally, using the generating function, always paying attention to the fact

that each population has now its own with the correct ni:

〈varvar〉 =
(
β4e4(r−c)t

)[2
(
(c+ r)e−(r−c)t − 2r

)2
β2(h− 1)2h2(r − c)2

SN2

+
2(h− 2)

(
(c+ r)e−(r−c)t − 2r

)2
β2(h− 1)2h(r − c)2

SN2

− e−3rt

β3h2(r − c)3

{
c3e3ct + c2r

(
11e3ct − 14et(2c+r)

)
+r3

(
−14et(2c+r) + 36et(c+2r) + e3ct − 24e3rt

)
+cr2

(
−44et(2c+r) + 36et(c+2r) + 11e3ct

)}
SN3

]
with SN =

∑h
i=1

1
ni

, SN2 =
∑h

i=1
1
n2
i

and SN3 =
∑h

i=1
1
n3
i
.
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Appendix C

Source code of the R
simulations

I chose to run my agent-based simulations with the R-language, notably because
it was a language used by our collaborators.

1 ################################################################
# 2 SUB−POPULATIONS MODEL #

3 ################################################################

5

######################## VARIANCE FUNCTIONS ####################
7

####### For the r e s u l t s o f s imu la t i on s
9

newnew var iance <− f unc t i on ( f i n a l numbers , i n i t i a l numbers )
11 {

k <− l ength ( f i n a l numbers )
13 i f (sum( f i n a l numbers ) > 0)

{
15 (1 / (k−1) ) ∗sum ( ( f i n a l numbers/ i n i t i a l numbers−(1/k ) ∗sum( f i n a l

numbers/ i n i t i a l numbers ) ) ˆ2)
}

17 e l s e 0 #I f a l l the WITS popu la t i ons got e x c t i n c t then there i s no
spread o f the va lue s

}
19

21 ####### For the r e s u l t s o f the experiment ( norma l i za t i on over one
r e a l i z a t i o n )

newnew var iance norm <− f unc t i on ( f i n a l numbers , i n i t i a l numbers )
23 {

k <− l ength ( f i n a l numbers )
25 i f (sum( f i n a l numbers ) > 0)

{
27 newnew var iance ( f i n a l numbers , i n i t i a l numbers ) / ( ( ( 1 /k ) ∗sum( f i n a l

numbers/ i n i t i a l numbers ) ) ˆ2)
}

29 e l s e 0
}
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31 mean pop s i z e exp <− f unc t i on ( f i n a l numbers , i n i t i a l numbers )
{

33 k<− l ength ( f i n a l numbers )
i f (sum( f i n a l numbers ) > 0)

35 {
(1 /k ) ∗sum( f i n a l numbers/ i n i t i a l numbers )

37 }
e l s e 0

39 }

41 ##### For the t h e o r e t i c a l va lue s

43 mean s i z e <− f unc t i on ( beta , r1 , r2 , c , t , k , q )
{

45 beta ∗ ( q∗exp ( ( r1−c ) ∗ t )+(1−q ) ∗exp ( ( r2−c ) ∗ t ) )
}

47

49 newnew var iance th <− f unc t i on ( beta , r1 , r2 , c , t , k , nombres
i n i t i a u x , q )

{
51 i f (sum( nombres i n i t i a u x ) !=0)

{
53 ( beta ˆ2) ∗ ( q∗exp (2 ∗ ( r1−c ) ∗ t ) ∗ ( (2 ∗ r1−(r1+c ) ∗exp(−( r1−c ) ∗ t ) ) / ( beta ∗ (

r1−c ) ) )+(1−q ) ∗exp (2 ∗ ( r2−c ) ∗ t ) ∗ ( (2 ∗ r2−(r2+c ) ∗exp(−( r2−c ) ∗ t ) ) / ( beta
∗ ( r2−c ) ) ) ) ∗sum(1 /nombres i n i t i a u x ) /k
}

55 e l s e
{

57 0
}

59 }

61 newnew var norm th <− f unc t i on ( beta , r1 , r2 , c , t , k , nombres
i n i t i a u x , q )

{
63 i f (sum( nombres i n i t i a u x ) !=0)

{
65 newnew var iance th ( beta , r1 , r2 , c , t , k , nombres i n i t i a u x , q ) / ( (

beta ˆ2) ∗ ( ( q∗exp ( ( r1−c ) ∗ t )+(1−q ) ∗exp ( ( r2−c ) ∗ t ) ) ˆ2) )
}

67 e l s e
{

69 0
}

71 }

73 ################################################################
# SIMULATION GILLESPIE #

75 ################################################################

77 #### Defau l t va lue s f o r the parameters

79 params . 0 <− c ( inoc=5e3 , # Total inoculum s i z e
beta1 =0.2 ,# Sett lement p r o b a b i l i t y subpopulat ion 1

81 beta2 =0.2 ,# Sett lement p r o b a b i l i t y subpopulat ion 2
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r1 =16.6 , # Rep l i c a t i on ra t e subpopulat ion 1
83 r2 =16.6 , # Rep l i c a t i on ra t e subpopulat ion 2

nwi t s inoc=rep (1 , 7 ) , # I n i t i a l WITS numbers
85 # ( vector o f s i z e n . wi t s )

c=0, # El iminat ion ra t e
87 n . wi t s =7, # Number o f d i f f e r e n t WITS

K=5e9 , # Carrying capac i ty
89 q = 1) # I n i t i a l propor t ion o f subpop 1

91 s imu la t i on <− f unc t i on ( params = params . 0 , t f . days=1, eps =0.05)
{

93 r e q u i r e ( adapt ivetau )

95 #################### POISSON INITIALISATION ##################

97 # INOCULUM B0

99 # Two subpopulat ions f o r each WITS + 2 u n l a b e l l e d f o l l owed :
B0 <− vec to r ( ”numeric ” ,2 ∗params [ ”n . wi t s ” ]+2)

101

# Poisson s e l e c t i o n o f un labe l ed b a c t e r i a o f type 1 :
103 B0 [ 1 ] <− r p o i s (1 , params [ ”q” ] ∗params [ ” inoc ” ] ∗params [ ” beta1 ” ] )

105 # Poisson s e l e c t i o n o f WITS o f type 1
B0 [ 2 : ( params [ ”n . wi t s ” ]+1) ] <− sapply ( params [ paste0 ( ” nwi t s inoc ” , seq

(1 , params [ ”n . wi t s ” ] ) ) ] ∗params [ ”q” ] ∗params [ ” beta1 ” ] , rpo i s , n=1)
107

# Poisson s e l e c t i o n o f un labe l ed b a c t e r i a o f type 2 :
109 B0 [ params [ ”n . wi t s ” ]+2] <− r p o i s (1 ,(1−params [ ”q” ] ) ∗params [ ” inoc ” ] ∗

params [ ” beta2 ” ] )

111 # Poisson s e l e c t i o n o f WITS o f type 2
B0 [ ( params [ ”n . wi t s ” ]+3) : ( 2 ∗params [ ”n . wi t s ” ]+2) ] <− sapply ( params [

paste0 ( ” nwi t s inoc ” , seq (1 , params [ ”n . wi t s ” ] ) ) ] ∗(1−params [ ”q” ] ) ∗
params [ ” beta2 ” ] , rpo i s , n=1)

113

# Names : wt f o r un labe l l ed , Wij f o r a b a c t e r i a l a b e l l e d with tag
number j from the i t h subpopulat ion

115 names (B0)<−c ( ”wt1” , paste0 ( ”W1” , 1 : params [ ”n . wi t s ” ] ) , ”wt2” , paste0 ( ”
W2” , 1 : params [ ”n . wi t s ” ] ) )

117

# I f no l a b e l l e d b a c t e r i a pas s e s the Poisson s e l e c t i o n , the
s imu la t i on ends here :

119 i f (sum(B0 [ c ( 2 : ( params [ ”n . wi t s ” ]+1) , ( params [ ”n . wi t s ” ]+3) : ( 2 ∗params [
”n . wi t s ” ]+2) ) ] ) == 0)
{

121 sim = c ( time = 0 ,B0)
WITS. l a s t <− sim [ paste0 ( ”W1” , 1 : params [ ”n . wi t s ” ] ) ] + sim [ paste0 ( ”

W2” , 1 : params [ ”n . wi t s ” ] ) ]
123 # ( s t o r e s the f i n a l numbers o f WITS)

WITS. l a s t 1 <− sim [ paste0 ( ”W1” , 1 : params [ ”n . wi t s ” ] ) ]
125 WITS. l a s t 2 <− sim [ paste0 ( ”W2” , 1 : params [ ”n . wi t s ” ] ) ]

var = 0 # the var iance i s ze ro in t h i s case
127 moy = 0 # as we l l as the mean

}
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129

# I f some WITS have passed the Po i s son ian b a r r i e r ,
131 # the s imu la t i on cont inues

e l s e
133 {

################### TRANSITIONS ###################
135

# The al lowed t r a n s i t i o n s are f o r each populat ion type to
137 # gain one element ( through r e p l i c a t i o n ) or to l o s e one

# ( through death ) .
139 # Al l those t r a n s i t i o n s are independent from one another

141 t r a n s i t i o n s <− s sa . maketrans ( names (B0) ,
rbind ( ”wt1” , +1) ,

143 rbind ( ”W11” , +1) ,
rbind ( ”W12” , +1) ,

145 rbind ( ”W13” , +1) ,
rbind ( ”W14” , +1) ,

147 rbind ( ”W15” , +1) ,
rbind ( ”W16” , +1) ,

149 rbind ( ”W17” , +1) ,
rbind ( ”wt2” , +1) ,

151 rbind ( ”W21” , +1) ,
rbind ( ”W22” , +1) ,

153 rbind ( ”W23” , +1) ,
rbind ( ”W24” , +1) ,

155 rbind ( ”W25” , +1) ,
rbind ( ”W26” , +1) ,

157 rbind ( ”W27” , +1) ,
rbind ( ”wt1” , −1) ,

159 rbind ( ”W11” , −1) ,
rbind ( ”W12” , −1) ,

161 rbind ( ”W13” , −1) ,
rbind ( ”W14” , −1) ,

163 rbind ( ”W15” , −1) ,
rbind ( ”W16” , −1) ,

165 rbind ( ”W17” , −1) ,
rbind ( ”wt2” , −1) ,

167 rbind ( ”W21” , −1) ,
rbind ( ”W22” , −1) ,

169 rbind ( ”W23” , −1) ,
rbind ( ”W24” , −1) ,

171 rbind ( ”W25” , −1) ,
rbind ( ”W26” , −1) ,

173 rbind ( ”W27” , −1) )

175 #################### RATES ###########################

177 # To each al lowed t r a n s i t i o n a ra t e must be a s s o c i a t e d .
# The ra t e can depend on the cur rent s t a t e o f the system (B)

179 # and d i r e c t l y o f time

181 r a t e s <− f unc t i on (B, params , t )
{

183 # When ca r ry ing capac i ty K i s reached , r e p l i c a t i o n s tops :
i f (sum(B, na . rm=TRUE) > params [ ”K” ] ) r e p l i c a t i o n . r a t e s <− rep
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(0 ,2 ∗params [ ”n . wi t s ” ]+2)
185

# When car ry ing capac i ty i s not reached , the r e p l i c a t i o n
187 # r a t e s are p r op o r t i on a l to 1−(sum(B) /K) and to the s i z e

# o f the cons ide r ed populat ion :
189 e l s e

{
191 r e p l i c a t i o n . r a t e s <− vec to r ( ”numeric ” ,2 ∗params [ ”n . wi t s ” ]+2) ;

r e p l i c a t i o n . r a t e s [ 1 : ( params [ ”n . wi t s ” ]+1) ] <− params [ ” r1 ” ] ∗
(1−(sum(B) /params [ ”K” ] ) ) ∗ B[ 1 : ( params [ ”n . wi t s ” ]+1) ] ;

193 r e p l i c a t i o n . r a t e s [ ( params [ ”n . wi t s ” ]+2) : ( 2 ∗params [ ”n . wi t s ” ]+2)
] <− params [ ” r2 ” ] ∗ (1−(sum(B) /params [ ”K” ] ) ) ∗ B[ ( params [ ”n . wi t s ”
]+2) : ( 2 ∗params [ ”n . wi t s ” ]+2) ] ;
}

195 # The death r a t e s are f i x e d
# ( pr o p o r t i o n a l to the populat ion s i z e )

197 k i l l i n g . r a t e s <− params [ ”c” ] ∗ B
return ( c ( r e p l i c a t i o n . ra te s , k i l l i n g . r a t e s ) )

199 }

201 # Adaptivetau or exact SSA :
i f ( eps>0)

203 {
sim <− s sa . adapt ivetau (B0 , t r a n s i t i o n s , ra te s , params , t f=t f .

days , t l . params = l i s t ( e p s i l o n=eps ) ) ;
205 }

207 i f ( eps==0)
{

209 sim <− s sa . exact (B0 , t r a n s i t i o n s , ra te s , params , t f=t f . days ) ;
}

211

# Fina l var i ance and mean s to rage
213 WITS. l a s t <− sim [ dim ( sim ) [ 1 ] , paste0 ( ”W1” , 1 : 7 ) ] + sim [ dim( sim ) [ 1 ] ,

paste0 ( ”W2” , 1 : 7 ) ]
i f (sum(WITS. l a s t )>0)

215 {
var <− newnew var iance (WITS. l a s t , params [ paste0 ( ” nwi t s inoc ” , seq

(1 , params [ ”n . wi t s ” ] ) ) ] )
217 moy <− mean(WITS. l a s t /params [ paste0 ( ” nwi t s inoc ” , seq (1 , params [ ”n

. wi t s ” ] ) ) ] )
}

219 e l s e
{

221 var = 0
moy = 0

223 }

225 WITS. l a s t 1 <− sim [ dim ( sim ) [ 1 ] , paste0 ( ”W1” , 1 : 7 ) ]
WITS. l a s t 2 <− sim [ dim ( sim ) [ 1 ] , paste0 ( ”W2” , 1 : 7 ) ]

227 } # Ends the part o f the s imu la t i on to do only i f not a l l
# the WITS are l o s t at the f i r s t s tep

229

WITS. l o s s = sum(WITS. l a s t ==0)
231 # Output o f the ” s imu la t i on ” func t i on :

l i s t ( sim=sim , f i n a l . va r i ance=var , f i n a l . moy=moy ,WITS. l a s t = WITS. l a s t

169



Appendix C. Source code of the R simulations

,WITS. l o s s = WITS. l o s s )
233 }

################################################################
235 # DATA TREATMENT #

################################################################
237

########################## DATA IMPORT #########################
239

# data on plasmid d i l u t i o n in v i t r o :
241 datas t=read . csv ( ”ES15−010−standard . csv ” , header=TRUE)

# data on i n i t i a l and f i n a l WITS counts :
243 dataw=read . csv ( ”ES15−010−wits . csv ” , header=TRUE)

# data on i n i t i a l numbers in the inoculum :
245 inoc=read . csv ( ”ES15−010− inoc . csv ” , header=TRUE)

247 # Extracts the power o f ten o f the inoculum s i z e from expe r i ence name
( e . g . ”SB300 10 e5 ”) :

inoc . s i z e=func t i on ( x ) { subs t r (x , 1 0 , 1 0 ) }
249

##### MEAN GENERATION NUMBER ESTIMATE FROM PLASMID DILUTION ####
251

######## Bui ld ing the standard curve with in v i t r o data :
253

# Function g iv ing the log2 o f the plasmid d i l u t i o n in func t i on o f the
number o f r e p l i c a t i o n d :

255 f th eo ry s imp l e=func t i on ( de l tad =0, eps =0,d)
{min (0 , deltad−d∗(1−eps ) ) }

257

# Quadratic e r r o r to minimize :
259 fntominimize . eps=func t i on ( para , data )
{

261 de l tad=para [ 1 ]
eps=para [ 2 ]

263 datad=data [ , 1 ] # log2 o f the r a t i o f i n a l / i n i t i a l numbers
datap=data [ , 2 ] # log2 o f the propor t ion o f b a c t e r i a s t i l l c a r ry ing

a plasmid
265 sum ( ( sapply ( datad , f theorys imple , de l tad=deltad , eps=eps )−datap ) ˆ2)
}

267 s tv=c ( )
f o r ( i in 1 : 2 )

269 {
condi=(datas t [ ,1]== c ( ”SB300” , ”M2702” ) [ i ] )

271

# log2 o f the r a t i o between f i n a l and i n i t i a l numbers :
273 tempx=log2 ( datas t [ condi , ] $CFU. per . ml . t o t a l / datas t [ condi , ] $ Sta r t i ng .

CFU. per . ml . t o t a l )
# log2 o f the proport ion o f b a c t e r i a s t i l l c a r ry ing a plasmid :

275 tempy=log2 ( datas t [ condi , ] $CFU. per . ml .AmpR/ datas t [ condi , ] $CFU. per . ml
. t o t a l )

277 # non−l i n e a r minimizat ion :
t e s t=nlm( fntominimize . eps , p=c (0 , 0 ) , data=cbind ( tempx , tempy ) )

279

# Stocking the parameters e s t imate f o r the d i f f e r e n t s t r a i n s :
281 s tv=rbind ( stv , c ( c ( ”SB300” , ”M2702” ) [ i ] , t e s t $ es t imate ) )
}
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283

285 ####### Using the standard curve on in vivo plasmid data :

287 # Gives a mean r e p l i c a t i o n ra t e from the plasmid d i l u t i o n p :
f th eo ry s imp l e r ev=func t i on ( de l tad =0, eps =0,p)

289 {
i f (p>=1)

291 {
r=NA

293 }
e l s e

295 {
r=−(log2 (p)+de l tad ) /(1−eps )

297 }
r

299 }

301 recap=c ( ) # Store s data f o r each experiment
# Each l i n e corresponds to one exper iments and w i l l contain , in t h i s

order :
303 # sa lmone l l a s t r a i n type (” SB300” or ”M2702”)

# the inoculum s i z e (10ˆ3 , 10ˆ5 , 10ˆ7) , s i m p l i f i e d as 3 , 5 , 7
305 # the mouse ID , or ” a l l ” f o r measures pooled per sa lmone l l a and inoc

# the mean r e p l i c a t i o n ra t e
307 # var iance on the growth ra t e

recap=rbind ( recap , cbind ( as . cha rac t e r ( dataw [ dataw$day==1,]$ sa lmone l l a
s t r a i n . d i l u t i o n ) ,

309 inoc . s i z e ( dataw [ dataw$day==1,]$ treatment ) ,
as . cha rac t e r ( dataw [ dataw$day==1,]$mouse . ID) ,

311 rep ( ” r e p l i c a t i o n ” ,sum( dataw$day==1)) ,
apply ( cbind ( dataw [ dataw$day==1,]$X . .AmpR/ 100 ,

313 as . numeric ( s tv [ sapply ( dataw [ dataw$day==1,]$ sa lmone l l a s t r a i n .
d i l u t i o n , f unc t i on ( x ) {which ( s tv [ ,1]==x ) }) , 2 ] ) ,

as . numeric ( s tv [ sapply ( dataw [ dataw$day==1,]$ sa lmone l l a s t r a i n .
d i l u t i o n , f unc t i on ( x ) {which ( s tv [ ,1]==x ) }) , 3 ] ) ) ,1 ,

315 f unc t i on ( x ) { f t h eo ry s imp l e r ev (p=x [ 1 ] , de l tad=x [ 2 ] , eps=x [ 3 ] ) })
) )

317

################# CUTOFF ON THE WITS DATA ####################
319

temp=u n l i s t ( dataw [ , 1 0 : 1 6 ] ) # 7 columns o f 7 WITS data
321 temp=temp [ temp>0]

323 f o r ( i in 1 : dim ( dataw ) [ 1 ] ) {
f o r ( j in 10 : 16 ) {

325 i f ( dataw [ i , j ]<1){dataw [ i , j ]=0}
}

327 }

329 ################## LOG−LIKELIHOOD MAXIMIZATION ################

331 ###### Der iva t ive o f the log−l i k e l i h o o d
# wits . l o s t i s a boolean vec to r being TRUE f o r the l o s t WITS

333 d e r i v a t i v e . l og . l i k e l i h o o d . beta . c=func t i on ( beta , i n i t i a l . wits , w i t s . l o s t
, r1 , r2 , q , t , inoc tot , f i n a l t o t , rmean )
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{
335 c=(1/ t ) ∗ l og ( ( beta ∗ i n o c t o t ∗exp ( rmean∗ t ) ) / f i n a l t o t )

tempdl l =((q∗ ( r1−c ) ) / ( r1−c∗exp(−( r1−c ) ∗ t ) ) ) + ( ( ( r2−c ) ∗(1−q ) ) / ( r2−c∗
exp(−( r2−c ) ∗ t ) ) ) #=1 when c=0

337 −sum( i n i t i a l . w i t s ∗ wits . l o s t ∗ tempdl l )+sum( i n i t i a l . w i t s ∗(1−wits . l o s t )
∗ tempdl l ∗exp(−beta ∗ i n i t i a l . w i t s ∗ tempdl l ) /(1−exp(−beta ∗ i n i t i a l .
w i t s ∗ tempdl l ) ) )

}
339

##### Function g iv ing beta from the root o f the d e r i v a t i v e o f
341 # the log−l i k e l i h o o d , a l l the other parameters being known :

l o s s . f unc t i on=func t i on ( winoc ,w, bounds , r1b , r2b , qb , tb , inoctotb ,
f i n a l t o t b , rmeanb )

343 {
i f (sum(w==0)==0)

345 {# no l o s s
r e s=1

347 }
e l s e i f (sum(w==0)==length (w) )

349 {# a l l l o s t
r e s=0

351 }
e l s e

353 {
r e s=un i root ( d e r i v a t i v e . l og . l i k e l i h o o d . beta . c , bounds ,

355 i n i t i a l . w i t s=winoc ,
wi t s . l o s t =(w==0) , r1=r1b , r2=r2b , q=qb , t=tb , i n o c t o t=

inoctotb , f i n a l t o t=f i n a l t o t b , rmean=rmeanb , extendInt=” yes ” ) $ root
357

}
359 r e s
}

361

####### STOCKING EXPERIMENTAL VARIANCE AND MEAN POP SIZE #######
363

f o r ( i in 1 : dim( dataw ) [ 1 ] )
365 {

tempw2=dataw [ i , 1 0 : 1 6 ] # f i n a l numbers o f WITS f o r exp . i
367

# Put i n i t i a l numbers o f WITS in the inoculum in tempn02 :
369 i f ( subs t r ( dataw [ i , 3 ] , 1 , 1 )==”S” )

{
371 tempn02=dataw [ ( dataw$day==0)&( dataw$ sa lmone l l a s t r a i n . d i l u t i o n==”

SB300” ) , 1 0 : 1 6 ]
tempn02=(tempn02/sum( tempn02 ) ) ∗ ( dataw [ i , ] $WITS. per . inoculum ) [ 1 ]

373 tempn02=u n l i s t ( tempn02 )
}

375

i f ( subs t r ( dataw [ i , 3 ] , 1 , 1 )==”M” )
377 {

tempn02=dataw [ ( dataw$day==0)&( dataw$ sa lmone l l a s t r a i n . d i l u t i o n==”
M2702” ) , 1 0 : 1 6 ]

379 tempn02=tempn02/sum( tempn02 ) ∗ ( dataw [ i , ] $WITS. per . inoculum ) [ 1 ]
tempn02=u n l i s t ( tempn02 )

381 }
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383 tempw2=as . numeric ( tempw2)

385 recap=rbind ( recap , c ( as . cha rac t e r ( dataw [ i , ] $ sa lmone l l a s t r a i n .
d i l u t i o n ) ,

inoc . s i z e ( dataw [ i , ] $ treatment ) ,
387 as . cha rac t e r ( dataw [ i , ] $mouse . ID) , ” var i ance ” ,

newnew var iance norm(tempw2 , tempn02 ) ) )
389

recap=rbind ( recap , c ( as . cha rac t e r ( dataw [ i , ] $ sa lmone l l a s t r a i n .
d i l u t i o n ) ,

391 inoc . s i z e ( dataw [ i , ] $ treatment ) ,
as . cha rac t e r ( dataw [ i , ] $mouse . ID) , ”mean” ,

393 mean pop s i z e exp (tempw2 , tempn02 ) ) )
}

395

############### SIMULATIONS AND RESULTS STOCKING ###############
397

t l = 1
399 n i t e r = 3000

n . w i t s l=7
401 rmaxl = 48∗ l og (2 ) #(30min=1/48 day , the time un i t )

403 f o r ( s t r a i n in c ( ”SB300” , ”M2702” ) )
{

405 f o r ( i no c s in c (3 , 5 , 7 ) )
{

407 # Getting the i n i t i a l t o t a l number
i n o c l=inoc [ ( subs t r ( inoc $ Inoculum , 1 , 5 )==s t r a i n )&( subs t r ( inoc $

Inoculum , 1 0 , 1 0 )==inoc s ) , 2 ] #t o t a l i n i t i a l number o f b a c t e r i a
409

# S e l e c t i n g from the r i g h t inoculum s i z e and s t r a i n :
411 condi=(dataw$ sa lmone l l a s t r a i n . d i l u t i o n==s t r a i n )&( sapply ( dataw$

treatment , inoc . s i z e )==inoc s )
tempn02=dataw [ ( dataw$day==0)&( dataw$ sa lmone l l a s t r a i n . d i l u t i o n==
s t r a i n ) , 1 0 : 1 6 ]

413 tempn02=tempn02/sum( tempn02 ) ∗ ( dataw [ condi , ] $WITS. per . inoculum ) [ 1 ]
# I n i t i a l numbers o f WITS:

415 n w i t s i n o c l=as . numeric ( u n l i s t ( tempn02 ) )

417 # Average (3 mice/exp . ) o f the t o t a l f i n a l number
nb . f i n a l = mean( dataw [ ( dataw$day==1)&( dataw$ sa lmone l l a s t r a i n .
d i l u t i o n==s t r a i n )&( sapply ( dataw$ treatment , inoc . s i z e )==inoc s ) , 9 ] )

419

# Average (3 mice/exp . ) o f the mean r e p l i c a t i o n ra t e
421 r l=log (2 ) ∗mean( as . numeric ( recap [ ( ( recap [ ,4]==” r e p l i c a t i o n ” ) )&(

recap [ ,1]== s t r a i n )&( recap [ ,2]== inoc s ) , 5 ] ) , na . rm=TRUE)

423 # Fina l numbers o f WITS
condi=(dataw$ sa lmone l l a s t r a i n . d i l u t i o n==s t r a i n )&( sapply ( dataw$
treatment , inoc . s i z e )==inoc s )&( dataw$day==1)

425 tempw3=as . numeric ( u n l i s t ( dataw [ condi , 1 0 : 1 6 ] ) )

427 # Proport ion o f WITS l o s t
p . l o s s = sum(tempw3==0)/ l ength ( tempw3)

429

# Parameter space to exp lo r e :
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Appendix C. Source code of the R simulations

431 q l =0.1∗ ( 0 : 1 0 )
a l = 1+0.5∗ ( 0 : 1 0 ) # alpha > 1

433

# stock ing the r e s u l t s
435 z . var . norm = c ( ) # i t e r a t e d var iance

z . var . th = c ( ) # t h e o r e t i c a l var i ance
437 s tockbeta=c ( ) # beta es t imate

s tock . c=c ( ) # c es t imate
439

f o r ( i a in ( 1 : l ength ( a l ) ) )
441 {

443 f o r ( i q in ( 1 : l ength ( q l ) ) )
{

445

f r o o t <− f unc t i on ( x ) { q l [ i q ] ∗exp ( a l [ i a ] ∗x )+(1−q l [ i q ] ) ∗exp ( x )−
exp ( rmaxl ) }

447 rmaxl2 = un i root ( f roo t , c (0 ,2 ∗ rmaxl ) , t o l =0.000000000001)$ root
rmaxl1 = a l [ i a ] ∗ rmaxl2

449

bl = l o s s . f unc t i on ( winoc=rep ( nwi t s inoc l , sum( condi ) ) ,
451 w=tempw3 , bounds = c ( 0 . 0 0 01 , 5 ) , r1b=rmaxl1 ,

r2b=rmaxl2 , qb=q l [ i q ] , tb=t l , i noc to tb=inoc l ,
453 f i n a l t o t b=nb . f i n a l , rmeanb=r l )

c l = (1 / t l ) ∗ l og ( ( b l ∗ i n o c l ∗exp ( r l ∗ t l ) ) /nb . f i n a l )
455

s tockbeta=c ( stockbeta , b l )
457 s tock . c=c ( s tock . c , c l )

459 Kl = nb . f i n a l /(1− c l / rmaxl )

461 temp = c ( )
temp . var = c ( )

463 temp . moy = c ( )

465 f o r ( i i t e r in 1 : n i t e r )
{

467 temp = s imu la t i on ( params=c ( inoc=inoc l , beta1=bl ,
beta2=bl , r1=rmaxl1 , r2=rmaxl2 ,

469 nwi t s inoc=nwi t s inoc l , c=c l , n . w i t s=n . w i t s l ,
K=Kl , q=q l [ i q ] ) , t f . days=t l , eps =0.003)

471 temp . var = c ( temp . var , temp$ f i n a l . va r i ance )
temp . moy = c ( temp . moy , mean ( ( temp$WITS. l a s t ) /

473 n w i t s i n o c l ) )
}

475

z . var . norm = c ( z . var . norm , mean( temp . var ) /
477 ( ( mean( temp . moy , na . rm=TRUE) ) ˆ2) )

z . var . th = c ( z . var . th , newnew var norm th ( bl , rmaxl1 ,
479 rmaxl2 , c l , t l , n . w i t s l , nw i t s inoc l , q l [ i q ] ) )

} # on q
481 } # on alpha

483 zt . var . norm = matrix ( z . var . norm , l ength ( q l ) , l ength ( a l ) )
z t . var . th = matrix ( z . var . th , l ength ( q l ) , l ength ( a l ) )

485 zt . s tock . beta = matrix ( stockbeta , l ength ( q l ) , l ength ( a l ) )
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zt . s tock . c = matrix ( s tock . c , l ength ( q l ) , l ength ( a l ) )
487

################### PLOT ####################
489

n . cou l eu r s = 50
491

### Color s c a l e f o r the var iance
493 min . l o c a l = min ( log10 ( zt . var . norm [ i s . f i n i t e ( log10 ( zt . var . norm) ) ] )

, l og10 ( zt . var . th ) )
max . l o c a l = max( log10 ( zt . var . norm [ i s . f i n i t e ( log10 ( zt . var . norm) ) ] )
, l og10 ( zt . var . th ) )

495 breaks . l o c a l = min . l o c a l + ( 0 : n . c ou l eu r s ) ∗ (max . l o c a l−min . l o c a l ) / (
n . c ou l eu r s )

497 image (min . l o c a l +(0:(n . cou leurs −1)−0.5)∗ (max . l o c a l−min . l o c a l ) / (n .
cou leurs −1) ,

1 , matrix ( min . l o c a l +(c ( 1 , 1 : ( n . cou leurs −1) ) −0.5)∗ (max . l o c a l−
min . l o c a l ) / (n . cou leurs −1) ,n . cou leurs , 1 ) ,

499 c o l=heat . c o l o r s (n . c ou l eu r s ) , breaks=breaks . l o c a l , yaxt=”n” ,
main=” s c a l e var i ance ” )
f o r ( va l in c ( −2 ,0 ,2 ,4 ,6 ,8 ,10 ,12) )

501 { l i n e s ( c ( val , va l ) , c ( 0 , 2 ) ) }

503 ### Simulated var iance
image ( ql , a l , l og10 ( zt . var . norm) , xlab=”q” , ylab=” alpha ” , main=paste0 (
” Simulated var iance ” , s t r a in , ” 10ˆ” , i no c s ) ,

505 c o l=heat . c o l o r s (n . c ou l eu r s ) , breaks=breaks . l o c a l )
t i t i=as . numeric ( recap [ ( recap [ ,4]==” var iance ” )&( recap [ ,1]== s t r a i n )

&( recap [ ,2]== inoc s ) , 5 ] )
507 t i t i=t i t i [ ! i s . na ( t i t i ) ]

t i t i [ t i t i ==0]=0.0000000001
509 contour ( ql , a l , l og10 ( zt . var . norm) , c o l = ” black ” , add = TRUE,

method = ” edge ” , v font = c ( ” sans s e r i f ” , ” p l a i n ” ) , l e v e l s=log10 (
mean( t i t i ) ) )
contour ( ql , a l , l og10 ( zt . var . norm) , c o l = ” black ” , add = TRUE,

method = ” edge ” , v font = c ( ” sans s e r i f ” , ” p l a i n ” ) , l e v e l s=log10 (
t i t i ) , l t y =2)

511

### Theo r e t i c a l var i ance
513 image ( ql , a l , l og10 ( zt . var . th ) , xlab=”q” , ylab=” alpha ” , main=paste0 ( ”

Theo r e t i c a l var i ance ” , s t r a in , ” 10ˆ” , i no c s ) ,
c o l=heat . c o l o r s (n . c ou l eu r s ) , breaks=breaks . l o c a l )

515 t i t i=as . numeric ( recap [ ( recap [ ,4]==” var iance ” )&( recap [ ,1]== s t r a i n )
&( recap [ ,2]== inoc s ) , 5 ] )
t i t i=t i t i [ ! i s . na ( t i t i ) ]

517 t i t i [ t i t i ==0]=0.0000000001
contour ( ql , a l , l og10 ( zt . var . th ) , c o l = ” black ” , add = TRUE,

method = ” edge ” , v font = c ( ” sans s e r i f ” , ” p l a i n ” ) , l e v e l s=log10 (
mean( t i t i ) ) )

519 contour ( ql , a l , l og10 ( zt . var . th ) , c o l = ” black ” , add = TRUE,
method = ” edge ” , v font = c ( ” sans s e r i f ” , ” p l a i n ” ) , l e v e l s=log10 (
t i t i ) , l t y =2)

} # on inoculum s i z e
521 } # on the s t r a i n

figures/code clean.R
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Appendix D

Constant division time instead
of constant division rate?

In our models of part I, we have always considered a fixed replication rate for
the sake of simplicity. However, fixed replication times are closer to the reality
of bacterial replication. In this section, we will study a simple model with one
population, identical to the null model defined at the beginning of section 1.2,
but with all the bacteria that divide after a fixed replication time τ instead of at a
fixed rate r. Death happens at fixed rate c, and the initial size of the population
is a random number drawn from a Poisson distribution of mean βN .

D.1 Generating function

We will use the formalism developed in [38]. Let us write Zi the size of the
population at the ith generation (i.e. after a time iτ). We make the assumptions
that (Z0, Z1,... ) form a Markov chain, meaning that Zn+1 only depends on
Zn, and that the transition probabilities for the chain do not vary with time.
We also suppose that each individual is behaving independently from the others,
meaning that the number of offspring per individual in the next generation does
not depend on the size of the population. With these assumptions, the model we
consider is a branching process, also called a Galton-Watson process. Writing pk
the probability for one individual to produce k offspring in the next generation,
the probability generating function is defined as:

f(s) =

∞∑
k=0

pks
k

where s is a complex variable. In our death-birth process, those pk are easy to
write: either the considered individual is dead before the next generation and
hence produces no offspring, either it is not dead and it divides in two new
individuals at time τ . Thus only p0 and p2 will be non-zero. During the time
interval between two replication events, the size of the population N(t) follows
an exponential decay of the form N(t) = Ne−ct. Thus after the time τ , only a
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Appendix D. Constant division time instead of constant division rate?

fraction e−cτ of the initial population has survived, e−cτ is thus the probability of
survival for one individual during the time τ . Thus p0 = 1− e−cτ and p2 = e−cτ ,
and finally:

f(s) = 1− e−cτ + s2e−cτ

As shown in [38], the generating function of Zn, the size of the population
at the nth generation, knowing that Z0 = 1, writes as the function f composed
with itself n times fn = f ◦ f ◦ ... ◦ f . Now let us assume that Z0 = k: the
generating function of Zn will be [fn]k, because Zn can then be seen as the sum
of k groups of individuals of sizes Z1

n, ...Z
k
n, each group coming from one specific

of the k initial individuals and resulting from an independent branching process:

[fn(s)]k =

[ ∞∑
i=0

P (Zn = i | Z0 = 1)si

]k
=
∑
i1

∑
i2

...
∑
ik

P (Z1
n = i1 | Z0 = 1)...P (Zkn = ik | Z0 = 1)si1 ...sik

=
∑

i1+...+ik=i

P (Z1
n = i1 | Z0 = 1)...P (Zkn = ik | Z0 = 1)si

=
∑
i

P (Zn = i | Z0 = k)si

In our case, we want Z0 to be drawn from a Poissonian distribution of mean
βN . Thus the total generating function for the distribution of the size of the
population after n generations writes:

ftot(s) =
∞∑
k=0

P (Z0 = k)[fn(s)]k =
∞∑
k=0

[fn(s)]k
(βN)k

k!
e−βN

ftot(s) = exp[βN(fn(s)− 1)] (D.1)

D.2 Mean population size

From the generating function expression D.1, one can get the mean size of the
population at the nth generation:

〈Zn〉 =
∞∑
i=0

iP (Zn = i) =
∂ftot
∂s

∣∣∣∣
s=1

=
∂fn
∂s

∣∣∣∣
s=1

βN exp[βN(fn(1)− 1)]

One can show by recurrence that

f ′n(s) =
∂fn
∂s

=

n−1∏
i=0

f ′ ◦ fi, (D.2)

with f0 being defined as the identity function and fi the function f being com-
posed i times with itself. 1 is a fixed point of f , hence fi(1) = 1 for all i, and in
fine:

〈Zn〉 = βN [f ′(1)]n = βN [2e−cτ ]n
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D.4. Fixed point and extinction probability

which matches what we expected. To make the final population size correspond
to the one we get in the fixed rate model (βN exp(r − c)t after a time t = nτ),
the replication rate has to be defined as r = ln(2)/τ , as it was seen previously
already (when calculating rmean from the plasmid dilution in section 2.2.1).

D.3 Fixed point and extinction probability

The extinction probability, i.e. the probability that at a certain point all bacteria
are dead, is given by:

ftot(0) =

∞∑
k=0

P (Zn = k)0k = P (Zn = 0)

For large n, fn(0) can be approximated by the first fixed point s∗ of the function
f , given by f(s∗) = s∗ (similarly to a recurring sequence converging to the fixed
point of the function which defines it). f admits one fixed point smaller than 1,
provided that 2e−cτ > 1: s∗ = ecτ − 1, 1and thus the probability of extinction is
given by:

lim
n→+∞

P (Zn = 0) = exp[βN(ecτ − 2)] (D.3)

Since we took the limit of a high number of generations n in the fixed replication
time model, we should compare it with the large time limit of the extinction
probability in the fixed replication rate model (equation 2.1):

lim
t→+∞

P (n = 0, t) = exp[−βN(1− c

r
)].

Let us consider the survival probability S1 = 1 − s∗ of the lineage of one
established bacteria (then the overall survival probability is 1 − exp(−NβS1),
summing over the Poisson distribution). When bacteria divide every τ , S1,τ =
2− exp(cτ), while when bacteria divide at a rate r, S1,r = 1− c/r. We have seen
in the previous section that we need to take τ = ln 2/r to impose the equivalence
in the mean population sizes. Then S1,τ = 2− 2c/r. It can be easily shown that
for any c/r between 0 and 1, 1 − c/r ≤ 2 − 2c/r, then S1,r ≤ S1,τ . Survival is
increased when taking fixed division time instead of a fixed division rate.

D.4 Variance and variance on the growth factor

Likewise, we calculate the variance over population size after n generations:

1s∗ is also the probability of extinction for the lineage of one established bacteria (after the
Poisson process), since fn is the generating function for the nth generation knowing that one
started from one established bacteria
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〈var〉 =
〈
(Zn − 〈Zn〉)2

〉
= 〈Z2

n〉 − 〈Zn〉2 =
∞∑
i=0

i2P (Zn = i)− 〈Zn〉2

=
∞∑
i=0

i(i− 1)P (Zn = i) +
∞∑
i=0

iP (Zn = i)− 〈Zn〉2

=
∂2ftot
∂s2

∣∣∣∣
s=1

+ 〈Zn〉 − 〈Zn〉2

Let us first calculate the second derivative of the total generating function
eq. (D.1):

f ′′tot(s) =
∂2ftot
∂s2

= f ′′n(s)βN exp[βN(fn(s)−1)]+(f ′n(s))2(βN)2 exp[βN(fn(s)−1)]

The second derivative of fn can be deduced from the expression of its first
derivative eq. (D.2):

f ′′n(s) =

[
n−1∏
i=0

f ′ ◦ fi(s)

]′
=

n−1∑
j=0

[f ′ ◦ fj ]′
n−1∏
i=0
i 6=j

f ′ ◦ fi

Then one can make the following simplification, since f ′′(s) = 2e−cτ is a
constant:

[f ′ ◦ fi]′ = f ′i [f
′′ ◦ fi] = 2e−cτf ′i

Remembering that fi(1) = 1 and that f ′i(1) = [2e−cτ ]i for all i, one finally
gets:

f ′′n(1) = [2e−cτ ]
n−1∑
j=0

[2e−cτ ]j [f ′(1)]n−1 = [2e−cτ ]n
n−1∑
j=0

[2e−cτ ]j = [2e−cτ ]n
(1− [2e−cτ ]n)

1− [2e−cτ ]

Replacing in the expression of the total second derivative:

f ′′tot(1) = βN [2e−cτ ]n
(1− [2e−cτ ]n)

1− [2e−cτ ]
+ (βN)2[2e−cτ ]2n

And in fine in the variance:

〈var〉τ =βN [2e−cτ ]n
(1− [2e−cτ ]n)

1− [2e−cτ ]
+ βN [2e−cτ ]n

=β2N2(2e−cτ )2n 1

βN

(
1

2e−cτ − 1
+ (2e−cτ )−n

2e−cτ − 2

2e−cτ − 1

)
.

(D.4)

In the fixed replication rate model, we had the following expression for the
simple variance:

〈var〉r =
(
βNe(r−c)t

)2 1

βN

(
2r

r − c
− r + c

r − c
e−(r−c)t

)
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D.5. Variance and variance on the growth factor

The ratio is :

varr
varτ

=
2r
r−c −

r+c
r−ce

−(r−c)t

1
2e−cτ−1

+ (2e−cτ )−n 2e−cτ−2
2e−cτ−1

Then, in the limit of long time (t and n large),

varr
varτ

→ 2r(2e−cτ − 1)

r − c
=

2r(21−c/r − 1)

r − c

In the limit of c � r, this ratio tends to 2 : the variance is larger in the case
of division at a rate r rather than division every τ . The exact ratio is shown on
fig. D.1 (replacing t by nτ and r by ln(2)/τ).
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Figure D.1 – Red: variance for the fixed time model; Cyan: variance for the fixed rate

model, in function of n (the number of generations, so that t = nτ). Values for the other

parameters: β = 0.115, c = 0.2r, τ = 1/48, r = 48 ∗ ln(2) (time unit is the day).

Then, for the variance over the growth factor, we calculate〈(
mi

ni

)2
〉

=
1

n2
i

〈mi(mi − 1)〉+
1

n2
i

〈mi〉 =
1

n2
i

∂2ftot
∂s2

∣∣∣∣
s=1

+
β(2e−cτ )n

ni

=β(2e−cτ )n
(

1 +
1− [2e−cτ ]

n

1− [2e−cτ ]

)
1

h

h∑
i=1

1

ni

and then with eq. (2.10):

〈var〉τ = β(2e−cτ )n
(

1 +
1− [2e−cτ ]

n

1− [2e−cτ ]

)
1

h

h∑
i=1

1

ni
(D.5)

Note that if we take all ni = N we recover the simple variance D.4 divided by
N2.
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D.5 Comparison with data

We have seen that the expression of the two observables “WITS loss” and “vari-
ance” were changed when we consider a fixed division time instead of a fixed
replication rate : both the loss probability and the variance are decreased. We
know that bacteria actually divide at constant time rather than at constant rate,
thus it is important to check if our hypothesis of constant rate impacts our re-
sult considerably or not. It is not trivial to predict the impact on the parameter
estimates, since the whole observables landscape will be shifted differently for
each observable. Thus we go back to the experimental values contour curves on
the observables landscape presented in the one-population model section 2.5.2.
The contour curves on the population size are unchanged since we have equiva-
lence between the two models for the population size. The question is to know
whether the fixed time model will see the contour for the variance and for the
loss get closer, or on the contrary, further apart. After close examination of all
the data in this framework, the answer is that it depends on the experiment : in
some of them, the fixed time pulls the estimates further apart (as for example in
figure D.2), and in some others, it gets them closer together (as for example in
figure D.3). Thus, no clear conclusion can be drawn on the impact of the fixed
replication rate hypothesis on our study.
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Figure D.2 – Contour lines for the experiment with strain “SB300” starting with 103

inoculum. A. is a repetition of figure 2.8B., except that the confidence interval lines

(variance of the variance and quantiles for the variance, quantiles of the WITS loss)

and the loss as calculated from the log-likelihood have been removed, so as to ease visual

comparison (because no equivalent was derived in the framework of the fixed division time

model). B. Everything as in A, except that the landscapes for the variance (expression

D.5) and the proportion of lost WITS (expression D.3) are calculated in the framework

of the fixed division time model. In this case, switching to the fixed division time model

pulls the two estimates (from the variance and the loss) further apart.
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D.5. Comparison with data
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Figure D.3 – Contour lines for the experiment with strain “SB300” starting with a 105

inoculum. Same color code as in figure D.2: Red dashed: final experimental variance

in three mice on the theoretical variance landscape (as calculated in the framework of

the fixed replication rate for A. and fixed division time for B. Only one appears, because

all the WITS were lost in the two other mice and a null variance does not appear on

this grid of parameters), and red solid line: the mean value. Green line: contour of the

experimental proportion of WITS lost (combining the data on the three mice) on the

theoretical proportion of WITS lost landscape (as calculated in the framework of the fixed

replication rate for A. and fixed division time for B.). Green doted lines: on the same

landscape, contour lines for the proportion of WITS lost +/− its square root. Black:

on the landscape of the theoretical mean growth factor, the contour for its experimental

value in the three mice (dashed lines) and for the average (solid line). In this case,

switching to the fixed division time model get the two estimates (from the variance and

the loss) closer.
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Appendix E

Detailed derivation for the
model with force-dependent
breaking rate

We present here the details of the derivations for the equations of our force-
dependent breaking rate model from section 5.3.5.

A link between bacteria may consist of several sIgA bonds, and the number
of bound sIgA may not be exactly the same from one inter-bacteria link to the
next, but as sIgA are likely well mixed, many per bacteria and that bacteria
are similar to each other, let us assume that link heterogeneity is negligible.
The links could break if there was some process degrading the sIgA, but the
sIgA are thought to be very stable[66]. Another possible explanation for link
breaking is that the antigen get extracted from the bacterial membrane, which
may depend exponentially with the force applied on the link[67][63]. If the forces
are produced by the bacteria themselves (such as by flagella rotation), there are
likely to fluctuate on timescales which are short compared to the time between
two bacterial replications, and their distribution is likely to be the same for all
links, so it would be appropriate to model their effect as a fixed breaking rate,
the same for all the links. Another force is the hydrodynamical force exerted by
the flow on the bacterial chain.

The flow in the digestive system is complex and not precisely characterized.
Longer bacterial chains may also bend and their shape have complex interactions
with the flow. Here, we present the simplest model taking into account the forces
exerted by the flow on the link breaking rate. We aim to capture the main
plausible effects of the flow when the link breaking rate is force-dependent.

Let us take a linear chain of N bacteria, each of length B. Let us approximate
it by a rigid chain with beads linked by straight rods of length B (panel A of figure
E.1). Let us assume that the rods are infinitely thin so they do not interact with
the flow, and let us neglect the hydrodynamical interaction between the beads,
so that they are each subject to the same frictional force for a given fluid velocity,
and, given that the typical Reynolds numbers in the digestive tract are relatively
low[9], then the viscous force on each bead is proportional to the flow velocity.
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Appendix E. Detailed derivation for the model with force-dependent
breaking rate

Figure E.1 – Schematic of the forces applied to the chain. A We assume a straight chain

of beads with no hydrodynamic interactions between them. B We subtract the average

force to put ourselves in the referential of the center of the chain, as the total force will

translate the whole chain and not impact the forces on the links. We focus on the forces

parallel to the chain that will impact the tension between the links. C Sum of the forces

on each bead, for chains with even and odd numbers of beads.

Then, let us assume that the velocity gradient in the fluid is constant around
the chain. The rationale for this approximation is that the typical scales of the
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flow are of the order of the centimeter / millimeter (for instance in a mouse,
the cecum typical size is in the cm range), much larger than typical bacterial
chains (the length of one bacterium is about 2µm, so even chains of dozens of
bacteria remain small compared to the typical flow scale), thus we take a linear
approximation of the velocity field in the vicinity of a bacterial chain.

Then, if we take the sum of the forces on the whole chain, it will be equal
to mN multiplied by the acceleration of the center of mass of the chain, with
m the mass of each bead. When all the beads move together, there is no force
on the links, thus let us take the referential relative to the center of the chain,
and subtract the mean force on each bead (panel B of figure E.1). Then, there
remains forces perpendicular to the axis of the chains, and forces parallel to the
axis of the chain. The forces perpendicular to the axis of the chain will make it
rotate, and as they are perpendicular, they have no effect on the tension on the
rods. Then, let us consider only the forces parallel to the chain.

In the example portrayed here, the chain is elongated. The reverse could
happen, but in this case, the chain would likely buckle, and the force applied
on the links would be small. The flow varies considerably in time, due to peri-
staltic motions[10][9]. There would be moments with no force and little breaking,
and moments with larger forces and more breaking. The flow due to peristaltic
motions changes on time scales short compared to the typical bacterial division
time, thus we will assume that periods of low breaking and high breaking rates
will be equivalent to an average effective breaking rate. Then let us consider the
case of elongation only, as portrayed here.

Then the force on each bead is equal to F0 multiplied by the distance to the
center divided by B. We assume, following [67][63], that the breaking rate is
dependent on the force. Thus, we define α and β such that the breaking rate of a
link is α exp(βF/F0) if a force F is applied to the link. In the limit of small force,
the breaking rate will be α, the same for all links, as in the base model. β is some
constant caracterizing how much the stability of the link is force-dependent.

We can write the force on each bead (panel C of figure E.1). Then, here,
because the chain is rigid and straight, the sum of the forces on each bead has to
be zero. The tension on the outermost link will simply be equal to the flow force
on the outermost bead, i.e. F0 multiplied by its distance to the center divided by
B, i.e. (N − 1)/2 (both for chains of odd and even numbers of beads). On the
next link, the tension has to compensate for the flow force on the second bead,
plus the tension applied by the outermost link. Thus the tension on this link is
F0((N − 1)/2 + (N − 1)/2 − 1), and so forth (this is analogous to modeling of
breaking of polymer chains in elongational flows, as in[65]).

For N even, the force on the jth link starting from the outermost link will be:

Fjth link,N even = F0

N/2∑
k=N/2−j+1

(k − 1/2)
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breaking rate

Using
∑n

i=1 i = n(n+ 1)/2, it can be rewritten as:

Fjth link,N even = F0

(
N(N + 2)

8
− (N − 2j)(N + 2− 2j)

8
− j/2

)
,

Fjth link,N even = F0

(
N2

8
− (N − 2j)2

8

)
.

There are two links jth away from the extremities, for j from 1 to N/2− 1, and
one central link, for which j = N/2. This leads to:

dni
dt

= −rini − αnieβi
2/8

1 + 2

i/2∑
k=2

e−(k−1)2β/2

+ r(i− 1)ni−1 + 2αni+1e
βi/2

For N odd, the force on the jth link starting from the outermost link will be:

Fjth link,N odd = F0

(N−1)/2∑
k=(N−1)/2−j+1

k.

Simiarly to the N even case, we can rewrite:

Fjth link,N odd = F0

(
(N − 1)(N + 1)

8
− (N − 1− 2j)(N + 1− 2j)

8

)
,

Fjth link,N odd = F0

(
N2

8
− (N − 2j)2

8

)
Because of the two sides, there are two links j for each chain, for j from 1 to
(N − 1)/2. Then, this leads to the following equation for the evolution in time of
the mean number of clusters of odd size i:

dni
dt

= −rini − 2αnie
βi2/8

(i−1)/2∑
k=1

e−(k−1/2)2β/2 + r(i− 1)ni−1 + 2αni+1e
βi/2.
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Appendix F

Proportion of mixed clusters
and probability to transmit at
least one mutant

In our model of chapter 6, we take the mean field assumption that the propor-
tion of resistant versus sensitive bacteria at the end of the infection can just be
taken as its mean expected value (average over several realization of the intra-
host dynamics), consistently with the deterministic ordinary differential equations
model. However, fluctuations could be important. For instance, if the infection
starts from a small number of bacteria of the same type, a mutant appearing
during the first replication will then make an important share of the population
at the end of the infection. We also assume that in immune individuals, except
if the infection starts with only sensitive bacteria, clusters are only of one type,
either all sensitive or all resistant. In this section, we explore how realistic these
assumptions are.

First, if the infection starts with a mix of sensitive and resistant bacteria,
as loss of bacteria will be rare at the beginning of the infection, and as the
population of bacteria grows to large numbers in the infected host, the number
of both sensitive and resistant bacteria will be large, so that fluctuations are not
expected to play a big role. There will be some mutations, but of very small
impact, since a substantial fraction of both types is already present. The case in
which mutations and fluctuations are expected to matter is when the infection
starts with bacteria of only one type. Let us here discuss the case in which all
the infecting bacteria are of one type (it does not matter whether it is resistant
or sensitive), with µ the mutation probability to the other type for each daughter
cell, and let us look at the probability to transmit at least one mutant bacteria.
For the sake of simplicity, we will consider here the case s = 0, i.e. both bacterial
types have the same fitness.

Let us assume that there are G generations, and that clusters are of size 2g,
with 2g = Nc. We here assume that Nc, the cluster size, is equal to Nb, the
bottleneck size. We both write them as N . We will consider exponential growth:
starting from size N , bacteria divide G times, leading to a final population size
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N2G. At each replication, each daughter bacteria has a probability µ of mutating.

In the mean field approximation, let us consider bacteria at the end of the
infection. They went through G replications from the start of the infection, so
they have a probability µG of being mutant. When transmitting N bacteria (and
assuming that N is very small compared to the final population size, and that
NµG� 1), the probability to transmit (at least) one mutant is 1− (1−µG)N '
NµG in the naive case; in the immune case, we assume that there is a probability
µG to transmit a cluster of mutants only, and only sensitive are transmitted in
the other cases. Here we will study the validity of these assumptions. Henceforth,
we will consider the case of a very small mutation rate µ so that at most one
mutation occurs during the infection of a host.

Naive individual

Consider the lineage of one bacteria: it involves G steps of replication. At step
j, this bacteria has 2j descendants, there is a probability µ2j that one mutation
occurs at this step, in which case 2G−j bacteria will carry the mutation in the final
population. This will correspond to a proportion Pj = 2G−j/(2GN) = 1/(N2j)
in the final population.

Assuming that 2G � 1, we can neglect the difference between taking a sample
with or without replacement, so the probability for a transmission from a naive
host to contain at least one mutant will be 1 − (1 − Pj)N (probability 1 − Pj
for one bacteria to be of the initial type, probability (1− Pj)N that all bacteria
chosen are of the initial type). So, multiplying by the initial N bacteria, and
summing over the G replication steps, the probability that a transmission from
a naive host includes at least one mutant is:

m1,naive =
G∑
j=1

Nµ2j

(
1−

(
1− 1

N2j

)N)
(F.1)

In the limit of j large, (1− 1
N2j

)N ' 1−1/2j , equation (F.1) yieldsm1,exp,naive '
NµG. Hence, the mean field result is recovered. We know the mean field is an
upper bound of the real value: an early mutation will lead to a higher propor-
tion of mutant in an individual, and thus the probability that several mutants
are transmitted at the same time will be higher. But, because when we average
over all the possible transmissions the mean number of mutants does not change,
transmitting several mutants at a time leads to a lower probability of transmitting
at least one mutant.

In the limit of N large (but it does not need to be very large), 1−exp(N log(1−
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1/(N2j))) ≥ 1− exp(−1/2j). Thus, going back to (F.1):

m1,naive ≥
G∑
j=1

Nµ2j
(
1− exp(−1/2j)

)
≥

G∑
j=1

Nµ2j
(
1/2j − 1/(22j+1)

)
=

G∑
j=1

Nµ
(
1− 1/(2j+1)

)

= Nµ

G− 1

22

G∑
j=1

1

2j−1


= Nµ

(
G− 1

2

(
1− 1

2G

))

We then have shown that:

NµG ≥ m1,exp,naive ≥ Nµ(G− 1/2). (F.2)

Immune individual

In the immune case, we assume that one cluster is transmitted. Let us estimate
the probability that the cluster transmitted is fully mutant (mN,immune) and the
probability that the cluster transmitted is mixed (mmixed,immune). If a mutation
occurs at step j (probability Nµ2j) between the first step and the (G−g)th step,
then there will be 2G−g−j mutant bacteria at the (G− g)th step, yielding 2G−g−j

fully mutant clusters at the final Gth step. They will then be in proportion
1/(N2j) among the N2G−g clusters. Thus:

mN,immune =

G−g∑
j=1

Nµ2j
1

N2j
= µ(G− g). (F.3)

If a mutation occurs at step j between the (G− g+ 1)-th step and the G-th step,
then it will give one mixed cluster. Thus:

mmixed,exp,immune =

G∑
j=G−g+1

Nµ2j
1

N2G−g
=

g∑
j=1

µ2j = µ2(2g − 1) = 2µ(N − 1)

(F.4)

Conclusion

Interestingly, when the host is naive the result is very close to the mean-field case.
Indeed, we showed that the probability to transmit at least one mutant is bounded
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between 2Nµ(G − 1/2) and 2NµG (the mean field result) (see equation (F.2)).
The total probability for a transmission from an immune host to include at least
one mutant is mtot,immune = mN,immune+mmixed,immune = µ(G−g+2(2g−1)) =
µ(G − log2(N) + 2(N − 1)) (see equations (F.3) and (F.4)). If N � G, then it
gives mtot,exp,immune ' 2Nµ, which is G/2 times smaller than for the naive case.
However in this case most transmissions will be of mixed clusters rather than
fully mutant clusters. If N � G, then mtot,exp,immune ' µG, which is N times
smaller than for a naive host, and will be mostly of fully mutant clusters.

In all cases, for naive donor hosts, we will assume that the N transmitted
bacteria are of types taken randomly and independently. In particular, when the
initial bacteria are all of one type, if the average final proportion of mutants is
P (proportional to the mutation rate µ, thus very small), then the probability of
transmitting one mutant bacteria among N will be

(
N
1

)
P(1−P)N−1 ' NP, with

very little chance of transmitting more than one mutant bacteria.
For immune donor hosts, if the infection starts with a mixed inoculum, we will

assume that all bacteria in a cluster transmitted to another host are of the same
type. Conversely, if the infection starts with an inoculum of bacteria that are
all of the same type, then other bacterial types are produced only by mutations.
With G the number of generations within the host and N the bottleneck size
and cluster size, if G� N , then most clusters will be of one bacterial type only,
and the probability to transmit a fully mutant cluster will be m, with negligible
amount of mixed clusters transmitted. In the case of G � N , there will be
many more mixed clusters than clusters made of mutant bacteria only, and the
proportion of mixed clusters will be of the order of 2Nµ.
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Appendix G

Approximations for the
evolution of resistance model

In this section we develop approximations for the equations of the model studied
in chapter 6. There are particular limits to consider:

• Either the number of generations within a host G is large enough (sG� 1)
so that infections started with a mixed inoculum end up at proportions
close to the mutation selection balance, or the number of generations is
small (sG � 1) so that the final proportions of bacterial types is close to
the initial values.

• When starting with a fully sensitive inoculum, in an immune host, if G�
N , then most transmissions containing resistant bacteria will be from clus-
ters containing only resistant bacteria. If G� N , then most transmissions
containing resistant bacteria will be from mixed clusters.

We develop here approximations for 2 combinations of these limits.

G.1 Regime of a few generations within the host: both
sG� 1 and G� N

Here, when all the infecting bacteria are sensitive, clusters in the immune host
will be either all sensitive, or mixed. We neglect the fully resistant clusters. The
probability for a cluster to be mixed is, in the limit of no selection, µ12(2g−1) =
µ12(N−1) (see equation F.4) . With p0 ' µ1G, then the probability to transmit a
mixed cluster is about 2p0N/G. Half the mixed clusters transmitted will contain
only one resistant bacteria. A quarter of mixed clusters will contain 2 resistant
bacteria. So in most cases, the number of resistant bacteria transmitted is small,
so taking the limit of one resistant bacteria transmitted is fair.
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G.1.1 First approximation: only states starting from 0, 1 and N
resistant bacteria matter

Let us make several approximations:

• Let us assume that Np0 � 1. Thus for naive untreated individuals initially
infected with sensitive bacteria only, the probability to transmit more than
1 resistant bacteria is negligible. They transmit 0 resistant, N sensitive
bacteria to an average of λ(1−p0)N ' λ(1−Np0) individuals, and 1 resistant
bacteria and N − 1 sensitive bacteria to an average of λNp0 individuals.

• Let us assume that the pathways with progressive increase in the proportion
of resistant bacteria transmitted are very infrequent, compared to the case
in which a resistant bacteria gets into a treated host, which leads directly
to a full resistant infection. Then, when an individual starts the infection
with one resistant bacteria, let us only compute rigorously cases in which it
transmits 0 or N resistant bacteria, and let us assume that in all the other
cases, it transmits 1 resistant bacteria. There will be cases in which more
than one resistant bacteria are transmitted, but we argue that they would
behave similarly enough from the cases in which one 1 resistant bacteria is
transmitted.

• Let us assume that reversion mutants are rare, so that when an individual
is initially infected with only resistant bacteria, we will consider that only
resistant bacteria are transmitted. In practice, there would be cases in
which N − 1 resistant bacteria and 1 sensitive are transmitted, but as most
subsequent transmissions will be of resistant bacteria only (because sG� 1,
and because some individuals are treated), then cases starting with N − 1
resistant bacteria are lumped with cases starting with resistant bacteria
only.

• Here, we assume that an immune individual transmits mixed clusters with
rate 2λ′Np0/G, as explained in appendix F.

Then there are only 3 equations:

eN = (1− w) exp[−λ(1− eN )] + w exp[−λ′(1− eN )]. (G.1)

Remarkably, this equation does not depend neither on e0 nor on e1 and thus can
be numerically solved independently. It does not depend on neither q nor q′. If
λ = λ′, it also does not depend on w.

e1 =(1− w)q exp[−λ(1− eN )] + wq′ exp[−λ′(1− eN ))]

+ (1− w)(1− q) exp[−λ((1− p1)N (1− e0) + (1− (1− p1)N )(1− e1))]

+ w(1− q′) exp[−λ′((1− p1)(1− e0) + p1(1− eN )))]

(G.2)
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G.1. sG� 1 and G� N

e0 =(1− w)q + wq′ + (1− w)(1− q) exp[−λ((1−Np0)(1− e0) +Np0(1− e1)))]

+ w(1− q′) exp

[
−λ′

((
1− 2Np0

G

)
(1− e0) +

2Np0

G
(1− e1)

)]
(G.3)

As p1 is of the order of 1/N (see 6.6), with N large, then (1−p1)N = exp(N log(1−
p1)) ' exp(−Np1). We cannot simplify it further, contrary to the term in p0,
because while Np0 is assumed to be small (because p0 is of the order of µ1 which
is assumed to be much smaller than 1/N), we expect Np1 to be of the order of 1.
Although this system still has to be solved numerically, it is much simpler, and
it provides a basis for further simplifications.

G.1.2 When extinction is certain in the absence of mutations

Let us go back to equation (G.3). If λ(1−w)(1− q) +λ′w(1− q′) > 1, then most
spread of the bacteria will come from spread of the sensitive bacteria, which will
then have the opportunity to become resistant when present in many individuals.
In this regime, clustering could change the timing of apparition of resistance, but
will be of little effect on whether the bacterial strain which can evolve to resistance
spread. Here, we study the regime in which extinction is certain in the absence
of mutations, i.e. λ(1 − w)(1 − q) + λ′w(1 − q′) < 1. Then e0 = 1 − ε, with ε
small, expected to be of the order of µ1. We replace in equation (G.3):

1− ε =(1− w)q + wq′ + (1− w)(1− q) exp(−λ((1−Np0)ε+Np0(1− e1)))

w(1− q′) exp(−λ′((1− 2Np0/G)ε+ (1− e1)2Np0/G)).

(G.4)

Writing (G.3), we have already assumed that Np0 � 1. Thus let us develop the
exponential in (G.4). If we keep the first order in ε and p0, then:

ε(−1+λ(1−w)(1−q)+λ′w(1−q′)) = −(1−w)(1−q)λNp0(1−e1)−w(1−q′)λ′2Np0(1− e1)

G
.

e0 ' 1− (1− e1)Np0
(1− w)(1− q)λ+ 2w(1− q′)λ′/G
1− λ(1− w)(1− q)− λ′w(1− q′)

.

In this regime, e0 is very close to 1, so (G.2) can be simplified to:

e1 '(1− w)q exp(−λ(1− eN )) + wq′ exp(−λ′(1− eN ))

+ (1− w)(1− q) exp(−λ(1− e−Np1)(1− e1))

+ w(1− q′) exp(−λ′p1(1− eN )).
(G.5)

G.1.3 Ratio of spread of the bacteria in all immune vs. all naive
host populations

Remaining in the regime λ(1 − w)(1 − q) + λ′w(1 − q′) < 1 (limited spread in
the absence of mutations), let us compare the case with either all immune, or all
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naive host population.

e0,naive = 1− (1− q)λNp0(1− e1,naive)

1− λ(1− q)
.

e0,immune = 1− (1− q′)λ′2Np0(1− e1,immune)

G(1− λ′(1− q′))
.

Using G.5 and G.1,

e1,naive ' q exp(−λ(1−eN,naive))+(1−q) exp(−λ(1−e−Np1)(1−e1,naive)). (G.6)

eN,naive = exp(−λ(1− eN,naive)). (G.7)

e1,immune = q′ exp(−λ′(1− eN,immune)) + (1− q′) exp(−λ′p1(1− eN,immune)).
(G.8)

eN,immune = exp(−λ′(1− eN,immune)). (G.9)

Let us look at the ratio of survival probability:

ratio =
1− e0,naive

1− e0,immune
=
G

2

(1− q)λ
(1− q′)λ′

(1− λ′(1− q′))
(1− λ(1− q))

(1− e1,naive)

(1− e1,immune)

This ratio does not depend on p0 any more, i.e. it will not depend on the mutation
rate. If we take further q = q′, and λ = λ′, the expression simplifies greatly:

ratio =
1− e0,naive

1− e0,immune
=
G

2

1− e1,naive

1− e1,immune
(G.10)

If λ = λ′, then G.7 and G.9 are the same equations, thus in this regime eN,naive =
eN,immune = eN . In this regime we can simplify (G.6) and (G.8):

e1,naive ' qeN + (1− q) exp(−λ(1− e−Np1)(1− e1,naive)).

e1,immune = qeN + (1− q) exp(−λ(p1(1− eN ))) = qeN + (1− q)ep1N
Consequently,

e1,naive−e1,immune = (1−q)(exp(−λ(1−e−Np1)(1−e1,naive))−exp(−λ(p1(1−eN ))))
(G.11)

Going back to (G.6),

e1,naive =q exp(−λ(1− eN )) + (1− q) exp(−λ(1− e−Np1)(1− e1,naive))

< q exp(−λ(1− eN )) + 1− q.

As exp(−λ(1− eN )) = eN , then e1,naive < qeN + 1− q. Then, let us compare
(1 − e−Np1)(1 − e1,naive) and p1(1 − eN ). As e1,naive < qeN + 1 − q, then (1 −
e−Np1)(1− e1,naive) > (1− e−Np1)q(1− eN ). It is likely that q > p1/(1− e−Np1):
indeed, p1 is of the order of 1/N , thus p1/(1− e−Np1) is of the order of 1/(N(1−
e−1)). N is large in general, and q must be large enough so that extinction
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G.1. sG� 1 and G� N

is certain in the absence of mutations, while survival is possible when there are
mutations. So, in the most general case, it is the case that q > p1/(1−e−Np1), and
thus (1−e−Np1)(1−e1,naive) > p1(1−eN ), and exp(−λ(1−e−Np1)(1−e1,naive)) <
exp(−λ(p1(1 − eN ))). Going back to (G.11), then e1,naive < e1,immune. Thus,
going back to (G.10), if q > p1/(1− e−Np1), then:

ratio =
1− e0,naive

1− e0,immune
=
G

2

1− e1,naive

1− e1,immune
>
G

2

201



Appendix G. Approximations for the evolution of resistance model

G.2 Limit of a large number of generations, with both
sG� 1 and G� N

In this case, infections can be sorted in three categories : infections starting with
0 resistant bacteria, infections starting from N resistant bacteria, and infections
starting from an intermediate number of resistant bacteria (from 1 to N − 1, this
case will be called int for “intermediate”). In the latter case, we assume that the
proportion of resistant bacteria will reach the mutation-selection balance (pMSB

as discussed in section 6.2.1.3).

When the infection starts with sensitive bacteria only, the average proportion
of resistant bacteria at transmission is p0 ' µ1

1−2−sG

s log(2) (see equation (6.5)). Thus

when sG � 1, then p0 ' pMSB = µ1
s log(2) , i.e. the mutation selection balance is

also reached. As a consequence, in the absence of treatment, starting from any
number of sensitive bacteria (but at least one) will lead to similar results.

It is also important to compare the quantity of mixed transmissions vs. fully
resistant transmission when starting with a fully sensitive infection of an immune
host: as we assume that sg � 1 (i.e. the difference in growth rates is negligible
over the period of time, or rather the number of generations g it takes to make a
cluster), then the proportion of mixed clusters transmitted will be of the order of
2Nµ1, the result derived in section F (where we took s = 0), equation F.4 . The
proportion of fully resistant clusters however will not correspond to the results
derived in the same section, because s > 0, thus the number of fully sensitive
clusters will grow faster than the number of fully resistant clusters. But we know
that p0 tends to the mutation-selection balance rapidly, thus, because G� g the
proportion of fully resistant clusters transmitted will be of the order of pMSB =
µ1/(s log(2)). Then if 2Nµ1 is larger or of the same order as µ1/(s log(2)), i.e. if
sN is larger or of the same order as 1, then mixed clusters cannot be neglected.
If sN � 1, mixed clusters can be neglected. We will neglect mixed clusters in all
this section.

When the infection starts with resistant bacteria only, we have shown (6.7)
that when 2sGµ2 � s, then pN → 1 − 2sGµ2/(s log(2)). We will remain in this
limit.

Another aspect to consider is whether pMSBN is smaller or larger than 1,
i.e. how Nµ1/(s log(2)) compares to 1. In the following, we will assume that
pMSBN � 1, so that transmissions from naive hosts at the mutation selection
balance will consists most likely of sensitive bacteria only.

G.2.1 Equations

We write the equations in this regime of G � N and sG � 1. Note that in the
following, ei stands for a host starting with a mixed inoculum, whatever be the
initial proportion (it will be the same equation for all).

0
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G.2. sG� 1 and G� N

eN=(1−w)(1−q)exp(−λ((1−ei)(1−pNN−(1−pN )N )+pNN (1−eN )+(1−pN )N (1−e0)))

+(1−w)qexp(−λ(1−eN ))

+wq′exp(−λ′(1−eN ))+w(1−q′)exp(−λ′(1−pNeN−(1−pN )e0)).

ei=(1−w)qexp(−λ(1−eN ))+wq′exp(−λ′(1−eN ))

+(1−w)(1−q)exp
[
−λ((1−pMSB)N (1−e0)+(1−(1−pMSB)N−pNMSB)(1−ei)

+pNMSB(1−eN )
]

+w(1−q′)exp(−λ′((1−pMSB)(1−e0)+pMSB(1−eN )))

e0=(1−w)q+wq′

+(1−w)(1−q)exp(−λ((1−p0)N (1−e0)+(1−(1−p0)N−pN0 )(1−ei)+pN0 (1−eN )))

+w(1−q′)exp(−λ′((1−p0)(1−e0)+p0(1−eN )))

We can also write the equations for the survival probability instead:

1−eN=(1−w)(1−q)(1−exp(−λ((1−ei)(1−pNN−(1−pN )N )+pNN (1−eN )+(1−pN )N (1−e0))))

+(1−w)q(1−exp(−λ(1−eN )))

+wq′(1−exp(−λ′(1−eN )))+w(1−q′)(1−exp(−λ′(pN (1−eN )+(1−pN )(1−e0)))).

(G.12)

1−ei=(1−w)q(1−exp(−λ(1−eN )))+wq′(1−exp(−λ′(1−eN )))

+(1−w)(1−q)(1−exp
[
−λ((1−pMSB)N (1−e0)

+(1−(1−pMSB)N−pNMSB)(1−ei)+pNMSB(1−eN ))
]

+w(1−q′)(1−exp(−λ′((1−pMSB)(1−e0)+pMSB(1−eN ))))

(G.13)

1−e0=(1−w)(1−q)(1−exp(−λ((1−p0)N (1−e0)+(1−(1−p0)N−pN0 )(1−ei)+pN0 (1−eN ))))

+w(1−q′)(1−exp(−λ′((1−p0)(1−e0)+p0(1−eN ))))

(G.14)

In all cases, pNMSB is extremely small, and 1 − pMSB ' 1 (but without further
assumptions, (1 − pMSB)N ' 1 is not guaranteed). Since p0 ' pMSB, the same
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Appendix G. Approximations for the evolution of resistance model

can be said about it. Then equations (G.13) and (G.14) can be rewritten as:

1− ei =(1− w)q(1− exp(−λ(1− eN ))) + wq′(1− exp(−λ′(1− eN )))

+ (1− w)(1− q)(1− exp(−λ((1− pMSB)N (1− e0) + (1− (1− pMSB)N )(1− ei)))
+ w(1− q′)(1− exp(−λ′(1− e0 + pMSB(1− eN ))))

(G.15)

1− e0 =(1− w)(1− q)(1− exp(−λ((1− p0)N (1− e0) + (1− (1− p0)N )(1− ei))))
+ w(1− q′)(1− exp(−λ′(1− e0 + p0(1− eN ))))

(G.16)

As for (G.12), it depends on the assumptions. When 2sGµ2/(s log(2)) � 1/N ,
i.e. sG < (− log(N) + log(s log(2))− log(µ2))/ log(2), then (1− pN ) is small, as
well as 1 − pNN . For both naive and immune hosts, then most transmissions will
be of resistant bacteria only. Thus

1− eN = 1− (1− w) exp(−λ(1− eN ))− w exp(−λ′(1− eN )) (G.17)

G.2.2 Regime of sure extinction in the absence of mutations

Let us take two further simplifications. If we limit ourselves to the case in which
extinction is certain in the absence of mutations, R0,WT = (1 − w)(1 − q)λ +
w(1− q′)λ′ < 1, then 1−e0 is very small, of the order of µ1. Also, we will assume
NpMSB � 1. Then we can simplify the system.

Starting from (G.15):

1− ei =(1− w)q(1− exp(−λ(1− eN ))) + wq′(1− exp(−λ′(1− eN )))

+ (1− w)(1− q)λ(1− e0 +NpMSB(1− ei))
+ w(1− q′)λ′(1− e0 + pMSB(1− eN ))

As here we assume 1− e0 very small, of the order of µ1,

1−ei '
(1− w)q(1− e−λ(1−eN )) + wq′(1− e−λ′(1−eN )) + w(1− q′)λ′pMSB(1− eN ))

1− (1− w)(1− q)λNpMSB
.

And as we assumed that NpMSB � 1,

1−ei ' (1−w)q(1−exp(−λ(1−eN )))+wq′(1−exp(−λ′(1−eN )))+w(1−q′)λ′pMSB(1−eN )).
(G.18)

Starting from equation (G.16):

1−e0 = (1−w)(1−q)λ(1−e0+NpMSB(1−ei))+w(1−q′)λ′(1−e0+pMSB(1−eN )),
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leading to:

1− e0 = pMSB
(1− w)(1− q)λN(1− ei) + w(1− q′)λ′(1− eN )

1− (1− w)(1− q)λ+ w(1− q′)λ′
.

Then, replacing 1− ei by expression (G.18),

1− e0 'pMSB

[
(1− w)(1− q)λN((1− w)q(1− e−λ(1−eN )) + wq′(1− e−λ′(1−eN )))

1− (1− w)(1− q)λ+ w(1− q′)λ′

+
(1 + (1− w)(1− q)λNpMSB)w(1− q′)λ′(1− eN )

1− (1− w)(1− q)λ+ w(1− q′)λ′

]
And as we assumed that NpMSB � 1,

1− e0 'pMSB

[
(1− w)(1− q)λN((1− w)q(1− exp(−λ(1− eN )))

1− (1− w)(1− q)λ+ w(1− q′)λ′

+
wq′(1− exp(−λ′(1− eN )))) + w(1− q′)λ′(1− eN )

1− (1− w)(1− q)λ+ w(1− q′)λ′

] (G.19)

As for (G.12), it depends on the assumptions.
Here we suppose When 2sGµ2/(s log(2)) � 1/N , i.e. sG < (− log(N) +

log(s log(2))− log(µ2))/ log(2), then (1−pN ) is small, as well as 1−pNN , and thus
(G.17) is unchanged. If q = q′, (G.18) can be further simplified to:

1− ei ' q(1− eN ) + w(1− q)λ′pMSB(1− eN ) ' q(1− eN ) (G.20)

and (G.19) can be simplified to:

1− e0 ' pMSB((1− w)(1− q)λNq + w(1− q)λ′)(1− eN ) (G.21)

Thus in this regime, and if q = q′, eN can be found numerically solving (G.17),
and e0 and ei can be straightforwardly obtained using (G.20) and (G.21). The
ratio in the emergence probabilities between the case of a fully naive and a fully
immune population is:

ratio =
1− e0,w=0

1− e0,w=1
=
λNq(1− eN,w=0)

λ′(1− eN,w=1)

If we further assume λ = λ′, it is straightforward from equation (G.17) that
eN,w=1 = eN,w=0, and

ratio =
1− e0,w=0

1− e0,w=1
= Nq

Thus, in most cases, immunity decreases the probability of emergence by a
factor of at least Nq.
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Wang, Benedikt Mortzfeld, Sören Franzenburg, Ruth A. Schmitz, John F.
Baines, Sebastian Fraune, Ute Hentschel, Hinrich Schulenburg, Thomas
C. G. Bosch, and Arne Traulsen. The neutral metaorganism. bioRxiv, 2018.
[Cited on pages viii and 10.]

[15] Alan Perelson and Gérard Weisbuch. Immunology for physicists. Reviews of
Modern Physics, 69(4):1219–1268. [Cited on pages viii and 11.]

[16] T. Mora, A. M. Walczak, W. Bialek, and C. G. Callan. Maximum entropy
models for antibody diversity. Proceedings of the National Academy of Sci-
ences, 107(12):5405–5410, 2010. [Cited on pages viii and 11.]

[17] Bryan G Yipp, Björn Petri, Davide Salina, Craig N Jenne, Brittney N V
Scott, Lori D Zbytnuik, Keir Pittman, Muhammad Asaduzzaman, Kaiyu
Wu, H Christopher Meijndert, Stephen E Malawista, Anne de Boisfleury
Chevance, Kunyan Zhang, John Conly, and Paul Kubes. Infection-induced
NETosis is a dynamic process involving neutrophil multitasking in vivo. Na-
ture Medicine, 18(9):1386–1393, 2012. [Cited on pages viii and 11.]

[18] Keira Melican, Ruben M Sandoval, Abdul Kader, Lina Josefsson, George a.
Tanner, Bruce a. Molitoris, and Agneta Richter-Dahlfors. Uropathogenic
escherichia coli P and type 1 fimbriae act in synergy in a living host to
facilitate renal colonization leading to nephron obstruction. PLoS Pathogens,
7(2):2–13, 2011. [Cited on pages viii and 11.]

[19] Kathrin Moor, Médéric Diard, Mikael E. Sellin, Boas Felmy, Sandra Y.
Wotzka, Albulena Toska, Erik Bakkeren, Markus Arnoldini, Florence

208
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[94] Jean-Baptiste André and Troy Day. The Effect of Disease Life History on
the Evolutionary Emergence of Novel Pathogens. Proceedings of the Royal
Society B: Biological Sciences, 272:1949–1956, 2005. [Cited on page 133.]

[95] HA Orr and RL Unckless. Population extinction and the genetics of adap-
tation. The American Naturalist, 172(2):160–9, 2008. [Cited on page 133.]



[96] C Loverdo, M Park, S J Schreiber, and J O Lloyd-Smith. Influence of viral
replication mechanisms on within-host evolutionary dynamics. Evolution,
66:3462–3471, 2012. [Cited on page 143.]





Florence Bansept 5 Décembre 2018

Sujet : Modélisation biophysique des dynamiques d’une population
bactérienne et de la réponse immunitaire dans les intestins

Résumé : La première partie de cette thèse porte sur les dynamiques de colonisation d’une pop-
ulation bactérienne au début d’une infection intestinale. Le but est de déduire des paramètres
biologiquement pertinents de données indirectes. Un modèle simple est étudié, et l’on discute de
l’observable optimale pour caractériser la variabilité d’une distribution d’étiquettes génétiques.
Des arguments biologiques et des incohérences entre des observables expérimentales avec le pre-
mier modèle motivent l’étude d’un second, où deux sous-populations se répliquent à des taux
différents, mais on ne peut pas conclure clairement sur le jeu de données utilisé. La seconde
partie porte sur les mécanismes de la réponse immunitaire. Le principal effecteur du système im-
munitaire adaptatif dans l’intestin, l’IgA (un anticorps), enchâıne les bactéries-filles en agrégats
clonaux lors de la réplication. Nous avons contribué à prouver ce phénomène par un modèle qui
prédit la réduction de la diversité bactérienne qui en découle. Au sein de l’hôte, l’interaction
entre la croissance et la fragmentation des agrégats a pour conséquence le piégeage préférentiel
des bactéries à croissance rapide, ce qui pourrait permettre au système immunitaire de réguler la
composition du microbiote. A l’échelle de la population-hôte, et dans le contexte de l’évolution
d’une résistance aux antibiotiques, si les bactéries sont transmises sous forme d’amas clonaux,
alors la probabilité de transmettre une bactérie résistante est réduite dans une population im-
munisée. Ainsi, des outils de physique statistique nous permettent d’identifier des mécanismes
génériques en biologie.

Mots clés : modélisation biophysique, dynamiques de population, processus stochastique,
mécanismes physiques de la réponse immunitaire, infection bactérienne

Subject : Biophysical modeling of bacterial population dynamics
and the immune response in the gut

Abstract: The first part of this thesis focuses on the colonization dynamics of a bacterial pop-
ulation in early infection of the gut. The aim is to infer biologically relevant parameters from
indirect data. We discuss the optimal observable to characterize the variability in genetic tags
distributions. In a first one-population model, biological arguments and inconsistencies between
several experimental observables lead to the study of a second model with two-subpopulations
replicating at different rates. As expected, this model allows for broader possibilities in observ-
ables combination, even though no clear conclusion can be drawn as to a data set on Salmonella
in mice. The second part concerns the mechanisms that make the immune response effective. The
main effector of the immune system in the gut, IgA (an antibody), enchains daughter bacteria
in clonal clusters upon replication. Our model predicting the ensuing reduction of diversity in
the bacterial population contributes to evidence this phenomenon, called “enchained growth”.
Inside the host, the interplay of cluster growth and fragmentation results in preferentially trap-
ping faster-growing and potentially noxious bacteria away from the epithelium, which could be
a way for the immune system to regulate the microbiota composition. At the scale of the hosts
population, in the context of evolution of antibiotic resistance, if bacteria are transmitted via
clonal clusters, the probability to transmit a resistant bacteria is reduced in immune populations.
Thus we use statistical physics tools to identify some generic mechanisms in biology.

Keywords : biophysical modeling, population dynamics, stochastic processes, physical mecha-
nisms of the immune response, bacterial infection
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