F. Zernike, Phase contrast, a new method for the microscopic observation of transparent objects, Physica, vol.9, p.686, 1942.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson et al., Optical coherence tomography, vol.254, p.1178, 1991.

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Opt. Lett, vol.19, p.780, 1994.

T. H. Maiman, Stimulated optical radiation in ruby, Nature, vol.187, p.493, 1960.

W. D. Phillips, Nobel lecture: Laser cooling and trapping of neutral atoms, Rev. Mod. Phys, vol.70, p.721, 1998.

A. Aspect, J. Dalibard, and G. Roger, Experimental test of Bell's inequalities using time-varying analyzers, Phys. Rev. Lett, vol.49, p.1804, 1982.

B. P. Abbott, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett, vol.116, p.61102, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01273200

J. Hecht, City of Light: The Story of Fiber Optics, 2004.

N. Gisin and R. Thew, Nat. Photonics, vol.1, p.165, 2007.

B. J. Shastri, A. N. Tait, T. Ferreira-de-lima, M. A. Nahmias, H. Peng et al., Neuromorphic Photonics, Principles of, 2018.

R. Hamerly, Experimental investigation of performance differences between coherent Ising machines and a quantum annealer, Sci. Adv, vol.5, p.823, 2019.

A. F. Koenderink, A. Alu, and A. Polman, Nanophotonics: Shrinking lightbased technology, Science, vol.348, p.516, 2015.

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, Photonic crystal nanocavity with a Q factor exceeding eleven million, Opt. Express, vol.25, p.1769, 2017.

F. Benz, Single-molecule optomechanics in "picocavities, Science, vol.354, p.726, 2016.

.. G. References-15, A. Grynberg, C. Aspect, and . Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light, 2010.

L. Novotny and B. Hecht, Principles of Nano-Optics, 2006.

E. M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev, vol.69, p.681, 1946.

K. Drexhage, Influence of a dielectric interface on fluorescence decay time, J. Lumin. 1, vol.2, p.693, 1970.

P. Lodahl, A. Floris-van-driel, I. S. Nikolaev, A. Irman, K. Overgaag et al., Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals, Nature, vol.430, p.654, 2004.

L. Langguth, R. Fleury, A. Alù, and A. F. Koenderink, Drexhage's experiment for sound, Phys. Rev. Lett, vol.116, p.224301, 2016.

A. F. Koenderink, Single-photon nanoantennas, ACS Photonics, vol.4, p.710, 2017.

J. R. Lakowicz, Plasmonics in biology and plasmon-controlled fluorescence, vol.1, 2006.

S. A. Mann, R. R. Grote, R. M. Osgood, A. Alù, and E. C. Garnett, Opportunities and limitations for nanophotonic structures to exceed the shockley-queisser limit, ACS Nano, vol.10, p.8620, 2016.

E. C. Le-ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy, 2009.

J. Langer, Present and future of surface enhanced Raman scattering, ACS Nano, pp.9-04224, 2019.

R. Waldron, Perturbation theory of resonant cavities, Proc. IEE Part C, vol.107, p.272, 1960.

H. A. Bethe and J. Schwinger, Perturbation theory for cavities, 1943.

P. Lunnemann, F. T. Rabouw, R. J. Van-dijk-moes, F. Pietra, D. Vanmaekelbergh et al., Calibrating and controlling the quantum efficiency distribution of inhomogeneously broadened quantum rods by using a mirror ball, ACS Nano, vol.7, p.5984, 2013.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures, Phys. Rev. B, vol.78, p.153111, 2008.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton et al., Green light emission in silicon through slowlight enhanced third-harmonic generation in photonic-crystal waveguides, Nat. Photonics, vol.3, p.206, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01940027

S. J. Dewhurst, D. Granados, D. J. Ellis, A. J. Bennett, R. B. Patel et al., Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide, Appl. Phys. Lett, vol.96, p.31109, 2010.

L. Langguth, D. Punj, J. Wenger, and A. F. Koenderink, Plasmonic band structure controls single-molecule fluorescence, ACS Nano, vol.7, p.8840, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881705

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, Photon management in two-dimensional disordered media, Nat. Mater, vol.11, p.1017, 2012.

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka et al., Cavity quantum electrodynamics with Anderson-localized modes, vol.327, p.1352, 2010.

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, Anomalous spontaneous emission time in a microscopic optical cavity, Phys. Rev. Lett, vol.59, p.2955, 1987.

R. J. Thompson, G. Rempe, and H. J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity, Phys. Rev. Lett, vol.68, p.1132, 1992.

J. Kasprzak, Bose-Einstein condensation of exciton polaritons, Nature, vol.443, p.409, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02547781

J. B. Khurgin, How to deal with the loss in plasmonics and metamaterials, Nat. Nanotechnol, vol.10, 2015.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff et al., High-frequency single-photon source with polarization control, Nat. Photonics, vol.1, p.704, 2007.

N. Somaschi, Near-optimal single-photon sources in the solid state, Nat. Photonics, vol.10, p.340, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386640

J. P. Reithmaier, G. S?k, A. Löffler, C. Hofmann, S. Kuhn et al., Strong coupling in a single quantum dot-semiconductor microcavity system, Nature, vol.432, p.197, 2004.

Y. Akahane, T. Asano, B. Song, and S. Noda, High-q photonic nanocavity in a two-dimensional photonic crystal, Nature, vol.425, p.944, 2003.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2008.

E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett, vol.58, p.2059, 1987.

S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett, vol.58, p.2486, 1987.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs et al., Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature, vol.432, p.200, 2004.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff et al., Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade, Nat. Phys, vol.4, p.859, 2008.

.. H. References-48, D. Altug, J. Englund, and . Vu?kovi?, Ultrafast photonic crystal nanocavity laser, Nat. Phys, vol.2, p.484, 2006.

A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy et al., Strongly correlated photons on a chip, Nat. Photonics, vol.6, p.93, 2012.

J. Chan, T. P. Alegre, A. H. Safavi-naeini, J. T. Hill, A. Krause et al., Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature, vol.478, p.89, 2011.

R. Leijssen, G. R. Gala, L. Freisem, J. T. Muhonen, and E. Verhagen, Nonlinear cavity optomechanics with nanomechanical thermal fluctuations, Nat. Commun, vol.8, p.16024, 2017.

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, High-Q measurements of fused-silica microspheres in the near infrared, Opt. Lett, vol.23, p.247, 1998.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultrahigh-Q toroid microcavity on a chip, Nature, vol.421, p.925, 2003.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Demonstration of ultrahigh-Q small mode volume toroid microcavities on a chip, Appl. Phys. Lett, vol.85, p.6113, 2004.

F. Vollmer and S. Arnold, Whispering-gallery-mode biosensing: Label-free detection down to single molecules, Nat. Methods, vol.5, p.591, 2008.

A. M. Armani and K. J. Vahala, Heavy water detection using ultra-high-Q microcavities, Opt. Lett, vol.31, p.1896, 2006.

M. De-goede, M. Dijkstra, R. Obregón, J. Ramón-azcón, E. Martínez et al., Al 2 O 3 microring resonators for the detection of a cancer biomarker in undiluted urine, Opt. Express, vol.27, p.18508, 2019.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, Ultralowthreshold microcavity Raman laser on a microelectronic chip, Opt. Lett, vol.29, p.1224, 2004.

P. Del'haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth et al., Optical frequency comb generation from a monolithic microresonator, Nature, vol.450, p.1214, 2007.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Microresonator-based optical frequency combs, Science, vol.332, p.555, 2011.

T. W. Hänsch, Nobel lecture: Passion for precision, Rev. Mod. Phys, vol.78, p.1297, 2006.

E. Temprana, E. Myslivets, B. P. Kuo, L. Liu, V. Ataie et al., Overcoming Kerr-induced capacity limit in optical fiber transmission, Science, vol.348, p.1445, 2015.

I. Coddington, N. Newbury, and W. Swann, Dual-comb spectroscopy, Optica, vol.3, p.414, 2016.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours et al., Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity, Phys. Rev. Lett, vol.95, p.67401, 2005.

K. Srinivasan and O. Painter, Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system, Nature, vol.450, p.862, 2007.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda et al., Parity-time-symmetric whisperinggallery microcavities, Nat. Phys, vol.10, p.394, 2014.

H. Hodaei, M. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity-time-symmetric microring lasers, Science, vol.346, p.975, 2014.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi et al., Orbital angular momentum microlaser, vol.353, p.464, 2016.

B. Peng, .. K. Özdemir, M. Liertzer, W. Chen, J. Kramer et al., Chiral modes and directional lasing at exceptional points, Proc. Natl. Acad. Sci, vol.113, p.6845, 2016.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao et al., Experimental realization of optomechanically induced non-reciprocity, Nat. Photonics, vol.10, p.657, 2016.

F. Ruesink, M. Miri, A. Alù, and E. Verhagen, Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun, vol.7, p.13662, 2016.

F. Ruesink, J. P. Mathew, M. Miri, A. Alù, and E. Verhagen, Optical circulation in a multimode optomechanical resonator, Nat. Commun, vol.9, p.1798, 2018.

D. Kosters, A. Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg et al., Core-shell plasmonic nanohelices, ACS Photonics, vol.4, p.1858, 2017.

W. Zhu and K. B. Crozier, Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering, Nat. Commun, vol.5, p.5228, 2014.

M. Agio and A. Alù, Optical antennas, 2011.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra et al., Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods, ACS Nano, vol.8, p.4440, 2014.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen et al., Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nat. Photonics, vol.3, p.654, 2009.

S. Bidault, A. Devilez, V. Maillard, L. Lermusiaux, J. Guigner et al., Picosecond lifetimes with high quantum yields from single-photon-emitting colloidal nanostructures at room temperature, ACS Nano, vol.10, p.4806, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308158

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang et al., Probing the mechanisms of REFERENCES large Purcell enhancement in plasmonic nanoantennas, Nat. Photonics, vol.8, p.835, 2014.

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, Landau damping and limit to field confinement and enhancement in plasmonic dimers, ACS Photonics, vol.4, p.2871, 2017.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua et al., Revealing the quantum regime in tunnelling plasmonics, Nature, vol.491, p.574, 2012.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant et al., Unidirectional emission of a quantum dot coupled to a nanoantenna, Science, vol.329, p.930, 2010.

A. F. Koenderink, Plasmon nanoparticle array waveguides for single photon and single plasmon sources, Nano Lett, vol.9, p.4228, 2009.

T. Coenen, E. J. Vesseur, A. Polman, and A. F. Koenderink, Directional emission from plasmonic Yagi-Uda antennas probed by angleresolved cathodoluminescence spectroscopy, Nano Lett, vol.11, p.3779, 2011.

A. Apuzzo, M. Février, R. Salas-montiel, A. Bruyant, A. Chelnokov et al., Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide, Nano Letters, vol.13, p.1000, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01371177

B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander et al., The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater, vol.9, p.707, 2010.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. Martin, Mechanisms of Fano resonances in coupled plasmonic systems, ACS Nano, vol.7, p.4527, 2013.

M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu, Chiral plasmonics, Sci. Adv, vol.3, p.1602735, 2017.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy et al., Ultrasensitive detection and characterization of biomolecules using superchiral fields, Nat. Nanotechnol, vol.5, p.783, 2010.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, Threedimensional chiral plasmonic oligomers, Nano Lett, vol.12, p.2542, 2012.

B. Lounis and M. Orrit, Single-photon sources, Rep. Prog. Phys, vol.68, p.1129, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01552691

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, Fractals in microcavities: Giant coupled, multiplicative enhancement of optical responses, Phys. Rev. Lett, vol.82, p.4811, 1999.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse et al., Nanoassembled plasmonicphotonic hybrid cavity for tailored light-matter coupling, Nano Lett, vol.10, p.891, 2010.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, Antenna-cavity hybrids: Matching polar opposites for Purcell enhancements at any linewidth, ACS Photonics, vol.3, p.1943, 2016.

I. M. Palstra, H. M. Doeleman, and A. F. Koenderink, Hybrid cavityantenna systems for quantum optics outside the cryostat?, Nanophotonics, vol.8, p.1513, 2019.

F. De-angelis, M. Patrini, G. Das, I. Maksymov, M. Galli et al., A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules, Nano Lett, vol.8, p.2321, 2008.

M. A. Santiago-cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity, J. Biophotonics, vol.5, p.629, 2012.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko et al., Label-free detection of single protein using a nanoplasmonicphotonic hybrid microcavity, Nano Lett, vol.13, p.3347, 2013.

D. Conteduca, F. Dell'olio, F. Innone, C. Ciminelli, and M. N. Armenise, Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications, Opt. Laser Technol, vol.77, p.151, 2016.

A. Bozzola, S. Perotto, and F. De-angelis, Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: A critical review, Analyst, vol.142, p.883, 2017.

J. N. Liu, Q. Huang, K. K. Liu, S. Singamaneni, and B. T. Cunningham, Nanoantenna-microcavity hybrid resonators with highly cooperative plasmonicphotonic coupling, IEEE IPC Part II, p.1, 2018.

J. Zhang, J. Li, S. Tang, Y. Fang, J. Wang et al., Whispering-gallery nanocavity plasmon-enhanced Raman spectroscopy, Sci. Rep, vol.5, p.15012, 2015.

S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators, ACS Photonics, vol.5, p.3550, 2018.

Y. W. Hu, B. B. Li, Y. X. Liu, Y. F. Xiao, and Q. Gong, Hybrid photonicplasmonic mode for refractometer and nanoparticle trapping, Opt. Commun, vol.291, p.380, 2013.

P. Lin, H. Chu, T. Lu, and P. Lee, Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers, Lab. Chip, vol.14, p.4647, 2014.

D. Conteduca, C. Reardon, M. G. Scullion, F. Dell'olio, M. N. Armenise et al., Ultra-high q/v hybrid cavity for strong lightmatter interaction, APL Photonics, vol.2, p.86101, 2017.

S. V. Boriskina and B. M. Reinhard, Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits, Proc. Natl. Acad. Sci, vol.108, p.3147, 2011.

Y. Xiao, Y. Liu, B. Li, Y. Chen, Y. Li et al., Strongly REFERENCES enhanced light-matter interaction in a hybrid photonic-plasmonic resonator, Phys. Rev. A, vol.85, p.31805, 2012.

M. K. Dezfouli, R. Gordon, and S. Hughes, Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photoniccrystal cavity system, Phys. Rev. A, vol.95, p.13846, 2017.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher et al., Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond, ACS Photonics, vol.2, p.465, 2015.

H. M. Doeleman, Hybrid resonators for light trapping and emission control, 2019.

R. P. Feynman, R. B. Leighton, M. Sands, and R. B. Lindsay, Quantum Mechanics, vol.3, 1966.

J. S. Toll, Causality and the dispersion relation: Logical foundations, Phys. Rev, vol.104, p.1760, 1956.

D. Marcuse, Theory of Dielectric Optical Waveguides, 1991.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, 1984.

G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys, vol.330, p.377, 1908.

M. B. Doost, W. Langbein, and E. A. Muljarov, Resonant state expansion applied to two-dimensional open optical systems, Phys. Rev. A, vol.87, p.43827, 2013.

P. T. Kristensen and S. Hughes, Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators, ACS Photonics, vol.1, issue.2, 2014.

D. A. Powell, Resonant dynamics of arbitrarily shaped meta-atoms, Phys. Rev. B, vol.90, p.75108, 2014.

X. Zheng, Implementation of the natural mode analysis for nanotopologies using a volumetric method of moments (V-MoM) algorithm, IEEE Photon. J, vol.6, p.1, 2014.

B. Vial, F. Zolla, A. Nicolet, and M. Commandré, Quasimodal expansion of electromagnetic fields in open two-dimensional structures, Phys. Rev. A, vol.89, p.23829, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01281129

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein et al., From dark to bright: First-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing, Phys. Rev. Lett, vol.116, p.237401, 2016.

F. Alpeggiani, N. Parappurath, E. Verhagen, and L. Kuipers, Quasinormal-mode expansion of the scattering matrix, Phys. Rev. X, vol.7, p.21035, 2017.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators, Phys. Rev. Lett, vol.110, p.237401, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850459

P. Lalanne, W. Yan, K. Vynck, C. Sauvan, J. P. et al., Light interaction with photonic and plasmonic resonances, Laser Photonics Rev, vol.12, p.1700113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01772412

P. T. Leung, S. Y. Liu, and K. Young, Completeness and time-independent perturbation of the quasinormal modes of an absorptive and leaky cavity, Phys. Rev. A, vol.49, p.3982, 1994.

P. T. Leung, S. Y. Liu, and K. Young, Completeness and orthogonality of quasinormal modes in leaky optical cavities, Phys. Rev. A, vol.49, p.3057, 1994.

M. I. Abdelrahman and B. Gralak, Completeness and divergence-free behavior of the quasi-normal modes using causality principle, OSA Continuum, vol.1, p.340, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01907012

P. T. Kristensen, C. Van-vlack, and S. Hughes, Effective mode volumes for leaky optical cavities, AIP Conf. Proc, vol.1398, p.100, 2011.

E. A. Muljarov and W. Langbein, Exact mode volume and Purcell factor of open optical systems, Phys. Rev. B, vol.94, p.235438, 2016.

P. T. Kristensen, C. Van-vlack, and S. Hughes, Generalized effective mode volume for leaky optical cavities, Opt. Lett, vol.37, p.1649, 2012.

Q. Bai, M. Perrin, C. Sauvan, J. Hugonin, and P. Lalanne, Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure, Opt. Express, vol.21, p.27371, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00917914

P. Lalanne, Quasinormal mode solvers for resonators with dispersive materials, J. Opt. Soc. Am. A, vol.36, p.686, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02348417

W. Yan, R. Faggiani, and P. Lalanne, Rigorous modal analysis of plasmonic nanoresonators, Phys. Rev. B, vol.97, p.205422, 2018.

R. Faggiani, A. Losquin, J. Yang, E. Mårsell, A. Mikkelsen et al., Modal analysis of the ultrafast dynamics of optical nanoresonators, ACS Photonics, vol.4, p.897, 2017.

M. B. Doost, W. Langbein, and E. A. Muljarov, Resonant-state expansion applied to three-dimensional open optical systems, Phys. Rev. A, vol.90, p.13834, 2014.

P. Fauché, S. G. Kosionis, and P. Lalanne, Collective scattering in hybrid nanostructures with many atomic oscillators coupled to an electromagnetic resonance, Phys. Rev. B, vol.95, p.195418, 2017.

B. Vial and Y. Hao, A coupling model for quasi-normal modes of photonic resonators, J. Opt, vol.18, p.115004, 2016.

J. Yang, H. Giessen, and P. Lalanne, Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing, Nano Lett, vol.15, p.3439, 2015.

K. G. Cognée, W. Yan, F. China, D. Balestri, F. Intonti et al., Mapping complex mode volumes with cavity perturbation theory, Optica, vol.6, p.269, 2019.

O. Klein, S. Donovan, M. Dressel, and G. Grüner, Microwave cavity perturbation technique: Part I: Principles, Int. J. Infrared Millimeter Waves, vol.14, p.2423, 1993.

W. Yan, P. Lalanne, and M. Qiu, Perturbation theory of quasinormal modes for geometrically deformed nanoresonators, 2019.

L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade et al., Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity, Phys. Rev. B, vol.76, p.41102, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00384580

L. Ramunno and S. Hughes, Disorder-induced resonance shifts in high-indexcontrast photonic crystal nanocavities, Phys. Rev. B, vol.79, p.161303, 2009.

M. Burresi, T. Kampfrath, D. Van-oosten, J. C. Prangsma, B. S. Song et al., Magnetic light-matter interactions in a photonic crystal nanocavity, Phys. Rev. Lett, vol.105, p.123901, 2010.

L. Neumeier, R. Quidant, and D. E. Chang, Self-induced back-action optical trapping in nanophotonic systems, New J. Phys, vol.17, p.123008, 2015.

K. D. Heylman, K. A. Knapper, E. H. Horak, M. T. Rea, S. K. Vanga et al., Optical microresonators for sensing and transduction: A materials perspective, Adv. Mater, vol.29, p.1700037, 2017.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu et al., Deterministic coupling of single quantum dots to single nanocavity modes, Science, vol.308, p.1158, 2005.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, Controlling the resonance of a photonic crystal microcavity by a near-field probe, Phys. Rev. Lett, vol.95, p.153904, 2005.

S. Mujumdar, A. F. Koenderink, T. Sünner, B. C. Buchler, M. Kamp et al., Near-field imaging and frequency tuning of a high-q photonic crystal membrane microcavity, Opt. Express, vol.15, p.17214, 2007.

F. Intonti, Spectral tuning and near-field imaging of photonic crystal microcavities, Phys. Rev. B, vol.78, p.41401, 2008.

N. , L. Thomas, and R. Houdré, Inhibited emission of electromagnetic modes confined in subwavelength cavities, Phys. Rev. B, vol.84, p.35320, 2011.

F. Ruesink, H. M. Doeleman, R. Hendrikx, A. F. Koenderink, and E. Verhagen, Perturbing open cavities: Anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system, Phys. Rev. Lett, vol.115, p.203904, 2015.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. H. Li et al., Magnetic imaging in photonic crystal microcavities, Phys. Rev. Lett, vol.105, p.123902, 2010.

J. Gérard, Solid-state cavity-quantum electrodynamics with self-assembled quantum dots, Top. Appl. Phys, vol.90, p.269, 2003.

E. A. Muljarov and W. Langbein, Resonant-state expansion of dispersive open optical systems: Creating gold from sand, Phys. Rev. B, vol.93, p.75417, 2016.

A. Gras, W. Yan, and P. Lalanne, Quasinormal-mode analysis of grating spectra at fixed incidence angles, Opt. Lett, vol.44, p.3494, 2019.

A. Taflove, S. G. Johnson, and A. Oskooi, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, 2013.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Timeindependent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets, Phys. Rev. A, vol.41, p.5187, 1990.

M. Langlais, J. Hugonin, M. Besbes, and P. Ben-abdallah, Cooperative electromagnetic interactions between nanoparticles for solar energy harvesting, Opt. Express, vol.22, p.577, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01339339

C. Sauvan, P. Lalanne, and J. P. Hugonin, Slow-wave effect and mode-profile matching in photonic crystal microcavities, Phys. Rev. B, vol.71, p.165118, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00113011

N. Caselli, F. Intonti, F. China, F. Riboli, A. Gerardino et al., Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes, Light: Sci. Appl, vol.4, p.326, 2015.

P. Vries, D. V. Van-coevorden, and A. Lagendijk, Point scatterers for classical waves, Rev. Mod. Phys, vol.70, p.447, 1998.

A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, Spontaneous emission rates of dipoles in photonic crystal membranes, J. Opt. Soc. Am. B, vol.23, p.1196, 2006.

H. Altug and J. Vu?kovi?, Photonic crystal nanocavity array laser, Opt. Express, vol.13, p.8819, 2005.

P. Lodahl, S. Mahmoodian, and S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures, Rev. Mod. Phys, vol.87, p.347, 2015.

E. Lassalle, N. Bonod, T. Durt, and B. Stout, Interplay between spontaneous decay rates and Lamb shifts in open photonic systems, Opt. Lett, vol.43, p.1950, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01774673

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan et al., Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett, vol.78, p.1667, 1997.

S. Nie and S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science, vol.275, p.1102, 1997.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan et al., Self-assembled plasmonic nanoparticle clusters, vol.328, p.1135, 2010.

F. De-angelis, Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons, Nat. Nanotechnol, vol.5, p.67, 2010.

M. Notomi, E. Kuramochi, and T. Tanabe, Large-scale arrays of ultrahigh-Q coupled nanocavities, Nat. Photonics, vol.2, p.741, 2008.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin et al., Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, vol.452, p.72, 2008.

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys, vol.6, p.707, 2010.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. Roller et al., DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response, Nature, vol.483, p.311, 2012.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook, Adv. Mater, vol.25, p.2517, 2013.

W. Suh, Z. Wang, and S. Fan, Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities, IEEE J. Quantum Electron, vol.40, p.1511, 2004.

J. M. Gérardy and M. Ausloos, Absorption spectrum of clusters of spheres from the general solution of maxwell's equations. ii. optical properties of aggregated metal spheres, Phys. Rev. B, vol.25, p.4204, 1982.

B. Willingham and S. Link, A kirchhoff solution to plasmon hybridization, Appl. Phys. B, vol.113, p.519, 2013.

J. B. Pendry, A. I. Fernández-domínguez, Y. Luo, and R. Zhao, Capturing photons with transformation optics, Nat. Phys, vol.9, p.518, 2013.

M. Frimmer and A. F. Koenderink, Superemitters in hybrid photonic systems: A simple lumping rule for the local density of optical states and its breakdown at the unitary limit, Phys. Rev. B, vol.86, p.235428, 2012.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, Science, vol.302, p.419, 2003.

S. Franke, S. Hughes, M. K. Dezfouli, P. T. Kristensen, K. Busch et al., Quantization of quasinormal modes for open cavities and plasmonic cavity quantum electrodynamics, Phys. Rev. Lett, vol.122, p.213901, 2019.

J. R. De-lasson, P. T. Kristensen, J. Mørk, and N. Gregersen, Semianalytical quasi-normal mode theory for the local density of states in coupled photonic crystal cavity-waveguide structures, Opt. Lett, vol.40, p.5790, 2015.

J. Yang, M. Perrin, and P. Lalanne, Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators, Phys. Rev. X, vol.5, p.21008, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134397

B. Gurlek, V. Sandoghdar, and D. Martín-cano, Manipulation of quenching in nanoantenna-emitter systems enabled by external detuned cavities: A path to enhance strong-coupling, ACS Photonics, vol.5, p.456, 2018.

P. Zijlstra, M. Orrit, and A. Femius-koenderink, Metal Nanoparticles for Microscopy and Spectroscopy, 2014.

R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev, vol.93, p.99, 1954.

A. Raman and S. Fan, Photonic band structure of dispersive metamaterials formulated as a hermitian eigenvalue problem, Phys. Rev. Lett, vol.104, p.87401, 2010.

N. W. Ashcroft and D. N. Mermin, Solid state physics, 1976.

M. Mansuripur, M. Kolesik, and P. Jakobsen, Leaky modes of solid dielectric spheres, Phys. Rev. A, vol.96, p.13846, 2017.

F. J. García-de-abajo, Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides, J. Phys. Chem. C, vol.112, p.17983, 2008.

M. K. Dezfouli, C. Tserkezis, N. A. Mortensen, and S. Hughes, Nonlocal quasinormal modes for arbitrarily shaped three-dimensional plasmonic resonators, Optica, vol.4, p.1503, 2017.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Bridging quantum and classical plasmonics with a quantum-corrected model, Nat. Commun, vol.3, p.825, 2012.

J. A. Scholl, A. Garcia-etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan et al., Evolution of plasmonic metamolecule modes in the quantum tunneling regime, ACS Nano, vol.10, p.1346, 2016.

D. Knebl, A. Hörl, A. Trügler, J. Kern, J. R. Krenn et al., Gap plasmonics of silver nanocube dimers, Phys. Rev. B, vol.93, p.81405, 2016.

K. J. Vahala, Optical microcavities, Nature, vol.424, p.839, 2003.

C. Santori, D. Fattal, and Y. Yamamoto, Single-photon Devices and Applications, 2010.

P. Törmä and W. L. Barnes, Strong coupling between surface plasmon polaritons and emitters: a review, Rep. Prog. Phys, vol.78, p.13901, 2015.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, Novel nanostructures and materials for strong light-matter interactions, ACS Photonics, vol.5, p.24, 2018.

P. Roelli, C. Galland, N. Piro, and T. J. Kippenberg, Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering, Nat. Nanotechnol, vol.11, p.164, 2016.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, Ultrafast roomtemperature single photon emission from quantum dots coupled to plasmonic nanocavities, Nano Lett, vol.16, p.270, 2016.

R. Chikkaraddy, B. De-nijs, F. Benz, S. J. Barrow, O. A. Scherman et al., Single-molecule strong coupling at room temperature in plasmonic nanocavities, Nature, vol.535, p.127, 2016.

A. I. Fernández-domínguez, S. I. Bozhevolnyi, and N. A. Mortensen, Plasmon-enhanced generation of nonclassical light, ACS Photonics, vol.5, p.3447, 2018.

R. Ameling and H. Giessen, Microcavity plasmonics: strong coupling of photonic cavities and plasmons, Laser Photonics Rev, vol.7, p.141, 2013.

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules, ACS Nano, vol.6, p.951, 2012.

F. Ruesink, H. M. Doeleman, E. Verhagen, and A. F. Koenderink, Controlling nanoantenna polarizability through backaction via a single cavity mode, Phys. Rev. Lett, vol.120, p.206101, 2018.

M. K. Dezfouli, R. Gordon, and S. Hughes, Molecular optomechanics in the anharmonic Cavity-QED regime using hybrid metal-dielectric cavity modes, ACS Photonics, vol.6, p.1400, 2019.

M. Gross and S. Haroche, Superradiance: An essay on the theory of collective spontaneous emission, Phys. Rep, vol.93, p.301, 1982.

L. Novotny and N. F. Van-hulst, Antennas for light, Nat. Photonics, vol.5, p.83, 2011.

N. Engheta, Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials, Science, vol.317, p.1698, 2007.

J. Wiersig, Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles, Phys. Rev. A, vol.84, p.63828, 2011.

F. J. García-de-abajo, Colloquium : Light scattering by particle and hole arrays, Rev. Mod. Phys, vol.79, p.1267, 2007.

M. Miri and A. Alù, Exceptional points in optics and photonics, Science, vol.363, p.7709, 2019.

Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu et al., Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light: Sci. Appl, vol.8, p.90, 2019.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev. A, vol.45, p.8185, 1992.

E. Brasselet, M. Malinauskas, A. ?ukauskas, and S. Juodkazis, Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum, Appl. Phys. Lett, vol.97, p.211108, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00609443

X. X. Cai, J. U. Wang, M. J. Strain, B. Johnson-morris, J. J. Zhu et al., Science, vol.338, p.363, 2012.

R. C. Devlin, A. Ambrosio, D. Wintz, S. L. Oscurato, A. Y. Zhu et al., Spin-to-orbital angular momentum conversion in dielectric metasurfaces, Opt. Express, vol.25, p.377, 2017.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan et al., Terabit free-space data transmission employing orbital angular momentum multiplexing, Nat. Photonics, vol.6, p.488, 2012.

A. E. Willner, Optical communications using orbital angular momentum beams, Adv. Opt. Photonics, vol.7, p.66, 2015.

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, Twisted photons: New quantum perspectives in high dimensions, Light: Sci. Appl, vol.7, p.17146, 2018.

M. , G. Nassiri, and E. Brasselet, Multispectral management of the photon orbital angular momentum, Phys. Rev. Lett, vol.121, p.213901, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01941207

D. G. Grier, A revolution in optical manipulation, Nature, vol.424, p.810, 2003.

M. Padgett and R. Bowman, Tweezers with a twist, Nat. Photonics, vol.5, p.343, 2011.

K. Dholakia and T. ?i?már, Shaping the future of manipulation, Nat. Photonics, vol.5, p.335, 2011.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, Advanced optical trapping by complex beam shaping, Laser Photonics Rev, vol.7, p.839, 2013.

L. Marrucci, C. Manzo, and D. Paparo, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media, Phys. Rev. Lett, vol.96, p.163905, 2006.

K. Y. Bliokh, F. J. Rodríguez-fortuño, F. Nori, and A. V. Zayats, Spin-orbit interactions of light, Nat. Photonics, vol.9, p.796, 2015.

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. Planken, and H. P. Urbach, Electromagnetic spin-orbit interactions via scattering of subwavelength apertures, Phys. Rev. Lett, vol.104, p.83903, 2010.

O. G. Rodríguez-herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, Optical nanoprobing via spin-orbit interaction of light, Phys. Rev. Lett, vol.104, p.253601, 2010.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, Generating far-field orbital angular momenta from near-field optical chirality, Phys. Rev. Lett, vol.110, p.203906, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00985225

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss et al., Chiral quantum optics, vol.541, p.473, 2017.

F. Alpeggiani, K. Y. Bliokh, F. Nori, and L. Kuipers, Electromagnetic helicity in complex media, Phys. Rev. Lett, vol.120, p.243605, 2018.

W. C. Cheong, W. M. Lee, X. Yuan, L. Zhang, K. Dholakia et al., Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation, Appl. Phys. Lett, vol.85, p.5784, 2004.

S. S. Oemrawsingh, J. A. Van-houwelingen, E. R. Eliel, J. P. Woerdman, E. J. Verstegen et al., Production and characterization of spiral phase plates for optical wavelengths, Appl. Opt, vol.43, p.688, 2004.

J. E. Curtis, B. A. Koss, and D. G. Grier, Dynamic holographic optical tweezers, Opt. Commun, vol.207, p.169, 2002.

E. Brasselet and C. Loussert, Electrically controlled topological defects in liquid crystals as tunable spin-orbit encoders for photons, Opt. Lett, vol.36, p.719, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00667715

M. Caño-garcía, X. Quintana, J. M. Otón, and M. A. Geday, Dynamic multilevel spiral phase plate generator, Sci. Rep, vol.8, p.15804, 2018.

A. Aleksanyan and E. Brasselet, Self-eclipsing: alignment-free vortex coronagraphy, Opt. Lett, vol.42, p.1237, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01494646

A. Aleksanyan, N. Kravets, and E. Brasselet, Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve, Phys. Rev. Lett, vol.118, p.203902, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01526070

H. Kim, J. Park, S. Cho, S. Lee, M. Kang et al., Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens, Nano Lett, vol.10, p.49, 2010.

R. Röhrich, C. Hoekmeijer, C. I. Osorio, and A. F. Koenderink, Quantifying single plasmonic nanostructure far-fields with interferometric and polarimetric k-space microscopy, Light: Sci. Appl, vol.7, p.65, 2018.

R. M. Kerber, J. M. Fitzgerald, D. E. Reiter, S. S. Oh, and O. Hess, Reading the orbital angular momentum of light using plasmonic nanoantennas, ACS Photonics, vol.4, p.891, 2017.

D. K. Sharma, V. Kumar, A. B. Vasista, D. Paul, S. K. Chaubey et al., Optical orbital angular momentum read-out using a selfassembled plasmonic nanowire, ACS Photonics, vol.6, p.148, 2018.

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, Orbital angular momentum dichroism in nanoantennas, Commun. Phys, vol.1, p.87, 2018.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs et al., Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation, Nano Lett, vol.14, p.1394, 2014.

K. E. Chong, Polarization-independent silicon metadevices for efficient optical wavefront control, Nano Lett, vol.15, p.5369, 2015.

J. Sun, X. Wang, T. Xu, Z. A. Kudyshev, A. N. Cartwright et al., Nano Lett, vol.14, p.2726, 2014.

D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis, and E. Brasselet, Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces, Adv. Opt. Mater, vol.4, p.306, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01275916

V. G. Sala, Spin-orbit coupling for photons and polaritons in microstructures, Phys. Rev. X, vol.5, p.11034, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01275245

N. and C. Zambon, Optically controlling the emission chirality of microlasers, Nat. Photonics, vol.13, p.283, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02349336

Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li et al., Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices, Sci. Rep, vol.5, p.10958, 2015.

Q. Xiao, C. Klitis, S. Li, Y. Chen, X. Cai et al., Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings, p.3168, 2016.

S. Li, Z. Nong, X. Wu, W. Yu, M. He et al., Orbital angular momentum vector modes (de)multiplexer based on multimode micro-ring, Opt. Express, vol.26, p.29895, 2018.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, Efficient sorting of orbital angular momentum states of light, Phys. Rev. Lett, vol.105, p.153601, 2010.

I. A. Litvin, A. Dudley, F. S. Roux, and A. Forbes, Azimuthal decomposition with digital holograms, Opt. Express, vol.20, p.10996, 2012.

W. H. Peeters, E. J. Verstegen, and M. P. Van-exter, Orbital angular momentum analysis of high-dimensional entanglement, Phys. Rev. A, vol.76, p.42302, 2007.

H. Pires, H. C. Florijn, and M. P. Van-exter, Measurement of the spiral spectrum of entangled two-photon states, Phys. Rev. Lett, vol.104, p.20505, 2010.

A. Errico, R. D'amelio, B. Piccirillo, F. Cardano, and L. Marrucci, Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams, Optica, vol.4, p.1350, 2017.

G. Kulkarni, R. Sahu, O. S. Magaña-loaiza, R. W. Boyd, and A. K. Jha, Single-shot measurement of the orbital-angular-momentum spectrum of light, Nat. Commun, vol.8, p.1054, 2017.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light, Phys. Rev. Lett, vol.107, p.53601, 2011.

J. E. Rosenthal and G. M. Murphy, Group theory and the vibrations of polyatomic molecules, Rev. Mod. Phys, vol.8, p.317, 1936.

N. A. Mirin, K. Bao, and P. Nordlander, Fano resonances in plasmonic nanoparticle aggregates, J. Phys. Chem. A, vol.113, p.4028, 2009.

H. H. Jen, M. Chang, and Y. Chen, Cooperative light scattering from helical-phase-imprinted atomic rings, Sci. Rep, vol.8, p.9570, 2018.

J. Zhu, X. Cai, Y. Chen, and S. Yu, Theoretical model for angular gratingbased integrated optical vortex beam emitters, Opt. Lett, vol.38, p.1343, 2013.

A. D. Raki?, A. B. Djuri?i?, J. M. Elazar, and M. L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt, vol.37, p.5271, 1998.

J. Vargas, J. A. Quiroga, and T. Belenguer, Phase-shifting interferometry based on principal component analysis, Opt. Lett, vol.36, p.1326, 2011.

F. Gori, Polarization basis for vortex beams, J. Opt. Soc. Am. A, vol.18, p.1612, 2001.

Q. Zhan, Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt. Photonics, vol.1, p.1, 2009.

A. Trichili, C. Rosales-guzmán, A. Dudley, B. Ndagano, A. B. Salem et al., Optical communication beyond orbital angular momentum, Sci. Rep, vol.6, p.27674, 2016.

X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke et al., Hybridorder Poincaré sphere, Phys. Rev. A, vol.91, p.23801, 2015.

A. , Zur Quantentheorie der Dispersion, Die Naturwissenschaften, vol.11, 1923.

C. V. Raman, A new radiation, Indian J. Phys, vol.2, p.387, 1928.

D. A. Long, The Raman effect, 2002.

M. Fleischmann, P. Hendra, and A. Mcquillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett, vol.26, p.163, 1974.

M. G. Albrecht and J. A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc, vol.99, p.5215, 1977.

A. M. Michaels, L. Jiang, and . Brus, Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules, J. Phys. Chem. B, vol.104, p.11965, 2000.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks et al., Probing the structure of single-molecule surface-enhanced Raman scattering hot spots, J. Am. Chem. Soc, vol.130, p.12616, 2008.

M. S. Anderson, Locally enhanced Raman spectroscopy with an atomic force microscope, Appl. Phys. Lett, vol.76, p.3130, 2000.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy, Phys. Rev. Lett, vol.92, p.96101, 2004.

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, Scanning-probe Raman spectroscopy with single-molecule sensitivity, Phys. Rev. B, vol.73, p.193406, 2006.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, High-resolution near-field Raman microscopy of single-walled carbon nanotubes, Phys. Rev. Lett, vol.90, p.95503, 2003.

D. L. Jeanmaire and R. P. Van-duyne, Surface Raman spectroelectrochemistry, J. Electroanal. Chem. Interfacial Electrochem, vol.84, p.1, 1977.

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions, J. Chem. Phys, vol.84, p.4174, 1986.

F. J. García-vidal and J. B. Pendry, Collective theory for surface enhanced Raman scattering, Phys. Rev. Lett, vol.77, p.1163, 1996.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E, vol.62, p.4318, 2000.

E. C. Le-ru, E. Blackie, M. Meyer, and P. G. Etchegoin, Surface enhanced Raman scattering enhancement factors: A comprehensive study, J. Phys. Chem. C, vol.111, p.13794, 2007.

F. J. Colas, Red-shift effects in surface enhanced Raman spectroscopy: Spectral or intensity dependence of the near-field?, J. Phys. Chem. C, vol.120, p.13675, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01441504

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang et al., Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature, vol.498, p.82, 2013.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van-duyne, Recent advances in tip-enhanced Raman spectroscopy, J. Phys. Chem. Lett, vol.5, p.3125, 2014.

J. Lee, K. T. Crampton, N. Tallarida, and V. A. Apkarian, Visualizing vibrational normal modes of a single molecule with atomically confined light, Nature, vol.568, p.78, 2019.

C. Carnegie, J. Griffiths, B. De-nijs, C. Readman, R. Chikkaraddy et al., Room-temperature optical picocavities below 1 nm 3 accessing single-atom geometries, J. Phys. Chem. Lett, vol.9, p.7146, 2018.

F. Peyskens, A. Dhakal, P. Van-dorpe, N. L. Thomas, and R. Baets, Surface enhanced Raman spectroscopy using a single mode nanophotonicplasmonic platform, ACS Photonics, vol.3, p.102, 2016.

F. Peyskens, P. Wuytens, A. Raza, P. Van-dorpe, and R. Baets, Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna, Nanophotonics, vol.7, p.1299, 2018.

J. Losada, A. Raza, S. Clemmen, A. Serrano, A. Griol et al., SERS detection via individual bowtie nanoantennas integrated in Si 3 N 4 waveguides, IEEE J. Sel. Topics Quantum Electron, vol.25, p.1, 2019.

W. Zhu, D. Wang, and K. B. Crozier, Direct observation of beamed Raman scattering, Nano Lett, vol.12, p.6235, 2012.

T. Hummer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Hogele et al., Cavity-enhanced Raman microscopy of individual carbon nanotubes, Nat. Commun, vol.7, p.12155, 2016.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking et al., Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance, Photonics Res, vol.6, p.346, 2018.

J. E. Bjorkholm, Efficient optical parametric oscillation using doubly and singly resonant cavities, Appl. Phys. Lett, vol.13, p.53, 1968.

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, ) and ? (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities, Opt. Express, vol.15, issue.2, p.7303, 2007.

M. Minkov, D. Gerace, and S. Fan, Doubly resonant ? (2) nonlinear photonic crystal cavity based on a bound state in the continuum, Optica, vol.6, p.1039, 2019.

M. K. Dezfouli and S. Hughes, Quantum optics model of surfaceenhanced Raman spectroscopy for arbitrarily shaped plasmonic resonators, ACS Photonics, vol.4, p.1045, 2017.

M. K. Schmidt, R. Esteban, A. González-tudela, G. Giedke, and J. Aizpurua, Quantum mechanical description of Raman scattering from molecules in plasmonic cavities, ACS Nano, vol.10, p.6291, 2016.

M. K. Schmidt, R. Esteban, F. Benz, J. J. Baumberg, and J. Aizpurua, Linking classical and molecular optomechanics descriptions of SERS, Faraday Discuss, vol.205, p.31, 2017.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, vol.86, p.1391, 2014.

J. D. Teufel, T. Donner, M. A. Castellanos-beltran, J. W. Harlow, and K. W. Lehnert, Nanomechanical motion measured with an imprecision below that at the standard quantum limit, Nat. Nanotechnol, vol.4, p.820, 2009.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig et al., Measuring nanomechanical motion with an imprecision below the standard quantum limit, Phys. Rev. A, vol.82, p.61804, 2010.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode, Nature, vol.482, p.63, 2012.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman et al., Sideband cooling of micromechanical motion to the quantum ground state, Nature, vol.475, p.359, 2011.

T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Entangling mechanical motion with microwave fields, Science, vol.342, p.710, 2013.

T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Coherent state transfer between itinerant microwave fields and a mechanical oscillator, Nature, vol.495, p.210, 2013.

A. P. Reed, K. H. Mayer, J. D. Teufel, L. D. Burkhart, W. Pfaff et al., Faithful conversion of propagating quantum information to mechanical motion, Nat. Phys, vol.13, p.1163, 2017.

A. Lombardi, M. K. Schmidt, L. Weller, W. M. Deacon, F. Benz et al., Pulsed molecular optomechanics in plasmonic nanocavities: From nonlinear vibrational instabilities to bondbreaking, Phys. Rev. X, vol.8, p.11016, 2018.

H. B. Callen and T. A. Welton, Irreversibility and generalized noise, Phys. Rev, vol.83, p.34, 1951.

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys, vol.82, p.1155, 2010.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet et al., Optomechanically induced transparency, vol.330, p.1520, 2010.

A. H. Safavi-naeini, T. P. Alegre, J. Chan, M. Eichenfield, M. Winger et al., Electromagnetically induced transparency and slow light with optomechanics, Nature, vol.472, p.69, 2011.

. List and . Publications,

K. G. Cognée, W. Yan, F. China, D. Balestri, F. Intonti et al., Mapping complex mode volumes with cavity perturbation theory, Optica, vol.6, issue.2, 2017.

K. G. Cognée, W. Yan, A. F. Koenderink, and P. Lalanne, A coupled mode formalism for quasi-normal modes of photonic resonators

K. G. Cognée, H. M. Doeleman, P. Lalanne, and A. F. Koenderink, Cooperative interactions between nanoantennas in a high Q cavity for unidirectional light sources

K. G. Cognée, H. M. Doeleman, P. Lalanne, and A. F. Koenderink, Generation of pure OAM beams with a single state of polarization

K. G. Cognée, I. Shlesinger, P. Lalanne, and A. F. Koenderink, Molecular optomechanics in the context of multiple photonic resonances

. About-the-author,

K. Guy, he was admitted at the Institut d'Optique Graduate School (Palaiseau and Talence, France) where he obtained in 2015 an engineering (Master) degree in Optics and Photonics. In parallel, he obtained a Bachelor degree in Fundamental Physics at the University of Paris XI in 2013 (with honors), and a Master in Physics from the University of Bordeaux in 2015 (with high honors), Cognée was born in 1992 in Confolens, France. After two years of preparatory classes (math-physics) at the Lycée du Parc in Lyon (France), 2010.