A. Tartaglia, L. F. Cugliandolo, and &. Picco, «Percolation and coarsening in the bidimensional voter model», Phys. Rev. E, vol.92, p.69, 2015.

T. Blanchard, L. F. Cugliandolo, M. Picco, and &. Tartaglia, «Critical percolation in the dynamics of the bidimensional ferromagnetic Ising model», Journal of Statistical Mechanics: Theory and Experiment, pp.113-201, 2017.

A. Tartaglia, L. F. Cugliandolo, and &. Picco, «Phase separation and critical percolation in bidimensional spin-exchange models», Europhysics Letters), vol.116, p.46, 2016.

A. Tartaglia, L. F. Cugliandolo, and &. Picco, Coarsening and percolation in the kinetic 2d Ising model with spin-exchange updates and the voter model», 2018.
URL : https://hal.archives-ouvertes.fr/hal-01916151

L. F. Cugliandolo, G. S. Lozano, N. Nessi, M. Picco, and &. Tartaglia, «Quenched dynamics of classical isolated systems: the spherical spin model with two-body random interactions or the Neumann integrable model», Journal of Statistical Mechanics: Theory, pp.63-206, 2018.

V. Spirin, P. L. Krapivsky, and &. S. Redner, «Fate of zero-temperature Ising ferromagnets», Phys. Rev. E, vol.63, issue.5, p.30, 2001.

V. Spirin, P. Krapivsky, and &. S. Redner, «Freezing in Ising ferromagnets

, Phys. Rev. E, vol.65, p.23, 2002.

K. Barros, P. L. Krapivsky, and &. S. Redner, «Freezing into stripe states in twodimensional ferromagnets and crossing probabilities in critical percolation», Phys. Rev. E, vol.80, issue.5, p.171, 2009.

J. Olejarz, P. L. Krapivsky, and &. S. Redner, «Fate of 2D Kinetic Ferromagnets and Critical Percolation Crossing Probabilities», Phys. Rev. Lett, vol.109, issue.5, p.164, 2012.

J. J. Arenzon, A. J. Bray, and L. F. , Cugliandolo & A. Sicilia; «Exact results for curvature-driven coarsening in two dimensions», Phys. Rev. Lett, vol.98, p.81, 2007.

A. Sicilia, J. J. Arenzon, A. J. Bray-&-l, and . Cugliandolo, «Domain growth morphology in curvature driven two dimensional coarsening», Phys. Rev. E, vol.76, p.207, 2007.

A. Sicilia, J. J. Arenzon, A. J. Bray-&-l, and . Cugliandolo, «Geometric properties of two-dimensional coarsening with weak disorder», Europhys. Lett, vol.82, p.4, 2008.

A. Sicilia, Y. Sarrazin, J. J. Arenzon, A. J. Bray-&-l, and . Cugliandolo, Geometry of phase separation», Phys. Rev. E, vol.80, p.48, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00519911

T. Blanchard, F. Corberi, L. F. Cugliandolo, and &. Picco, «How soon after a zero-temperature quench is the fate of the Ising model sealed?»; EPL 106, vol.4, p.24, 2014.

R. J. Glauber, «Time-dependent Statistics of the Ising Model

, J. Math. Phys, vol.4, issue.7, p.294, 1963.

G. T. Barkema-&-m and . Newman,

, Monte Carlo methods in statistical physics, vol.7, 1999.

A. B. Bortz, M. H. Kalos, and &. L. Lebowitz,

, «A new algorithm for Monte Carlo simulation of Ising spin systems, J. Comp. Phys, vol.17, issue.7, p.10, 1975.

A. J. Bray, K. &. Humayun, and . Newman,

, «Kinetics of ordering for correlated initial conditions, vol.43, p.163, 1991.

S. K. Chakraborty-&-s and . Das, «Role of initial correlation in coarsening of a ferromagnet», Eur. Phys. J. B, vol.88, issue.8, p.160, 2015.

F. Corberi-&-r and . Villavicencio-sanchez,

, Role of initial state and final quench temperature on aging properties in phase-ordering kinetics», Phys. Rev. E, vol.93, issue.8, pp.52-105, 2016.

M. Henkel and &. Pleimling, Non-Equilibrium Phase Transitions: ageing and Dynamical Scaling Far from Equilibrium, p.9, 2010.

A. J. Bray-&-k.-humayun-;-t-?-t-c, Non-equilibrium dynamics of the Ising model for

, J. Phys. A, vol.24, issue.9, p.1185, 1991.

A. J. Bray, Theory of phase ordering kinetics

, Adv. Phys, vol.43, p.98, 1994.

H. Pinson,

, J. Stat. Phys, vol.75, p.54, 1994.

J. Cardy, «Critical Percolation in Finite Geometries

, J. Phys. A, vol.25, p.164, 1992.

G. M. Watts,

, «A crossing probability for critical percolation in two dimensions

, J. Phys. A: Math. Gen, vol.29, p.164, 1996.

H. Saleur and &. Duplantier,

, Exact determination of the percolation Hull exponent in two dimensions», Phys. Rev. Lett, vol.58, p.16, 1987.

S. Smirnov, «Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits», C. R. Acad. Sci. Paris I, vol.333, p.15, 2001.

D. Stauffer and &. Aharony, Introduction To Percolation Theory, vol.14, p.17, 1994.

O. Schramm, «Scaling limits of loop-erased random walks and uniform spanning trees

I. Benjamini and &. Häggström,

, Conformally invariant scaling limits: an overview and a collection of problems, p.15, 2011.

G. F. Lawler, «Schramm-Loewner Evolution

F. M. Camia-&-c and . Newman, «Two-Dimensional Critical Percolation: The Full Scaling Limit», Communications in Mathematical Physics, vol.268, p.15, 2006.

R. Langlands and P. Pouliot-&-y,

, Conformal invariance in twodimensional percolation», Bull. Am. Math. Soc, vol.30, p.15, 1994.

B. B. Wieland-&-d and . Wilson, «Winding angle variance of Fortuin-Kasteleyn contours», Phys. Rev. E, vol.68, p.16, 2003.

K. R. Christensen-&-n and . Moloney, Complexity and Criticality, p.17, 2005.

A. A. Saberi, «Recent advances in percolation theory and its applications», Phys. Rep, vol.578, p.17, 2015.

F. Corberi, L. F. Cugliandolo, F. Insalata, and &. Picco, Coarsening and percolation in a disordered ferromagnet, Phys. Rev. E, vol.95, p.26, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01982559

S. M. Allen and &. W. Cahn,

, «A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening

A. Metall, , vol.27, p.36, 1979.

H. Takeuchi,

, J. of Low Temp. Phys, vol.183, p.46, 2016.

J. Hofmann, S. S. Natu-&-s, and . Sarma, Coarsening Dynamics of Binary Bose Condensates», Phys. Rev. Lett, vol.113, p.47, 2014.

D. Reith, K. Bucior, L. Yelash, P. Virnau, and &. Binder,

, Spinodal decomposition of polymer solutions: molecular dynamics simulations of the two-dimensional case», J. Phys.: Condens. Matter, vol.24, p.48, 2012.

K. Kawasaki, «Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I», Phys. Rev, vol.145, p.48, 1966.

K. Kawasaki, «Diffusion Constants near the Critical Point for Time-Dependent Ising Models, Phys. Rev, vol.148, p.48, 1966.

A. J. Bray,

, Coarsening dynamics of phase-separating systems», Phil. Trans. Roy. Soc. Lond, vol.361, p.48, 2003.

I. M. Lifshitz-&-v and . Slyozov, «The kinetics of precipitation from supersaturated solid solutions», J. Phys. Chem. Solids, vol.19, p.48, 1961.

C. Wagner,

, Z. Elektrochem, vol.65, p.48, 1961.

D. A. Huse, «Corrections to late-stage behavior in spinodal decomposition: Lifshitz-Slyozov scaling and Monte Carlo simulations», Phys. Rev. B, vol.34, p.53, 1986.

J. G. Amar, F. E. Sullivan-&-r, and . Mountain,

, «Monte Carlo study of growth in the two-dimensional spin-exchange Kinetic Ising Model», Phys. Rev. B, vol.37, p.53, 1988.

T. M. Rogers, K. R. Elder-&-r, and . Desai, «Numerical study of the late stages of spinodal decomposition», Phys. Rev. B, vol.37, p.53, 1988.

C. Godrèche, F. Krzaka?a, and &. Ricci-tersenghi,

, «Non-equilibrium critical dynamics of the ferromagnetic Ising model with Kawasaki dynamics», J. Stat. Mech, p.48, 2004.

F. Krzaka?a, Glassy Properties of the Kawasaki Dynamics of Two-Dimensional Ferromagnets», Phys. Rev. Lett, vol.94, p.48, 2005.

H. Takeuchi, Y. Mizuno, and &. Dehara, «Phase-ordering percolation and an infinite domain wall in segregating binary Bose-Einstein condensates», Phys. Rev. A, vol.92, p.55, 2015.

G. F. Mazenko,

, Phys. Rev. E, vol.50, p.50, 1994.

J. F. Marko-&-g, Barkema; «Phase ordering in the Ising model with conserved spin», Phys. Rev. E, vol.52, p.50, 1995.

S. Puri, A. J. Bray, and &. L. , Lebowitz; «Phase-separation kinetics in a model with order-parameter-dependent mobility», Phys. Rev. E, vol.56, p.50, 1997.

G. R. Pruessner-&-n and . Moloney,

, J. Stat. Phys, vol.115, p.171, 2004.

T. Blanchard;-«, Wrapping probabilities for Ising spin clusters on a torus», Journal of Physics A: Mathematical and Theoretical, vol.47, p.171, 2014.

P. Clifford and &. Sudbury, «Model for spatial conflict, vol.60, p.69, 1973.

R. A. Holley-&-t and . Liggett,

, Ergodic theorems for weakly interacting infinite systems and voter model», Annals of Probability, vol.3, p.69, 1975.

T. M. Liggett, Stochastic interacting systems: contact, voter and exclusion processes, p.69, 1999.

P. L. Krapivsky,

, «Kinetics of monomer-monomer surface catalytic reactions», Phys. Rev. A, vol.45, p.69, 1992.

P. L. Krapivsky, Kinetics of a monomer-monomer model of heterogeneous catalysis

, J. Phys. A, vol.25, p.69, 1992.

L. L. Frachebourg-&-p and . Krapivsky, Exact results for kinetics of catalytic reactions», Phys. Rev. E, vol.53, p.199, 1996.

F. Vazquez, P. L. Krapivsky, and &. S. Redner, Constrained opinion dynamics: freezing and slow evolution

, J. Phys. A, vol.36, p.69, 2003.

J. Fernández-gracia, K. Suchecki, J. J. Ramasco, M. S. Miguel-&-v, and . Eguiluz, «Is the voter model a model for voters?», Phys. Rev. Lett, vol.112, p.69, 2014.

K. S. Korolev, M. Avlund, O. &. Hallatschek, and . Nelson, Genetic demixing and evolution in linear stepping stone models», Rev. Mod. Phys, vol.82, p.69, 2010.

M. J. De-olivieira,

«. Model, Phys. Rev. E, vol.67, p.199, 2003.

J. Drouffe and &. Godrèche,

, Coarsening and persistence in a class of stochastic processes interpolating between the Ising and voter models», J. Phys. A, vol.32, p.191, 1999.

C. Castellano, S. Fortunato, and &. Loreto, «Statistical physics of social dynamics, vol.81, p.71, 2009.

M. Scheucher and &. Spohn,

, «A soluble kinetic model for spinodal decomposition

, J. Stat. Phys, vol.53, p.194, 1988.

T. Blanchard, L. F. Cugliandolo, and &. Picco,

, «A morphological study of cluster dynamics between critical points», J. Stat. Mech. p, p.73, 2012.

H. Ricateau, L. F. Cugliandolo, and &. Picco, «Critical percolation in the slow cooling of the bi-dimensional ferromagnetic Ising model», Journal of Statistical Mechanics: Theory, p.74, 2018.

M. J. De-oliveira, J. F. Mendes-&-m, and . Santos, «Nonequilibrium spin models with Ising universal behaviour

, J. Phys. A: Math. Gen, vol.26, p.193, 1993.

A. Polkovnikov, K. Sengupta, A. Silva, and &. Vengalattore, «Nonequilibrium dynamics of isolated interacting quantum systems», Rev. Mod. Phys, vol.83, p.90, 2011.

I. Bloch, J. Dalibard, and &. Zwerger, «Many-body physics with ultracold gases

, Rev. Mod. Phys, vol.80, p.89, 2008.

D. M. Basko and I. L. Aleiner-&-b, Altshuler; «Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states», Ann. Phys, vol.321, p.89, 2006.

P. Calabrese and F. H. , Essler & G. Mussardo; «Introduction to Quantum Integrability in Out of Equilibrium Systems», Journal of Statistical Mechanics: Theory and Experiment, p.89, 2016.

M. Rigol, V. Dunjko, V. Yurovsky, and &. Olshanii, «Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons», Phys. Rev. Lett, vol.98, p.90, 2007.

M. Rigol, V. Dunjko, and &. Olshanii, «Thermalization and its mechanism for generic isolated quantum systems», Nature, vol.452, p.90, 2008.

P. Calabrese, Quantum integrability in out-of-equilibrium systems, J. Stat. Mech. p, p.90, 2016.

C. Gogolin and &. Eisert, «Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems», Rep. Prog. Phys, vol.79, p.90, 2016.

L. F. Cugliandolo, G. S. Lozano, and &. N. Nessi,

, «Non equilibrium dynamics of isolated disordered systems: the classical Hamiltonian p-spin model», J. Stat. Mech p, vol.90, p.158, 2017.

L. F. Cugliandolo;-«dynamics-of-glassy-systems»;-dans, J. L. Barrat, M. V. Feigel'man, J. Kurchan, and &. Dalibard, Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter», Les Houches LXXVII, vol.94, p.158, 2003.

A. Cavagna,

, Supercooled liquids for pedestrians, Phys. Rep, vol.476, p.90, 2009.

L. Berthier and &. Biroli, «Theoretical perspective on the glass transition and amorphous materials», Rev. Mod. Phys, vol.83, p.90, 2011.

A. Engel, «Replica symmetry breaking in zero dimension», Nucl. Phys. B, vol.410, p.92, 1993.

S. Franz and &. Mézard, «Off-Equilibrium Glassy Dynamics: A Simple Case, vol.26, p.92, 1994.

L. F. Cugliandolo and &. Doussal, Phys. Rev. E, vol.53, p.92, 1996.

T. Scaffidi and &. E. Altman,

, «Semiclassical Theory of Many-Body Quantum Chaos and its Bound

C. Neumann, De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur», Crelle Journal, vol.56, p.204, 1850.

K. K. Uhlenbeck,

, «Equivariant harmonic maps into spheres

, Springer Lecture Notes in Mathematics, vol.49, p.205, 1982.

J. Avan-&-m.-talon, «Poisson Structure and Integrability of the Neumann-Moser-Uhlenbeck Model, vol.05, p.90, 1990.

O. Babelon-&-m.-talon, Separation of variables for the classical and quantum Neumann model», Nucl. Phys. B, vol.379, p.205, 1992.

J. M. Kosterlitz and D. J. Thouless-&-r, Jones; «Spherical Model of a Spin-Glass

, Phys. Rev. Lett, vol.36, p.106, 1976.

D. Sherrington and &. S. Kirkpatrick,

, «Solvable Model of a Spin-Glass», Phys. Rev. Lett, vol.35, p.91, 1975.

A. Crisanti and &. Sommers, «The spherical p-spin interaction spin glass model: the statics»; Zeitschrift für Physik B Condensed Matter, vol.87, p.92, 1992.

L. F. Cugliandolo and &. Kurchan, «Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model», Phys. Rev. Lett, vol.71, p.158, 1993.

M. L. Mehta, , vol.93, p.151, 2004.

Y. V. Fyodorov, High-Dimensional Random Fields and Random Matrix Theory

, Markov Proc. and Rel. Fields, vol.21, p.94, 2015.

A. B. De-monvel, L. Pastur, and &. Shcherbina, On the statistical mechanics approach in the random matrix theory: Integrated density of states», Journal of Statistical Physics, vol.79, p.93, 1995.

R. A. Adler, The Geometry of Random Fields, p.94, 1981.

A. J. Bray-&-d and . Dean, «Statistics of critical points of Gaussian fields on largedimensional spaces», Phys. Rev. Lett, vol.98, p.94, 2007.

G. B. Arous, L. Sagun, V. U. Guney, and &. Lecun, Explorations on high dimensional landscapes»; International Conference on learning representations, 2015.

D. J. Wales, Energy Landscapes: With Applications to Clusters, Biomolecules and Glasses, p.94, 2004.

M. Mueller and &. Wyart, «Marginal Stability in Structural, Spin, and Electron Glasses

, Ann. Rev. Cond. Matt. Phys, vol.6, p.98, 2015.

L. Susskind, The Anthropic Landscape of String Theory

M. R. Douglas, B. Shiffman, and &. S. Zelditch, «Critical Points and Supersymmetric Vacua I», Commun. Math. Phys, vol.252, p.94, 2004.

Y. V. Fyodorov-&-b and . Khoruzhenko,

, «Nonlinear analogue of the May-Wigner instability transition», Proc. Nat. Ac. Sc, vol.113, p.94, 2016.

K. H. Fischer and &. A. Hertz, , p.94, 1991.

T. Castellani and &. Cavagna, «Spin-glass theory for pedestrians, J. Stat. Mech. p, vol.94, p.158, 2005.

M. Mézard, G. A. Parisi-&-m, and . Virasoro, Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications, p.96, 1986.

P. Shukla and &. S. Singh,

, J. Phys. C: Solid State Physics, vol.14, p.159, 1981.

S. Ciuchi and &. F. Di-pasquale,

, «Nonlinear relaxation and ergodicity breakdown in random anisotropy spin glasses», Nucl. Phys. B, vol.300, p.159, 1988.

L. F. Cugliandolo-&-d and . Dean, «Full dynamical solution for a spherical spin-glass model

, J. Phys. A: Math. Gen, vol.28, p.159, 1995.

L. F. Cugliandolo-&-d and . Dean, «On the dynamics of a spherical spin-glass in a magnetic field», J. Phys. A: Math. Gen, vol.28, p.159, 1995.

Y. V. Fyodorov, A. Perret, and &. Schehr, «Large time zero temperature dynamics of the spherical p = 2 spin glass model of finite size

, J. Stat. Mech. p, vol.97, p.159, 2015.

A. Onuki, , p.98, 2004.

S. Puri-&-v.-wadhawan,

, Kinetics of phase transitions, p.98, 2009.

F. Corberi and &. Politi,

, «Coarsening Dynamics

, Comptes Rendus de Physique, vol.16, p.98, 2015.

A. Barrat, S. Franz, and &. Parisi, «Temperature evolution and bifurcations of metastable states in mean-field spin glasses

, J. Phys. A, vol.30, p.98, 1997.

L. F. Cugliandolo, J. Kurchan, and &. Peliti, «Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics», Phys. Rev. E, vol.55, p.99, 1997.

L. F. Cugliandolo,

, J. Phys. A, vol.44, p.99, 2011.

D. Boyanovsky, C. &. Destri, and . Vega,

, Approach to thermalization in the classical ? 4 theory in 1 + 1 dimensions: Energy cascades and universal scaling», Phys. Rev. D, vol.69, p.100, 2004.

A. Houghton, S. P. Jain-&-a, and . Young, Role of initial conditions in the mean-field theory of spin-glass dynamics», Phys. Rev. B, vol.28, p.104, 1983.

A. Barrat, «The p-spin spherical spin glass model», vol.101, p.158, 1997.

L. F. Cugliandolo and &. Kurchan, Weak Ergodicity Breaking in Mean-Field Spin-Glass Models, vol.71, p.158, 1995.

S. Franz and &. Parisi, Recipes for Metastable States in Spin Glasses
URL : https://hal.archives-ouvertes.fr/jpa-00247146

, J. Phys. I France, vol.5, p.107, 1995.

A. Barrat, R. Burioni, and &. Mézard, «Dynamics within metastable states in a mean-field spin glass», J. Phys. A: Math. Gen, vol.29, p.107, 1996.

H. Sompolinsky and &. Zippelius,

, «Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses», Phys. Rev. B, vol.25, p.104, 1982.

K. B. Blagoev, F. Cooper, J. F. Dawson, and &. Mihaila, «Schwinger-Dyson approach to nonequilibrium classical field theory», Phys. Rev. D, vol.64, p.108, 2001.

W. Milne, «The Numerical Determination of Characteristic Numbers», Phys. Rev, vol.35, p.117, 1930.

E. Pinney,

S. Sotiriadis and &. Cardy, «Quantum quench in interacting field theory: A selfconsistent approximation», Phys. Rev. B, vol.81, p.118, 2010.

A. Khinchin, Mathematical foundations of statistical mechanics, p.123, 1949.

C. Aron, G. &. Biroli, and . Cugliandolo, Symmetries of generating functionals of Langevin processes with colored multiplicative noise

J. Stat and . Mech, , p.129, 2010.

A. J. Bray, «Renormalization-group approach to domain-growth scaling

, Phys. Rev. B, vol.41, p.179, 1990.

M. &. Grant, Gunton; «Temperature dependence of the dynamics of random interfaces», Phys. Rev. B, vol.28, p.163, 1983.

M. Lacasse, M. Grant, and &. Viñals, «Temperature dependence of the amplitude of power-law growth in the spin-flip kinetic Ising model», Phys. Rev. B, vol.48, p.163, 1993.

T. Blanchard and &. Picco, «Frozen into stripes: fate of the critical Ising model after a quench», Phys. Rev. E, vol.88, p.166, 2013.

S. Masui, T. Li, B. W. Southern-&-a, and . Jacobs,

, «Metastable states of Ising models on the honeycomb lattice», Phys. Rev. B, vol.40, p.169, 1989.

A. E. Jacobs-&-c and . Coram,

«. Ferromagnetic-random-bond, Ising model: Metastable states and complexity of the energy surface», Phys. Rev. B, vol.36, p.169, 1987.

A. J. Bray, «Comment on "Critical dynamics and global conservation laws"», Phys. Rev. Lett, vol.66, p.179, 1991.

C. N. Sire-&-s and . Majumdar,

, Coarsening in the q-state Potts model and the Ising model with globally conserved magnetization», Phys. Rev. E, vol.52, p.179, 1995.

A. D. Rutenberg,

, Phys. Rev. E, vol.54, p.182, 1996.

P. Tamayo and &. Klein, «Critical dynamics and global conservation laws

, Phys. Rev. Lett, vol.63, p.179, 1989.

P. Tamayo and &. Klein, «Critical dynamics and global conservation laws, Reply

, Phys. Rev. Lett, vol.66, p.179, 1991.

J. F. Annett and &. R. , Banavar; «Critical dynamics, spinodal decomposition, and conservation laws», Phys. Rev. Lett, vol.68, p.179, 1992.

L. Moseley, P. W. Gibbs, and &. , «Kawasaki dynamics with infinite-range spin exchange», J. Stat. Phys, vol.67, p.179, 1992.

A. Sicilia, J. J. Arenzon, I. Dierking, A. J. Bray, L. F. Cugliandolo et al.,

, Phys. Rev. Lett, vol.101, p.186, 2008.

M. J. De-oliveira, «Isotropic majority-voter model on a square lattice, J. Stat. Phys, vol.66, p.192, 1992.

J. T. Cox and &. Griffeath,

, «Diffusive clustering in the two-dimensional voter model

A. Prob, , vol.14, p.194, 1986.

E. Ben-naim, L. Frachebourg, and &. Krapivski, Coarsening and Persistence in the Voter Model», Phys. Rev. E, vol.53, p.199, 1996.

M. Abramowitz, Handbook of Mathematical Functions, p.195, 1965.

F. Sastre, I. Dornic, and &. Chaté, «Bona Fide Thermodynamic Temperature in Nonequilibrium Kinetic Ising Models», Phys. Rev. Lett, vol.91, p.199, 2003.

O. Babelon, D. Bernard, and &. Talon, Introduction to Classical Integrable Systems, p.203, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00101459

M. Dunajski, , p.203, 2012.

V. I. Arnold, Mathematical Methods of Classical Mechanics, vol.204, p.205, 1978.

E. Yuzbashyan, Generalized microcanonical and Gibbs ensembles in classical and quantum integrable dynamics», Annals of Physics, vol.367, p.206, 2016.