J. Védrine, Heterogeneous catalysis on metal oxides, Catalysts, vol.7, issue.11, p.341, 2017.

Z. Wang, K. Pradipta, J. A. Nayak, H. N. Caraveo-frescas, and . Alshareef, Recent developments in p-type oxide semiconductor materials and devices, Advanced Materials, vol.28, issue.20, pp.3831-3892, 2016.

H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa et al., Emergent phenomena at oxide interfaces, Nature Materials, vol.11, issue.2, pp.103-113, 2012.

J. H. Ngai, F. J. Walker, and C. H. Ahn, Correlated oxide physics and electronics, Annual Review of Materials Research, vol.44, issue.1, pp.1-17, 2014.

K. Sharma-bhupendra and A. Jong-hyun, Flexible and stretchable oxide electronics, Advanced Electronic Materials, vol.2, issue.8, p.1600105, 2016.

H. Xu, N. Yan, Z. Qu, W. Liu, J. Mei et al., Gaseous heterogeneous catalytic reactions over mn-based oxides for environmental applications: A critical review, Environmental Science & Technology, vol.51, issue.16, pp.8879-8892, 2017.

. Mohammad-mansoob-khan, A. Syed-farooq-adil, and . Al-mayouf, Metal oxides as photocatalysts, Journal of Saudi Chemical Society, vol.19, issue.5, pp.462-464, 2015.

C. , R. A. Catlow, S. T. Bromley, S. Hamad, M. Mora-fonz et al., Modelling nano-clusters and nucleation, Phys. Chem. Chem. Phys, vol.12, pp.786-811, 2010.

S. T. Bromley, P. R. Iberio-de, K. M. Moreira, . Neyman, . Bibliography-francesc et al., Approaching nanoscale oxides: models and theoretical methods, Chem. Soc. Rev, vol.38, pp.2657-2670, 2009.

H. W. Kroto, J. R. Heath, S. C. O'brien, R. F. Curl, and R. E. Smalley, Buckminsterfullerene. Nature, vol.60, issue.6042, pp.162-163, 1985.

K. Wegner, . Piseri, P. Vahedi-tafreshi, and . Milani, Cluster beam deposition: a tool for nanoscale science and technology, Journal of Physics D: Applied Physics, vol.39, issue.22, p.439, 2006.

A. Shelley, A. W. Claridge, . Castleman, N. Shiv, . Khanna et al.,

A. Murray, P. S. Sen, and . Weiss, Cluster-assembled materials, ACS Nano, vol.3, issue.2, pp.244-255, 2009.

K. Mai, I. Mostafa, G. Hikmet, I. Etibar, and . Hummat, Nanostructured materials: Importance, synthesis and characterization-a review, Chemistry Journal, vol.2, pp.118-125, 2012.

D. L. Peng, T. Asai, N. Nozawa, T. Hihara, and K. Sumiyama, Magnetic properties and magnetoresistance in small iron oxide cluster assemblies, Applied Physics Letters, vol.81, issue.24, pp.4598-4600, 2002.

N. Satoh, T. Nakashima, K. Kamikura, and K. Yamamoto, Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates, Nature Nanotechnology, vol.3, issue.2, pp.106-111, 2008.

T. Liu, E. Diemann, H. Li, A. W. Dress, and A. Müller, Self-assembly in aqueous solution of wheel-shaped mo154 oxide clusters into vesicles, Nature, vol.426, issue.6962, pp.59-62, 2003.

R. M. Thakur-prasad-yadav, D. Yadav, and . Singh, Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites, Nanoscience and Nanotechnology, vol.2, issue.3, pp.22-48, 2012.

H. Byung, M. J. Kim, and . Hackett, Jongnam Park, and Taeghwan Hyeon. Synthesis, characterization, and application of ultrasmall nanoparticles, Chemistry of Materials, vol.26, issue.1, pp.59-71, 2013.

F. Jensen, Introduction to Computational Chemistry, 2006.

A. Donald, J. D. Mcquarrie, and . Simon, Physical chemistry : a molecular approach, University Science Books, 1997.

P. Atkins, J. De, and P. , Physical Chemistry. W. H. Freeman, 2006.

C. A. Becker, F. Tavazza, Z. T. Trautt, and R. A. Buarque-de-macedo, Considerations for choosing and using force fields and interatomic potentials in materials science and engineering. Current Opinion in Solid State and Materials Science, Frontiers in Methods for Materials Simulations, vol.17, issue.6, pp.277-283, 2013.

S. Woodley, Database of Published Interatomic Potential Parameters

H. Balamane, T. Halicioglu, and W. A. Tiller, Comparative study of silicon empirical interatomic potentials, Phys. Rev. B, vol.46, pp.2250-2279, 1992.

N. L. Allinger, Conformational analysis. 130. mm2. a hydrocarbon force field utilizing v1 and v2 torsional terms, Journal of the American Chemical Society, vol.99, issue.25, pp.8127-8134, 1977.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general amber force field, Journal of Computational Chemistry, vol.25, issue.9, pp.1157-1174, 2004.

R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. ,

. Dudley, Deep learning for healthcare: review, opportunities and challenges, Briefings in Bioinformatics, 2017.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

M. Rupp, A. Tkatchenko, K. Müller, and O. Anatole-von-lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning, Phys. Rev. Lett, vol.108, p.58301, 2012.

O. Edward, K. Pyzer-knapp, A. Li, and . Aspuru-guzik, Learning from the harvard clean energy project: The use of neural networks to accelerate materials discovery, Advanced Functional Materials, vol.25, issue.41, pp.6495-6502, 2015.

F. A. Faber, A. Lindmaa, O. Anatole-von-lilienfeld, and R. Armiento, Machine learning energies of 2 million elpasolite (abC 2 D 6 ) crystals, Phys. Rev. Lett, vol.117, p.135502, 2016.

P. Raccuglia, K. C. Elbert, D. F. Philip, C. Adler, M. B. Falk et al., Machine-learning-assisted materials discovery using failed experiments, Nature, vol.533, p.73, 2016.

J. Behler, First principles neural network potentials for reactive simulations of large molecular and condensed systems, Angewandte Chemie International Edition, vol.56, issue.42, pp.12828-12840, 2017.

T. B. Blank, S. D. Brown, A. W. Calhoun, and D. J. Doren, Neural network models of potential energy surfaces, The Journal of Chemical Physics, vol.103, issue.10, pp.4129-4137, 1995.

J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett, vol.98, p.146401, 2007.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2009.

S. Grimme, Accurate description of van der waals complexes by density functional theory including empirical corrections, Journal of Computational Chemistry, vol.25, issue.12, pp.1463-1473, 2004.

S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry, vol.27, issue.15, pp.1787-1799, 2006.

J. David, J. P. Wales, and . Doye, Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms, The Journal of Physical Chemistry A, vol.101, issue.28, pp.5111-5116, 1997.

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu et al., Ab initio molecular simulations with numeric atom-centered orbitals, Computer Physics Communications, vol.180, issue.11, pp.2175-2196, 2009.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

R. L. Ochterski, K. Martin, V. G. Morokuma, G. A. Zakrzewski, P. Voth et al., , p.9

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, pp.11169-11186, 1996.

M. José, E. Soler, . Artacho, D. Julian, A. Gale et al., Javier Junquera, Pablo Ordejón, and Daniel Sánchez-Portal. The siesta method for ab initio order-n materials simulation, Journal of Physics: Condensed Matter, vol.14, issue.11, p.2745, 2002.

J. J. Ask-hjorth-larsen, J. Mortensen, . Blomqvist, E. Ivano, R. Castelli et al., The atomic simulation environment-a python library for working with atoms, Journal of Physics: Condensed Matter, vol.29, issue.27, p.273002, 2017.

J. D. Gale, Gulp: A computer program for the symmetry-adapted simulation of solids, J. Chem. Soc., Faraday Trans, vol.93, pp.629-637, 1997.

A. Khorshidi and A. A. Peterson, Amp: A modular approach to machine learning in atomistic simulations, Computer Physics Communications, vol.207, pp.310-324, 2016.

S. Fleming and A. Rohl, GDIS: a visualization program 153 BIBLIOGRAPHY for molecular and periodic systems, Zeitschrift für Kristallographie -Crystalline Materials, vol.220, issue.5, 2005.

W. Humphrey, A. Dalke, and K. Schulten, VMD -Visual Molecular Dynamics, Journal of Molecular Graphics, vol.14, pp.33-38, 1996.

P. Ugliengo, D. Viterbo, and G. Chiari, MOLDRAW: Molecular graphics on a personal computer, Zeitschrift für Kristallographie -Crystalline Materials, vol.207, issue.1, 1993.

K. Momma and F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography, vol.44, issue.6, pp.1272-1276, 2011.

A. Schäfer, C. Huber, and R. Ahlrichs, Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms li to kr, The Journal of Chemical Physics, vol.100, issue.8, pp.5829-5835, 1994.

H. The-vinh-nguyen, M. Lee, O. Khan, and . Yang, Electrodeposition of tio2/sio2 nanocomposite for dye-sensitized solar cell, Solar Energy, vol.81, issue.4, pp.529-534, 2007.

K. Qi, X. Chen, Y. Liu, J. H. Xin, C. L. Mak et al., Facile preparation of anatase/sio2 spherical nanocomposites and their application in self-cleaning textiles, J. Mater. Chem, vol.17, pp.3504-3508, 2007.

M. Steven, V. A. Kuznicki, S. Bell, H. W. Nair, R. M. Hillhouse et al.,

M. Tsapatsis, A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules, Nature, vol.412, issue.6848, pp.720-724, 2001.

C. Jiang, K. Y. Lee, M. A. Christopher, . Parlett, and K. Mustafa,

C. C. Bayazit, Q. Lau, . Ruan, J. A. Savio, A. F. Moniz et al., Size-controlled tio2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production, Applied Catalysis A: General, vol.521, pp.133-139, 2016.

D. Sihui-zhan, X. Chen, Y. Jiao, and . Song, Mesoporous tio2/sio2 composite nanofibers with selective photocatalytic proper-154 BIBLIOGRAPHY ties, Chem. Commun, pp.2043-2045, 2007.

P. Cao, G. Zhou, Y. Ren, and H. Xiao, Fabrication and photoactivity of short rod-shaped mesoporous sio2@tio2 composites with tio2 shell, RSC Adv, vol.6, pp.6551-6561, 2016.

T. Marco, P. Giovanni, and N. Bruno, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, p.4410501, 1983.

E. Flikkema and S. Bromley, A new interatomic potential for nanoscale silica, Chemical Physics Letters, vol.378, issue.5-6, pp.622-629, 2003.

E. Flikkema and S. T. Bromley, Dedicated global optimization search for ground state silica nanoclusters: (SiO2)n(n= 6-12), The Journal of Physical Chemistry B, vol.108, issue.28, pp.9638-9645, 2004.

S. T. Bromley and E. Flikkema, Columnar-to-disk structural transition in nanoscale(SiO2)NClusters, Physical Review Letters, vol.95, issue.18, 2005.

E. Flikkema and S. T. Bromley, Defective to fully coordinated crossover in complex directionally bonded nanoclusters, Physical Review B, vol.80, issue.3, 2009.

S. Hamad, C. R. Catlow, S. M. Woodley, S. Lago, and J. A. Mejías, Structure and stability of small TiO2nanoparticles, The Journal of Physical Chemistry B, vol.109, issue.33, pp.15741-15748, 2005.

M. Chen and D. A. Dixon, Tree growth-hybrid genetic algorithm for predicting the structure of small (TiO2)n, n = 2-13, nanoclusters, Journal of Chemical Theory and Computation, vol.9, issue.7, pp.3189-3200, 2013.

Z. Helali, A. Jedidi, O. A. Syzgantseva, M. Calatayud, and C. Minot, Scaling reducibility of metal oxides, Theoretical Chemistry Accounts, vol.136, issue.9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582563

F. Illas and G. Pacchioni, Optical properties of surface and bulk f centers in MgO from ab initio cluster model calculations, The Journal of Chemical Physics, vol.108, issue.18, pp.7835-7841, 1998.

A. M. Ferrari and G. Pacchioni, Electronic structure of f and v centers on the MgO surface, The Journal of Physical Chemistry, vol.99, issue.46, pp.17010-17018, 1995.

C. Sousa, G. Pacchioni, and F. Illas, Ab initio study of the optical transitions of f centers at low-coordinated sites of the MgO surface, Surface Science, vol.429, issue.1-3, pp.217-228, 1999.

J. Vecchietti, M. A. Baltanás, C. Gervais, and E. Sebastián,

G. Collins, O. Blanco, M. Matz, A. Calatayud, and . Bonivardi, Insights on hydride formation over cerium-gallium mixed oxides: A mechanistic study for efficient h 2 dissociation, Journal of Catalysis, vol.345, pp.258-269, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01518199

O. A. Syzgantseva, M. Calatayud, and C. Minot, Revealing the surface reactivity of zirconia by periodic DFT calculations, The Journal of Physical Chemistry C, vol.116, issue.11, pp.6636-6644, 2012.

D. G. Calatayud, T. Jardiel, M. Peiteado, C. F. Rodriguez, M. Estevez et al.,

C. Amador and . Caballero, Highly photoactive anatase nanoparticles obtained using trifluoroacetic acid as an electron scavenger and morphological control agent, J. Mater. Chem. A, vol.1, pp.14358-14367, 2013.

G. Liu, J. C. Yu, G. Qing, (. Max, ). Lu et al., Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties, Chemical Communications, vol.47, issue.24, p.6763, 2011.

X. Chen and A. Selloni, Introduction: Titanium dioxide (tio2) nanomaterials, Chemical Reviews, vol.114, issue.19, pp.9281-9282, 2014.

Y. Bai, I. Mora-seró, F. De-angelis, J. Bisquert, and P. Wang, Titanium dioxide nanomaterials for photovoltaic applications, Chemical Reviews, vol.114, issue.19, pp.10095-10130, 2014.

A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, vol.238, issue.5358, pp.37-38, 1972.

M. Kapilashrami, Y. Zhang, Y. Liu, A. Hagfeldt, and J. Guo, Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications, Chemical Reviews, vol.114, issue.19, pp.9662-9707, 2014.

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi et al., Understanding TiO2 photocatalysis: Mechanisms and materials, Chemical Reviews, vol.114, issue.19, pp.9919-9986, 2014.

H. Zhang and J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem, vol.8, pp.2073-2076, 1998.

J. F. Banfield and H. Zhang, Nanoparticles in the environment, Reviews in Mineralogy and Geochemistry, vol.44, issue.1, pp.1-58, 2001.

H. Zhang, B. Chen, J. F. Banfield, and G. A. Waychunas, Atomic structure of nanometer-sized amorphous tio 2, Phys. Rev. B, vol.78, p.214106, 2008.

B. Ohtani, Y. Ogawa, and S. Nishimoto, Photocatalytic activity of amorphous-anatase mixture of titanium(iv) oxide particles suspended in aqueous solutions, The Journal of Physical Chemistry B, vol.101, issue.19, pp.3746-3752, 1997.

M. Sami-auvinen, H. Alatalo, J. Haario, R. Jalava, and . Lamminmäki, Size and shape dependence of the electronic and spectral properties in TiO2 nanoparticles, The Journal of Physical Chemistry C, vol.115, issue.17, pp.8484-8493, 2011.

J. Petter-persson, C. M. Gebhardt, and S. Lunell, The smallest possible nanocrystals of semiionic oxides, The Journal of Physical Chemistry B, vol.107, issue.15, pp.3336-3339, 2003.

G. Wulff, XXV. zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen. Zeitschrift für Kristallographie -Crystalline Materials, vol.34, 1901.

M. Matsui and M. Akaogi, Molecular dynamics simulation of the structural and physical properties of the four polymorphs of tio2, Molecular Simulation, vol.6, issue.4-6, pp.239-244, 1991.

A. S. Barnard and P. Zapol, Effects of particle morphology and surface hydrogenation on the phase stability of Tio 2, Phys. Rev. B, vol.70, p.235403, 2004.

A. S. Barnard and P. Zapol, A model for the phase stability of arbitrary nanoparticles as a function of size and shape, The Journal of Chemical Physics, vol.121, issue.9, pp.4276-4283, 2004.

C. S. Cundy and P. A. Cox, The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism, Microporous and Mesoporous Materials, vol.82, issue.1, pp.1-78, 2005.

S. T. Bromley and E. Flikkema, Novel structures and energy spectra of hydroxylated (SiO2)8-based clusters: Searching for the magic (SiO2)8o2h3-cluster, The Journal of Chemical Physics, vol.122, issue.11, p.114303, 2005.

K. E. Jelfs, E. Flikkema, and S. T. Bromley, Hydroxylation of silica nanoclusters (sio2)m(h2o)n, m = 4, 8, 16, 24: stability and structural trends, Phys. Chem. Chem. Phys, vol.15, pp.20438-20443, 2013.

E. Flikkema, K. E. Jelfs, and S. T. Bromley, Structure and energetics of hydroxylated silica clusters, (sio2)m(h2o)n, m=8, 16 and n=1-4: A global optimisation study, Chemical Physics Letters, vol.554, pp.117-122, 2012.

K. E. Jelfs, E. Flikkema, and S. T. Bromley, Evidence for atomic mixingvia multiple intermediates during the dynamic interconversion of silicate oligomers in solution, Chem. Commun, vol.48, pp.46-48, 2012.

A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons, Phys. Rev. Lett, vol.104, p.136403, 2010.

C. S. Cundy and P. A. Cox, The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism, Microporous and Mesoporous Materials, vol.82, issue.1, pp.1-78, 2005.

M. Cargnello, T. R. Gordon, and C. B. , Murray. Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals, Chemical Reviews, vol.114, issue.19, pp.9319-9345, 2014.

L. K. Adams, Y. Delina, P. J. Lyon, and . Alvarez, Comparative eco-toxicity of nanoscale tio2, sio2, and zno water suspensions, Water Research, vol.40, issue.19, pp.3527-3532, 2006.

N. Pienack and W. Bensch, In-situ monitoring of the formation of crystalline solids, Angewandte Chemie International Edition, vol.50, issue.9, pp.2014-2034, 2011.

T. G. Christopher, R. J. Knight, S. D. Balec, and . Kinrade, The structure of silicate anions in aqueous alkaline solutions. Angewandte Chemie International Edition, vol.46, pp.8148-8152, 2007.

M. Haouas and F. Taulelle, Revisiting the identification of structural units in aqueous silicate solutions by twodimensional silicon-29 INADEQUATE, The Journal of Physical Chemistry B, vol.110, issue.7, pp.3007-3014, 2006.

S. A. Pelster, W. Schrader, and F. Schüth, Monitoring temporal evolution of silicate species during hydrolysis and condensation of silicates using mass spectrometry, Journal of the American Chemical Society, vol.128, issue.13, pp.4310-4317, 2006.

A. Cuko, A. Macià, M. Calatayud, and S. T. Bromley, Global optimisation of hydroxylated silica clusters: A cascade monte carlo basin hopping approach, Computational and Theoretical Chemistry, vol.1102, pp.38-43, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01821687

Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han et al., Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chemical Reviews, vol.114, issue.19, pp.9987-10043, 2014.

T. Jafari, E. Moharreri, A. Amin, R. Miao, W. Song et al., Photocatalytic water splitting-the untamed dream: A review of recent advances, Molecules, vol.21, issue.7, p.900, 2016.

S. T. Kyoung-chul-ko and . Bromley, Jin Yong Lee, and Francesc Illas. Size-dependent level alignment between rutile and anatase TiO2 nanoparticles: Implications for photocatalysis, The Journal of Physical Chemistry Letters, vol.8, issue.22, pp.5593-5598, 2017.

F. Nunzi, S. Agrawal, A. Selloni, and F. Angelis, Structural and electronic properties of photoexcited TiO2 nanoparticles from first principles, Journal of Chemical Theory and Computation, vol.11, issue.2, pp.635-645, 2015.

G. Fazio, L. Ferrighi, and C. Valentin, Spherical versus faceted anatase TiO2 nanoparticles: A model study of structural and electronic properties, The Journal of Physical Chemistry C, vol.119, issue.35, pp.20735-20746, 2015.

O. Lamiel-garcia, C. Kyoung, J. Y. Ko, S. T. Lee, and . Bromley, When anatase nanoparticles become bulklike: Properties of realistic TiO2 nanoparticles in the 1-6 nm size range from all electron relativistic density functional theory based calculations, Journal of Chemical Theory and Computation, vol.13, issue.4, pp.1785-1793, 2017.

A. Iacomino, G. Cantele, D. Ninno, I. Marri, and S. Ossicini, Structural, electronic, and surface properties of anatase tio 2 nanocrystals from first principles, Phys. Rev. B, vol.78, p.75405, 2008.

E. Berardo and M. A. Zwijnenburg, Modeling the water splitting activity of a TiO2 rutile nanoparticle, The Journal of Physical Chemistry C, vol.119, issue.24, pp.13384-13393, 2015.

E. G. Brandt, L. Agosta, and A. P. Lyubartsev, Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations, Nanoscale, vol.8, issue.27, pp.13385-13398, 2016.

K. Shirai, G. Fazio, T. Sugimoto, D. Selli, L. Ferraro et al., Waterassisted hole trapping at the highly curved surface of nano-TiO2 photocatalyst, Journal of the American Chemical Society, vol.140, issue.4, pp.1415-1422, 2018.

D. Cho, C. Kyoung, O. Ko, S. T. Lamiel-garcía, J. Y. Bromley et al., Effect of size and structure on the ground-state and excited-state electronic structure of TiO2 nanoparticles, Journal of Chemical Theory and Computation, vol.12, issue.8, pp.3751-3763, 2016.

D. Selli, G. Fazio, and C. Valentin, Using density functional theory to model realistic TiO2 nanoparticles, their photoactivation and interaction with water, Catalysts, vol.7, issue.12, p.357, 2017.

M. L. Weichman, S. Debnath, J. T. Kelly, S. Gewinner, W. Schöllkopf et al., Dissociative water adsorption on gas-phase titanium dioxide cluster anions probed with infrared photodissociation spectroscopy, Topics in Catalysis, vol.61, issue.1-2, pp.92-105, 2017.

M. Chen, P. Tjerk, D. A. Straatsma, and . Dixon, Molecular 160 of Physical Chemistry A, vol.119, pp.11406-11421, 2015.

A. Pedone, G. Malavasi, M. C. Menziani, U. Segre, F. Musso et al., FFSiOH: a new force field for silica polymorphs and their hydroxylated surfaces based on periodic b3lyp calculations, Chemistry of Materials, vol.20, issue.7, pp.2522-2531, 2008.

A. Macià-escatllar, P. Ugliengo, and S. T. Bromley, Modeling hydroxylated nanosilica: Testing the performance of ReaxFF and FFSiOH force fields, The Journal of Chemical Physics, vol.146, issue.22, p.224704, 2017.

E. W. Mcfarland and H. Metiu, Catalysis by doped oxides, Chemical Reviews, vol.113, issue.6, pp.4391-4427, 2013.

K. Fominykh, P. Gülen-ceren-tok, H. Zeller, T. Hajiyani, M. Miller et al., Rossitza Pentcheva, Thomas Bein, and Dina Fattakhova-Rohlfing. Rock salt ni/co oxides with unusual nanoscale-stabilized composition as water splitting electrocatalysts, Adv. Funct. Mater, vol.27, issue.8, p.1605121, 2017.

S. Srivastava, J. P. Thomas, and M. Rahman, Mamata Mohapatra, Debabrata Pradhan

K. Heinig and . Leung, Size-selected TiO2 nanocluster catalysts for efficient photoelectrochemical water splitting, ACS Nano, vol.8, issue.11, pp.11891-11898, 2014.

E. W. Mcfarland and H. Metiu, Chem. Rev, vol.113, pp.4391-4427, 2013.

K. A. Keller, G. Jefferson, and R. J. Kerans, , p.377, 2005.

D. Bergeron, W. A. Castleman, N. O. Jones, and S. N. Khanna, Nano Letters, vol.4, pp.261-265, 2004.

K. Fominykh, G. C. Tok, P. Zeller, H. Hajiyani, T. Miller et al., Adv. Funct. Mater, p.1605121, 2017.

K. T. Lee, A. A. Lidie, S. Y. Jeon, G. T. Hitz, and S. J. Song, J. Mater. Chem. A, issue.1, pp.6199-6207, 2013.

R. B. Soriano, J. Wu, and M. G. Kanatzidis, J. Am. Chem. Soc, vol.137, pp.9937-9942, 2015.

M. Taramasso and G. Perego, , 1983.

T. V. Nguyen, H. C. Lee, M. Khan, and O. B. Yang, Sol. Energy, vol.81, pp.529-534, 2007.

K. Qi, X. Chen, Y. Liu, J. Xin, C. Mak et al., J. Mater. Chem, vol.17, pp.3504-3508, 2007.

S. M. Kuznicki, V. A. Bell, S. Nair, H. W. Hillhouse, R. M. Jacubinas et al., Nature, vol.412, pp.720-724, 2001.

C. Jiang, K. Lee, C. Parlett, M. Bayazit, C. Lau et al., Appl. Catal. Gen, vol.521, pp.133-139, 2016.

S. Zhan, D. Chen, X. Jiao, and Y. Song, Chem. Commun, 2007.

P. Cao, G. Zhou, Y. Ren, and H. Xiao, Rsc. Adv, vol.6, pp.6551-6561, 2016.

S. M. Kuznicki and U. S. Patent, , 1989.

S. M. Kuznicki, K. A. Thrush, F. M. Allen, S. M. Levine, M. M. Hamil et al., Synth. Micopor. Mater, 1992.

G. S. Henderson and M. E. Fleet, J. Non-Cryst. Solids, vol.211, pp.214-221, 1997.

J. S. Rigden, J. K. Walters, P. J. Dirken, M. E. Smith, G. Bushnell-wye et al., J. Phys. Condens. Matter, vol.9, p.4001, 1997.

X. Orignac, H. C. Vasconcelos, and R. M. Almeida, J. Non-Cryst. Solids, vol.217, pp.155-161, 1997.

Z. Li, B. Hou, Y. Xu, D. Wu, Y. Sun et al., J. Solid. State. Chem, vol.178, pp.1395-1405, 2005.

. We, Y. Dong, C. W. Sun, W. Lee, X. Hua et al., J. Am. Chem. Soc, vol.129, pp.13894-13904, 2007.

C. Jiang, K. Y. Lee, C. M. Parlett, M. K. Bayazit, C. C. Lau et al., Appl. Catal. A, vol.521, pp.133-139, 2016.

S. Plant, L. Cao, F. Yin, Z. Wang, and R. E. Palmer, Nanoscale, issue.6, pp.1258-1263, 2013.

S. Plant, L. Cao, and R. E. Palmer, J Am Chem Soc, vol.136, pp.7559-7562, 2014.

R. E. Palmer, L. Cao, and F. Yin, Rev. Sci. Instrum, vol.87, p.46103, 2016.

M. Takeuchi, M. Matsuoka, and H. Yamashita, J Synchrotron Radiat, vol.8, pp.643-644, 2001.

S. Bordiga, F. Bonino, A. Damin, and C. Lamberti, Phys. Chem. Chem. Phys, vol.9, pp.4854-4878, 2007.

M. Landmann, T. Köhler, E. Rauls, T. Frauenheim, and W. G. Schmidt, J. Phys. Condens. Matter, 2014.

O. Miroshnichenko, S. Posysaev, and M. Alatalo, Phys. Chem. Chem. Phys, vol.18, pp.33068-33076, 2016.

I. Bandyopadhyay and C. M. Aikens, J. Phys. Chem. A, vol.115, pp.868-879, 2011.

D. J. Wales and J. P. Doye, J. Phys. Chem. A, vol.101, pp.5111-5116, 1997.

L. Tang, L. Linwei, J. Zhao, and R. Qiu, J. Comput. Chem, p.163, 2011.

M. Y. Chen and D. A. Dixon, J. Chem. Theory Comput, vol.9, pp.3189-3200, 2013.

O. Lameil-garcia, A. Cuko, M. Calatayud, F. Illas, and S. T. Bromley, Nanoscale, vol.9, pp.1049-1058, 2017.

E. Flikkema and S. T. Bromley, Chem. Phys. Lett, vol.378, pp.622-629, 2003.

E. Flikkema and S. T. Bromley, J. Phys. Chem. B, vol.108, pp.9638-9645, 2004.

S. T. Bromley and E. Flikkema, Phys. Rev. Lett, p.185505, 2005.

E. Flikkema and S. T. Bromley, Phys. Rev. B, vol.80, p.35402, 2009.

M. Matsui and M. Akaogi, Mol. Simul, vol.6, pp.239-244, 1991.

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu et al., Phys. Commun, vol.180, pp.2175-2196, 2009.

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

C. Adamo and V. Barone, J. Chem. Phys, vol.110, pp.6158-6169, 1999.

S. Hamad, C. R. Catlow, S. M. Woodley, S. Lago, and J. A. Mejias, J. Phys. Chem. B, vol.109, pp.15741-15748, 2005.

S. Bhattacharya, B. H. Sonin, C. J. Jumonville, L. M. Ghiringhelli, and N. Marom, Phys. Rev, p.241115, 2015.

R. C. C-brousse, O. J. Newton, and . Kleppa, Geochim. Cosmochim. Acta, vol.48, pp.1081-1088, 1984.

M. J. Frisch, , 2013.

A. Schaefer, C. Huber, and R. Ahlrichs, J. Chem. Phys, vol.100, pp.5829-5835, 1994.

A. Jain, S. Ong, G. Hautier, W. Chen, W. Richards et al., , 2013.

F. Aguilera-granja, A. Vega, and L. Balbás, J. Chem. Phys, p.234312, 2016.

W. C. Lu, C. Z. Wang, V. Nguyen, and M. W. Schmidt, J. Phys. Chem. A, vol.107, pp.6936-6943, 2003.

S. M. Woodley, S. Hamad, J. A. Mejias, and C. Catlow, J. Mater. Chem, vol.16, pp.1927-1933, 2006.

C. Catlow, S. T. Bromley, S. Hamad, M. Mora-fonz, A. A. Sokol et al., Phys. Chem. Chem. Phys, vol.12, pp.786-811, 2010.

V. G. Avakyan, V. F. Sidorkin, E. F. Belogolova, S. L. Guselnikov, and L. E. Guselnikov, Organometallics, vol.25, pp.6007-6013, 2006.

M. A. Zwijnenburg, A. A. Sokol, C. Sousa, and S. T. Bromley, J. Chem. Phys, p.34705, 2009.

S. Hamad and S. T. Bromley, Chem. Commun, vol.0, pp.4156-4158, 2008.

M. A. Zwijnenburg and F. Illas, J. Chem. Phys, vol.137, p.154313, 2012.

Y. Luo, Bond Dissociation Energies, CRC Handbook of Chemistry and Physics, 2009.

D. A. Mcquarrie and J. D. Simons, , 1999.

P. Ugliengo, D. Viterbo, and G. Chiari, Z. Kristallogr, vol.207, issue.9, p.207890, 1993.

H. Zhang and J. F. Banfield, Chem. Rev, vol.114, pp.9613-9644, 2014.

H. Zhang and J. F. Banfield, J. Mater. Chem, vol.8, pp.2073-2076, 1998.

A. S. Barnard and P. Zapol, Phys. Rev. B: Condens. Matter, p.235403, 2004.

X. Chen and A. Selloni, Chem. Rev, vol.114, pp.9281-9282, 2014.

M. Kapilashrami, Y. Zhang, Y. Liu, A. Hagfeldt, and J. Guo, Chem. Rev, vol.114, pp.9662-9707, 2014.

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi et al., Chem. Rev, vol.114, pp.9919-9986, 2014.

W. Dong, Y. Sun, C. W. Lee, W. Hua, X. Lu et al., J. Am. Chem. Soc, vol.129, pp.13894-13904, 2007.

C. Jiang, K. Y. Lee, C. M. Parlett, M. K. Bayazit, C. C. Lau et al., Appl. Catal., A, vol.521, pp.133-139, 2016.

R. L. Penn and J. F. Banfield, Geochim. Cosmochim. Acta, vol.63, pp.1549-1557, 1999.

S. Patra, C. Davoisne, H. Bouyanfif, D. Foix, and F. Savage, Sci. Rep, 2015.

J. F. Banfield and H. Zhang, , vol.44, 2001.

H. Zhang, B. Chen, J. F. Banfield, and G. A. Waychunas, Phys. Rev. B: Condens. Matter, vol.74, pp.214106-214101, 2008.

K. Jacobs, J. Wickham, and A. P. Alivisatos, J. Phys. Chem. B, vol.106, p.3759, 2002.

P. Dugourd, R. R. Hudgins, and M. F. Jarrold, Chem. Phys. Lett, vol.267, pp.186-192, 1997.

R. Dong, X. Chen, X. Wang, and W. Lu, J. Chem. Phys, p.44705, 2008.

A. Migani, K. M. Neyman, and S. T. Bromley, Chem. Commun, vol.48, pp.4199-4201, 2012.

S. T. Bromley, I. Moreira, P. R. De, K. M. Neyman, and F. Illas, Chem. Soc. Rev, vol.38, pp.2657-2670, 2009.

C. Chizallet, G. Costentin, M. Che, F. Delbecq, and P. Sautet, J. Am. Chem. Soc, vol.129, pp.6442-6452, 2007.

M. C. Wobbe, A. Kerridge, and M. A. Zwijnenburg, Phys. Chem. Chem. Phys, vol.16, pp.22052-22061, 2014.

C. Loschen, A. Migani, S. T. Bromley, F. Illas, and K. M. Neyman, Phys. Chem. Chem. Phys, vol.10, pp.5730-5738, 2008.

C. A. Richard, S. A. French, A. A. Sokol, A. A. Al-sunaidi, and S. M. Woodley, J. Comput. Chem, vol.13, pp.2234-2249, 2008.

A. Erlebach, K. Heinz-dieter, J. Grabow, F. A. Müller, and M. Sierka, Nanoscale, vol.7, pp.2960-2969, 2015.

C. Adamo and V. Barone, J. Chem. Phys, vol.110, pp.6158-6169, 1999.

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu et al., Phys. Commun, vol.180, pp.2175-2196, 2009.

S. Bhattacharya, B. H. Sonin, C. J. Jumonville, L. M. Ghiringhelli, and N. Marom, Phys. Rev. B: Condens. Matter, p.241115, 2015.

Z. Qu and G. Kroes, J. Phys. Chem. C, vol.111, pp.16808-16817, 2007.

P. Persson, J. C. Gebhardt, and S. Lunell, J. Phys. Chem. B, vol.107, pp.3336-3339, 2003.

O. Miroshnichenko, S. Auvinen, and M. Alatalo, Phys. Chem. Chem. Phys, vol.17, pp.5321-5327, 2015.

G. Wulff, Z. Kristallogr, vol.34, pp.449-530, 1901.

P. Persson, R. Bergström, and S. Lunell, J. Phys. Chem. B, vol.104, p.10348, 2000.

S. Auvinen, M. Alatalo, H. Haario, J. Jalava, and R. Lamminmäki, J. Phys. Chem. C, vol.115, pp.8484-8493, 2011.

R. Johnston, Masters Series in Physics and Astronomy, 2002.

A. S. Barnard and P. Zapol, J. Chem. Phys, p.4276, 2004.

A. S. Barnard and L. A. Curtiss, Nano Lett, vol.5, pp.1261-1266, 2005.

S. Hamad, C. R. Catlow, S. M. Woodley, S. Lago, and J. A. Mejias, J. Phys. Chem. B, vol.109, pp.15741-15748, 2005.

M. Calatayud, L. Maldonado, and C. Minot, J. Phys. Chem

, C, vol.112, 2008.

M. Calatayud and C. Minot, J. Phys. Chem. C, vol.113, pp.12186-12194, 2009.

O. A. Syzgantseva, P. Gonzalez-navarrete, M. Calatayud, S. Bromley, and C. Minot, J. Phys. Chem. C, vol.115, pp.15890-15899, 2011.

L. Tang, L. Linwei, J. Zhao, and R. Qiu, J. Comput. Chem, p.163, 2011.

N. Marom, M. Kim, and J. R. Chelikowsky, Phys. Rev. Lett, vol.108, p.106801, 2012.

M. Y. Chen and D. A. Dixon, J. Chem. Theory Comput, vol.9, pp.3189-3200, 2013.

S. G. Neogi and P. Chaudhury, J. Comput. Chem, vol.35, pp.51-61, 2014.

M. Matsui and M. Akaogi, Mol. Simul, vol.6, pp.239-244, 1991.

E. Flikkema and S. T. Bromley, Chem. Phys. Lett, vol.378, pp.622-629, 2003.

D. J. Wales and J. P. Doye, J. Phys. Chem. A, vol.101, p.5111, 1997.

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

A. Sokol, C. R. Catlow, M. Miskufova, S. A. Shevlin, A. A. Al-sunaidi et al., Phys. Chem. Chem. Phys, vol.12, pp.8438-8445, 2010.

E. Flikkema and S. T. Bromley, J. Phys. Chem. B, vol.108, pp.9638-9645, 2004.

S. T. Bromley and E. Flikkema, Phys. Rev. Lett, p.185505, 2005.

F. Aguilera-granja, A. Vega, and L. Balbás, J. Chem. Phys, p.234312, 2016.

E. Flikkema and S. T. Bromley, Phys. Rev. B: Condens. Matter, vol.80, p.35402, 2009.

A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-campos, L. M. Liz-marzán et al., Aust. J. Chem, vol.56, pp.1051-1057, 2003.

M. A. Zwijnenburg, Nanoscale, 2011.

, Debyer is a general program for calculating the XRD patterns and pair-distribution functions of nanoparticles

M. Mattensi, J. S. De-almeida, L. Dubrovinsky, N. Dubrovinskaia, B. Johansson et al., Phys. Rev. B: Condens. Matter, vol.70, p.212101, 2004.

H. C. Choi, H. Ahn, Y. M. Jung, M. K. Lee, H. J. Shin et al., Appl. Spectrosc, p.598, 2004.

S. Hwang, P. Shen, H. Chu, and T. Yui, Science, vol.288, pp.321-324, 2000.

H. Zhang and J. F. Banfield, J. Phys. Chem. B, vol.104, pp.1049-1058, 1058.

, This journal is © The Royal Society of Chemistry, 2017.

, Open Access Article, 2016.

P. Aggarwal, R. Singh, and Y. Aggarwal, Use of nano-silica in cement based materials -A review, Cogent Engineering, vol.2, pp.1-11, 2015.

S. Zhoua, L. Wu, J. Suna, and W. Shen, The change of the properties of acrylic-based polyurethane via addition of nano-silica, Progress in Organic Coatings, vol.45, pp.33-42, 2002.

M. Qu, J. S. Meth, G. S. Blackman, G. M. Cohen, K. G. Sharp et al., Tailoring and probing particlepolymer interactions in PMMA/silica nanocomposites, Soft Matter, vol.7, pp.8401-8408, 2011.

L. T. Zhuravlev, The surface chemistry of amorphous silica. Zhuravlev model, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.173, pp.1-38, 2000.

C. S. Cundya and P. A. Cox, The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism, Microporous and Mesoporous Materials, vol.82, pp.1-78, 2005.

D. J. Belton, O. Deschaume, and C. C. Perry, An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances, FEBS Journal, vol.279, pp.1710-1720, 2012.

P. Chandra, D. S. Doke, S. B. Umbarkar, K. Vank, and A. V. Biradar, Silica microspheres containing high density surface hydroxyl groups as efficient epoxidation catalysts, RSC Adv, vol.5, pp.21125-21131, 2015.

Y. Wang, M. Y. He, and R. Y. Chen, Fabrication of mechanically robust antireflective films using silica nanoparticles with enhanced surface hydroxyl groups, J. Mater. Chem. A, vol.3, pp.1609-1618, 2015.

A. Marucco, F. Turci, L. O'neill, H. J. Byrne, B. Fubini et al., Hydroxyl density affects the interaction of fibrinogen with silica nanoparticles at physiological concentration, Journal of Colloid and Interface Science, vol.419, pp.86-94, 2014.

H. Zhang, D. R. Dunphy, X. Jiang, H. Meng, B. Sun et al., Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic, J. Am. Chem. Soc, vol.134, pp.15790-15804, 2012.

J. Yang and E. G. Wang, Reaction of water on silica surfaces, Current Opinion in Solid State and, Materials Science, vol.10, pp.33-39, 2006.

M. J. Mora-fonz, C. R. Catlow, and D. W. Lewis, Oligomerization and Cyclization Processes in the Nucleation of Microporous Silicas, Angew. Chem. Int. Ed, vol.44, pp.3082-3086, 2005.

T. T. Trinh, A. P. Jansen, and R. A. Van-santen, Mechanism of Oligomerization Reactions of Silica, J. Phys. Chem. B, vol.110, pp.23099-23106, 2006.

D. Makimura, C. Metin, T. Kabashima, T. Matsuoka, Q. P. Nguyen et al., Combined modeling and experimental studies of hydroxylated silica nanoparticles, J. Mater. Sci, vol.45, pp.5084-5088, 2010.

J. Yeon, A. C. Van-duin, ;. S. Bhattacharya, and J. Kieffer, ReaxFF Molecular Dynamics Simulations of Hydroxylation Kinetics for Amorphous and Nano-Silica Structure, and Its Relations with Atomic Strain Energy, J. Phys. Chem. C, vol.120, pp.1764-1771, 2008.

S. T. Bromley and E. Flikkema, Novel structures and energy spectra of hydroxylated (SiO2)8-based clusters: searching for the magic (SiO2)8O2H3 cluster, J. Chem. Phys, vol.122, pp.114303-114304, 2005.

K. E. Jelfs, E. Flikkema, and S. T. Bromley, Hydroxylation of silica nanoclusters (SiO2)M(H2O)N, M = 4, 8, 16, 24: stability and structural trends, vol.15, pp.20438-20443, 2013.

E. Flikkema, K. E. Jelfs, and S. T. Bromley, Structure and energetics of hydroxylated silica clusters, (SiO2)M(H2O)N, M = 8, 16 and N= 1 -4: A global optimisation study, vol.554, pp.117-122, 2012.

K. E. Jelfs, E. Flikkema, and S. T. Bromley, Evidence for atomic mixing via multiple intermediates during the dynamic interconversion of silicate oligomers in solution, Chem. Comm, vol.48, pp.46-48, 2012.

D. J. Wales and J. P. Doye, J. Phys. Chem. A, vol.101, p.5111, 1997.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, E. Teller, and . Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys, vol.21, pp.1087-1092, 1953.

J. D. Gale, GULP: A computer program for the symmetry-adapted simulation of solids, J. Chem. Soc., Faraday Trans. 93, pp.629-637, 1997.

S. R. Bahn and K. W. Jacobsen, An object-oriented scripting interface to a legacy electronic structure code, Comput. Sci. Eng, vol.4, pp.56-66, 2002.

S. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui, First-Principles Interatomic Potential of Silica Applied to Molecular Dynamics, Phys. Rev. Lett, vol.61, pp.869-872, 1988.

B. Van-beest, G. Kramer, and R. Van-santen, Force fields for silicas and aluminophosphates based on ab initio calculations, Phys. Rev. Lett, vol.64, pp.1955-1958, 1990.

A. Hassanali and S. J. Singer, J. Phys. Chem. B, p.11181, 2007.

E. Flikkema and S. T. Bromley, A new interatomic potential for nanoscale silica, Chem. Phys. Lett, vol.378, pp.622-629, 2003.

A. Pedone, G. Malavasi, M. C. Menziani, U. Segre, F. Musso et al., FFSiOH: a New Force Field for Silica Polymorphs and Their Hydroxylated Surfaces Based on Periodic B3LYP Calculations, vol.20, pp.2522-2531, 2008.

A. Maciá and S. T. Bromley,

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu et al., Phys. Commun, vol.180, pp.2175-2196, 2009.

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Phys. Chem, vol.98, pp.5648-5652, 1993.

M. Delle-piane, M. Corno, A. Pedone, R. Dovesi, and P. Ugliengo, Large-Scale B3LYP Simulations of Ibuprofen Adsorbed in MCM-41 Mesoporous Silica as Drug Delivery System, J. Phys. Chem. C, vol.118, pp.26737-26749, 2014.

A. Rimola, D. Costa, M. Sodupe, J. Lambert, and P. Ugliengo, Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments, Chem. Rev, vol.113, pp.4216-4313, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00836288

V. G. Avakyan, V. F. Sidorkin, E. F. Belogolova, S. L. Guselnikov, and L. E. Guselnikov, AIM and ELF electronic structure/G2 and G3 ?-bond energy relationship for doubly bonded silicon species, Organometallics, vol.25, pp.6007-6013, 2006.

M. A. Zwijnenburg, A. A. Sokol, C. Sousa, and S. T. Bromley, The effect of local environment on photoluminescence: A time-dependent density functional theory study of silanone groups on the surface of silica nanostructures, J. Chem. Phys, p.34705, 2009.

S. Hamad and S. T. Bromley, Low reactivity of non-bridging oxygen defects on stoichiometric silica surfaces, Chem. Commun, pp.4156-4158, 2008.

M. A. Zwijnenburg, F. Illas, and S. T. Bromley, Long range coupling between defect centres in inorganic nanostructures: Valence alternation pairs in nanoscale silica, J. Chem. Phys, vol.137, p.154313, 2012.

S. T. Bromley, I. De, P. R. Moreira, F. Illas, and J. C. Wojde?, Importance of the embedding environment on the strain within small rings in siliceous materials, Phys. Rev. B, vol.73, p.134202, 2006.

R. L. Johnston, Atomic and Molecular Clusters, 2002.

, Dissociative water adsorption on TiO 2 and SiO 2 nanoclusters: dependence on temperature and water vapour pressure

, Andi Cuko 1,2 , Antoni Macià Escatllar 1, vol.1

, CNRS, Laboratoire de Chimie Théorique CC 137 -4, place Jussieu F. 75252 PARIS CEDEX 05 -France

F. Piccinno, F. Gottschalk, S. Seeger, and B. Nowack, J. Nanopart. Res, vol.14, p.1109, 2012.

H. Gao, H. , and K. Lian, ACS Appl. Mater. Interfaces, vol.6, p.464, 2014.

H. Yang, Q. Gao, Y. Xie, Q. Chen, C. Ouyang et al., J. Appl. Polym. Sci, vol.132, p.42806, 2015.

L. Senff, D. M. Tobaldi, S. Lucas, D. Hotza, V. M. Ferreira et al., Composites Part B-Engineering, vol.44, p.40, 2013.

. We, Y. Dong, C. W. Sun, W. Lee, X. Hua et al., J. Am. Chem. Soc, vol.129, p.13894, 2007.

P. Wilhelm and D. Stephan, J. Photochem. Photobio. A: Chem, vol.185, p.19, 2007.

K. Qi, X. Chen, Y. Liu, J. Xin, C. Mak et al., J. Mater. Chem, vol.17, p.3504, 2007.

C. S. Cundya and P. A. Cox, Microporous and Mesoporous Materials, vol.82, p.1, 2005.

M. Cargnello, T. R. Gordon, and C. B. Murray, Chem. Rev, vol.114, p.9319, 2014.

L. K. Adams, D. Y. Lyon, and P. J. Alvarez, Water Res, vol.40, p.3527, 2006.

Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han et al., Chem. Rev, vol.114, p.9987, 2014.

K. C. Ko, S. T. Bromley, J. Y. Lee, and F. Illas, J. Phys. Chem. Lett, vol.8, p.5593, 2017.

F. Nunzi, S. Agrawal, A. Selloni, and F. De-angelis, J. Chem. Theory Comput, vol.11, p.635, 2015.

G. Fazio, L. Ferrighi, and C. D. Valentin, J. Phys. Chem. C, vol.119, p.20735, 2015.

O. Lamiel-garcia, K. C. Ko, J. Y. Lee, S. T. Bromley, and F. Illas, J. Chem. Theor. Comput, vol.13, p.1785, 2017.

A. Iacomino, G. Cantele, D. Ninno, I. Marri, and S. Ossicini, Phys. Rev. B, vol.78, p.75405, 2008.

E. Berardo and M. A. Zwijnenburg, J. Phys. Chem. C, vol.119, p.13384, 2015.

E. G. Brandt, L. Agosta, and A. P. Lyubartsev, Nanoscale, vol.8, p.13385, 2016.

K. Shirai, G. Fazio, T. Sugimoto, D. Selli, L. Ferraro et al., J. Am. Chem. Soc, vol.140, p.1415, 2018.

D. Cho, K. C. Ko, O. Lamiel-garcia, K. C. Ko, S. T. Bromley et al., J. Chem. Theor. Comput, vol.12, p.3751, 2016.

D. Selli, G. Fazio, and C. D. Valentin, Catalysts, vol.7, p.357, 2017.

N. Pienack and W. Bensch, Angew. Chem. Int. Ed, vol.50, p.2014, 2011.

C. T. Knight, R. J. Balec, and S. D. Kinrade, Angew. Chem. Int. Ed, vol.46, p.8148, 2007.

M. Haouas and F. Taulelle, J. Phys. Chem. B, vol.110, p.3007, 2006.

S. A. Pelster, W. Schrader, and F. Schüth, J. Am. Chem. Soc, vol.128, p.4130, 2006.

M. J. Mora-fonz, C. R. Catlow, and D. W. Lewis, J. Phys. Chem. C, p.18155, 2007.

T. T. Trinh, A. P. Jansen, R. A. Van-santen, and E. J. Meijer, J. Phys. Chem. C, vol.113, p.2647, 2009.

C. E. White, J. L. Provis, G. J. Kearley, D. P. Riley, and J. S. Van-deventer, Dalton Trans, p.40, 1348.

C. L. Schaffer and K. T. Thomson, J. Phys. Chem. C, vol.112, p.12653, 2008.

T. T. Trinh, X. Rozanska, F. Delbecq, and P. Sautet, Phys. Chem. Chem. Phys, p.3369, 2012.

M. L. Weichman, S. Debnath, J. T. Kelly, S. Gewinner, W. Schoellkopf et al., Top. Catal, vol.61, p.92, 2018.

M. Chen, T. P. Straatsma, and D. A. Dixon, J. Phys. Chem. A, vol.119, p.11406, 2015.

C. R. Catlow, S. T. Bromley, S. Hamad, M. Mora-fonz, A. A. Sokol et al., Phys. Chem. Chem. Phys, vol.12, p.786, 2010.

E. Flikkema and S. T. Bromley, J. Phys. Chem. B, vol.108, p.9638, 2004.

S. T. Bromley and E. Flikkema, Phys. Rev. Lett, vol.95, p.185505, 2005.

E. Flikkema, K. E. Jelfs, and S. T. Bromley, Chem. Phys. Lett, vol.554, p.117, 2012.

O. Lamiel-garcia, A. Cuko, M. Calatayud, F. Illas, and S. T. Bromley, Nanoscale, vol.9, p.1049, 2017.

A. Cuko, M. Calatayud, and S. T. Bromley, Nanoscale, vol.10, p.832, 2018.

K. E. Jelfs, E. Flikkema, and S. T. Bromley, Phys. Chem. Chem. Phys, vol.15, p.20438, 2013.

K. Jelfs, E. Flikkema, and S. T. Bromley, Chem. Commun, vol.48, p.46, 2012.

A. Cuko, A. Macia, M. Calatayud, and S. T. Bromley, Comput. Theor. Chem, vol.1102, p.38, 2017.

S. Y. Kim, N. Kumar, P. Persson, J. Sofo, A. C. Van-duin et al., Langmuir, vol.29, p.7838, 2013.

G. Ricchiardi, A. De-man, and J. Sauer, Phys. Chem. Chem. Phys, vol.2, p.2195, 2000.

A. V. Bandura and J. D. Kubicki, J. Phys. Chem. B, vol.107, p.11072, 2003.

E. Dushanov, K. Kholmurodov, and K. Yasuoka, Nat. Sci, vol.4, p.313, 2012.

A. Pedone, G. Malavasi, M. C. Menziani, U. Segre, F. Musso et al., Chem. Mater, vol.20, p.2522, 2008.

A. Escatllar, P. Ugliengo, and S. T. Bromley, J. Chem. Phys, vol.146, p.224704, 2017.

A. Escatllar, P. Ugliengo, and S. T. Bromley, Inorganics, vol.5, p.41, 2017.

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett, vol.77, p.3865, 1996.

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu et al., Phys. Commun, vol.180, p.2175, 2009.

S. R. Bahn and K. W. Jacobsen, Comput. Sci. Eng, vol.4, p.56, 2002.

J. D. Gale, J. Chem. Soc., Faraday Trans, vol.93, p.629, 1997.

C. Adamo and V. Barone, J. Chem. Phys, vol.110, p.6158, 1999.

V. G. Avakyan, V. F. Sidorkin, E. F. Belogolova, S. L. Guselnikov, and L. E. , Organometallics, vol.25, p.6007, 2006.

M. A. Zwijnenburg, A. A. Sokol, C. Sousa, and S. T. Bromley, J. Chem. Phys, vol.131, p.34705, 2009.

S. Hamad and S. T. Bromley, Chem. Comm, vol.0, p.4156, 2008.

M. A. Zwijnenburg, F. Illas, and S. T. Bromley, J. Chem. Phys, vol.137, p.154313, 2012.

A. Donald, J. D. Mcquarrie, and . Simon, Physical Chemistry: a Molecular Approach, pp.711-712, 1997.

S. Bhattacharya, S. V. Levchenko, L. M. Ghiringhelli, and M. Scheffler, New J. Phys, vol.16, p.123016, 2014.