C. Echalier, S. Jebors, G. Laconde, L. Brunel, P. Verdié et al., Sol-gel Synthesis of Collagen-Inspired Peptide Hydrogel, Materials Today, vol.20, issue.2, pp.59-66, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01516237

C. M. Yamazaki, S. Asada, K. Kitagawa, and T. Koide, Artificial Collagen Gels via Self-Assembly of de Novo Designed Peptides, Biopolymers, vol.90, issue.6, pp.816-823, 2008.

M. M. Pires, D. E. Przybyla, and J. Chmielewski, A Metal-Collagen Peptide Framework for Three-Dimensional Cell Culture, Angewandte Chemie International Edition, vol.48, issue.42, pp.7813-7817, 2009.

L. E. O'leary, J. A. Fallas, E. L. Bakota, M. K. Kang, and J. D. Hartgerink, Multi-Hierarchical Self-Assembly of a Collagen Mimetic Peptide from Triple Helix to Nanofibre and Hydrogel, Nature Chemistry, vol.3, issue.10, pp.821-828, 2011.

R. Freeman, J. Boekhoven, M. B. Dickerson, R. R. Naik, and S. I. Stupp, Biopolymers and Supramolecular Polymers as Biomaterials for Biomedical Applications, MRS Bulletin, vol.40, issue.12, pp.1089-1101, 2015.

J. D. Hartgerink, E. Beniash, and S. I. Stupp, Peptide-Amphiphile Nanofibers: A Versatile Scaffold for the Preparation of Self-Assembling Materials, Proceedings of the National Academy of Sciences, pp.5133-5138, 2002.

E. T. Pashuck, H. Cui, and S. I. Stupp, Tuning Supramolecular Rigidity of Peptide Fibers through Molecular Structure, Journal of the American Chemical Society, vol.132, issue.17, pp.6041-6046, 2010.

S. Zhang, M. A. Greenfield, A. Mata, L. C. Palmer, R. Bitton et al., A Self-Assembly Pathway to Aligned Monodomain Gels, Nature Materials, vol.2010, issue.7, pp.594-601

N. Stephanopoulos, J. H. Ortony, and S. I. Stupp, Self-Assembly for the Synthesis of Functional Biomaterials, Acta Materialia, vol.61, issue.3, pp.912-930, 2013.

E. Gazit, Self Assembly of Short Aromatic Peptides into Amyloid Fibrils and Related Nanostructures, Prion, vol.1, issue.1, pp.32-35, 2007.

A. El-ghannam, Bone Reconstruction: From Bioceramics to Tissue Engineering, Expert Review of Medical Devices, vol.2, issue.1, pp.87-101, 2005.

Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid et al., Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials, vol.8, issue.9, pp.5744-5794, 2015.

X. Feng, Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Disease, Current Chemical Biology, vol.3, issue.2, pp.189-196, 2009.

T. C. Ushiki and . Fibers, Reticular Fibers and Elastic Fibers. A Comprehensive Understanding from a Morphiligical Viewpoint, Arch. Histol. Cytol, vol.65, issue.2, pp.109-126, 2002.

S. Macneil, Biomaterials for Tissue Engineering of Skin. Materials Today, vol.11, issue.5, pp.26-35, 2008.

A. Chaudhari, K. Vig, D. Baganizi, R. Sahu, S. Dixit et al., Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. International Journal of Molecular Sciences, issue.12, pp.1-31, 1974.

A. Tidu, Synthèse d'une cornée artificielle à base de collagène I, 2016.

S. Lv, D. M. Dudek, Y. Cao, M. M. Balamurali, J. Gosline et al., Designed Biomaterials to Mimic the Mechanical Properties of Muscles, Nature, issue.7294, pp.69-73, 2010.

T. H. Qazi, D. J. Mooney, M. Pumberger, S. Geißler, and G. N. Duda, Biomaterials Based Strategies for Skeletal Muscle Tissue Engineering: Existing Technologies and Future Trends, Biomaterials, vol.53, pp.502-521, 2015.

V. A. Kumar, L. P. Brewster, J. M. Caves, and E. L. Chaikof, Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges, Cardiovascular Engineering and Technology, vol.2, issue.3, pp.137-148, 2011.

W. J. Zhang, W. Liu, L. Cui, and Y. Cao, Tissue Engineering of Blood Vessel, Journal of Cellular and Molecular Medicine, vol.11, issue.5, pp.945-957, 2007.

G. Konig, T. N. Mcallister, N. Dusserre, S. A. Garrido, C. Iyican et al., Mechanical Properties of Completely Autologous Human Tissue Engineered Blood Vessels Compared to Human Saphenous Vein and Mammary Artery, Biomaterials, vol.30, issue.8, pp.1542-1550, 2009.

S. Ravi and E. L. Chaikof, Biomaterials for Vascular Tissue Engineering, Regenerative Medicine, vol.5, issue.1, pp.107-120, 2010.

S. L. Dahl, M. E. Vaughn, and L. E. Niklason, An Ultrastructural Analysis of Collagen in Tissue Engineered Arteries, Annals of Biomedical Engineering, vol.35, issue.10, pp.1749-1755, 2007.

C. Rieu, L. Picaut, G. Mosser, and L. Trichet, From Tendon Injury to Collagen-Based Tendon Regeneration: Overview and Recent Advances, Current Pharmaceutical Design, vol.23, issue.24, pp.3483-3506, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01533469

H. Jung, M. B. Fisher, S. L. Woo, and .. , Role of Biomechanics in the Understanding of Normal, Injured, and Healing Ligaments and Tendons, Medicine and Rehabilitation, vol.1, issue.1, pp.1-17, 2009.

J. S. Shah, E. Palacios, and L. Palacios, Development of Crimp Morphology and Cellular Changes in Chick Tendons, Developmental Biology, vol.94, issue.2, pp.499-504, 1982.

N. S. Murthy, Liquid Crystallinity in Collagen Solutions and Magnetic Orientation of Collagen Fibrils, Biopolymers, vol.23, issue.7, pp.1261-1267, 1984.

M. Georgiou, S. C. Bunting, H. A. Davies, A. J. Loughlin, J. P. Golding et al., Engineered Neural Tissue for Peripheral Nerve Repair, Biomaterials, vol.2013, issue.30, pp.7335-7343

A. R. Nectow, K. G. Marra, and D. L. Kaplan, Biomaterials for the Development of Peripheral Nerve Guidance Conduits, Tissue Engineering Part B: Reviews, vol.18, issue.1, pp.40-50, 2012.

K. Belanger, T. M. Dinis, S. Taourirt, G. Vidal, D. L. Kaplan et al., Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration, Macromolecular Bioscience, vol.16, issue.4, pp.472-481, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01955231

K. E. Crompton, J. D. Goud, R. V. Bellamkonda, T. R. Gengenbach, D. I. Finkelstein et al., Polylysine-Functionalised Thermoresponsive Chitosan Hydrogel for Neural Tissue Engineering, Biomaterials, vol.28, issue.3, pp.441-449, 2007.

, Tissue Engineering

P. X. Ma, . Ed, &. Crc/taylor, and . Francis, , 2006.

H. Zhang, K. Uchimura, and K. Kadomatsu, Brain Keratan Sulfate and Glial Scar Formation, Annals of the New York Academy of Sciences, issue.1, pp.81-90, 2006.

J. R. Hassell and D. E. Birk, The Molecular Basis of Corneal Transparency, Experimental Eye Research, vol.91, issue.3, pp.326-335, 2010.

A. Tidu, D. Ghoubay-benallaoua, B. Lynch, B. Haye, C. Illoul et al., Development of Human Corneal Epithelium on Organized Fibrillated Transparent Collagen Matrices Synthesized at High Concentration, Acta Biomaterialia, vol.22, pp.50-58, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01274330

R. Bellamkonda, Peripheral Nerve Regeneration: An Opinion on Channels, Scaffolds and Anisotropy?, Biomaterials, pp.3515-3518, 2006.

C. Aijie, L. Xuan, L. Huimin, Z. Yanli, K. Yiyuan et al., Nanoscaffolds in Promoting Regeneration of the Peripheral Nervous System, Nanomedicine, vol.13, issue.9, pp.1067-1085, 2018.

A. M. Moore, R. Kasukurthi, C. K. Magill, H. F. Farhadi, G. H. Borschel et al., Limitations of Conduits in Peripheral Nerve Repairs, HAND, vol.4, issue.2, pp.180-186, 2009.

H. R. Hoogenkamp, G. Bakker, L. Wolf, P. Suurs, B. Dunnewind et al., Directing Collagen Fibers Using Counter-Rotating Cone Extrusion, Acta Biomaterialia, vol.12, pp.113-121, 2015.

L. Yao, W. Daly, B. Newland, S. Yao, W. Wang et al., Improved Axonal Regeneration of Transected Spinal Cord Mediated by Multichannel Collagen Conduits Functionalized with Neurotrophin-3 Gene, Gene Therapy, vol.20, issue.12, pp.1149-1157, 2013.

D. R. Nisbet, S. Pattanawong, N. E. Ritchie, W. Shen, D. I. Finkelstein et al., Interaction of Embryonic Cortical Neurons on Nanofibrous Scaffolds for Neural Tissue Engineering, Journal of Neural Engineering, vol.4, issue.2, pp.35-41, 2007.

Y. Kim, V. K. Haftel, S. Kumar, and R. V. Bellamkonda, The Role of Aligned Polymer Fiber-Based Constructs in the Bridging Long Peripheral Nerve Gaps, Biomaterials, vol.29, issue.21, pp.3117-3127, 2008.

M. F. Daud, K. C. Pawar, F. Claeyssens, A. J. Ryan, and J. W. Haycock, An Aligned 3D Neuronal-Glial Co-Culture Model for Peripheral Nerve Studies, Biomaterials, vol.2012, issue.25, pp.5901-5913

W. Zhu, C. O'brien, J. R. O'brien, and L. G. Zhang, 3D Nano/Microfabrication Techniques and Nanobiomaterials for Neural Tissue Regeneration, Nanomedicine, vol.2014, issue.6, pp.859-875

E. S. Lai, C. M. Anderson, and G. G. Fuller, Designing a Tubular Matrix of Oriented Collagen Fibrils for Tissue Engineering, Acta Biomaterialia, vol.7, issue.6, pp.2448-2456, 2011.

S. Kehoe, X. F. Zhang, and D. Boyd, FDA Approved Guidance Conduits and Wraps for Peripheral Nerve Injury: A Review of Materials and Efficacy, Injury, vol.2012, issue.5, pp.553-572

S. Li, S. J. Archibald, C. Krarup, and R. D. Madison, Peripheral Nerve Repair with Collagen Conduits, Clinical Materials, vol.9, issue.3-4, pp.195-200, 1995.

F. Stang, H. Fansa, G. Wolf, M. Reppin, and G. Keilhoff, Structural Parameters of Collagen Nerve Grafts Influence Peripheral Nerve Regeneration, Biomaterials, vol.26, issue.16, pp.3083-3091, 2005.

M. T. Abu-rub, K. L. Billiar, M. H. Van-es, A. Knight, B. J. Rodriguez et al., Nano-Textured Self-Assembled Aligned Collagen Hydrogels Promote Directional Neurite Guidance and Overcome Inhibition by Myelin Associated Glycoprotein, Soft Matter, vol.7, issue.6, pp.2770-2781, 2011.

X. Cao and M. Shoichet, Investigating the Synergistic Effect of Combined Neurotrophic Factor Concentration Gradients to Guide Axonal Growth, Neuroscience, vol.122, issue.2, pp.381-389, 2003.

M. C. Dodla and R. V. Bellamkonda, Anisotropic Scaffolds Facilitate Enhanced Neurite Extensionin Vitro, Journal of Biomedical Materials Research Part A, vol.78, issue.2, pp.213-221, 2006.

M. Labour, A. Banc, A. Tourrette, F. Cunin, J. Verdier et al., Thick Collagen-Based 3D Matrices Including Growth Factors to Induce Neurite Outgrowth, Acta Biomaterialia, vol.8, issue.9, pp.3302-3312, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00747635

D. Mcdonald, C. Cheng, Y. Chen, and D. Zochodne, Early Events of Peripheral Nerve Regeneration, Neuron Glia Biology, vol.2, issue.02, p.139, 2005.

L. Luckenbill-edds, Laminin and the Mechanism of Neuronal Outgrowth Luckenbilledds1997, Pdf. Brain Research Reviews, vol.23, pp.1-27, 1997.

M. Jucker, H. K. Kleinman, and D. K. Ingram, Fetal Rat Septal Cells Adhere to and Extend Processes on Basement Membrane, Laminin, and a Synthetic Peptide from the Laminin A Chain Sequence, Journal of neuroscience research, vol.28, issue.4, pp.507-517, 1991.

J. Graf, R. C. Ogle, F. A. Robey, M. Sasaki, G. R. Martin et al., A Pentapeptide from the Laminin B1 Chain Mediates Cell Adhesion and Binds to 67000 Laminin Receptor, Biochemistry, vol.26, issue.22, pp.6896-6900, 1987.

S. Sur, E. T. Pashuck, M. O. Guler, M. Ito, S. I. Stupp et al., A Hybrid Nanofiber Matrix to Control the Survival and Maturation of Brain Neurons, Biomaterials, vol.2012, issue.2, pp.545-555

D. N. Adams, E. Y. Kao, .. Hypolite, C. L. Distefano, M. D. Hu et al., Growth Cones Turn and Migrate up an Immobilized Gradient of the Laminin IKVAV Peptide, Journal of Neurobiology, vol.62, issue.1, pp.134-147, 2005.

A. Urvoas, M. Valerio-lepiniec, P. Minard, and C. Zollfrank, What Are Bionanocomposites? In Bionanocomposites, pp.1-7, 2017.

C. Aimé and T. Coradin, Nanocomposites from Biopolymer Hydrogels: Blueprints for White Biotechnology and Green Materials Chemistry, Journal of Polymer Science Part B: Polymer Physics, vol.50, issue.10, pp.669-680, 2012.

M. F. Vaz, H. Canhão, and J. E. Fonseca, Bone: A Composite Natural Material, InTech, 2011.

B. Vijaya-ramnath, J. Jeykrishnan, G. Ramakrishnan, B. Barath, and E. Ejoelavendhan, Arun raghav, P. Sea Shells And Natural Fibres Composites: A Review, Materials Today: Proceedings, vol.5, issue.1, pp.1846-1851, 2018.

, Commission Recommendation of 18 October 2011 on the Definition of NanomaterialText with EEA Relevance. 3. Structure and Rheological Characterization, vol.82, pp.1219-1227, 2010.

S. Sotiropoulou, Y. Sierra-sastre, S. S. Mark, and C. A. Batt, Biotemplated Nanostructured Materials ? . Chemistry of Materials, vol.20, issue.3, pp.821-834, 2008.

J. Ayutsede, M. Gandhi, S. Sukigara, H. Ye, C. Hsu et al., Carbon Nanotube Reinforced Bombyx Mori Silk Nanofibers by the Electrospinning Process, Biomacromolecules, vol.7, issue.1, pp.208-214, 2006.

Y. Zhang and M. Zhang, Calcium Phosphate/Chitosan Composite Scaffolds for Controlledin Vitro Antibiotic Drug Release, Journal of Biomedical Materials Research, vol.62, issue.3, pp.378-386, 2002.

Y. Zhang and M. Zhang, Synthesis and Characterization of Macroporous Chitosan/Calcium Phosphate Composite Scaffolds for Tissue Engineering, Journal of Biomedical Materials Research, vol.55, issue.3, pp.304-312, 2001.

J. Hodde, Naturally Occurring Scaffolds for Soft Tissue Repair and Regeneration, Tissue Engineering, vol.8, issue.2, pp.295-308, 2002.

D. Olsen, C. Yang, M. Bodo, R. Chang, S. Leigh et al., Recombinant Collagen and Gelatin for Drug Delivery, Advanced Drug Delivery Reviews, vol.55, issue.12, pp.1547-1567, 2003.

C. V. Rodrigues, P. Serricella, A. B. Linhares, R. M. Guerdes, R. Borojevic et al., Characterization of a Bovine Collagenhydroxyapatite Composite Scaffold for Bone Tissue Engineering, Biomaterials, vol.24, issue.27, pp.4987-4997, 2003.

D. Wahl and J. Czernuszka, Collagen-Hydroxyapatite Composites for Hard Tissue Repair, European Cells and Materials, vol.11, pp.43-56, 2006.

F. Fernandes, T. Coradin, and C. Aimé, Self-Assembly in Biosilicification and Biotemplated Silica Materials. Nanomaterials, vol.2014, issue.3, pp.792-812

S. Heinemann, T. Coradin, and M. F. Desimone, Bio-Inspired Silica-collagen Materials: Applications and Perspectives in the Medical Field, Biomaterials Science, vol.1, issue.7, pp.688-702, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01461408

M. Manzano, M. Colilla, and M. Vallet-regí, Drug Delivery from Ordered Mesoporous Matrices, Expert Opinion on Drug Delivery, vol.6, issue.12, pp.1383-1400, 2009.

M. Vallet-regí, F. Balas, M. Colilla, and M. Manzano, Drug Confinement and Delivery in Ceramic Implants, Drug Metabolism Letters, vol.1, pp.37-40, 2007.

S. Quignard, S. Masse, T. I. Coradin, and . Delivery, Fundamentals and Applications, Fundamental Biomedical Technologies, 2011.

S. Quignard, C. Hélary, M. Boissière, J. Fullana, P. Lagrée et al., Behaviour of Silica Nanoparticles in Dermis-like Cellularized Collagen Hydrogels, Biomater. Sci, vol.2014, issue.4, pp.484-492
URL : https://hal.archives-ouvertes.fr/hal-01137510

D. Eglin, K. L. Shafran, J. Livage, T. Coradin, and C. C. Perry, Comparative Study of the Influence of Several Silica Precursors on Collagen Self-Assembly and of Collagen on 'Si' Speciation and Condensation, J. Mater. Chem, issue.43, pp.4220-4230, 2006.

S. Jing, D. Jiang, S. Wen, J. Wang, and C. Yang, Preparation and Characterization of Collagen/Silica Composite Scaffolds for Peripheral Nerve Regeneration, Journal of Porous Materials, vol.21, issue.5, pp.699-708, 2014.

M. L. Foglia, D. E. Camporotondi, G. S. Alvarez, S. Heinemann, T. Hanke et al., A New Method for the Preparation of Biocompatible Silica Coated-Collagen Hydrogels, Journal of Materials Chemistry B, vol.2013, issue.45, pp.6283-6290

S. Heinemann, C. Heinemann, H. Ehrlich, M. Meyer, H. Baltzer et al., A Novel Biomimetic Hybrid Material Made of Silicified Collagen: Perspectives for Bone Replacement, Advanced Engineering Materials, vol.9, issue.12, pp.1061-1068, 2007.

S. Ochsenhirt, E. Kokkoli, J. Mccarthy, and M. Tirrell, Effect of RGD Secondary Structure and the Synergy Site PHSRN on Cell Adhesion, Spreading and Specific Integrin Engagement, Biomaterials, vol.27, issue.20, pp.3863-3874, 2006.

D. S. Benoit and K. S. Anseth, The Effect on Osteoblast Function of Colocalized RGD and PHSRN Epitopes on PEG Surfaces, Biomaterials, vol.26, issue.25, pp.5209-5220, 2005.

Y. Susuki, K. Hojo, I. Okazaki, H. Kamata, M. Sasaki et al., Preparation and Biological Activities of a Bivalent Poly (Ethylene Glycol) Hybrid Containing an Active Site and Its Synergistic Site of Fibronectin, vol.50, pp.1229-1232, 2002.

X. Chen, P. Sevilla, and C. Aparicio, Surface Biofunctionalization by Covalent Co-Immobilization of Oligopeptides, Colloids and Surfaces B: Biointerfaces, vol.107, pp.189-197, 2013.

W. J. Kao, D. Lee, J. C. Schense, and J. A. Hubbell, Fibronectin Modulates Macrophage Adhesion and FBGC Formation: The Role of RGD, PHSRN, and PRRARV Domains, Journal of Biomedical Materials Research Part A, vol.55, issue.1, pp.79-88, 2001.

T. Kim, J. Jang, Y. Lee, I. Ryu, C. Chung et al., Design and Biological Activity of Synthetic Oligopeptides with Pro-His-Ser-Arg-Asn (PHSRN) and Arg-Gly-Asp

, Adhesion. Biotechnology letters, vol.24, issue.24, pp.2029-2033, 2002.

S. Rinker, Y. Ke, Y. Liu, R. Chhabra, and H. Yan, Self-Assembled DNA Nanostructures for Distance-Dependent Multivalent Ligand-protein Binding, Nature Nanotechnology, vol.3, issue.7, pp.418-422, 2008.

F. Diezmann and O. Seitz, DNA-Guided Display of Proteins and Protein Ligands for the Interrogation of Biology, Chemical Society Reviews, vol.40, issue.12, pp.5789-5801, 2011.

R. Freeman, N. Stephanopoulos, Z. Álvarez, J. A. Lewis, S. Sur et al., Instructing Cells with Programmable Peptide DNA Hybrids, Nature Communications, vol.8, pp.1-11, 2017.

S. K. Akiyama, K. Olden, and K. M. Yamada, Fibronectin and Integrins in Invasion and Metastasis, Cancer and Metastasis Reviews, vol.14, issue.3, pp.173-189, 1995.

X. Wang, C. Yan, K. Ye, Y. He, Z. Li et al., Effect of RGD Nanospacing on Differentiation of Stem Cells, Biomaterials, vol.34, issue.12, pp.2865-2874, 2013.

M. Schvartzman, M. Palma, J. Sable, J. Abramson, X. Hu et al., Nanolithographic Control of the Spatial Organization of Cellular Adhesion Receptors at the Single-Molecule Level, Nano Letters, vol.11, issue.3, pp.1306-1312, 2011.

L. Y. Koo, D. J. Irvine, A. M. Mayes, D. A. Lauffenburger, and L. G. Griffith, Co-Regulation of Cell Adhesion by Nanoscale RGD Organization and Mechanical Stimulus, Journal of cell science, vol.115, issue.7, pp.1423-1433, 2002.

J. Huang, S. V. Gräter, F. Corbellini, S. Rinck, E. Bock et al., Impact of Order and Disorder in RGD Nanopatterns on Cell Adhesion, Nano Letters, vol.9, issue.3, pp.1111-1116, 2009.

J. Huang and J. Ding, Nanostructured Interfaces with RGD Arrays to Control Cell-matrix Interaction, Soft Matter, vol.6, issue.15, pp.3395-3401, 2010.

S. V. Graeter, J. Huang, N. Perschmann, M. López-garcía, H. Kessler et al., Mimicking Cellular Environments by Nanostructured Soft Interfaces, Nano Letters, vol.7, issue.5, pp.1413-1418, 2007.

M. Arnold, V. C. Hirschfeld-warneken, T. Lohmüller, P. Heil, J. Blümmel et al., Induction of Cell Polarization and Migration by a Gradient of Nanoscale Variations in Adhesive Ligand Spacing, Nano Letters, vol.8, issue.7, pp.2063-2069, 2008.

M. Arnold, M. Schwieder, J. Blümmel, E. A. Cavalcanti-adam, M. López-garcia et al., Cell Interactions with Hierarchically Structured Nano-Patterned Adhesive Surfaces, Soft Matter, vol.5, issue.1, pp.72-77, 2009.

M. Arnold, E. A. Cavalcanti-adam, R. Glass, J. Blümmel, W. Eck et al., Activation of Integrin Function by Nanopatterned Adhesive Interfaces, ChemPhysChem, vol.5, issue.3, pp.383-388, 2004.

, M sol of sulfonate-grafted Stöber silica particles were mixed with 24 mL of 0.422 mg mL -1 of collagen, 17 mM acetic acid) in 73 ml acetic acid 0.5 M (pH = 2.5, Vf = 100 mL)

C. Aimé and T. Coradin, Nanocomposites from Biopolymer Hydrogels: Blueprints for White Biotechnology and Green Materials Chemistry, Journal of Polymer Science Part B: Polymer Physics, vol.50, issue.10, pp.669-680, 2012.

C. Aimé and T. Coradin, Bionanocomposites: Integrating Biological Processes for Bio-Inspired Nanotechnologies, 2017.

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, C. A. Mirkin et al., J. J. Nature1996, vol.382, pp.607-609, 1996.

W. J. Parak, T. Pellegrino, C. M. Micheel, D. Gerion, S. C. Williams et al., Conformation of Oligonucleotides Attached to Gold Nanocrystals Probed by Gel Electrophoresis, Nano Letters, vol.3, issue.1, pp.33-36, 2003.

J. Wu, J. Silvent, T. Coradin, and C. Aimé, Biochemical Investigation of the Formation of Three-Dimensional Networks from DNA-Grafted Large Silica Particles, Langmuir, vol.2012, issue.4, pp.2156-2165
URL : https://hal.archives-ouvertes.fr/hal-01461427

I. A. Banerjee, L. Yu, and H. Matsui, Location-Specific Biological Functionalization on Nanotubes: Attachment of Proteins at the Ends of Nanotubes Using Au Nanocrystal Masks, Nano Letters, vol.3, issue.3, pp.283-287, 2003.

C. Aimé, G. Mosser, G. Pembouong, L. Bouteiller, and T. Coradin, Controlling the Nanobio Interface to Build Collagen-silica Self-Assembled Networks, Nanoscale, vol.2012, issue.22, pp.7127-7134

R. Mout, M. Ray, T. Tay, K. Sasaki, G. Yesilbag-tonga et al., General Strategy for Direct Cytosolic Protein Delivery via Protein

, ACS Nano, vol.2017, issue.6, pp.6416-6421

S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, and . Biomolecular, Condensates: Organizers of Cellular Biochemistry, Nature Reviews Molecular Cell Biology, vol.2017, issue.5, pp.285-298

S. Romero, A. Quatela, T. Bornschlögl, S. Guadagnini, P. Bassereau et al., Filopodium Retraction Is Controlled by Adhesion to Its Tip, Journal of Cell Science, vol.2012, issue.22, pp.5587-5587

M. B. Steketee, S. N. Moysidis, X. Jin, J. E. Weinstein, W. Pita-thomas et al., Nanoparticle-Mediated Signaling Endosome Localization Regulates Growth Cone Motility and Neurite Growth, Proceedings of the National Academy of Sciences, vol.108, issue.47, pp.19042-19047, 2011.

C. Hoffmann, E. Mazari, S. Lallet, R. Le-borgne, V. Marchi et al., Spatiotemporal Control of Microtubule Nucleation and Assembly Using Magnetic Nanoparticles, Nature Nanotechnology, vol.8, issue.3, pp.199-205, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00869559

Z. Zhang and S. C. Glotzer, Self-Assembly of Patchy Particles, Nano Letters, vol.4, issue.8, pp.1407-1413, 2004.

S. C. Glotzer and M. J. Solomon, Anisotropy of Building Blocks and Their Assembly into Complex Structures, Nature Materials, vol.6, issue.8, pp.557-562, 2007.

C. Liddell, C. Summers, and A. Gokhale,

, Stereological Estimation of the Morphology Distribution of ZnS Clusters for Photonic Crystal Applications, Materials Characterization, vol.50, issue.1, pp.69-79, 2003.

S. Yang, S. Kim, J. Lim, and G. Yi, Synthesis and Assembly of Structured Colloidal Particles, Journal of Materials Chemistry, vol.18, issue.19, pp.2177-2190, 2008.

M. Grätzel, , 2001.

J. A. Champion, Y. K. Katare, and S. Mitragotri, Making Polymeric Micro-and Nanoparticles of Complex Shapes, Proceedings of the National Academy of Sciences, vol.104, issue.29, pp.11901-11904, 2007.

R. Langer and D. A. Tirrell, Designing Materials for Biology and Medicine, Nature, vol.428, issue.6982, pp.487-492, 2004.

Y. Zhao, D. Ye, G. Wang, and T. Lu, Novel Nano-Column and Nano-Flower Arrays by Glancing Angle Deposition, Nano Letters, vol.2, issue.4, pp.351-354, 2002.

C. E. Snyder, A. M. Yake, J. D. Feick, and D. Velegol, Nanoscale Functionalization and Site-Specific Assembly of Colloids by Particle Lithography, Langmuir, vol.21, issue.11, pp.4813-4815, 2005.

J. Cui and I. Kretzschmar, Surface-Anisotropic Polystyrene Spheres by Electroless Deposition, Langmuir, vol.22, issue.20, pp.8281-8284, 2006.

L. Hong, S. Jiang, and S. Granick, Simple Method to Produce Janus Colloidal Particles in Large Quantity, Langmuir, vol.22, issue.23, pp.9495-9499, 2006.

A. Perro, F. Meunier, V. Schmitt, and S. Ravaine, Production of Large Quantities of, Janus" Nanoparticles Using Wax-in-Water Emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.332, issue.1, pp.57-62, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00681806

B. P. Binks, Particles as Surfactants ?similarities and Differences. Interface Science, vol.7, pp.21-41, 2002.

H. Gu, Z. Yang, J. Gao, C. K. Chang, and B. Xu, Heterodimers of Nanoparticles: Formation at a Liquid?Liquid Interface and Particle-Specific Surface Modification by Functional Molecules, Journal of the American Chemical Society, vol.127, issue.1, pp.34-35, 2005.

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Dense Packing and Symmetry in Small Clusters of Microspheres, Science, vol.301, issue.5632, pp.483-487, 2003.

Y. Cho, G. Yi, J. Lim, S. Kim, V. N. Manoharan et al., Self-Organization of Bidisperse Colloids in Water Droplets, Journal of the American Chemical Society, vol.127, issue.45, pp.15968-15975, 2005.

Y. Wang, Y. Wang, D. R. Breed, V. N. Manoharan, L. Feng et al., Colloids with Valence and Specific Directional Bonding, Nature, vol.2012, issue.7422, pp.51-55

K. Roh, D. C. Martin, and J. Lahann, Biphasic Janus Particles with Nanoscale Anisotropy, Nature Materials, vol.4, issue.10, pp.759-763, 2005.

K. Roh, D. C. Martin, J. T. Lahann, and . Nanocolloids, Journal of the American Chemical Society, vol.128, issue.21, pp.6796-6797, 2006.

S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva et al., Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition, Angewandte Chemie International Edition, vol.44, issue.5, pp.724-728, 2005.

A. Désert, C. Hubert, Z. Fu, L. Moulet, J. Majimel et al., Synthesis and Site-Specific Functionalization of Tetravalent, Hexavalent, and Dodecavalent Silica Particles, Angewandte Chemie International Edition, vol.52, issue.42, pp.11068-11072, 2013.

C. Chomette, E. Duguet, S. Mornet, E. Yammine, V. N. Manoharan et al., Tréguer-Delapierre, M. Templated Growth of Gold Satellites on Dimpled Silica Cores. Faraday Discussions, vol.191, pp.105-116, 2016.

A. Désert, I. Chaduc, S. Fouilloux, J. Taveau, O. Lambert et al., High-Yield Preparation of Polystyrene/Silica Clusters of Controlled Morphology, Polymer Chemistry, vol.2012, issue.5, pp.1130-1132

A. Salant, E. Amitay-sadovsky, and U. Banin, Directed Self-Assembly of Gold-Tipped CdSe Nanorods, Journal of the American Chemical Society, vol.128, issue.31, pp.10006-10007, 2006.

L. Carbone, A. Jakab, Y. Khalavka, and C. Sönnichsen, Light-Controlled One-Sided Growth of Large Plasmonic Gold Domains on Quantum Rods Observed on the Single Particle Level, Nano Letters, vol.9, issue.11, pp.3710-3714, 2009.

C. Hamon, C. Martini, P. Even-hernandez, B. Boichard, H. Voisin et al., An Aqueous One-Pot Route to Gold/Quantum Rod Heterostructured Nanoparticles Functionalized with DNA, Chemical Communications, vol.51, issue.89, pp.16119-16122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208413

J. J. Moreau, L. Vellutini, M. Wong-chi-man, C. Bied, P. Dieudonné et al., Lamellar Bridged Silsesquioxanes: Self-Assembly through a Combination of Hydrogen Bonding and Hydrophobic Interactions, Chemistry -A European Journal, vol.11, issue.5, pp.1527-1537, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00163480

M. A. Ramin, G. Le-bourdon, N. Daugey, B. Bennetau, L. Vellutini et al., PM-IRRAS Investigation of Self-Assembled Monolayers Grafted onto SiO 2 /Au Substrates, Langmuir, vol.27, issue.10, pp.6076-6084, 2011.

G. A. Devries, M. Brunnbauer, Y. Hu, A. M. Jackson, B. Long et al., Divalent Metal Nanoparticles. Science, issue.5810, pp.358-361, 2007.

J. J. Moreau, L. Vellutini, M. W. Chi-man, C. Bied, J. Bantignies et al., Self-Organized Hybrid Silica with Long-Range Ordered Lamellar Structure, Journal of the American Chemical Society, vol.123, issue.32, pp.7957-7958, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00163106

J. J. Moreau, L. Vellutini, M. Wong-chi-man, and C. Bied, New Hybrid Organic?Inorganic Solids with Helical Morphology via H-Bond Mediated Sol?Gel Hydrolysis of Silyl Derivatives of Chiral ( R , R )-or ( S , S )-Diureidocyclohexane, Journal of the American Chemical Society, vol.123, issue.7, pp.1509-1510, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00163602

J. J. Moreau, L. Vellutini, M. Wong-chi-man, and C. Bied, Shape-Controlled Bridged Silsesquioxanes: Hollow Tubes and Spheres, Chemistry -A European Journal, vol.9, issue.7, pp.1594-1599, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00163500

A. Shimojima, Z. Liu, T. Ohsuna, O. Terasaki, and K. Kuroda, Self-Assembly of Designed Oligomeric Siloxanes with Alkyl Chains into Silica-Based Hybrid Mesostructures, Journal of the American Chemical Society, vol.127, issue.40, pp.14108-14116, 2005.

J. Graffion, D. Dems, M. Demirelli, T. Coradin, N. Delsuc et al., An All-in-One Molecule for the One-Step Synthesis of Functional Hybrid Silica Particles with Tunable Sizes: An All-in-One Molecule for the One-Step Synthesis of Functional Hybrid Silica Particles with Tunable Sizes, European Journal of Inorganic Chemistry, issue.43, pp.5047-5051, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02121324

R. Gil, M. Guillerez, J. Poulin, and E. Schulz, Charge-Transfer Complex Study by Chemical Force Spectroscopy: A Dynamic Force Spectroscopic Approach, Langmuir, vol.23, issue.2, pp.542-548, 2007.

H. Song, G. Yang, P. Huang, D. Kong, and W. Wang, Self-Assembled PEG-poly( L -Valine) Hydrogels as Promising 3D Cell Culture Scaffolds, Journal of Materials Chemistry B, vol.2017, issue.9, pp.1724-1733

B. K. Lee, H. Y. Lee, P. Kim, K. Y. Suh, J. H. Seo et al., Stepwise Self-Assembly of a Protein Nanoarray from a Nanoimprinted Poly, Ethylene Glycol) Hydrogel. Small, vol.4, issue.3, pp.342-348, 2008.

G. Thakur, K. Prashanthi, and T. Thundat, Directed Self-Assembly of Proteins into Discrete Radial Patterns, Scientific Reports, vol.2013, issue.3

L. S. Shimizu, M. D. Smith, A. D. Hughes, and L. S. Shimizu, Self-Assembly of a Bis-Urea Macrocycle into a Columnar Nanotube, Chemical Communications, issue.17, pp.1592-1593, 2001.

K. Yabuuchi, E. Marfo-owusu, and T. Kato, A New Urea Gelator: Incorporation of Intraand Intermolecular Hydrogen Bonding for Stable 1D Self-Assembly, Organic & Biomolecular Chemistry, vol.1, issue.19, p.3464, 2003.

S. Dawn, M. B. Dewal, D. Sobransingh, M. C. Paderes, A. C. Wibowo et al., Self-Assembled Phenylethynylene Bis-Urea Macrocycles Facilitate the Selective Photodimerization of Coumarin, Journal of the American Chemical Society, vol.133, issue.18, pp.7025-7032, 2011.

B. Akhlaghinia, A New and Convenient Method of Generating Alkyl Isocyanates from Alcohols, Thiols and Trimethylsilyl Ethers Using Triphenylphosphine/ 2,3-Dichloro-5,6-Dicyanobenzoquinone/Bu4NOCN, Synthesis, issue.12, pp.1955-1958, 2005.

J. H. Wu, T. Z. Xu, S. G. Ang, Q. Xu, and G. Q. Xu, Radially Oriented Anthracene Nanowire Arrays: Preparation, Growth Mechanism, and Optical Fluorescence, Nanoscale, vol.2011, issue.4, pp.1855-1860

H. Liu, Y. Li, S. Xiao, H. Gan, T. Jiu et al., Synthesis of Organic One-Dimensional Nanomaterials by Solid-Phase Reaction, Journal of the American Chemical Society, vol.125, issue.36, pp.10794-10795, 2003.

T. Seko, K. Ogura, Y. Kawakami, H. Sugino, H. Toyotama et al., Excimer Emission of Anthracene, Perylene, Coronene and Pyrene Microcrystals Dispersed in Water, Chemical Physics Letters, vol.291, issue.3-4, pp.438-444, 1998.

J. Kalinowski, G. Giro, M. Cocchi, V. Fattori, and R. Zamboni, The Nature of Emitting States in Electroluminescence of Polymeric Films Doped with Anthracene and Anthracene-Based Supramolecules, Chemical Physics, vol.277, issue.3, pp.387-396, 2002.

B. Manna, R. Ghosh, and D. K. Palit, Exciton Dynamics in Anthracene Nanoaggregates, The Journal of Physical Chemistry C, issue.19, pp.10641-10652, 2015.

J. Ferguson, A. Castellan, J. Desvergne, and H. Bouas-laurent, Excimer Intermediate in the Unsymmetrical Photodimerization of the Anthracene Ring System, Chemical Physics Letters, vol.78, issue.3, pp.446-450, 1981.

H. Bouas-laurent, J. Desvergne, A. Castellan, and R. Lapouyade, Photodimerization of Anthracenes in Fluid Solution: Structural Aspects, Chemical Society Reviews, vol.29, issue.1, pp.43-55, 2000.

J. B. Birks and J. B. Aladekomo, THE PHOTO-DIMERIZATION AND EXCIMER FLUORESCENCE OF 9-METHYL ANTHRACENE, Photochemistry and Photobiology, vol.2, issue.4, pp.415-418, 1963.

G. K. Bains, S. H. Kim, E. J. Sorin, and V. Narayanaswami, The Extent of Pyrene Excimer Fluorescence Emission Is a Reflector of Distance and Flexibility: Analysis of the Segment Linking the LDL Receptor-Binding and Tetramerization Domains of Apolipoprotein E3, Biochemistry, vol.2012, issue.31, pp.6207-6219

J. B. Birks and L. G. Christophorou, Excimer Fluorescence Spectra of Pyrene Derivatives, Spectrochimica Acta, vol.19, issue.2, pp.401-410, 1963.

S. S. Lehrer and . Pyrene, Excimer Fluorescence as a Probe of Protein Conformational Change, Proteins: Structure, Function, and Engineering

B. B. Biswas and S. Roy, , vol.24, 1995.

J. B. Birks, Photophysics of Aromatic Molecules, 1970.

J. C. Del-valle, A. M. Turek, N. D. Tarkalanov, and J. Saltiel, Distortion of the Fluorescence Spectrum of Anthracene with Increasing Laser Pulse Excitation Energy, The Journal of Physical Chemistry A, vol.106, issue.20, pp.5101-5104, 2002.

M. Giraud-guille, L. Besseau, and R. Martin, Liquid Crystalline Assemblies of Collagen in Bone and in Vitro Systems, Journal of Biomechanics, vol.36, issue.10, pp.1571-1579, 2003.

D. E. Birk, P. C. Bruckner, and . Suprastructures, Collagen: Primer in Structure, Processing and Assembly

J. Brinckmann, H. Notbohm, and P. K. Müller, , pp.185-205, 2005.

S. Köster, H. M. Evans, J. Y. Wong, T. Pfohl, and . An, Situ Study of Collagen Self-Assembly Processes. Biomacromolecules, vol.9, pp.199-207, 2008.

W. Stöber, A. Fink, and E. Bohn, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, Journal of Colloid and Interface Science, vol.26, issue.1, pp.62-69, 1968.

L. C. Thomassen, A. Aerts, V. Rabolli, D. Lison, L. Gonzalez et al., Synthesis and Characterization of Stable Monodisperse Silica Nanoparticle Sols for in Vitro Cytotoxicity Testing, Langmuir, vol.2010, issue.1, pp.328-335

S. Chen and K. Kimura, Synthesis and Characterization of Carboxylate-Modified Gold Nanoparticle Powders Dispersible in Water, Langmuir, vol.15, issue.4, pp.1075-1082, 1999.

E. Maria-claesson and A. P. Philipse, Thiol-Functionalized Silica Colloids, Grains, and Membranes for Irreversible Adsorption of Metal(Oxide) Nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.297, issue.1-3, pp.46-54, 2007.

R. Marschall, I. Bannat, J. Caro, and M. Wark, Proton Conductivity of Sulfonic Acid Functionalised Mesoporous Materials. Microporous and Mesoporous Materials, vol.99, pp.190-196, 2007.

, 1.2. PC12 cells on 30 mg.mL -1 threads at the SiNP concentration of 1x

. .. , 2.3. PC12 cells on 15 mg.mL -1 threads at the SiNP concentration of 10x, Collagen-based threads at 15 mg.mL -1

. .. Discussion,

, Impact of SiNP surface chemistry on PC12 cells

. .. , Cell culture PC12 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal calf serum, SO3 -and IKVAV in collagen-based threads on PC12 cells, p.1

, 232-FA) was added to the culture medium when indicated in presence of heparin (10 µg.ml -1 ). The cells were grown in 75 mm² flasks (BD Falcon) and passaged every three -cell contacts. Cells were incubated on the threads at 37°C and 5% CO2 for 48 h. Then the cell culture medium was changed, and FGF was added to the culture medium when indicated, in the presence of heparin (10 µg.ml -1 ). Cell culture medium was then changed every 3 days, with addition of staining Cells were fixed with 4% paraformaldehyde in PBS and 1 mM CaCl2 for 30 min at RT. For immunostaining, 25 Recombinant FGF1 (50 ng/ml, R&D Systems

, Actin filaments were fluorescently labeled with AlexaFluor-488-conjugated phalloidin (Life Technologies; 1:200 dilutions, 1 h at RT) for visualization

, Image acquisition and analysis Images of fluorescently stained samples were obtained using a fluorescence microscope

J. Noble, C. A. Munro, V. S. Prasad, and R. Midha, Analysis of Upper and Lower Extremity Peripheral Nerve Injuries in a Population of Patients with Multiple Injuries, J Trauma, vol.45, pp.116-122, 1998.

M. Gao, J. K. Guo, G. K. Leung, and W. Wu, Use of Self-Assembly Nanofibre Biomaterials for Neural Repair After Injury, Advances in Nanofibers

R. Maguire and . Ed, , 2013.

K. Belanger, T. M. Dinis, S. Taourirt, G. Vidal, D. L. Kaplan et al., Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration, Macromol. Biosci, vol.16, issue.4, pp.472-481, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01955231

H. Rosberg, K. S. Carlsson, and L. B. Dahlin, Prospective Study of Patients with Injuries to the Hand and Forearm: Costs, Function, and General Health, Scand. J. Plast. Reconstr. Surg. Hand Surg, vol.39, issue.6, pp.360-369, 2005.

Z. Chen, W. Yu, and S. Strickland, Peripheral Regeneration, Annu. Rev. Neurosci, vol.30, issue.1, pp.209-233, 2007.

S. Geuna, S. Raimondo, G. Ronchi, F. Di-scipio, P. Tos et al., Chapter 3 Histology of the Peripheral Nerve and Changes Occurring During Nerve Regeneration, In International Review of Neurobiology, vol.87, pp.27-46, 2009.

G. Stoll and H. W. Müller, Nerve Injury, Axonal Degeneration and Neural Regeneration: Basic Insights, Brain Pathol, vol.9, pp.313-325, 1999.

R. Martini, Expression and Functional Roles of Neural Cell Surface Molecules and Extracellular Matrix Components during Development and Regeneration of Peripheral Nerves, J. Neurocytol, vol.23, pp.1-28, 1994.

T. J. Holland, Utilizing the Reaction of Degeneration Test for Individuals with Focal Paralysis, J. Brachial Plex. Peripher. Nerve Inj, vol.7, issue.1, p.6, 2012.

A. Faroni, S. A. Mobasseri, P. J. Kingham, and A. J. Reid, Peripheral Nerve Regeneration: Experimental Strategies and Future Perspectives, Adv. Drug Deliv. Rev, pp.160-167, 2015.

C. E. Schmidt and J. B. Leach, Neural Tissue Engineering: Strategies for Repair and Regeneration, Annu. Rev. Biomed. Eng, vol.5, issue.1, pp.293-347, 2003.

Y. Haile, K. Haastert, K. Cesnulevicius, K. Stummeyer, M. Timmer et al., Culturing of Glial and Neuronal Cells on Polysialic Acid, Biomaterials, vol.28, issue.6, pp.1163-1173, 2007.

J. Wu and D. T. Chiu, Painful Neuromas: A Review of Treatment Modalities. Ann Plas Surg, vol.43, pp.661-667, 1999.

S. Marinescu, O. Z?rnescu, I. Mihai, C. Giuglea, and R. D. Sinescu, An Animal Model of Peripheral Nerve Regeneration after the Application of a Collagen-Polyvinyl Alcohol Scaffold and Mesenchymal Stem Cells, Rom J Morphol Embryol, vol.55, issue.3, pp.891-903, 2014.

S. E. Mackinnon and A. R. Hudson, Clinical Application of Peripheral Nerve Transplantation, Plast Reconstr Surg, vol.90, issue.4, pp.695-699, 1992.

J. H. Pereira, D. D. Palande, A. Subramanian, T. S. Narayanakumar, J. Curtis et al., Denatured Autologous Muscle Graft in Leprosy, The Lancet, vol.338, issue.8777, pp.1239-1240, 1991.

J. Brandt, L. B. Dahlin, and G. Lundborg, Autologous Tendons Used as Grafts for Bridging Peripheral Nerve Defects, J. Hand Surg, vol.24, issue.3, pp.284-290, 1999.

J. Tang, D. Shi, and H. Zhou, Vein Conduits for Repair of Nerves with a Prolonged Gap or in Unfavorable Conditions: An Analysis of Three Failed Cases, Microsurgery, vol.16, issue.3, pp.133-137, 1995.

P. Konofaos and J. Ver-halen, Nerve Repair by Means of Tubulization: Past, Present, Future, J. Reconstr. Microsurg, vol.29, issue.03, pp.149-164, 2013.

I. Liao, H. Wan, S. Qi, C. Cui, P. Patel et al., Preclinical Evaluations of Acellular Biological Conduits for Peripheral Nerve Regeneration, J. Tissue Eng, 2013.

R. Bellamkonda, Peripheral Nerve Regeneration: An Opinion on Channels, Scaffolds and Anisotropy?, Biomaterials, pp.3515-3518, 2006.

L. Picaut, Synthèse d'un Tendon Artificiel, 2017.

R. H. Westerink and A. G. Ewing, The PC12 Cell as Model for Neurosecretion: PC12 Cells as Model for Neurosecretion, Acta Physiol, vol.192, issue.2, pp.273-285, 2007.

A. Rodriguez-enfedaque, S. Bouleau, M. Laurent, Y. Courtois, B. Mignotte et al., FGF1 Nuclear Translocation Is Required for Both Its Neurotrophic Activity and Its P53-Dependent Apoptosis Protection, Biochim. Biophys. Acta BBA -Mol. Cell Res, issue.11, pp.1719-1727, 2009.

S. Bouleau, I. Pârvu-ferecatu, A. Rodriguez-enfedaque, V. Rincheval, H. Grimal et al., Fibroblast Growth Factor 1 Inhibits P53-Dependent Apoptosis in PC12 Cells, Apoptosis, vol.12, issue.8, pp.1377-1387, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00172706

D. G. Drubin, S. C. Feinstein, E. M. Shooter, and M. W. Kirschner, Nerve Growth Factor-Induced Neurite Outgrowth in PC12 Cells Involves the Coordinate Induction of Microtubule Assembly and Assembly-Promoting Factors, J. Cell Biol, vol.101, issue.5, pp.1799-1807, 1985.

C. Aimé, G. Mosser, G. Pembouong, L. Bouteiller, and T. Coradin, Controlling the Nanobio Interface to Build Collagen-silica Self-Assembled Networks, Nanoscale, vol.2012, issue.22, pp.7127-7134

D. E. Birk, P. C. Bruckner, and . Suprastructures, Collagen: Primer in Structure, Processing and Assembly

J. Brinckmann, H. Notbohm, and P. K. Müller, , pp.185-205, 2005.

S. Köster, H. M. Evans, J. Y. Wong, T. Pfohl, and . An, Situ Study of Collagen Self-Assembly Processes. Biomacromolecules, vol.9, pp.199-207, 2008.

M. Jucker, H. K. Kleinman, and D. K. Ingram, Fetal Rat Septal Cells Adhere to and Extend Processes on Basement Membrane, Laminin, and a Synthetic Peptide from the Laminin A Chain Sequence, J. Neurosci. Res, vol.28, issue.4, pp.507-517, 1991.

D. Hoffman-kim, J. A. Mitchel, R. V. Bellamkonda, and . Topography, Cell Response, and Nerve Regeneration, Annu. Rev. Biomed. Eng, vol.12, issue.1, pp.203-231, 2010.

J. D. Foley, E. W. Grunwald, P. F. Nealey, and C. J. Murphy, Cooperative Modulation of Neuritogenesis by PC12 Cells by Topography and Nerve Growth Factor, Biomaterials, vol.26, issue.17, pp.3639-3644, 2005.

X. Yao, R. Peng, and J. Ding, Cell-Material Interactions Revealed Via Material Techniques of Surface Patterning, Adv. Mater, vol.25, issue.37, pp.5257-5286, 2013.

M. J. Mahoney, R. R. Chen, J. Tan, and W. Mark-saltzman, The Influence of Microchannels on Neurite Growth and Architecture, Biomaterials, vol.26, issue.7, pp.771-778, 2005.

P. D. Arora, N. Narani, and C. A. Mcculloch, The Compliance of Collagen Gels Regulates Transforming Growth Factor-? Induction of ?-Smooth Muscle Actin in Fibroblasts, Am. J. Pathol, vol.154, issue.3, pp.871-882, 1999.

A. Balgude, X. Yu, A. Szymanski, and R. V. Bellamkonda, Agarose Gel Sti!Ness Determines Rate of DRG Neurite Extension in 3D Cultures, Biomaterials, vol.22, pp.1077-1084, 2001.

C. S. Chen, Mechanotransduction ? a Field Pulling Together?, J. Cell Sci, vol.121, issue.20, pp.3285-3292, 2008.

B. Geiger, J. P. Spatz, and A. D. Bershadsky, Environmental Sensing through Focal Adhesions, Nat. Rev. Mol. Cell Biol, vol.10, issue.1, pp.21-33, 2009.

D. Koch, W. J. Rosoff, J. Jiang, H. M. Geller, and J. S. Urbach, Strength in the Periphery: Growth Cone Biomechanics and Substrate Rigidity Response in Peripheral and Central Nervous System Neurons, Biophys. J, vol.2012, issue.3, pp.452-460

L. A. Flanagan, Y. Ju, B. Marg, M. Osterfield, and P. A. Janmey, Neurite Branching on Deformable Substrates, Neuroreport, vol.13, issue.18, pp.2411-2417, 2002.

J. B. Leach, X. Q. Brown, J. G. Jacot, P. A. Dimilla, and J. Y. Wong, Neurite Outgrowth and Branching of PC12 Cells on Very Soft Substrates Sharply Decreases below a Threshold of Substrate Rigidity, J. Neural Eng, vol.4, issue.2, pp.26-34, 2007.

S. Sur, C. J. Newcomb, M. J. Webber, and S. I. Stupp, Tuning Supramolecular Mechanics to Guide Neuron Development, Biomaterials, vol.34, issue.20, pp.4749-4757, 2013.

J. W. Gunn, S. D. Turner, and B. K. Mann, Adhesive and Mechanical Properties of Hydrogels Influence Neurite Extension, J. Biomed. Mater. Res, vol.72, issue.1, pp.91-97, 2005.

D. M. Suter and K. E. Miller, The Emerging Role of Forces in Axonal Elongation, Prog. Neurobiol, vol.94, issue.2, pp.91-101, 2011.

H. G. Sundararaghavan, G. A. Monteiro, B. L. Firestein, and D. I. Shreiber, Neurite Growth in 3D Collagen Gels with Gradients of Mechanical Properties, Biotechnol. Bioeng, vol.102, issue.2, pp.632-643, 2009.

R. Freeman, N. Stephanopoulos, Z. Álvarez, J. A. Lewis, S. Sur et al., Instructing Cells with Programmable Peptide DNA Hybrids, Nat. Commun, vol.8, pp.1-11, 2017.

L. Cai, L. Zhang, J. Dong, and S. Wang, Photocured Biodegradable Polymer Substrates of Varying Stiffness and Microgroove Dimensions for Promoting Nerve Cell Guidance and Differentiation, Langmuir, vol.2012, issue.34, pp.12557-12568

E. B. Evans, S. W. Brady, A. Tripathi, and D. Hoffman-kim, Schwann Cell Durotaxis Can Be Guided by Physiologically Relevant Stiffness Gradients, Biomater. Res, vol.22, issue.14, pp.1-13, 2018.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson et al., Fibrillogenesis in Dense Collagen Solutions: A Physicochemical Study, J. Mol. Biol, vol.376, issue.5, pp.1509-1522, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00277303

R. Marschall, I. Bannat, J. Caro, and M. Wark, Proton Conductivity of Sulfonic Acid Functionalised Mesoporous Materials, Microporous Mesoporous Mater, vol.99, issue.1-2, pp.190-196, 2007.

E. Maria-claesson and A. P. Philipse, Thiol-Functionalized Silica Colloids, Grains, and Membranes for Irreversible Adsorption of Metal(Oxide) Nanoparticles. Colloids Surf, Physicochem. Eng. Asp, vol.297, issue.1-3, pp.46-54, 2007.

. .. Electrospinning,

, 2.1. Influence of the starting solution, Parameters of the ES set-up

. .. Shg), 2.2. Polarization-resolved SHG (P-SHG) principle, Multi-photon microscopy based on second-harmonic generation

. .. Cryosem-feg-observations, 191 4.3.1. Investigation of the ES membrane

, Collagen self-supported membranes were obtained by ES. A collagen solution was prepared at a concentration of 1.7 mg.mL -1 in HCl 30 mM and EtOH, vol.25, p.75

, Collagen casted membranes Collagen casted membranes were obtained by pouring collagen solution at 1.7 mg.mL -1 in HCl 30 mM and EtOH (25:75, v:v) in a silicon mold and then evaporating the solvent

, Stabilization and hydration of the membrane To get the stabilized membranes for hydration

, Scanning electron microscopy (SEM) ES membranes were fixed on a carbon tape and coated with 10 nm of gold using a gold plasma -FEG The cryoSEM-FEG observations were performed at the platform

;. Seine, V. Ibps)-by, A. Bazin, G. Canette, M. Frebourg et al., The samples were placed between two holders, a tissue tech for the dry and stabilized membrane to help them to stick to the holders. The samples were frozen in liquid nitrogen at ?195°C, and then transferred to the preparation chamber. No coating was applied on the samples. Cryo-fractionation was performed in the preparation chamber at ?180°C. Cryo-fractionation allows observation of the internal organization of the membranes. Then, SEM observations were performed at ?120°C at low voltage (0.790 kV) using a secondary electron

, Second Harmonic Generation (SHG) Microscopy SHG was carried out at the Ecole Polytechnique in the Laboratory for Optics and Biosciences by Marie-Claire Schanne-Klein, with a laser scanning microscope. The excitation is provided by a femto-second titanium-sapphire laser, Spectra-Physics) . -Forward SHG: transmission (1 Semrock 680SP + 1 Semrock 720SP + 1 Semrock 427/10) -Backward SHG: epidetection (1 Semrock 680SP + 1 Semrock 720SP + 1 Semrock 427/10) The polarization was changed from 0° to 360° with a 10° step

, Circular Dichroism Spectroscopy Synchrotron-radiation circular dichroism (SRDC) spectroscopy

, Normal Human Dermal Fibroblasts (NHDF) were maintained in growth medium containing

, Dulbecco's Modified Eagle's Medium (DMEM), supplemented with 10% fetal bovine serum (FBS), p.1

, staining Cells were fixed with 4% paraformaldehyde in PBS and 1 mM CaCl2 for 30 min at RT. For immunostaining, fixed samples were first permeabilized with 0, glutamax, 1% fungizone and 1% penicillin-streptomycin (P/S)

, Actin filaments were fluorescently labeled with AlexaFluor-488-conjugated phalloidin (Life Technologies; 1:200 dilutions, 1 h at RT) for visualization

, Image acquisition and analysis Images of fluorescently labeled samples were obtained using a fluorescence microscope, vol.10

Z. Huang, Y. Zhang, M. Kotaki, and S. Ramakrishna, A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites, Composites Science and Technology, vol.63, issue.15, pp.2223-2253, 2003.

W. E. Teo and S. Ramakrishna, A Review on Electrospinning Design and Nanofibre Assemblies, Nanotechnology, vol.17, issue.14, pp.89-106, 2006.

J. Deitzel, J. Kleinmeyer, D. Harris, and N. Beck-tan, The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles, Polymer, vol.42, issue.1, pp.261-272, 2001.

M. G. Mckee, Phospholipid Nonwoven Electrospun Membranes, Science, issue.5759, pp.353-355, 2006.

A. K. Haghi and M. Akbari, Trends in Electrospinning of Natural Nanofibers. physica status solidi (a), vol.204, pp.1830-1834, 2007.

V. Maneeratana, J. D. Bass, T. Azaïs, A. Patissier, K. Vallé et al., Fractal Inorganic?Organic Interfaces in Hybrid Membranes for Efficient Proton Transport, Advanced Functional Materials, vol.23, issue.22, pp.2872-2880, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289776

D. Santos, L. Rose, S. Sel, O. Maréchal, M. Perrot et al., Electrospinning a Versatile Tool for Designing Hybrid Proton Conductive Membrane, Journal of Membrane Science, vol.513, pp.12-19, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308923

N. Bhardwaj and S. C. Kundu, Electrospinning: A Fascinating Fiber Fabrication Technique, Biotechnology Advances, vol.28, issue.3, pp.325-347, 2010.

Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, Development of a Nanostructured DNA Delivery Scaffold via Electrospinning of PLGA and PLA-PEG Block Copolymers, Journal of Controlled Release, vol.89, issue.2, pp.341-353, 2003.

T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, Electrospinning of Nanofibers, Journal of Applied Polymer Science, vol.96, issue.2, pp.557-569, 2005.

S. Ramakrishna, K. Fujihara, W. Teo, T. Yong, Z. Ma et al., Solving Global Issues. Materials Today, vol.9, issue.3, pp.40-50, 2006.

A. Welle, M. Kröger, M. Döring, K. Niederer, E. Pindel et al., Electrospun Aliphatic Polycarbonates as Tailored Tissue Scaffold Materials, Biomaterials, vol.28, issue.13, pp.2211-2219, 2007.

F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Electrospinning of Nano/micro Scale Poly(l-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering, Biomaterials, vol.26, issue.15, pp.2603-2610, 2005.

H. Xia and Y. Xia, An in Vitro Study of Non-Aligned or Aligned Electrospun Poly(methyl Methacrylate) Nanofibers as Primary Rat Astrocytes-Loading Scaffold, Materials Science and Engineering, vol.91, pp.228-235, 2018.

R. Jalili, M. Morshed, and S. A. Ravandi, Fundamental Parameters Affecting Electrospinning of PAN Nanofibers as Uniaxially Aligned Fibers, Journal of Applied Polymer Science, vol.101, issue.6, pp.4350-4357, 2006.

D. Liang, B. S. Hsiao, and B. Chu, Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications. Advanced Drug Delivery Reviews, vol.59, pp.1392-1412, 2007.

X. Wang, B. Ding, and B. Li, Biomimetic Electrospun Nanofibrous Structures for Tissue Engineering, Materials Today, vol.16, issue.6, pp.229-241, 2013.

J. J. Stankus, J. Guan, and W. R. Wagner, Fabrication of Biodegradable Elastomeric Scaffolds with Sub-Micron Morphologies, Journal of Biomedical Materials Research, vol.70, issue.4, pp.603-614, 2004.

K. Ohgo, C. Zhao, M. Kobayashi, and T. Asakura, Preparation of Non-Woven Nanofibers of Bombyx Mori Silk, Samia Cynthia Ricini Silk and Recombinant Hybrid Silk with Electrospinning Method, Polymer, vol.44, issue.3, pp.841-846, 2003.

B. Min, L. Jeong, Y. S. Nam, J. Kim, J. Y. Kim et al., Formation of Silk Fibroin Matrices with Different Texture and Its Cellular Response to Normal Human Keratinocytes, International Journal of Biological Macromolecules, vol.34, issue.5, pp.223-230, 2004.

B. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee et al., Electrospinning of Silk Fibroin Nanofibers and Its Effect on the Adhesion and Spreading of Normal Human Keratinocytes and Fibroblasts in Vitro, Biomaterials, vol.25, issue.7-8, pp.1289-1297, 2004.

S. Zarkoob, R. Eby, D. H. Reneker, S. D. Hudson, D. Ertley et al., Structure and Morphology of Electrospun Silk Nanofibers. Polymer, vol.45, issue.11, pp.3973-3977, 2004.

A. Alessandrino, B. Marelli, C. Arosio, S. Fare, M. C. Tanzi et al., Electrospun Silk Fibroin Mats for Tissue Engineering, Engineering in Life Sciences, vol.8, issue.3, pp.219-225, 2008.

I. C. Um, D. Fang, B. S. Hsiao, A. Okamoto, and B. Chu, Electro-Spinning and Electro-Blowing of Hyaluronic Acid, Biomacromolecules, vol.5, issue.4, pp.1428-1436, 2004.

Z. Ma, M. Kotaki, and S. Ramakrishna, Electrospun Cellulose Nanofiber as Affinity Membrane, Journal of Membrane Science, vol.265, issue.1-2, pp.115-123, 2005.

Z. Chen, X. Mo, and F. Qing, Electrospinning of Collagen-chitosan Complex, Materials Letters, issue.16, pp.3490-3494, 2007.

L. Buttafoco, N. G. Kolkman, P. Engbers-buijtenhuijs, A. A. Poot, P. J. Dijkstra et al., Electrospinning of Collagen and Elastin for Tissue Engineering Applications, Biomaterials, vol.27, issue.5, pp.724-734, 2006.

B. Schoen, R. Avrahami, L. Baruch, Y. Efraim, I. Goldfracht et al., Electrospun Extracellular Matrix: Paving the Way to Tailor-Made Natural Scaffolds for Cardiac Tissue Regeneration, Advanced Functional Materials, vol.27, issue.34, pp.1-9, 2017.

J. Bürck, S. Heissler, U. Geckle, M. F. Ardakani, R. Schneider et al., Resemblance of Electrospun Collagen Nanofibers to Their Native Structure, Langmuir, vol.2013, issue.5, pp.1562-1572

B. Dong, O. Arnoult, M. E. Smith, and G. E. Wnek, Electrospinning of Collagen Nanofiber Scaffolds from Benign Solvents, Macromolecular Rapid Communications, vol.30, issue.7, pp.539-542, 2009.

M. Kitsara, P. Joanne, S. E. Boitard, I. Ben-dhiab, B. Poinard et al., Fabrication of Cardiac Patch by Using Electrospun Collagen Fibers, Microelectronic Engineering, vol.144, pp.46-50, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01130222

J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Electrospinning of Collagen Nanofibers, Biomacromolecules, vol.3, issue.2, pp.232-238, 2002.

M. Li, M. J. Mondrinos, M. R. Gandhi, F. K. Ko, A. S. Weiss et al., Electrospun Protein Fibers as Matrices for Tissue Engineering, Biomaterials, vol.26, issue.30, pp.5999-6008, 2005.

I. K. Kwon and T. Matsuda, Co-Electrospun Nanofiber Fabrics of Poly(L-lactide-co-Ecaprolactone) with Type I Collagen or Heparin, Biomacromolecules, vol.6, issue.4, pp.2096-2105, 2005.

Y. Z. Zhang, J. Venugopal, Z. Huang, C. T. Lim, and S. Ramakrishna, Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts, Biomacromolecules, vol.6, issue.5, pp.2583-2589, 2005.

Y. Dror, T. Ziv, V. Makarov, H. Wolf, A. Admon et al., Nanofibers Made of Globular Proteins. Biomacromolecules, vol.9, issue.10, pp.2749-2754, 2008.

H. B. Bensusan and B. L. Hoyt, The Effect of Various Parameters on the Rate of Formation of Fibers from Collagen Solutions 1, Journal of the American Chemical Society, vol.80, issue.3, pp.719-724, 1958.

R. Usha, R. Maheshwari, A. Dhathathreyan, and T. Ramasami, Structural Influence of Mono and Polyhydric Alcohols on the Stabilization of Collagen, Colloids and Surfaces B: Biointerfaces, vol.48, issue.2, pp.101-105, 2006.

D. I. Zeugolis, S. T. Khew, E. S. Yew, A. K. Ekaputra, Y. W. Tong et al., Electro-Spinning of Pure Collagen Nano-Fibres -Just an Expensive Way to Make Gelatin?, Biomaterials, vol.29, issue.15, pp.2293-2305, 2008.

I. Greenfeld, A. Arinstein, K. Fezzaa, M. H. Rafailovich, and E. Zussman, Polymer Dynamics in Semidilute Solution during Electrospinning: A Simple Model and Experimental Observations, Physical Review E, vol.84, issue.4, pp.41806-41807, 2011.

N. Choktaweesap, K. Arayanarakul, D. Aht-ong, C. Meechaisue, and P. Supaphol, Electrospun Gelatin Fibers: Effect of Solvent System on Morphology and Fiber Diameters, Polymer journal, vol.39, issue.6, pp.622-631, 2007.

Y. Wan, J. He, J. Yu, and Y. Wu, Electrospinning of High-Molecule PEO Solution, Journal of Applied Polymer Science, vol.103, issue.6, pp.3840-3843, 2007.

L. Besseau and M. Giraud-guille, Stabilization of Fluid Cholesteric Phases of Collagen to Ordered Gelated Matrices, Journal of Molecular Biology, vol.251, issue.2, pp.197-202, 1995.

H. Fong, I. Chun, and D. Reneker,

, Beaded Nanofibers Formed during Electrospinning, Polymer, vol.40, issue.16, pp.4585-4592, 1999.

R. H. Magarvey and L. E. Outhouse, Note on the Break-up of a Charged Liquid Jet, Journal of Fluid Mechanics, vol.13, issue.01, pp.151-157, 1962.

F. Vollrath and D. T. Edmonds, Modulation of the Mechanical Properties of Spider Silk by Coating with Water, Nature, vol.340, pp.305-307, 1989.

D. S. Jackson and J. Fessler, Isolation and Properties of a Collagen Soluble in Salt Solution at Neutral pH, Nature, vol.179, pp.69-70, 1955.

J. Gross and D. Kirk, The Heat Precipitation of Collagen from Neutral Salt Solutions: Some Rate-Regulating Factors, J Biol Chem, vol.233, issue.2, pp.355-360, 1958.

J. L. Lopes, A. J. Miles, L. Whitmore, and B. A. Wallace, Distinct Circular Dichroism Spectroscopic Signatures of Polyproline II and Unordered Secondary Structures: Applications in Secondary Structure Analyses: Polyproline II and Disordered CD Spectra, Protein Science, vol.23, issue.12, pp.1765-1772, 2014.

N. J. Greenfield, Using Circular Dichroism Spectra to Estimate Protein Secondary Structure, Nature Protocols, vol.1, issue.6, pp.2876-2890, 2007.

F. S. Pavone and P. J. Campagnola, Second Harmonic Generation Imaging, 2013.

R. W. Boyd, Nonlinear Optics -Second Edition, 2003.

A. Ustione and D. W. Piston, A Simple Introduction to Multiphoton Microscopy: a simple introduction to Multiphoton Microsocpy, Journal of Microscopy, vol.243, issue.3, pp.221-226, 2011.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone et al., Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues, Biophysical Journal, vol.16, pp.493-508, 2002.

I. Freund and M. Deutsch, Second-Harmonic Microscopy of Biological Tissue, Optics Letters, vol.11, issue.2, pp.94-96, 1986.

A. Zoumi, A. Yeh, and B. J. Tromberg, Imaging Cells and Extracellular Matrix in Vivo by Using Second-Harmonic Generation and Two-Photon Excited Fluorescence, Proceedings of the National Academy of Sciences, pp.11014-11019, 2002.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman et al., Live Tissue Intrinsic Emission Microscopy Using Multiphoton-Excited Native Fluorescence and Second Harmonic Generation, Proceedings of the National Academy of Sciences, vol.100, pp.7075-7080, 2003.

M. Strupler, A. Pena, M. Hernest, P. Tharaux, J. Martin et al., Second Harmonic Imaging and Scoring of Collagen in Fibrotic Tissues, Optics Express, vol.15, issue.7, pp.4054-4065, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00824058

M. Strupler, E. Imagerie-du-collagène-par-microscopie-multiphotonique, and . Polytechnique, , 2008.

L. Picaut, U. Synthèse-d'un-tendon-artificiel, M. Pierre, and . Curie, , 2017.

A. Deniset-besseau, J. Duboisset, E. Benichou, F. Hache, P. Brevet et al., Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin, The Journal of Physical Chemistry B, issue.40, pp.13437-13445, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00838920

A. Deniset-besseau, P. De-sa-peixoto, G. Mosser, and M. Schanne-klein, Nonlinear Optical Imaging of Lyotropic Cholesteric Liquid Crystals, Optics Express, vol.18, issue.2, pp.1113-1121, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00497888

A. Pena, T. Boulesteix, T. Dartigalongue, and M. Schanne-klein, Chiroptical Effects in the Second Harmonic Signal of Collagens I and IV, Journal of the American Chemical Society, vol.127, issue.29, pp.10314-10322, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00829225

, Content I. Patchy particles by grafting Py precursor, 2016.

. .. Fluorescence-spectroscopy,

, Amine distribution on Py-modified SiNPs surface by grafting of Gold-Nanoparticles and electron microscopy

, Conjugation of di-mercaptosuccinic-acid modified Fe2O3 particles

J. Bürck, S. Heissler, U. Geckle, M. F. Ardakani, R. Schneider et al., Resemblance of Electrospun Collagen Nanofibers to Their Native Structure, Langmuir, vol.2013, issue.5, pp.1562-1572