
HAL Id: tel-02865026
https://theses.hal.science/tel-02865026

Submitted on 11 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Information Flow Control for the Web Browser through
a Mechanism of Split Addresses

Deepak Subramanian

To cite this version:
Deepak Subramanian. Information Flow Control for the Web Browser through a Mechanism of Split
Addresses. Web. CentraleSupélec, 2017. English. �NNT : 2017CSUP0006�. �tel-02865026�

https://theses.hal.science/tel-02865026
https://hal.archives-ouvertes.fr

ANNÉE 2017	

	

N°d’ordre :

THÈSE / CENTRALESUPÉLEC

sous le sceau de l’Université Bretagne Loire

pour le grade de
DOCTEUR DE CENTRALESUPÉLEC

Mention : Informatique
Ecole doctorale 601 « Mathématiques et Sciences et Technologies

de l'Information et de la Communication – (MathSTIC) »

présentée par
Deepak Subramanian

Préparée à l’UMR 6074 - IRISA (Equipe CIDRE)
 Institut de Recherche en Informatique et Systèmes Aléatoires

Information Flow
Control for the Web
Browser through a
Mechanism of Split
Addresses

Thèse soutenue à CentraleSupélec,
campus de Rennes
le: 20/12/2017

devant le jury composé de :
Hervé DEBAR
HDR, Professeur, Télécom SudParis / rapporteur
Isabelle CHRISMENT
HDR, Professeur, Université de Lorraine, LORIA /
rapporteur
Thomas	
 JENSEN
Directeur de Recherche CNRS, IRISA / examinateur
Erwan ABGRALL
Responsable du laboratoire SSI, DGA Maitrise de
l’Information / examinateur
Christophe BIDAN
HDR, Professeur, CentraleSupélec / directeur de
thèse
Guillaume HIET
Professeur associé, CentraleSupélec / co-directeur
de thèse

Acknowledgements

I would like to once again thank the President of the jury, Dr. Thomas Jensen and the

Rapporteurs of my thesis, Dr. Hervé Debar, Dr. Isabelle Chrisment, and the other honorable

members of the jury, Dr. Erwan Abgrall, Dr. Christophe Bidan and Dr. Guillaume Hiet for

granting me the priviledge of being part of the jury for my thesis defense.

I would like to give special thanks to Dr. Guillaume Hiet, my thesis supervisor, for his

constant support and great supervision throughout the course of my work.

I would also like to thank Dr. Christophe Bidan, Dr. Ludovic Mé, Dr. Jean-François

Lalande and the rest of the CIDRE team in their constant encouragement and assistance in

helping me integrate into the French student life. It was a pleasure to work with them during

the course of my PhD.

The staff of CentraleSupelec, including Karine Bernard and Jeannine Hardy deserve special

mention in helping me in a variety of situations.

I express my heartfelt gratitude to my father, P.R. Subramanian, my mother, Savithri Subra-

manian, and my sister, S. Dharini, for their being my pillars during this endeavor. I can also not

understate the great support from my fiancé Shruti Mohan and my soon-to-be parents-in-law,

Ratnam Mohan and Jalalitha Mohan.

I also thank the rest of my family and friends, with special thanks to Bharath Kumar

Venkatesh Kumar, Ha Thanh Le, Dr. Karthik Muthuswamy, Manikantan Krishnamoorthy, Dr.

Yogesh Karpate, Dr. Navik Modi, Dr. Hrishikesh Deshpande, Dr. Sumit Darak, Dr. Mihir Jain,

Dr. , Dr. Raghavendran Balu, Dr. Surya Narayanan, Dr. Aswin Sridharan, Dr. Manikandan

Bakthavatchalam, Dr. Amrith Dhananjayan, Dr. Raj Kumar Gupta, Dr. Dilip Prasad, Dr. Ra-

jesh Sharma, Dr. Paul Lajoie-Mazenc, Dr. Jussi Lindgren, Himalaya Jain, Dr. Regina Marin,

1

2 Acknowledgements

Dr. Chistopher Humphries, Dr. Florian Grandhomme, Dr. Laurent George, Dr. Mounir Assaf

and Dr. Radoniaina Andriatsimandefitra

I have profound thanks for my colleagues at Trusted Labs who have been understanding of

my needs as I pursued the final completion of my thesis while being employed.

My intership at KU Leuven, Belgium is also one of the most gratifying experiences during

this period. Thanks to Dr. Frank Piessens, Dr. Lieven Desmet, Dr. Willem De Groef and the

rest of the DistriNet team in KU Leuven.

It has been the greatest pleasure and a most wonderful experience to complete my PhD, I

would once again express my thanks to all those who were part of my life during this endeavor.

Thank you !

Contents

Acknowledgements 1

Table of contents 3

Introduction 7

1 Web browser security 11
1.1 Web browser technologies . 11

1.1.1 Working of a web browser . 11

1.1.2 JavaScript . 13

1.1.3 Typical modern webpage . 14

1.1.4 WebRTC . 15

1.2 Vulnerabilities on modern webpages . 18

1.2.1 Cross-Site Scripting . 18

1.2.2 Cross-Site Request Forgery . 21

1.2.3 Vulnerabilities on WebRTC . 22

1.3 Web security mechanisms . 24

1.3.1 Security mechanisms on the server side 25

1.3.2 Security mechanisms on the web browser side 26

1.3.3 Conclusion . 29

2 Related work on information flow control 31
2.1 Background on Information Flow Control . 31

2.2 Information flow control in programming languages 33

2.3 Working of IFC . 34

2.3.1 IFC models . 36

2.3.2 IFC properties . 38

2.3.3 Types of IFC analysis . 42

3

4 Contents

2.4 Possibilistic web browser security models using IFC 57

2.4.1 Traditional tainting models . 58

2.4.2 SME and Faceted approach . 59

2.5 Conclusion . 61

3 Address Split Design 63
3.1 General working of Address Split Design . 63

3.1.1 Policy specification . 64

3.1.2 Privileges . 65

3.1.3 Dictionaries . 66

3.1.4 Function privileges . 67

3.1.5 Dependency tracker . 71

3.2 ASD description and semantics . 73

3.2.1 Metavariables and environment . 73

3.2.2 Syntax . 75

3.2.3 Splitting model . 77

3.2.4 Assignment and substitution . 78

3.2.5 Functions . 81

3.2.6 Example in While language . 82

3.2.7 Applying the model to JavaScript . 86

3.3 Examples on JavaScript . 87

3.3.1 Basic functionalities: variable splitting and policy interpretation 87

3.3.2 Dictionary evolution and rights propagation 89

3.4 Comparison of the approaches . 93

3.5 Conclusion . 97

4 Implementation and evaluation 99
4.1 Implementation details . 99

4.2 Performance evaluation . 101

4.2.1 Performance estimation based on number of dictionaries 102

4.2.2 Comparison of performance with SME and faceted approach 106

4.2.3 Impact of ASD on real websites . 107

4.2.4 Standard benchmark tests . 114

4.3 Security considerations: handling vulnerabilities 117

4.3.1 Protecting the Cross-Site Request Forgery Token 118

4.3.2 WebRTC . 120

4.3.3 Websockets . 121

Contents 5

Conclusion 125

Bibliography 142

Table of Figures 143

List of Publications 149

6 Contents

Introduction

The modern world has evolved to the point where many services are served exclusively through

the Internet. It has recently been found that over 73.9 % of Europeans are connected to the

Internet1 and this percentage is growing at a significant rate. Many traditional services such as

post are gradually being superseded by the advent of email and other services. Further, even

more services such as banking and shopping are also becoming more reliant on the Internet.2

The working of these web applications depends on server-side as well as client-side soft-

ware. The major piece of software on the client side that has spearheaded all these web applica-

tions is the web browser. This application is in charge of retrieving, preserving and transferring

information from the server-side applications. Concretely, the web browser is the interface be-

tween the users and server side application: it is used to navigate to the webpages of the server

side application and display their contents as intended. Notice that modern webpages often

include content from multiple websites so as to personalize its for each user by integrating en-

riched functionalities such as calendars, advertisements, embedded audio and video as well as

feeds from varying sources.

Because these web applications provide to users sensitive services such as banking and

shopping, their security is of pivotal importance. From the server side, the range of the security

threats includes but is not limited to attacks such as denial of service, security misconfiguration

and customer data compromise. Some of these attacks, such as SQL injection, rely on the

injection of malicious code on the server side. These security threats still exist and are being

addressed by many projects (such as Cloudflare,3 application security scanners,4 projects from

the web-application security consortium,5 etc.). From the client side, some of the security

issues come with the web browser itself: as any software, it can be subject to attacks such

as buffer overflows. In this regard, modern web browsers take great amount of care for their

1Internet stats, http://www.internetworldstats.com/stats.htm
2The Growth of Online Banking, http://www.wwwmetrics.com/banking.htm
3Cloudflare, https://www.cloudflare.com/security/
4List of web application security scanners, https://www.owasp.org/index.php/Category:

Vulnerability_Scanning_Tools
5Web application security consortium – projects, http://www.webappsec.org/projects/

7

http://www.internetworldstats.com/stats.htm
http://www.wwwmetrics.com/banking.htm
https://www.cloudflare.com/security/
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
http://www.webappsec.org/projects/

8 Introduction

source code’s security by providing sandboxing that can prevent a webpage from inadvertently

accessing system files and other system objects.6

However, it is not sufficient to independently prevent security threats from each side, be-

cause some security issues of web applications are intrinsic to the web applications themselves.

For instance, the modern internet consists of several webpages which are mashup webpages. A

mashup, in web development, is a web page, or web application, that uses content from more

than one source to create a single new service displayed in a single graphical interface [Wikd].

Many websites use a session cookie to allow users to access services without requiring

them to authenticate each time. In this case, acquiring the session cookie is then sufficient to

impersonate a user. This can be made possible through the use of a malicious webpage, or a

malicious script embedded into a legitimate mashup webpage.

More generally, the difficulty of web application security lies in the fact that exploiting

a server-side vulnerability can have a client-side impact, and vice versa. It must be noted

that many vulnerabilities on the server side such as Cross-Site Scripting (XSS) and Cross-Site

Request Forgery (CSRF) have a direct impact on the web browser. Webpages can contain

content and scripts from several web application server. A simple example is an advertisement

on a webpage. Unless the advertisement provider provides secure content to the webpage, the

webpage is inherently vulnerable.

In this thesis, we focus on the client side security of the web browsers. We pay attention

to protecting the user’s sensitive webpage data from being leaked (confidentiality) and from

preventing the modification of sensitive webpage data by unauthorized code (integrity). For

this research, we limit ourselves to the context of JavaScript on the web browser. We look

into the compilation and execution process of JavaScript and provide a mechanism to secure

the variables containing sensitive data on a webpage from being manipulated by unauthorized

code.

Motivation for the thesis

Over the years, there has been a lot of improvements of web application security including the

use of the Origin header and the key conceptualization of Same-Origin Policy (SOP). The term

origin refers to the web application server on which a given resource resides or is to be created

[FGM+99].

Today, it has become mandatory for web browsers to specify as part of every HTTP request

(using the Origin header) the origin web application server for the current webpage. The web

application server can then check the Origin header to decide how the request needs to be

6Chromium Sandbox, http://tinyurl.com/ChromiumSandbox

http://tinyurl.com/ChromiumSandbox

Introduction 9

processed.

The SOP states that a web browser permits scripts contained in a first web page to access

data in a second web page, but only if both web pages have the same origin, i.e., they comes

from the same websites. This policy prevents a malicious script on one webpage from obtaining

access to sensitive data on another webpage.

Notice that all the security measures that have been proposed so far tend to be specific to

each type of vulnerabilities. Beside, they require that both the client-side, i.e., the web browser,

and the server-side web application implement complementary mechanisms. Conversely, if

one of the party do not implement the appropriate mechanisms, the security cannot be ensured.

And for sure, malicious web sites will not implement these mechanisms. Consequently, the

effectiveness of these measures is intrinsically limited.

Let us consider the list of top ten vulnerabilities by the Open Web Application Security

Project (OWASP) [Opea] which is regarded as the standard bearer for this domain. According

to this list, the main vulnerability of web applications is the cross-side scripting (XSS) that

allows a attacker to inject malicious script into a legitimate webpage. Once the malicious

script has been injected, any user that accesses the legitimate webpage will have the malicious

script executed by his web browser, potentially leading to user’s sensitive data theft. Since

the malicious script is part of the legitimate webpage, none of the previous security measures

allows to really prevent such attack.

An attack based on XSS has even more impact if the webpage containing the malicious

script is itself a part of a mashup webpage, as for instance an advertisement that is included

into a webpage of an e-commerce website. Hence, vulnerabilities of a webpage cannot be

prevented unless all the content provided by the various web application servers are audited for

vulnerabilities and subsequently fixed. Of course, this is an unrealistic hypothesis, especially

because malicious webpages with malicious scripts will still exist.

In this thesis, we do not consider solving the vulnerabilities themselves but would like to

provide a mechanism where user’s sensitive information is protected from disclosure as well

as unauthorized modifications despite the vulnerability being exploited. Our objective is to

propose a preventive enforcement mechanism that helps in maintaining both the confidentiality

as well as integrity of the user’s sensitive information despite the presence of malicious scripts.

Further, we wish our mechanism must not be stuck or not ask for direct user input as a part

of making its decision since the web browser is intended for use by all and is not limited to

experts. Finally, there is a need to achieve these objectives without causing severe costs to time

taken for execution.

For that purpose, we affirm that the vulnerabilities based on malicious script are charac-

terized by illegal information flows. Hence, we propose to develop an approach based on

10 Introduction

Information Flow Control (Information Flow Control (IFC)). Indeed, IFC-based approaches

are more encompassing in their scope to solve problems and also provide more streamlined

solutions to handling the information security in its entirety.

This thesis presents such an approach with an implementation on the v8 JavaScript engine

of the Chromium web browser. Our work have been peer-reviewed, published and presented at

international venues:

• We analyzed potential risks of WebRTC, a HTML5 communication technology, in joint

collaboration with KU Leuven and published the results in the 31st Annual ACM Sym-

posium on Applied Computing 2016 [DGSJ+16].

• The core of our research, the Address-Split Design (ASD) was presented in the 9th In-

ternational Conference on Security of Information and Networks 2016 [SHB16].

• Further, we have presented a follow up approach to ASD that adds a learning mecha-

nism to auto correct any uncaught information leaks over time in the 9th International

Symposium on Foundations and Practice of Security 2016 [SHB17].

Dissertation Outlines

This dissertation is organized as follows. In the Chapter 1 we highlight some of the modern web

technologies and the vulnerabilities that exist in the web browsers. We also give a summary

of the existing mechanisms that could be used to provide security to web-pages running on the

web browsers.

In Chapter 2, we summarize the various related work pertaining to the field of IFC as well

as the use of IFC-based approaches for web browser security. We describe the properties and

analysis methods that have been used in this area of research. We also provide some insights

into how our proposed mechanism compares with these related work.

The core of the Address Split Design (ASD), which is our model for IFC in the web

browser, is described in the Chapter 3. ASD is a practical IFC model that relies on modifi-

cations to the symbol table mechanism to protect secret variables from disclosure. We show

the differences in the working of our model compared to other related work.

In the Chapter 4, we describe the implementation of our model on the v8 JavaScript engine.

We provide some highlights on the performance of our solution and the impact of implementing

our model on a standard web browser. We also describe how our model can help to tackle the

security issues mentioned in Chapter 1.

We provide a conclusion with a contemplation of possible future work at the end of the

dissertation.

Chapter 1

Web browser security

In the Section 1.1 we give a brief overview of the main technologies that are used by modern

websites and implemented on the client side, i.e. by the web browser. We then discuss vulner-

abilities on those modern webpage in Section 1.2. Especially, we present vulnerabilities that

we have identified in Web Real-Time Communication (WebRTC) technology [DGSJ+16]. Fi-

nally, we introduce in Section 1.3 the classical approaches that have been proposed to enforce

the security of web browsers and discuss their limitation.

1.1 Web browser technologies

We first describe the fundamental working of the web browser. This is followed by a brief

introduction to JavaScript. Then, we introduce the problem of modern webpages that include

scripts of third-parties. Finally, we describe in more details the functionality of WebRTC, a

technology that is representative of modern features that are added to the browser.

1.1.1 Working of a web browser

A web browser’s responsibility is to first navigate to a web page and display its contents as

intended. The web page can be found using the Uniform Resource Locator (URL).1 The struc-

ture of a URL is shown in Figure 1.1. It must be noted that user information, while

still valid in the URL specification, is no longer supported by many browsers [For]. The

reason is there are several malicious sites which use this strategy to trick users. URL such

as http://www.google.com:jkahshsfjkjdfjbjd@kldfdjkhhebahtk.com/ may be con-

fused as a URL leading to the host www.google.com while this string is merely the username

1RFC 1738, http://www.ietf.org/rfc/rfc1738.txt

11

http://www.google.com:jkahshsfjkjdfjbjd@kldfdjkhhebahtk.com/
http://www.ietf.org/rfc/rfc1738.txt

12 Web browser security

in the site kldfdjkhhebahtk.com. Hence, modern browsers are slowly dropping their support

for this part of the URL specification.

User Info
(Optional)scheme ://

username password: @

Host

website.com

: ? Query
(Optional)

key=value&key=value2

Fragment
(Optional)

HTMLElementId

Port
Number

80

Path

/Path/To/Resource

Figure 1.1: Uniform Resource Locator

The process of loading a web page is shown in Figure 1.2. A browser tries to establish a

Transmission Control Protocol (TCP) connection to a web-server to access a given webpage

resource. When this connection is established, the Hyper-Text Transport Protocol (HTTP)

protocol is used to communicate between the web browser and the web application server. The

web browser sends to the web server a request that includes a list of headers giving details

such as the type of browser it is, (HTTP header: User Agent). The web application server

responds to the request with appropriate headers of its own such as the caching policy for the

web page, the encoding that has been used, the type of data that is being transmitted, the size

of the data, whether the web browser must download the content instead of showing it inline

(content-disposition header), etc.

Since the websites try to personalize the content based on the user, they establish a browsing

session for the user. These sessions may be authenticated or unauthenticated sessions. They

are maintained through the use of a unique string assigned to that session. This string is stored

in the form of variable known as a cookie. The browser maintains one cookie per website

and automatically sends the cookie for every request made to that website. Conversely, each

response of the web application server include a cookie.

When loading a webpage, a web application server response typically contains a HTML

(Hyper-Text Markup Language) content. The user interface of the web browser uses a ren-

dering engine to display the elements as required corresponding to the different tags on the

given HTML document. The rules on how to align the various elements, colors, or fonts to

be used are given in the form of Cascading Style Sheet (CSS). Finally, the dynamic program-

ming language used to run the various functionalities of the web page are usually written in

JavaScript.

Web browser technologies 13

Web Browser

http://www.example.com/Path1?key1=value1#div1

TCP connexion
(Resolve IP)

Request Resource
(with HTTP header)

Response from the server
(with HTTP header)

Load Page

Load other
permitted
resources

Perform the
layout of the
page based on

CSS

Run the
various

JavaScript

Append Cookie

 Update Cookie

Figure 1.2: The process of loading a page

1.1.2 JavaScript

Client-side script is one of the important aspects of a webpage on a web browser. JavaScript

itself is a high-level, dynamic, interpreted language. It has gradually replaced other components

such as Java applets and Adobe Flash in terms of functionality and has been ranked among the

most used programming languages.2

In a typical webpage, JavaScript is used to interact with a remote server and integrate dy-

namic content into the webpage. This is done with the help of the XMLHttpRequest function.

This function is used to make a HTTP request to a URL and obtain the response as a JavaScript

variable. This variable can then be used to generate the dynamic content. Hence, the content

2Techcrunch 2012, http://tcrn.ch/2nReBSh

http://tcrn.ch/2nReBSh

14 Web browser security

on the page, as well as information from the server, can interact with the aid of JavaScript.

In JavaScript, the eval function allows runtime execution. This implies that an arbitrary

string can be passed to this function to be executed in the current context. An example of

the use of eval in JavaScript is shown in figure 1.3. In this example, it can be observed

that the code that is executed changes based on the input to the function. The example here

is quite simplistic. When the parameter choice is equal to "gt", the function checks if the

value of the variable a is greater than 5. The actual check happens in the interpretation of eval

statements which compiles the string that is passed to the eval function. JavaScript is hence a

very powerful and flexible language that is more and more used in modern webpages.

1 var a = Math.floor((Math.random () * 10) + 1);;
2 function f(x,choice ,number)
3 {
4 var y = true;
5 var greaterThan = "if(x<=" + number + "){y = false;}else{y=

true;}";
6 var lessThan = "if(x>" + number + "){y = true;}else{y=false ;}

";
7 if(choice === "gt")
8 {
9 eval(greaterThan);

10 }
11 else if(choice === "lt")
12 {
13 eval(lessThan);
14 }
15 return y;
16 };
17 var a_gt5 = f(a,"gt" ,5);
18 var a_lt5 = f(a,"lt" ,5);

Figure 1.3: Simple eval function example

1.1.3 Typical modern webpage

Today, the modern webpages are complex because they are composed of different components.

Indeed, many modern webpages depend on data from multiple web application servers to run

as intended by the developer, as illustrated by the Figure 1.4. The third-party websites such

as Facebook3 and Disqus4 provide content that interact with the page at runtime using scripts.

The various scripts provided by advertisement providers can also actively explore the context

3https://fr-fr.facebook.com/
4https://disqus.com/

https://fr-fr.facebook.com/
https://disqus.com/

Web browser technologies 15

of the page to provide relevant advertisements. All these third-party scripts are added by the

developer and are intended to work in the same context of the webpage.

HTML content forms the basis for creating the Document Object Model (DOM) of the

current webpage. The JavaScript loaded on the page is part of the script tag. The contents of

this tag are passed to the JavaScript engine to be executed at runtime. The JavaScript engine

can also access the DOM elements and subsequently create, modify as well as delete the DOM

elements at runtime to provide dynamic content to the user.

Content

Web Browser

Advertisement

Twitter Feed

Disqus Comments

Breaking news/ Stock Quotes Weather

Facebook Like Button

http://www.thesis-mashup-example.com

Figure 1.4: A typical webpage

The advent of HTML5 has triggered an array of approaches increasing the feature set of

web applications. Some of these novel technologies such as Web Messaging [Hic15b], Web-

Sockets [FM11] or WebRTC [BBJN15], allow for communication on web pages on levels that

were not feasible earlier. We give more details on WebRTC technologies in the following

sections.

1.1.4 WebRTC

WebRTC is one of the latest additions to the ever-growing repository of Web browser technolo-

gies, which push the envelope of native Web application capabilities. WebRTC allows real-time

peer-to-peer audio and video chat, that runs purely in the browser. Unlike existing video chat

solutions, such as Skype, that operate in a closed identity ecosystem, WebRTC was designed

to be highly flexible, especially in the domains of signaling and identity federation.

16 Web browser security

The high-level architecture of WebRTC can be split into two different planes as shown in

Figure 1.5. The distinction is made based on the kind of data sent over it. The green layer or

the media plane delivers the peer-to-peer real-time streams. The top red layer or the signaling

plane delivers all control- and meta-data between the endpoints.

Figure 1.5: Simple architectural view of WebRTC

The signaling plane consists of one or more signaling servers that mediate and route com-

munication, typically over an HTTPS connection, between two or more endpoints. The second

task of a signaling server is to serve the initial client-side application-specific code that interacts

with the JavaScript API for WebRTC.

The media plane will take care of the peer-to-peer connections between the endpoints using

User Datagram Protocol (UDP). Datagram Transport Layer Security (DTLS)-Secure Real-time

Transport Protocol (SRTP) is a key exchange mechanism that is mandated for use in WebRTC.

DTLS-SRTP uses DTLS [RM12] to exchange keys for the SRTP [BMN+04a] media transport.

SRTP is the real-time streaming protocol. This protocol belongs to the application layer of the

Open Systems Interconnection (OSI) model. SRTP requires an external key exchange mecha-

nism for sharing its session keys, and DTLS-SRTP does that by multiplexing the DTLS-SRTP

protocol within the same session as the SRTP media itself. The protocol is used as the basis for

the communication security for the UDP connection.

Due to complex setups of today’s network infrastructure, the architectural picture is often

far more complex, as shown in Figure 1.6. Services to obtain mapped public IP addresses

from within private networks (e.g., STUN and TURN servers, shown in purple), and to provide

identity management (shown in blue), are all part of the complete architecture. The Identity

Provider (IdP) are an important component for WebRTC since they verify the users who are

communicating.

To establish a WebRTC connection, the browser needs to first send a connection request

to the signaling server. The signaling server then establishes a TCP connection with the other

Web browser technologies 17

Figure 1.6: WebRTC architecture based on [Res15b]
The HTTPS signaling plane (red), the DTLS/SRTP media path (green), the interaction with STUN and TURN

(purple), and the interaction with Identity Providers (blue for the assertion generation and yellow for the assertion

verification).

browser and passes the request. The request is actually in the form of a Session Description

Protocol (SDP) object. This SDP object is necessary to establish a peer-to-peer connection

between the two browsers. The second browser appends its data and creates an SDP answer

object which is passed to the first browser by the signaling server. Once both parties have

received the SDP objects, the media peer-to-peer connection is established. On the Internet,

the IP address of a user is usually dynamic in nature. To keep track of the user over several

ISPs and firewalls, WebRTC uses STUN and TURN based proxies.

The WebRTC architecture provides a mechanism to allow applications to perform their

own authentication and identity verification between endpoints. These interactions are done

via JavaScript APIs within the browser itself. Each endpoint can specify an Identity Provider

(IdP) while generating the SDP offer/answer. Based on the content of a received SDP message,

the endpoint can check with the IdP to verify the received certificate and thus to validate the

identity.

Figure 1.7 provides an architectural overview of the integration of an IdP. In essence, the

browser will load a IdP-specific proxy (called IdP Proxy) to interact with the Identity Provider

and this proxy implements a very generic interface towards the web browser for peer authenti-

cation. The web browser first generates an offer and the SDP object is provided to the IdP to

be signed. The signed SDP is reflected in the offer. The web browser receiving the offer would

then pass the signed SDP to the IdP to get the verification of the sender’s identity. It would then

generate an answer, which also contains an SDP object, repeating the process of signing using

an IdP. Hence the identity of both parties in the peer-to-peer communication can be asserted.

18 Web browser security

Figure 1.7: WebRTC integration of the Identity Provider.

1.2 Vulnerabilities on modern webpages

As illustrated in previous section, thanks to JavaScript and web technologies, the modern web-

pages are converging to the functionalities traditionally reserved for desktop applications. This

explains the widely use of web applications to provide services that previously required specific

software.

However, the widespread use of Javascript and web technologies to provide advanced func-

tionalities to users implies that vulnerabilities in modern webpages are today one of the most

critical risks for the user. In this section, we describe two vulnerabilities related to the mod-

ern webpages, that are the cross-site scripting (XSS) and cross-site request forgery (CSRF) in

Section 1.2.1 and Section 1.2.2 respectively. XSS is part of the list of top ten vulnerabilities on

web applications provided by the Open Web Application Security Project (OWASP) [Opea]. I

Section 1.2.3, we demonstrate that XSS vulnerabilities can also be exploited on new JavaScript

technologies such as WebRTC.

1.2.1 Cross-Site Scripting

Cross-site Scripting (XSS) is one of the most exploited vulnerabilities in the modern web [Opea].

It is caused when untrusted third-party script affects the normal working of a page usually com-

promising the confidentiality and/or integrity of the user’s or server’s data in the process. The

main problem is when unauthorized scripts are able to run in the same context as that of the

webpage. Cross-site scripting is often classified between three types:

• Reflected XSS;

• Persistent XSS;

• DOM-based XSS.

Vulnerabilities on modern webpages 19

1.2.1.1 Reflected XSS

Reflected cross-site scripting is a vulnerability where an arbitrary script is run because some

parameters in the HTTP request are not checked by the server. This is made possible when the

GET or POST parameters sent to the web application server are used without sanitizing the

variables. Sanitizing is the process of checking if the variable contains any executable strings

and modifying them so that they will not be executed by the browser when loaded into the page.

Indeed, if left unchecked, an arbitrary script could be sent back to the web browser and it would

be executed, thereby exploiting the user. This type of vulnerability is most often exploited in

search functionalities of a page.

For example, let us consider, a user ’person A’ gets a mail with the following link:

http://vulnerablesite.com/search=<script%20src=http:

//malicioussite.com/script></script>

Clicking on this link would send a request to the server of vulnerablesite.com with

the search string <script%20src=http://malicioussite.com/script></script>. The

server would then perform the search based on the string. If the resultant webpage that is

sent back by the web application server also contains the same search string, and since the

search string contains the script, this script is executed by the browser. Consequently, the

arbitrary script page is loaded from the URL http://malicioussite.com/script. This

arbitrary script may then perform a malicious action such as passing the cookie of the user’s

session for the website http://vulnerablesite.com. The attacker can then use this cookie

to impersonate the legitimate user on the website http://vulnerablesite.com.

This example is a typical reflected XSS. It must be noted that reflected XSS does not infer

anything about persistence of the vulnerability. It merely states that the vulnerability is caused

because of the way in which the URL parameters are interpreted in the resulting page.

1.2.1.2 Persistent XSS

Persistent cross-site scripting is one of the most dangerous vulnerabilities. It is often a server-

side vulnerability that is also caused by lack of sanitizing. As an illustration, let us consider

that the website vulnerablesite.com is storing all the searches made by person A to aggre-

gate a ‘recent searches’ list that is loaded at the website’s homepage. Let us consider that when

the website’s homepage http://vulnerablesite.com is loaded, the ten last search terms

are shown as well. Now, let us consider the same example as in the reflected XSS in Subsec-

tion 1.2.1.1. Because of the new functionality (i.e., the display of the ten last search terms), the

search string "<script src=http://malicioussite.com/script></script>" would be

http://vulnerablesite.com/search=<script%20src=http://malicioussite.com/script></script>
http://vulnerablesite.com/search=<script%20src=http://malicioussite.com/script></script>
<script%20src=http://malicioussite.com/script></script>
http://malicioussite.com/script
http://vulnerablesite.com
http://vulnerablesite.com

20 Web browser security

stored in the database of the web server. The next time person A visits vulnerablesite.com,

the aggregated list of recent searches is passed as part of the webpage. In this case, the loaded

webpage would mandate the web browser to execute the malicious script.

Persistent XSS can be even more serious where one user affects every other user. For

example, if the homepage of the website shows a ‘trending searches’ list. Consider that this

is a list of the searches made to the website vulnerablesite.com in the last ten minutes to

all its users. This would implicate all the users loading the homepage of the website since the

script from the URL http://malicioussite.com/script would be loaded.

Notice that in modern times, web browser persistence mechanisms have also been targeted.

HTML5 introduced a persistence mechanism called LocalStorage5 which allows a webpage to

store key-value pairs in the browser. It is possible to get a persistent XSS if the webpage scripts

reading these values are vulnerable. For example, consider the last ten entries are stored in

the LocalStorage instead of on the server’s database. Let us also assume that the homepage of

the website http://vulnerablesite.com adds these searches to a list called ‘recent entries’

that would be shown on webpage when it is loaded. This would similarly execute the malicious

script every time the webpage is loaded.

1.2.1.3 DOM based XSS

DOM based XSS was first identified as the third type of XSS by Amit Klein [Weba]. However,

DOM based XSS is a variant of persistant and reflected XSS but is different from traditional

XSS in a very subtle manner [XSS]. In persistant and reflected XSS, the malicious JavaScript is

executed when the webpage is loaded, as part of the HTML sent by the server. In DOM based

XSS, the malicious JavaScript is executed at some point after the webpage has been loaded, as

a result of the webpage’s legitimate JavaScript treating user input in an unsafe way. Thus, a

DOM based XSS exploits a vulnerability that exists because of errors in the JavaScript of the

webpage.

For example, let us consider the case where person A clicks a link to the following webpage

from an email :

http://vulnerablesite.com/page.html?default=English

Let us consider that the loaded webpage contains the code fragment of the Figure 1.8. This

script allows the user to select the language of the webpage, the default value being provided

with the parameter default of the URL.

5https://www.w3schools.com/html/html5_webstorage.asp

http://malicioussite.com/script
http://vulnerablesite.com/page.html?default=English
default
https://www.w3schools.com/html/html5_webstorage.asp

Vulnerabilities on modern webpages 21

1 Select the language:
2 <select ><script >
3 document.write("<OPTION value=1>"+document.location.href.

substring(document.location.href.indexOf("default=")+8)+"
</OPTION >");

4 document.write("<OPTION value=2>English </OPTION ></select >");
5 document.write("<OPTION value=3>French </OPTION ></select >");
6 </script ><select >

Figure 1.8: OM based XSS example [Opef]

Now, let us consider that instead of the previous link, A clicks to the following webpage :

http://vulnerablesite.com/page.html?default=<script>alert(document.

cookie)</script>

In this case, the DOM element document.location is assigned following value:

<script>alert(document.cookie)</script>

This code is added to the DOM and then executed because of the script that allows to select the

language of the webpage.

1.2.1.4 Conclusion on XSS

These are the three main types of XSS. It must be noted that persistent, reflected and DOM

based XSS are not mutually exclusive classifications of XSS. An XSS vulnerability can belong

on a single, multiple or all categories of the vulnerability, just like in the search example where

the vulnerability caused by the search term is both reflective as well as persistent. Moreover,

persistent XSS and reflected XSS can both result in DOM based XSS.

Finally, notice that in a mashup webpage containing scripts from multiple sources, XSS

is dangerous since if any one of the third-party scripts is vulnerable, the entire page becomes

vulnerable as well.

1.2.2 Cross-Site Request Forgery

CSRF is one of the most important vulnerabilities on the Internet [Opea]. CSRF occurs when

the web application server is unable to distinguish between a legitimate (i.e. as intended by

the user) and illegitimate request (i.e. performed by impersonating the user). This is because

of the web browser’s behavior to append the cookie and session information along with any

request made to a given URL. Since websites cannot ask the user to log in for every action to

http://vulnerablesite.com/page.html?default=<script>alert(document.cookie)</script>
http://vulnerablesite.com/page.html?default=<script>alert(document.cookie)</script>
document.location
<script>alert(document.cookie)</script>

22 Web browser security

be carried out, a cookie is used to maintain the user’s authenticated state with the site. It must

be noted that the cookie is kept active until deleted. The closing of the webpage’s tab does not

have any impact on the cookie (unless the browser settings explicitly delete the cookie on page

close). Similarly, unless explicitly stated, a browser retains the cookies despite being restarted.

Let us remind the usual scenario for a website that uses session cookie. When a user

logs on to a website, for instance, through a dedicated authentication webpage, the session

cookie is tied to this user. This cookie is stored in the web browser and is sent as part of all

subsequent requests to the website enabling the user to be identified (without repeating the login

mechanism for every request). Now, let us suppose that another webpage on the same browser

makes a request to this website. Then according to the web browser’s behavior, this request

will automatically be appended with the session cookie and other relevant cookie information

when sent to the website by the web browser. This request would appear to be a legitimate

request from the user, and the website will subsequently process the request.

Imagine this in the context of sensitive applications such as banking. Another unrelated

webpage on the same web browser could send the request to the bank and the web browser

would do all things necessary on its behalf. This would directly result in malicious transac-

tions since the bank’s web application server would not be able to distinguish between the two

requests.

1.2.3 Vulnerabilities on WebRTC

In this section, we discuss the various ways in which the prerequisites for endpoint authentic-

ity can be broken by malicious third-party JavaScript such as injected JavaScript due to XSS

vulnerability.

This section covers two different attacks against endpoint authenticity. In Section 1.2.3.1,

the integrity of the DTLS certificate is compromised in WebRTC setups where no Identity

Provider is present. This first scenario is very plausible as at the time of writing (most) browsers

do not yet provide wide support for Identity Provider integration. In Section 1.2.3.2, the second

problem where the identity of the user is replaced by an identity under the control of the attacker

is demonstrated. This attack is hence quite dangerous since the identity of the user can be

interchanged at run-time due to scripts.

1.2.3.1 Compromising the integrity of the fingerprint

The WebRTC specification does not require the use of an Identity Provider within a WebRTC

setup. Actually, the default operation of WebRTC instances is without the involvement of an

Identity Provider, as the support for IdP integration in web browsers is unfortunately not yet

Vulnerabilities on modern webpages 23

mainstream.

In the absence of an Identity Provider, the endpoint authenticity is boiled down to the in-

tegrity of the DTLS certificate fingerprint within the SDP object. Concretely, this means that in

the absence of an Identity Provider the endpoint authenticity can easily be compromised. Every

party on the signaling path is able to manipulate the SDP objects and mangle with fingerprints

present in the SDP description. In particular, exploiting a XSS vulnerability, the attacker can

modify the DTLS certificate fingerprint within the SDP description, or even replace the SDP

object by a fake SDP object, retrieved from a website under the control of the attacker. So

even in the case of a confidential and integer data channel, it is still not secure as there is no

assurance about the other side’s identity.

1 // pc is an RTCPeerConnection object
2 pc.createOfferOriginal = pc.createOffer;
3 pc.createOffer = function(callback , error){
4 pc.orgCallback = callback;
5 pc.malCallback = function(offer){
6 var newOffer = getAttackerSDPViaXHR(offer);
7 pc.orgCallback(newOffer);
8 };
9 pc.createOfferOriginal(pc.malCallback , error);

10 };

Figure 1.9: Example attack showing how to compromise the certificate fingerprint by replacing
the SDP offer with an attacker-controlled version.

As an illustration, let us consider for instance the attack scenario, presented in Figure 1.9.

This is a fragment of the client-side JavaScript code, that could be pushed by a attacker using

a XSS vulnerability. In this code example, the createOffer function gets replaced by a wrapper

function, which will replace the SDP offer by a fake SDP object, retrieved from the attacker

website via XMLHttpRequest (XHR). The SDP offer is represented via a string, and the fake

SDP offer will include a new attacker-controlled fingerprint, as well as other vital parameters

(e.g. network configuration) to connect to an attacker-controlled endpoint. As this first class of

attacks compromises the integrity of the DTLS certificate fingerprint, the endpoint authenticity

can not be guaranteed in the absence of an Identity Provider, given the possible presence of

XSS vulnerability.

1.2.3.2 Compromising the integrity of the identity assertion

The WebRTC security model stipulates strict requirements about the consent that is required

from end-user for access to media devices, such as the camera and the microphone. However,

24 Web browser security

this is also the only user consent that is required to use WebRTC. No user-interface require-

ments are stipulated for the browsers to inform the end-user about the fact that a WebRTC con-

nection is being set up, or that an identity assertion is generated or verified by the JavaScript

code. Especially the lack of chrome user-interface to select a preferred identity or Identity

Provider, and the lack of granting access to a specific identity to set up a remote WebRTC

connection undermines the integrity of the identity assertion used in WebRTC.

Even in case an Identity Provider is used to set up the peer-to-peer connection, and the

fingerprint is correctly bound to an identity in the identity assertion, this could still compro-

mise the endpoint’s authenticity. For instance, exploiting a XSS vulnerability, the attacker can

provide a fake identity assertion for an identity and a fake DTLS certificate fingerprint, as well

as the code for validating them.

Figure 1.10 illustrates how the current identity assertions can easily be replaced by identity

assertions generated for artifacts under the control of the attacker.

1 // pc is a RTCPeerConnection object
2 // hjMc is a MessageChannel object
3 hjMc.port1.onmessage = function(e) {
4 newOffer.sdp = changeAllIdentities(e.data ,hjMc.offer.sdp);
5 pc.trueCallback(newOffer);
6 };
7 function changeAllIdentities(newIdentity ,sdp){
8 identityExtraction = base64(newIdentity);
9 return sdp.replace (/ identity:[A-Z0 -9]*\n/g, ‘identity:’+

identityExtraction);
10 };

Figure 1.10: Example attack showing how to modify the identity string to a fake identity.

In this code listing, the createOffer function has already been considered overridden.

Hence, even if the offer is completely signed by the identity, the same offer can be signed

for a different identity and these identities can be switched. A changed identity would not be

detected since the identity is opaque to the signaling server and the identity assertions would

result in the same fingerprint. While, this attack in itself cannot cause a hijacked connection,

it can be used as a tactic in ensuring problems with the call. For example, if user B has been

known to block user A, simply using A’s identity will ensure that B would drop the call.

1.3 Web security mechanisms

In the previous section, we have introduced the two most exploited vulnerabilities in the modern

web: XSS and CSRF. In this section, we briefly present mechanisms that can be deployed in

Web security mechanisms 25

the web application server side, and then introduce the security mechanisms that have been

proposed to protect web browsers against these vulnerabilities. These mechanisms are mainly

based on the use of sandbox, a principle that consists in isolating some parts of a webpage in

the web browser so as to prevent the access to sensitive data.

1.3.1 Security mechanisms on the server side

Even if CSRF and XSS target the web browser or lure it to conduct attacks, some defense

mechanisms can be implemented on server-side. For example, persistent XSS are made possi-

ble because of vulnerability on the web application server side. Persistent XSS can usually be

avoided if the web application server uses correct output encodings when storing and display-

ing the data on the webpage respectively.

CSRF exploits the fact that session cookies are automatically send with every request, even

if this request is initiated by a script of another webpage, on a different web browser tab.

Because session cookies are not sufficient to protect against CSRF, many modern websites use

a CSRF token with every request as another layer of security. The CSRF token is a serializable

token that is appended by the website’s web application server to every link and JavaScript

XMLHTTPRequests on the webpage as a request parameter. Hence, every subsequent request

made to the webpage would contain the token. This token must not be stored in the web

browser as a cookie or any persistent storage for the mechanism to work. This is because the

web browser would automatically append the cookie details to any request made. However, this

token is easily obtained by checking the URL strings in the webpage assuming the environment

is currently controlled by the attacker. The CSRF token is a secret information that needs to be

protected from malicious JavaScript since it provides the last line of defense for CSRF.

Many modern websites also require that the web browsers append an origin header as

part of every HTTP request they make. This origin header would refers to the origin web appli-

cation server for the current webpage from which the request originates. The web application

server can then check the origin header to identify the source of every request. This makes it

possible for the web application server to check the webpage that made the request and decide

on whether or not it wants to process such a request. Even if it is the browser that has to provide

the origin header, the check is done by the server.

Origin headers are a reliable mechanism when a request is sent from a third-party server if

the request is only supposed to be accessible from the same-origin. However, if is valid for the

request to be made from a third-party website, it is necessary to supplement it with the CSRF

token. For example, a bank server could block any request to transfer money made from any

other origin than the bank’s own website. However, an advertisement provider which would

typically allow all origins, would need to use a CSRF token since origin header is not useful

26 Web browser security

for their use case.

Notice that the above mechanisms are bound to fail if the webpage is affected by XSS.

Indeed, if a malicious user is able to inject a script that will be loaded and executed in the

target webpage, then since the request is from a legitimate webpage, the origin tag is correct

and since the script running on the same page has access to the entire page’s source code, it

can also derive the CSRF token. This token can then be used both directly and indirectly to

affect the user. In the direct case, the malicious script can trigger a transaction by activating the

event or creating a request to the website with the token appended. Indirectly, it could send the

various tokens and cookie elements to a remote web application server, which can then use this

information to contrive even more scenarios of malicious use. This emphasizes the need for

client-side protection mechanisms; such mechanisms also being useful to protect the security

mechanisms enforced on the server side.

1.3.2 Security mechanisms on the web browser side

1.3.2.1 Isolation between different webpages

The premise of sandboxing as a security mechanism in a web browser began through an old

concept called Site-Specific Browsers (SSB) [Wiki]. In SSB, the main goal is to prevent the

illegitimate use of the cookies. In a typical web browser, the cookie for a given domain is sent

along with any request made to the domain across various tabs of the web browser. This is

the reason for the exploitation of the CSRF vulnerability. SSB ensures that the web browser is

able to open only a dedicated website. Since opening another website implies opening another

Site-Specific Browser, there is complete isolation of the cookies. This makes exploitation of

CSRF from other websites more difficult. However, though the concept itself is simple and

useful, it also severely limited the functionality of the web browser, especially because it is

tedious to maintain several individual web browsers capable of browsing only specific websites.

Moreover, there are some consequences for this approach which makes it incompatible with

modern web pages. For example, third party plugins such as Facebook like button would

require the user to login for every website since session cookies cannot be propagated between

SSBs.

In recent years, research on web application isolation in a single web browser has gained

more traction and Chen et al. [CBR11] have demonstrated one such model with a working

prototype on the Chromium browser. Instead of a strict control by SSBs, their approach pro-

vides some compromise in restrictions, i.e. allowing some amount of cross-domain access.

Their model works on two main concepts namely state isolation and entry-point restriction.

The authors aim to create the same impact of using SSB by using these two concepts. The

Web security mechanisms 27

state isolation is used to maintain the sensitive applications’ various data such as cookies and

LocalStorage in an isolated manner. Entry-point restriction is a list of website URL patterns

that are allowed by a cross-origin webpage to be requested. The list is provided to the browser

by the website developer before it requests resources from the particular site. The list is hosted

in a well known location (for instance www.website.com/.well-known/meta-data) and

is automatically retrieved by the web browser before loading the webpage. Using these two

mechanisms, the authors are able to enforce isolation in a single web browser. Further, this

mechanism has incurred an average performance hit of 0.1ms when tested on the Alexa 100 in

2011.

While this mechanism is very useful to have a proper protection for cookies thereby provid-

ing similar protection as SSBs, it also suffers from the same issues. The main issue is that there

is no way to prevent a malicious JavaScript on the page from accessing sensitive data. Any

JavaScript that is allowed to run needs to be implicitly trusted with any information contained

in all variables. It is precisely these issues that information flow control is supposed to tackle

in an effective manner.

Most modern browsers come with their own sandbox to prevent the illegitimate use of

cookies. This sandbox is often based on the Same-Origin Policy (SOP). The SOP states that

the scripts in the web page may only send requests to the current page’s domain. This automat-

ically prevents information disclosure to external sites using the XMLHttpRequest function.

However, the SOP is too restrictive for modern webpages because it deny all the cross-origin

requests needed for web applications being able to interact with each other. Thus, the HTML5

specification provides a mechanism called Cross-Origin Resource Sharing (CORS) which al-

lows the developer to override the SOP for specific domains. To enable CORS, it is mandatory

for the webpage to contain headers whitelisting the various origins to which it wants to perform

CORS requests. Once the webpage is loaded, these headers cannot be changed until a web-

page reload. Further, the remote server to which the request is made must contain a whitelist

allowing the requesting webpage’s domain to access the data contained in the response.

It must be noted that the SOP of the web browser does not apply to components of the

webpage such as images, externally hosted scripts, and videos. An example of such a leak is

as follows: . In this example, an

image tag is used to load an image at bad.com. However, the request contains a parameter

cookie that is passed by making a GET request.

To prevent information disclosure through components, a security mechanism called the

Content-Security-Policy (CSP) has been envisioned as part of the HTML5 specification.

The CSP is effectively an implementation of a whitelist based approach that provides a defini-

tive list of resources that can and cannot be allowed into the webpage. The CSP is passed as

www.website.com/.well-known/meta-data
bad.com

28 Web browser security

part of the HTTP server headers. CSP hence provides the web browser information on which

sources can be accepted to load the various objects such as scripts, images, videos on the web-

page. It is also possible to allow or deny in-line JavaScript. In-line JavaScript is loaded as

part of the page when the DOM is loaded and is not part of an external JavaScript file. By not

allowing in-line JavaScript from executing, the risk of DOM-based XSS can be reduced to a

significant extent. This is because even if there is a malicious script in the page due to a prior

persistent XSS, the script would not be allowed to run if it is inline. Similarly, providing a

whitelist of scripts, images, and other resources decreases the possibility of an exploitation by

a large degree. CSP is an effective mechanism in preventing untrusted JavaScript from loading

on to the page. However, it is only a mechanism to regulate whether scripts could be permitted

execution. It does not provide any means to secure the data from insecure JavaScript running

in the same context.

1.3.2.2 Isolation inside a webpage

Notice that sandbox model provide isolation across webpages and not within the same web-

page. In a mashup webpage, contents from varying websites find their web applications in-

teracting with each other. These include calendars, date and time indicators, advertisements,

embedded audio and video, feeds from varying sources as well as comments and discussion

boards. The sandbox mechanism in providing isolation within a webpage is the default HTML

iframe (inline frame mechanism). An iframe is a HTML tag which loads another webpage in

a dedicated inline frame. The JavaScripts of the iframe does not run in the same context as

the rest of the page. It hence provides a way of sandboxing within a webpage. The iframe

itself is not bound by the SOP. However, it is not possible for the webpage and the iframe, of

mutually exclusive origins, to communicate to the iframe. It must be noted that iframe was

created to embed one website into another and was not envisioned for the scenario of isolation.

A more well defined isolation approach for the context of mashups was defined by Wang

et al. [WFHJ07] in MashupOS. This approach introduces a new HTML tags, <Sandbox>, to

provide for isolation of content. This tag however provides some level of interaction on if the

isolated webpage. The webpage that loads the sandbox can call the scripts within the sandbox.

However, the objects can only be passed by value and not by reference. The sandbox cannot

access any of the DOM elements of the webpage itself. It can however create/modify/delete

DOM elements as long as they are within the <Sandbox> tag. The authors suggests the use of

this mechanism if the webpage developer does not trust the scripts within the <Sandbox>. The

<Sandbox> mechanism is best used in case of third party libraries. This is because while the

<Sandbox> provides iframe like isolation, it also provides a means to communicate securely

from the sandbox to the webpage rendering the frame and vice-versa.

Web security mechanisms 29

It must be noted that with the advent of HTML5 web messaging standard, such commu-

nication between an iframe and a webpage of different domains are also possible. However,

these are a much newer concept and have ben influenced by prior proposal such as the just

mentioned MashupOS by Wang et. al. [WFHJ07].

1.3.2.3 Specific mechanisms

Finally, the web browsers provide non-standard mechanisms to prevent some specific vulnera-

bilities. These mechanisms are not always well-documented and are mostly proprietary. One

of the mechanisms found in both the Google Chrome and Chromium browsers as well as Mi-

crosoft Internet Explorer is the “XSS Auditor”.6 This mechanism is specifically intended to

prevent reflected XSS. It checks if there is a script passed as one of the parameters of the re-

quest in URL used to load the webpage. For example: if www.page.com?search=<script>

alert(0);</script> is the webpage’s URL and this parameter is shown as-is in the DOM,

it is a reflected cross-site scripting vulnerability. Hence, if the page contains a script string

which was part of the parameters passed in the request, this particular script is blocked from

execution.

While this mechanism is not well documented, the xss-auditor requires two conditions to

be satisfied for working. The first is that the request parameter must contain the <script> tag.

The second condition is that this parameter must be present as a string in the document body.

This condition is verified by a simple string match. If even one character was different due to

some server computation or encoding before adding it to the page’s contents, the xss-auditor

would not work. This is because xss-auditor intends to keep a very low false positive rate. It is

very effective against reflected XSS but is a solution only for this problem.

1.3.3 Conclusion

As shown before, there are various approaches that are used to protect against the exploitation

of both XSS and CSRF vulnerabilities. However, while these approaches are very efficient and

effective, they are tuned to solve very specific problems and are not suitable candidates for a

holistic approach towards web browser security. Thus, the use of origin headers or CSRF token

allows to prevent CSRF except if malicious script has been injected into the current webpage.

Code injection is difficult to detect on the browser side if the attacker is using persistent XSS.

The only solution seems to be the SSB approach that ensures physically the isolation of the

webpages, but this solution is incompatible with the modern mashup webpages.

6http://www.collinjackson.com/research/xssauditor.pdf

www.page.com?search=<script>alert(0);</script>
www.page.com?search=<script>alert(0);</script>
http://www.collinjackson.com/research/xssauditor.pdf

30 Web browser security

In this thesis, we defend that there exists another approach. All solutions based on sand-

boxing have a granularity issue where the least attainable granularity correspond to all the

JavaScript code coming from a particular domain or included in a given file. This approach is

too coarse-grained to tackle code injection in legitimate web page, for example. We assert that

an approach having a variable level granularity can be used. The principle of such an approach

is to control the information flows between the script variables and the DOM components so

as to ensure sensitive information is not passed to a third party by even scripts from the same

webpage.

As an illustration, let us consider the example of the CSRF token. Of course, the value

of CSRF token is sensitive, and it should only be accessed by legitimate scripts. Now, let us

suppose that the value of the CSRF token is copied into another variable, and that an illegiti-

mate script can access this second variable. In this context, the illegitimate script can access

the value of the CSRF token even if it cannot access the CSRF token itself. By controlling

the information flows between the script variables, we are able to detect that the value of the

variable is equal to the value of the CSRF token, and then deny the access by the illegitimate

script.

In the next chapter, we introduce the basic of Information Flow Control (IFC) as well as

some web browser security approaches based on IFC.

Chapter 2

Related work on information flow
control

We present related work pertaining to the field of information flow control (IFC) in this chapter.

In Section 2.1 we give a general overview of IFC. The Section 2.2 gives an introduction to the

application of information flow control in programming languages. The Section 2.3 provides

an overview of the various considerations to be taken when formulating an information flow

control model. Finally, we describe the various prior IFC approaches that have been applied to

web browser security in Section 2.4.

2.1 Background on Information Flow Control

In a typical information system, there are subjects (users, programs, etc.) that attempt to access

objects (documents, files, variables, etc.) which contains the information. There are various

roles that can be given to the subjets based on the requirements of the environment. For exam-

ple, users can be given the roles such as worker, lower management and upper management.

The necessary privileges to access the various objects is given to the subjects based on their

role in the environment.

Often, the access control rules are related to the objects. That means the access conditions

are defined at the objects level, without considering the type of information that is contained

into the objects. However, the access conditions can be related to the type of information into

the objects. In this case, we have to classify the objects according to the type of information

they contain. Typically, the information is classified based on how sensitive it is and its cat-

egory. Usually, there can be different classifications of the documents such as Unclassi f ied,

Secret, and TopSecret based on the sensitivity of the information contained, and these clas-

31

32 Related Work on IFC

sifications are paired with a total order such that Unclassi f ied < Secret < TopSecret. The

information is also categorized according to the type of information. For instance, the infor-

mation can be related to Crypto or Nuclear. These categories are organized by set inclusion.

Based on classifications and categories, a partial order can be defined (see Figure 2.1).

{TopSecret,{}}

{Secret,{}}

{TopSecret,{Crypto}}

{Secret,{Crypto}}{Secret,{nuclear}}

{TopSecret,{nuclear}}

{TopSecret,{nuclear,crypto}}

{Secret,{nuclear,crypto}}

{,{}}

{,{Crypto}}{,{nuclear}}

{,{nuclear,crypto}}

Figure 2.1: Partial order on information

Similar to how the objects are classified, subjects can also be classified according to the type

of information they are authorized to access. Then, given the partial order, access control rules

can be defined depending on the type of information contained into the objects. For instance,

given the partial order of Figure 2.1, a subject with classification {TopSecret,{Nuclear}} is

authorized to access objects that contain information classified {Secret,{Nuclear}}. However,

subject with classification {TopSecret,{Crypto}} cannot access objects that contain informa-

tion classified {Secret,{Crypto,Nuclear}}. Such access control models are called Multi Level

Security (MLS) models which is a form of Mandatory Access Control (MAC).

Several MLS models have been proposed, such as the Bell-La Padula model [BL73] and the

Biba model [Bib75]. In the Bell-La Padula model, the access control is quite restrictive. The

Information flow control in programming languages 33

object at a particular level cannot be read by the subject at lower levels, and cannot be changed

(write access) by the subject at higher levels. This implies that the subjects may write to objects

at higher levels than their own, passing on more sensitive information to their supervisors while

maintaining confidentiality of the information they pass. Conversely, in the Biba model, the

subject of a particular level cannot read objects at a lower level than itself and cannot write

information to objects at a higher level. Using such a policy assures data integrity.

In such MLS models, the access control guarantees that the information of any object is in

accordance with the classification of that object. This is a main limitation of such approach : the

security administrator has to classify all the objects and subjects, at least those that are supposed

to manipulate sensible data. This approach clearly lakes of flexibility : the administrator has

to know in advance which containers will be used by each subject. On a practical point of

view, it is often impossible to specify the classification of all the fine-grained containers such

as variables. Thus, such MAC models are typically used with coarse grained containers such

as files.

In information flow control approaches, the rules are defined at a fine-grained level, and

allow the read or write operations based on the information that flows and not just the static

classification of the objects. Thus, if a subject wants to write secret information to an unclas-

sified object, it is permitted but reading this object later is only authorized to subjects with the

appropriate classification. In other words, the classification of an object evolves according to

the information it contains. Thus, the control is based on the information flow.

The concept of information flow control was clearly described in the seminal work of Den-

ning [DD77]. The information-flow policy of a program is defined using a lattice (L,v) where

L is a set of security classes (i.e., classifications and categories) and v is a partial order among

those classes [KWH11].

2.2 Information flow control in programming languages

Information flow control has found a lot of applications in various domains. In particular,

there has been great interest towards using various IFC models at the level of programming

languages. In programming languages, it is often important to protect several confidential data,

such as secret keys or passwords, and restrict access to some important code components while

continuing to use third-party libraries. Thus, IFC at a programming languages level consists

of associating labels to the variables that contain sensitive values and then propagating these

labels according to the flow of information that occurs during the execution of a program.

The key consideration when it comes to IFC in programming languages has to do with the

nature of the information flow. Conventionally, there is a clear distinction between explicit and

34 Related Work on IFC

1 b = a+1;
2 c = d = 0;
3 if (a == 2) {
4 c = 1;
5 } else {
6 d = 2;
7 }
8 print b,c,d;

Figure 2.2: Explicit/Implicit Flow

implicit flows [DD77]. An explicit information flow refers to direct assignments. In this case,

secret variables only influence the current executing statement. Let us consider the example in

Figure 2.2. We consider variable a to contain a secret value. Hence, we classify a as secret.

The assignment in line 1, b = a + 1; is an example of such an explicit flow. It is clear that

after the execution of this statement, the value of variable b is dependent on value a. Hence, b

must also be classified as secret due to the propagation of the secret value.

In the case of implicit flows, the variables used in one statement influence subsequent

statements indirectly. Implicit flows arise due to conditional jumps based on the value of the

secret. In this case, the execution path taken by the function was determined by a secret value,

thereby determining subsequent assignments. A simple if-then-else conditional shown in

line 3 of the Figure 2.2, is an example of such implicit flow. Let us consider a is classified as

secret. The value of variable c and d are indirectly related to the value of variable a. The direct

assignments to variable c and d do not contain any secret values. However, the assignment

statement that is executed depends on the value of a. Hence both variables c and d must be

classified as secret due to implicit information flow of variable a’s secret value.

2.3 Working of IFC

The working of an IFC can be described by using the diagram shown in Figure 2.3. The system

begins with the definition of a policy which in turn contains details about the security lattice

and the files/variables holding secret information. Such information is used by IFC models

to identify legal information flows. The IFC models could be probabilistic or possibilistic.

A probabilisitic model allows for some amount of disclosure as long as the leak is within a

permissible limit. A possibilisitic model denies disclosure if there is a slightest possibility of

a leak. These models can be implemented using different types of analysis. Static analysis

infer details from code before executing it. Dynamic analyses observe runtime environments.

Hybrid analysis use a combination of both static and dynamic analysis. These analysis classify

Working of IFC 35

Information
Flow

Policies
IFC Model

PossibilisticProbabilistic

IFC Implementation

DynamicStatic

Javascript

function f1() {
var a = “xxxx”;
var b = 1;
…
}
function f2() {
…

Permitted Denied

Hybrid

Analysis

Feedback

Unauthorized
access handler

Separate process AlertsStop compilation

Stop executionSeparate memory

Figure 2.3: Information Flow Working

36 Related Work on IFC

information flows into legal and illegal flows.

The reaction of the IFC system to illegal information flows depends directly on the imple-

mentation. These could be raising alerts, stopping execution, stopping the compilation pro-

cess, modifying execution or some other customized action. Finally, there could be an optional

feedback mechanism that is used to update information in the approaches. For probabilisitic

models, these could help in re-computation of their information leakage metrics. This feedback

could be based on the past decisions.

This section is organized into three subsections. The Subsection 2.3.1 gives an introduction

to possibilistic and probabilisitic IFC models. The Subsection 2.3.2 provides an overview of

the various properties that have been used in the domain of IFC. Finally the various types of

analysis are described in the Subsection 2.3.3.

2.3.1 IFC models

There are two types of IFC models, namely, the possibilistic IFC and the probabilistic IFC.

The former is a coarse-grained approach which considers any possible influence of a variable

to another as a leak. The latter tries to evaluate more precisely the amount of information that

is leaked.

1 function main()
2 {
3 var text = secret; //Gets the value of the secret.
4 var abc = 0;
5 if(text.indexOf(’abc’)!=-1) { abc = 1; } //the variable abc now

contains some information about text.
6 var text1 = ’Secret text is: ’ + text;
7 var text2 = ’Secret starts with: ’ + text.charAt (0); //Just a

single byte is appended
8 var text3 = ’Contains string \’abc\’: ’ + abc; //abc is

appended - this contains some information about text
9 publicOutput(text1);

10 publicOutput(text2);
11 publicOutput(text3);
12 }
13 function publicOutput(x)
14 {
15 console.log(x);
16 }

Figure 2.4: Information flow code example

Working of IFC 37

2.3.1.1 Possibilistic IFC

The possibilistic models have been more popular in IFC research [AF09, CMJL09, DG09,

BS10, Aus13]. The objective of this approach is to eliminate any possibility of leak, if the leak

is considered feasible by the model. In this case, the policies have to be formed to permit or

disallow information flows. Consider the code of the figure 2.4. In this case, the variable text

is tagged with a high-level label since a secret value flows into it. The variables text1, text2

and text3 become tagged with a high-level label because of information flow. The function

publicOutput() is not allowed to accept high-level variables. In a possibilistic IFC, the flows

resulting from the execution of the lines 9, 10 and 11 will be considered as illegal.

Here, we classify the text2 at the same level of information leakage as text. This is

because the possibilistic approaches are coarse-grained making it impossible to distinguish

between partial leakage and the leakage of the whole secret. This kind of classification is

however necessary in a possibistic IFC to prevent information leak.

2.3.1.2 Probabilistic IFC

The probabilistic information flow control models are an alternative to the possibilistic models.

These approaches try to quantify the amount of information that is leaked. In this case, every

information flow is not only marked, but also trailed for information leakage and bound to

the lattice based models. Once these values reach a threshold, the corresponding information

flows are considered illegal. The main motivation of a probabilistic approach is to have a more

fine-grained analysis. Such an approach relies on quantifying metrics to capture the measure

of information leakage at every possible point in the programs’ execution life-cycle. Alvim et

al. [AAP10] make a comparative study on the various probabilistic information flow techniques

that are currently being used.

Let us consider the previous example illustrated by code of Figure 2.4. In the case of

the probabilistic information flow control, information leakage would be estimated for each

disclosure. In this case, revealing the presence of “abc” may be acceptable but the string in

its entirety should not be disclosed. Enforcing such a policy would be possible using proba-

bilistic information flow control. For example, the creation of the string “text1” at line 6 (see

Figure 2.4) would be considered as illegal since this would imply revealing the whole secret

variable. However, revealing a much less significant part of the secret in “text2” could be al-

lowed. It must be noted that in this case it involves disclosure of only the first byte. The all

or nothing model of the possibilistic model is therefore substituted by the controlled partial

disclosure of the probabilistic models.

38 Related Work on IFC

2.3.1.3 Possibilistic vs. probabilistic IFC

The general idea of probabilistic approaches provide direct advantages over possibilistic ap-

proaches by allowing for more fine-tuning thereby reducing the margin for over-approximation.

Hoang et al. [HMM+12] formulate a comparison between the probabilistic and possibilistic ap-

proaches. One of the inferences made by this research is that possibilistic approaches tend to

make approximations which result in a potential loss of precision in their final classification.

However, probabilistic models often require more information to decide the classification.

This is because when building a probabilistic model, it can generally be found that several

types of probability distributions fit the data [NCC+04, AAP10]. There have been no practical

probabilisitic models to date that have seen implementations in a real web browser. While we

acknowledge the greater precision that can be obtained by probabilistic models, we see this

more as a possible future enhancement.

2.3.2 IFC properties

The IFC models have to satisfy some properties that are needed to formally express the absence

of information flow or to quantify leakage.

In case of the possibilistic models, the most important property that has been identified

is non-interference [GM82, SS98]. This property states that no secret inputs to the program

can influence publicly observed outputs. Formulated in terms of program executions, if the

program is run with different secret values, while holding the public values fixed, the public

output must not change [HS12a]. Different formulation of this property have been proposed.

We will detail those which are related to our context in the following subsections.

The probabilistic metrics differ in their need when compared to the general models fol-

lowed by the possibilistic approaches. Indeed, those approaches try to evaluate the amount

of leakage in order to allow partial information disclosure. We provide some details on these

metrics in the subsection on 2.3.2.3.

2.3.2.1 Termination-insensitive non-interference - TINI

Termination-Insensitive Non-Interference (TINI) [AHSS08, Bie13, SM03] only gives a guar-

antee about terminating programs, ignoring that non-termination may leak some confidential

information. This property guarantees that two terminating executions of a program produce

output that agrees on public data when started with input that agrees on public data [DP10].

Figure 2.5 provides a general understanding of this property. It can be seen that the public input

and public output are the same irrespective of the private output.

Working of IFC 39

Program
Execution 1

Input

Program
Execution 2

Input

Output

Output

Private Input
Pvt1

Private Input
Pvt2

Public Input
Pu2

Public Input
Pu1

Private
Output OPvt1

Private
Output OPvt2

Public Output
OPu2

Public Output
OPu1

Program
Execution N

Input Output

Private Input
PvtN

Public Input
PuN

Private
Output OPvtN

Public Output
OPuN

Public Output
OPu1 = OPu2 = … = OPuN

.

.

.

.

Public Input
Pu1 = Pu2 = … = PuN

.

Figure 2.5: Termination-insensitive non-interference

Let us consider the code of figure 2.4. In case of TINI, the observable public output cor-

respond to the execution of the publicOutput() function which prints information to the

JavaScript console. According to the TINI property, console output must remain the same

regardless of the value of the secret. In this case, the information flow into publicOutput()

on line numbers 9, 10 and 11 would be deemed illegal. It must be noted that termination-

insensitive programs only provide security guarantees for programs which terminate [KWH11].

It hence ignores the possibility of non-termination or of abnormal termination due to unchecked

exceptions such as out-of-memory errors.

2.3.2.2 Timing- and Termination-sensitive non-interference - TTSNI

Timing-sensitive non-interference implies that the public output cannot distinguish the secret

solely based on the time of the execution. This means that the various values of the secret

should not influence the number of steps taken to reach the public output. In case of the example

code of figure 2.4, the timing sensitive non-interference is not satisfied. More precisely, the if

statement in line number 5 would only execute the assignment operation when the absence

of the substring ‘abc’ in the secret is established. This additional step being executed can be

exploited by timing based attacks to infer some information about the secret. In a timing-

sensitive non-interference there should be no observable time difference for different values of

the secret. Hence, it should take the same time to execute line 5 irrespective of ‘abc’ being

present in the secret or not.

40 Related Work on IFC

In case of termination-sensitivity, the termination is supposed to be a public output and

should not be influenced by secret values. Consider replacing line 5 with the following state-

ment:

while(text.indexOf(‘abc’)!=-1) { continue; }.

This would disclose the value of the secret based on termination of the program. A termination-

sensitive non-interference makes sure that such an information flow does not influence the

public output.

TTSNI states that after any number of execution steps, two executions of a program will

have produced output which agrees on public data when run with input that agrees on public

data [DP10, KWH11]. This states that the program uses the same number of steps to reach a

public output making it timing sensitive. It also states that the termination of the program would

not be directly influenced by the secret value hence also guaranteeing IFC for non-terminating

programs.

Program
Execution 1

Input

Program
Execution 2

Input

Output

Output

Private Input
Pvt1

Private Input
Pvt2

Public Input
Pu2

Public Input
Pu1

Private
Output OPvt1

Private
Output OPvt2

Public Output
OPu2

Public Output
OPu1

Program
Execution N

Input Output

Private Input
PvtN

Public Input
PuN

Public Output
OPuN

Private
Output OPvtN

Public Output
OPu1 = OPu2 = … = OPuN

.

.

.

.

Public Input
Pu1 = Pu2 = … = PuN

.

Process separation

TS1 = StartT(Pu1)

TS2 = StartT(Pu2)

TSN = StartT(PuN)

TE1 = EndT(OPu1)

TE2 = EndT(OPu2)

TEN = StartT(PuN)

TIME DIFFERENCE
(approx. equal)

(TE1-TS1) ≈ (TE2-TS2) ≈ …

≈ (TEN-TSN)

Figure 2.6: Timing- and Termination- sensitive non-interference

Figure 2.6 provides a general understanding of this property. It can be seen that this figure

is a superset of Figure 2.5, which represents TINI. TTSNI also needs to satisfy that for the same

public input, there is no observable difference in the time taken to generate the public output.

In the Figure 2.6, the StartT and EndT represent the starting and ending time for the execution

of the function and EndT - StartT represents the time taken for the execution. It must be noted

Working of IFC 41

that the time taken for the execution must be the same, baring system noise. Since there is

process seperation, i.e. seperate processes for each level in the lattice, the termination (or crash

of a process) of the high process would not affect the low processes and vice-versa.

Kashyap et. al. [KWH11] make a distinction between termination-insensitive, weakly

termination-sensitive and strongly termination-sensitive programs. Consider a program that

consists of two levels, high and low. The approach creates two sub-programs for the pro-

gram, namely a high sub-program and a low sub-program. In a termination-insensitive non-

interference, the execution of a low program’s code block is not independent of the high-

program preceding it and vice-versa. Hence, if high-program is stuck or causes an abnormal

failure of the program because of a particular value of the secret, this value can be inferred.

In a weakly termination-sensitive sub-program, the execution of each code block is generally

independent of each other. However, it does not take into account that for certain inputs, a

high sub-program may over-use the available memory thereby causing abnormal termination is

via memory exhaustion to the low sub-program1. In a strongly termination-sensitive program,

these scenarios are also handled. Notice that while the notion of strongly termination-sensitive

models has been formalized by Kashyap et. al., there are no known models that satisfy this

property.

2.3.2.3 Probabilistic metrics

In a possibilistic approach, the leak either exists or does not. However, a leak is quantifiable

in a probabilistic approach. Various approaches have been proposed to quantify information

leakage i.e. partial disclosure. The techniques for calculation of partial disclosure have mathe-

matical roots whose applications go well beyond the realm of information flow control.

These approaches share some common metrics. Information leakage or information expo-

sure is the intentional or unintentional disclosure of information to an actor that is not explicitly

authorized to have access to that information [Mit, AAP10]. This metric is defined by Alvim

et al. [AAP10] using initial uncertainty and remaining uncertainty as:

leakagein f o = uncertaintyinitial−uncertaintyremaining (2.1)

Initial uncertainty is the entropy of the initial input. This value takes into consideration the

various initial conditions that are taken for the input. Remaining uncertainty is the conditional

entropy of the output given the input.

The general idea of probabilistic approaches provide direct advantages over possibilistic ap-

proaches by allowing for more fine-tuning thereby reducing the margin for over-approximation.

1Out of Memory,https://en.wikipedia.org/wiki/Out_of_memory

 https://en.wikipedia.org/wiki/Out_of_memory

42 Related Work on IFC

Hoang et al. [HMM+12] formulate a comparison between the probabilistic and possibilistic

approaches in the context of non-interference. One of the inferences made by this research is

that by possibilistic approaches tend to make approximations that result in a potential loss of

precision in their final classification.

However, probabilistic models also require a lot of initial data to achieve their proposed

benefits. The complexity of implementation of such models cannot be underestimated. There

have been no practical probabilisitic models to date that have seen implementations in a real

web browser. The amount of computation required for every decision can also not be un-

derestimated making their efficiency questionable at best. While we acknowledge the greater

precision that can be obtained by probabilisitic models, we see this more as a possible future

enhancement rather than a necessity. Hence our model remains a purely possibilistic approach.

2.3.3 Types of IFC analysis

The are two main stages in a program’s life-cycle that the IFC analysis could take places namely

before the execution (static analysis) or during the execution (dynamic analysis). Some ap-

proaches tend to take advantage of both techniques (hybrid analysis).

2.3.3.1 Static Analysis

Static analysis is a greatly explored technique in information flow control and there are several

approaches in this context. Models that fall into this category typically do their analysis before

the execution of the program begins. Some of them follow the methodology of secure-type

systems [SS98, SM03, Mye99, VS97b]. Those approaches work by propagating labels in the

form of types associated to the variables. There is a use of a mechanism called the program

counter (pc) that is common between these various approaches. This mechanism maintains the

current level of the execution based on the information used in the different conditional branch.

A security-type system is a collection of typing rules that describe what security type is

assigned to a program, based on the types of subprograms [SM03, VIS96]. This is kept as a

meta-data of the static analyzer and is computed for each step of static analysis. These analyses

compute the flow of information in almost the same manner as if they were being executed

while exploring all possible paths for various variable values. For example, figure 2.7 presents

the rules of the secure type system proposed by Sabelfeld and Myers [SM03]. These rules were

inspired by the rules proposed in the seminal work of Volpano et. al. [VIS96]. These have been

described in the while language [Ald06, CHM07]. While language is a simple imperative

language, with assignment to local variables, if statements, while loops, and simple integer and

boolean expressions.

Working of IFC 43

[E1] ` exp : high [E2]
h /∈Vars(exp)
` exp : low

[C1] [pc] ` skip [C2] [pc] ` h := exp

[C3]
` exp : low

[low] ` l := exp
[C4]

[pc] ` C1 [pc] ` C2

[pc] ` C1;C2

[C5]
` exp : pc [pc] ` C
[pc] ` while exp do C

[C6]
` exp : pc [pc] ` C1 [pc] ` C2

[pc] ` if exp then C1 else C2

[C7]
[high] ` C
[low] ` C

Figure 2.7: Secure-type system [SM03, VIS96]

In these rules, ` exp : τ implies that the expression exp has a type τ according to the typing

rules. This is an assertion that needs to be satisfied. [pc] ` C infers that the program C is

typable in the security context pc. The rules [E1] and [E2] refer to expressions. [E1] implies

that any expression can have a type high (` exp : high) irrespective of the data it contains.

However, Rule [E2] states that expressions can be of type low (` exp : low) only if none of

the variables in the expression have a type high. The rules from [C1] to [C7] refer to the

program’s working. [C1] states that for either high or low expressions, a skip operation is

typable. Similarly, in [C2], a high variable may take input from any high or low expressions.

However, in case of [C3], there are two restrictions for the rule to apply. The input has to be

from a low expression and the assignment should be to a low variable. If these are satisfied,

the low variable is assigned the value resulting from the evaluation of the expression.

The rules from [C1] to [C4] are purely targeting explicit flows. Implicit flows are analyzed

by rules [C5] and [C6]. These rules simply state that for a conditional branch or loop to

be typable in a low context, both the expression exp of the conditional must be low and the

loop/branch body C must be individually typable in the low context. In all other cases the

statement is only typable in the high context. This is enforced by the subsumption rule in [C7]

which refers to rules where pc is used. [C7] states that, in these rules, (namely, [C1], [C2],

[C4], [C5] and [C6]), if the rule is typable for the high context, it is also typable for the low

context.

Heintze and Riecke [HR98] proposed a type-system for functional language which is ca-

44 Related Work on IFC

pable of handling first-class functions. Other models such as the one proposed by Zdancewic

and Myers [ZM01] provide more expressive control for functions and references while also

providing robust declassification methodologies in their semantics. The context of exception

handling has also been explored by various approaches. Volpano and Smith [VS97a] proposed

a simple type system for handling exceptions. A more detailed analysis was proposed by Pot-

tier and Simoner [PS03] in which exceptions were handled with great detail. This binding

between the exception raised and values is validated and a program is considered typable only

if all exceptions that can be raised by the program are typable in that context.

There also exist a set of approaches [CC77, DFST02, Mas05, Zan12, AN16] which follow

the path of abstract interpretation in their approach towards static analysis. Abstract interpre-

tation is used to collect approximate information about the runtime behavior of a given pro-

gram [DFST02]. This implies that it sacrifices standard precise semantics in favor of simpler

non-standard semantics known as abstract domains. The program is then interpreted in these

abstract domains. Let us consider simple example provided by Cousot and Cousot [CC77]

involving mathematical signs. Consider x = -1515 * 17 in abstract domains denoted by

(+), (-), (±) where the semantics of the arithmetic operators are defined by the rule of signs.

Abstract execution of -1515 * 17 can be represented as (-)*(+)=(-), thereby proving x is a neg-

ative number. In case x = -1515 + 17, abstract interpretation would result in (-)+(+)=(±).

Cousot [Cou] also states that for an abstraction to be sound, the abstract semantics must cover

all possible cases of the concrete semantics. Let us consider a simple security lattice (high-

low). The high and low security labels would have their own abstract domains. The main

purpose of abstract interpretation is to approximate the concrete semantics of all executions

in a finite way. Only information concerning the properties being analyzed is maintained. In

information security, this property is the label associated to the program. In general, abstract

semantics of a program ignore both values and memories, thereby completely focusing only

on the property and the various control flows. In case of a branch, the points of interest for the

program are more focused on the beginning or end of the branch.

An example of abstract interpretation semantics for Basic LOTOS as proposed by De

Francesco et al. [DFST02] is given in figure 2.8. Basic LOTOS is a process algebra by means

of which it is possible to describe the behavior of concurrent processes, concentrating on com-

munications between processes. It includes commands for synchronous communication and

parallelism.

In this set of rules, \ refers to the abstract domain, i is a set of simple instructions such as

assignments, sending/receiving messages and skip command, op stands for usual arithmetic.

i : exp→ com implies, if expression exp is true, then perform the command com. The expres-

Working of IFC 45

sion a!e implies that the expression e is passed over the message channel a. The expression

a?x implies that a message is received from the channel a and saved to variable x. τ is the

evaluation of a condition and can be either true or false. α represents an action. An action

can either be a simple command (without sending/receiving messages) or a pair of sending/re-

ceiving commands or an evaluation of a condition (τ). λ refers to a ‘do nothing’ operation.

The assignment rule Assign, skip operation, and While f alse simply keep track of the abstract

domain and do nothing else. The rules Seq1 and Seq2 show how a sequence of commands are

handled when they are in the same abstract domain. Message passing is handled by rule Com

where r and t represent reception and transmission respectively. The final rule Par represents

the composition rule for this abstract interpretation.

exp ::= k | x | exp op exp

simple_com ::= skip | x := exp | a?x | a!exp

com ::= i : simple_com| if exp then com else com |
while exp do com| com;com | {com}

proc := com | proc‖proc

[Assign]
i : x := e i−→

\
λ

[Skip]
i : [skip] i−→

\
λ

[Iftrue]
if e then c1 else c2

τ−→
\

c1

[If f alse]
if e then c1 else c2

τ−→
\

c2

[Whiletrue]
while e do c τ−→

\
c;while e do c

[While f alse]
while e do c τ−→

\
λ

[Seq1]
c1

α−→
\

λ

c1;c2
α−→

\
c2

[Seq2]
c1

α−→
\

c′1

c1;c2
α−→

\
c′1;c2

[Com]
c1‖ . . .‖r : a?x ; ci‖ . . .‖t : a?e ; c j‖ . . .‖cn

r,t−→
\

c1‖ . . .‖ci‖ . . .‖c j‖ . . .‖cn

[Par]
ci

α−→
\

c′i

c1‖ . . .‖ci‖ . . .‖cn
α−→

\
c1‖ . . .‖c′i‖ . . .‖cn

ci 6= r : a!e,ci 6= r : a?x

Figure 2.8: Abstract interpretation semantics [DFST02]

Based on these rules, a control flow graph is generated for a given program to affirm

whether it is secure or otherwise. The various states are checked and noted for whether these

46 Related Work on IFC

states are reachable.

The abstract semantics defined in rules of Figure 2.8 also have a concrete semantics involv-

ing more factors such as memory handling for the program, which were approximated to the

abstract semantics.

In terms of application of abstract interpretation to non-interference, the seminal work of

Mastroeni [Mas05] in formulating abstract non-interference is noteworthy. The model keeps

track of the variables’ states at the beginning and end of the branch across various conditionals

and performs an evaluation to discover the information flow. The approach keep track of the

implicit flows and maps the variable changes between different branches. If a given variable

is assigned a constant value (value which is not from a variable or return of a function call),

the states at the beginning and the end of the branch would be the same. Hence, the evaluation

would not be able to see any dependencies which is a touted advantage of this approach.

Both abstract interpretation and secure type systems have similar effectiveness in handling

static IFC analysis. Based on individual adaptations of the rules in these approaches, they can

be used to describe and prove if adequate security has been achieved.

Since static analysis happens before the execution, it generally has no impact on performance

during the execution. There are some special cases, such as in JavaScript [CMJL09], where the

analysis takes place on a Just-In-Time (JIT) basis, keeping up with the dynamic compilation

process. In these cases, the code is analyzed just before it is loaded for execution. Hence, there

is no performance advantage gained under these specific cases.

Moreover, analyzing programs prior to execution is considerably more secure. This is

because any possible leak can be caught by the analysis before execution thereby preventing

insecure programs from being executed. Such an approach analyzes all possible traces of

the program to find information flow across security levels in both the explicit and implicit

information flow contexts.

However, there is possible loss of precision when making the semantics decidable. This

is because in general, by the inference of Rice’s theorem [Ric53], there is a compromise to

be made between the precision of the analysis and its decidability or complexity. Further, in

a language such as JavaScript the variables are all called by reference making it very complex

and tedious to make a viable static analysis implementation for the language. This is one of the

reasons that there is no known purely static analysis IFC implementation to handle JavaScript.

2.3.3.2 Dynamic Analysis

Dynamic analysis [GDNP12, DG09, Aus13, HS12b, CF07, BS10] is performed during the

execution process. This approach is advantageous to analyze the current execution path and

Working of IFC 47

finding if the execution may proceed further or not. It does not have any pre-execution overload

since the entire process happens during execution. Dynamic analyses actually run the program

and hence may actually end up executing malicious code if not properly detected. It incurs

also significant run-time overhead. There are several categories of dynamic analysis namely,

taint analysis [HS12b, Aus13], multi-execution [GDNP12] and multi-path execution [AF09,

Aus13].

Taint analysis In taint analysis, the various variables are provided labels and these labels

transmit meta-data between each other when information flow occurs. Hence the information

flow is kept in check through the propagation of labels in tandem with the data for every pro-

gram statement. This technique is used by different approaches such as the traditional tainting

model applied in the JavaScript context by Hedin and Sabelfeld [HS12b] and the no-sensitive

upgrade model proposed by Austin and Flannagan [Aus13].

b = a high c low+

;

a = 1 high ;

POLICY:

c = 3 low

;

a high

=> 1 high 3 low+

=> 4 high

;

;

console.log(b);
=> console.log(4 high);

=> DENIED

PUBLIC OUTPUT FN: console.log

Figure 2.9: Label based taint marking

An example of tainting model is shown in Figure 2.9. In this example, there are two

possible levels in the lattice, high and low. The policy stated in the diagram, a high ,

represents that the variable a is a high value. The public output function (represented in the

figure as public output fn), represents the output function at the low level of the lattice. In this

case, the function console.log is the public output function. When the program is executed

the labels are also propagated along with the values. At the end of the execution, b gets a high

label since it contains information about a. The execution of console.log is not permitted to

48 Related Work on IFC

accept high values. Hence, the dynamic analysis considers such an execution as insecure.

;

a = 1 high ;

POLICY:

b = 3 low

a high PUBLIC OUTPUT FN: console.log

if (a == 1)

{

 b = 2;

}

console.log(b);

2 high ;getInput();

true false

2 low

=> DENIED

}

{ {

}

3 low

=> ALLOWED

PC = {H}

PC = {}

PC = {}

PC = {}

Figure 2.10: Indirect flows in no-sensitive upgrade

An example of no-sensitive upgrade model [Aus13] is shown in Figure 2.10. In this exam-

ple, the preliminaries regarding the policy and the public output function are the same as the

example in Figure 2.9. In this case, we show the working of the function in case the conditional

was true as well as when it was false. Since the conditional is based on a high value from

variable a, the program counter pc maintains this dependency till the end of the execution of

the this if block, just like in static analysis. It can be seen that in the case of false, there is no

value propagation, thereby, b remains a public value that can be given as a public output. How-

ever, in the case of true, the value of b becomes dependent on a due to implicit flows. In this

scenario, the no-sensitive upgrade performs an over-approximation to stop further execution.

Other models such as the one proposed by Hedin and Sabelfeld [HS12b], request an explicit

upgrade instruction to handle this scenario. This explicit upgrade instruction allows to modify

the label of the variable b thereby allowing the implicit flow from the secret variable a to b.

The main issue with the models implementing taint analysis is that they have failed to

account for the same amount of rigor in analyzing all possible execution paths when compared

to the static analysis techniques. This directly results in the failure to handle the context of

implicit flows properly. The models only analyze the current execution path and do not take

the other execution paths into account. Hence, when the label propagation happens because of

an implicit flow, it cannot be propagated without explicit upgrade/declassification instructions.

Working of IFC 49

Secure Multi-Execution The model of Secure Multi-Execution (SME) was proposed by De-

vriese and Piessens [DP10]. In SME the information flow across labels is segregated at the pro-

cess level by providing a separate process for each level of sensitivity. Let us consider a system

with two levels namely high and low. Such a scenario would imply that there is a dedicated pro-

cess for high level computations and a dedicated process for low computations. The low level

process is the only one that can influence public output and it can only receive public input. A

high level process is given access to input from both the low and high levels but is denied access

to the public output functions. A representation of a simple two level SME is shown in Fig-

ure 2.11. Devriese and Piessens proved that a termination-sensitive non-interference (TTSNI)

can be achieved using such approach.

PUBLIC INPUT

PRIVATE INPUT HIGH

LOW

PRIVATE
OUTPUT

PUBLIC
OUTPUT

Figure 2.11: Secure Multi-Execution

The number of processes necessary can be directly inferred from the security lattice. Let

us consider the lattice shown in Figure 2.1, page 32. In this case, the program would be run by

twelve different processes such that each process infers to a particular lattice level. The input

at each level can only comprise of information at that level or at a lower level. The output of

each level would only be observable by those with authorization at that level or higher.

For example, a process at {Secret,{Crypto}} can have inputs from variables at {Secret,

{Crypto}}, {Secret,{}}, {,{Crypto}} and {,{}} levels. Its output can be accessed by

variables at {Secret,{Crypto}}, {TopSecret,{Crypto}}, {Secret,{nuclear,crypto}}

and {TopSecret,{nuclear,crypto}} levels.

Let us consider the example of Figure 2.12. In this example, the variable a is given a high

input for a lattice containing only two levels (high and low). This program is executed twice,

once by a low process and once by the high process. A high input can only be provided to

the high process. The public output function can only be executed in the low context. Hence,

the function console.log will always print the value 3, regardless of the value of a, in this

example. It can be clearly seen that since the low process can never access a high value, the pc

is never updated in the low process. The implicit flow in the high process depends on the high

value from the variable a and the pc keeps track of this dependency till the end of the scope of

50 Related Work on IFC

the if block.

;

a = 1 high ;

POLICY:

b = 3 low

a high PUBLIC OUTPUT FN: console.log

if (a == 1)

{

 b = 2;

}

console.log(b);

;getInput();

true false

2 high

}

{ {

}

3 low

PC={high}

PC = {}

PC = {}

PC = {}

∅ low

;3 low ;3 low

2 high ; ;

true false

{

}

PC = {}

PC = {}

∅ low

;3 low ;3 low

{

}

PC = {}

PC = {}

console.log(); console.log(b); 3 lowconsole.log(); console.log(b);

High process Low process High process Low process

Figure 2.12: Indirect flows in SME

The use of SME automatically increases the complexity for the system. This is because

any given program needs to be executed multiple number of times for various levels. Since

private input cannot be read in a low process and public output can only be performed by

the low process, they are mutually exclusive, thereby satisfying non-interference. Even if the

high process results in an exception, a crash or an infinite loop, it would not influence the low

process in any way. Hence, the time to obtain the public output would not be influenced by the

value of the private input either. This is why SME provides the strong security guarantee of

TTSNI.

Faceted approach The faceted approach that has been proposed by Austin et al. [AF09,

Aus13] is the chief proponent of the multi-path execution approach. The authors attempt to

mimic the functionality of SME with the use of a single process. The faceted approach at-

tains termination-insensitive non-interference since the use of a single process cannot account

for timing-sensitivity. This approach works on containing multiple copies of each variable to

mimic the values of this variable in different processes in case of SME. A faceted value is

represented as P ? : apuapr . In this notation, P is the principal which can be equated

to a given lattice level. In the faceted value representation, apr contains the secret value

corresponding to the principal and apu is the value to be used if the output function that

does not satisfy the principal when it tries to access the value of a.

For example, in a simple scenario where there are only two levels (high and low) in the

security lattice, we can use two principals to represent these levels. If an output functions is

tied to the low principal, it will only print the value apu of high ? : apuapr .

Working of IFC 51

b = a + c ;

+

;

a =

POLICY:

c =

;

a P1

=>

=> ;

;

console.log(b);
=> console.log();

PUBLIC OUTPUT FN: console.log

P1 ? : 02 ;

P1 ? : 02

P1 ? : 0+32+3

=> P1 ? : 35

P1 ? : 35

=> console.log();

3

3

3

Figure 2.13: Faceted Approach

Whenever there is an operation performed on a faceted variable, the operation is repeated

for every facet of the variable. This can be seen in the example illustrated by the Figure 2.13.

Here, faceted approach behaves in a similar manner as SME by performing twice the operation

b = a + c, once for each value of a. Of course, in SME, these two operations would have

been performed as part of two different processes instead of using a single process as in the

faceted approach. Further, computations not involving faceted values would only be done once

in faceted approach while SME would evaluate them at every execution.

It must be noted that the faceted approach performs nested computations to keep up with

more complex lattice structures involving multiple principals. This number of objects would

be 2n the growth of principals. The positive effect of this phenomenon is that, only the correct

copy of the object is used when it is invoked by the public output function. For instance, if an

object c were created by using two other objects a and b, each with its own principal, there

would be four possible values for this object as illustrated in Figure 2.14.

In case of implicit flows, faceted approach evaluates the entire conditional block for each

value of the faceted variable. This can be observed in the Figure 2.15. In case a == 1 is

false, no action is performed and b has only one value which is not a secret. The pc used

in the faceted approach is similar as in all the prior static and dynamic analysis approaches. It

keeps track of the principals that are used in the execution due to the conditional of the implicit

flow. Hence for every value of any secret variable used in the conditional, the pc will keep

52 Related Work on IFC

P1 ? :

var a = P1 ? : 21

var b = P2 ? : 43

var c =

P2 ? : 54

a + b

P2 ? : 65=

Figure 2.14: Faceted evaluation

track of the principals that need to be satisfied corresponding to the value used. Hence, in the

example in the Figure 2.15, there are two possible values for the variable a which correspond to

two executions. The pc keeps track of the principal P1 which needs to be satisfied to access the

secret value. When accessing the public value, there is no principal that needs to be satisfied,

which is reflected in the pc.

In case the result is true however, b becomes a secret variable with a private value 2 and

public value 3. However, even in this case, the public output function console.log can only

print the value 3. Hence, faceted approach prevents secrets from being processed by public

output functions.

Faceted approach generally requires less computational time than SME. On the other hand,

it gives lesser guarantees than SME. The idea of attaching different values to variables is inter-

esting but there is still a significant cost to this model due to nesting. Our approach is similar

to the faceted approach in the context of having multiple copies for each variable. However,

the number of copies held does not exceed two. We also do not evaluate multiple branches

exhaustively preferring to execute only the required execution paths like the tainting models.

2.3.3.3 Hybrid Analysis

Hybrid analysis models tend to be a combination of static and dynamic analysis techniques and

hence inherit the advantages and disadvantages of both models based on their implementation.

The current path refers to the conditional branch that is taken over the course of a normal

execution of the program. An alternative path refers to the branches in the program that are not

taken (such as the other cases of a switch statement or an else part of an if-then-else statement)

because of the conditional. In a hybrid analysis, the commonly used method is to analyze the

alternative paths statically and the current path dynamically.

The hybrid analysis techniques [LGJ07, CF07, BBJ13] overwhelmingly use tainting mod-

els for their dynamic component while varying their static components. Using the two in

tandem allows the approach to increase the precision of the taint propagation and to overcome

Working of IFC 53

;

a =

POLICY:

b = 3

a P1 PUBLIC OUTPUT FN: console.log

if (a == 1)

{

 b = 2;

}

console.log(b);

getInput();

true

}

{

}

P1 ? : ∅1

1 P1
false

P1 ? : 32

b = P1 ? : 32

console.log(P1 ? : 32);

=> console.log();

P1 ? : ∅2

false

{

}

1 P1
false

console.log(

{

}

);

{ PC = {P1}

∅ ∅

PC = {}

PC = {}

PC = {}

PC = {}

PC = {}

PC = {}

PC = {}

3

3

Figure 2.15: Faceted Approach - implicit flow

their weakness with regard to implicit flows. During the execution, the labels flow along with

the information flow. Hence, for all explicit information flows, the analysis is very similar to

the approach proposed by label based dynamic analysis approaches (see Figure 2.9, page 47).

In the case of implicit flows, the dynamic analysis executes the current path. The program uses

the various information flow labels from the current execution using dynamic analysis. This

is coupled with static analysis results from all other branches. All these results for the control

flow block are evaluated before continuing to evaluate the statement following this block.

The label of any variable whose value changed during the implicit information flow is

computed. The computed label for any given variable refers to the lowest level in the lattice

that can access the value assigned to that variable in the current path as well as the values

assigned in the alternative paths. For a simple high-low lattice, if any of the paths contain a

high value for a given variable, that variable will have a high label. If the conditional of the

implicit flow is based on a secret, the pc is updated with the label of the secret variable.

Hybrid analysis can be divided between whether they check if same values are assigned to

a variable between the current and alternative paths. We refer to this as the assignment rule.

They can also be divided based on whether they compute if the result of a conditional is a

constant. We refer to this as the conditional rule.

54 Related Work on IFC

A noteworthy hybrid analysis approach in the context of JavaScript was proposed with for-

mal semantics by Besson et al. [BBJ13]. This approach keeps up with the usual approach,

which implies that the current path is explored by the dynamic analysis and the alternative

paths are explored by static analysis. This approach has been formalized in a small imperative

language that only considers native feature variables such as name of the browser which cannot

be modified.

Based on the static analysis, the approach by Besson et al. does not change the label of

the variables if they are assigned the same constant value at the end of the current as well

as alternative paths. As an illustration, let us consider the example of Figure 2.16. The policy

stated in the diagram, a high , represents that the variable a is a high value and console.log

is the public output function. In this example, the variable’s value because implicit flow is

computed for the current path as well as the alternative path. The representation 2

implies that the implicit information flow into the variable was from a constant value in the

current path which is executed by the dynamic analysis. This implies that till the information

flow from alternate paths can be determined, this variable neither be classified as a high value

nor can it be confirmed as a low value. Hence, we represent it with the color orange. However,

after the static analysis is completed, the determination can be made. Here, the variable b

becomes classified as a high value while the variable c remains a low value.

Similarly, the approach by Besson et al. does not execute alternative paths if the conditional

is a constant. Figure 2.17 illustrates this. Here, it can be seen that the variable b has been set

to a constant value 3. The analysis proposed in this case is theoretically able to determine

that the else part of the if-block is unreachable. After such a determination, the static analysis

is not performed for the else block. This directly prevents the wrongful classification of the

variable b. However, this is only possible for the specific case that a conditional is determined

a constant, which is not a common usecase. If the conditional cannot be determined to be a

constant, which is possible due to the dynamic nature of JavaScript, the analysis would not be

able to do such reductions.

It must be noted that the variables are not labelled only if the assignment is from a constant

value and would be labelled if it is from a user input. The value of the variable obtained from

the dynamic analysis is the final value of the variable and static analysis is only used to assist

with the computation of the label that needs to be assigned to this variable. These two choices

form the key factors in making the approach more precise in its analysis. This is because, the

number of variables classified is reduced as a direct result of this policy while not affecting

non-interference.

Working of IFC 55

;

a =

POLICY:

b = 3 low

a high PUBLIC OUTPUT FN: console.log

if (a == 1)
{

 b = 2;

 c = 2;

}
else
{

 c = 2;

}

console.log(c);

console.log(b);

getInput();

true

}

{ {

}

false

b =

console.log();

console.log(2 low);

false true

1 high

2

2

{

}

Dynamic Static

{

2

}

2

=> b = 2 high

c = 2

=> c =

2

Unchanged

=> c = 2 low

2 high
=> DENIED

Dynamic Static

2 high

}

{

2

2

{

}

{

}

{

2

}

b = 2

=> b = 3 high

c = 2

=> c =

2

Unchanged

=> c = 2 low

3 low 3 low

console.log();

console.log(2 low);

3 high

DENIED =>

PC={high}

PC = {}

PC = {}

PC = {}

PC = {}

PC = {} PC = {}

PC={high} PC={high}

PC = {}

PC = {}

PC={high}

PC = {}

PC = {}

PC = {}

PC = {}

Figure 2.16: Hybrid Information Flow Control with the assignment rule

An earlier approach by Le Guernic et al. [LGBJS07], also outlined the necessity of the

conditional rule. In this approach, the static analysis is not executed for any conditional that is

not tied to a secret variable. Hence, the Figure 2.17 also holds true for this approach. However,

Le Guernic et al. do not consider the assignment rule.

Earlier approaches by Chandra and Franz [CF07] as well as Le Guernic and Jensen [LGJ07],

neither followed the conditional rule nor did they follow the assignment rule. In the absence of

the conditional rule, the variables would be classified even if the conditional branch cannot be

reached over the course of execution. Figure 2.18 illustrates this using the same example as

shown earlier in Figure 2.17.

56 Related Work on IFC

;

a = 1 high ;

POLICY:

b = 3 low

a high PUBLIC OUTPUT FN: console.log

if (b === 3)

{

 b = 2;

}

else

{

 b = a;

}

console.log(b);

2 high ;getInput();

true true

2 low

}

{

=> ALLOWED

PC = {}

;3 low ;3 low

console.log(2 low);

{

}

PC = {}

PC = {}

=> ALLOWED

console.log(2 low);

{

}

PC = {}

PC = {}

PC = {}

2 low

}

{

PC = {}

PC = {}

Dynamic Dynamic

Figure 2.17: Hybrid Information Flow Control with the conditional rule

A model is said to be more precise if it classifies the least amount of variables while main-

taining non-interference. Thus, the approach by Besson et al. is more precise than Le Guernic

et al. which in turn is more precise than Chandra and Franz, and Le Guernic and Jensen. Of

these various models, it is noteworthy that Chandra and Franz implemented their approach in a

JVM and cemented the feasibility of the approach for a traditional strictly typed programming

language. However, this implementation was in a more strictly typed language, i.e. Java. The

approach by Besson et al. while more precise, remains largely theoretical with huge complex-

ities involved in making a feasible implementation.

While hybrid analysis do offer significant benefits, they still rely on static analysis to a great

extent. JavaScript’s dynamic nature hence causes more complexities to this approach. The use

Possibilistic web browser security models using IFC 57

2 low

2 high

;

a =

POLICY:

b = 3 low

a high PUBLIC OUTPUT FN: console.log

if (b === 3)
{

 b = 2;

}
else
{

 b = a;

}

console.log(b);

getInput();

true

}

{ {

}

false

b =

console.log();

false true

1 high

{

}

Dynamic Static

{

}

=> b = 2 high

Dynamic Static

2 high

}

{

{

}

{

}

{

}

b =

=> b = 2 high

2 low 2 low

PC = {}

PC = {}

PC = {}

PC = {}

PC = {} PC = {}

PC = {}

PC = {}

1 high

1 high

2 high

2 high

=> DENIED
console.log(); 2 high

=> DENIED

PC = {} PC = {}

PC = {}

PC = {}

PC = {}

PC = {}

PC = {}

PC = {}

2 low

Figure 2.18: Hybrid Information flow without the conditional rule

of eval functions is one of the reasons. JavaScript variables are also accessed by reference

rather than by value. This is disadvantageous to static analysis. These have been the key

contentious argument towards deciding on a purely dynamic analysis for JavaScript, and the

lack of an implemented hybrid approach in JavaScript only helps in cementing this argument.

2.4 Possibilistic web browser security models using IFC

There are several IFC models that have been designed for the web browser taking into account

the nature of JavaScript. It is noteworthy that to the best of our knowledge, all these models

have used a possibilistic approach. In this section we introduce the various traditional tainting

models in the Subsection 2.4.1. We then describe FlowFox, an implementation of SME, and

the implementation of the faceted approach in the Subsection 2.4.2.

58 Related Work on IFC

2.4.1 Traditional tainting models

The most common approach that has been used in IFC has been the traditional label-based

tainting approach. The work by Hedin and Sabelfeld [HS12b] distinguishes itself by providing

a view of the approach described by Sabelfeld and Myers [SM03] in the context of JavaScript.

The authors make an interesting case for the problem of the information flow being flow sen-

sitive in JavaScript. This is because the data types of variables and fields are allowed to vary

during the execution. Further, the objects in JavaScript are represented by reference. Hence,

there may be cases in JavaScript such that two different variables refer to the same object. This

increases the need to keep track of changing labels throughout the execution which becomes

tedious with pure static approaches.

1 x = {};
2 x.f = 0;
3 y = x;
4 y.f = secret;

Figure 2.19: Example of references to same object in JavaScript

Consider the program of figure 2.19. In this example, the variable x points to an object and

y becomes another variable pointing to the same object. In this case, the secret information

secret flows into the property y.f. In static analysis, there is a need to assign the appropriate

labels to x.f as well. This involves keeping track of all aliases to an object. However, dynamic

analysis allows associating the tag directly to the allocated object. Accessing x.f would also

reflect a labeled secret value.

The difference is that Hedin and Sabelfeld allow some upgrade instructions before the be-

hest of the implicit information flow. The authors provide valid arguments for the implicit

control flows generated by JavaScript especially by the eval function. For example, a print

statement will never be able to print a secret value in the no-sensitive-upgrade scenario. How-

ever if an explicit upgrade instruction is given as part of the code before the print statement, it

would be allowed to print in the case of Hedin and Sabelfeld’s approach. It should also be noted

that this approach is formally proved by the authors to fulfill the guarantees of termination-

insensitive non-interference.

This work is relevant to our understanding of how the general language based IFC can be

correctly adopted to JavaScript. However, requiring upgrade instructions for every possible im-

plicit flow is tedious and without such statements, traditional tainting models will stop further

evaluation. Our model does not require such modifications to the code and continues evaluation

in the case of implicit flows. We follow a similar strategy as SME and faceted approaches of

Possibilistic web browser security models using IFC 59

having multiple copies of the variable to accomplish a continued execution in case of possible

information leakage.

2.4.2 SME and Faceted approach

The SME and faceted approaches are dynamic IFC that execute the alternative branches for

the various possible values of variable due to information flow. The approach of SME and

faceted approach are able some of the problems related to public output such as clickjacking,

cookie-hijacking and block any transmission of sensitive data to remote servers. Just like other

IFC approaches, they do not prevent XSS but protect sensitive data from being transmitted to

other domains.

FlowFox is a concrete implementation of SME on the Firefox web browser by De Groef et

al. [GDNP12]. Since SME adheres to the property of termination-sensitive non-interference,

it provides a high level of security guarantees providing a key differentiator for FlowFox. The

authors have also taken into account some of the events that may cause information flows such

as key-press, mouse move and page load.

De Groef et al. believe in the need to change the JavaScript interpreter of a full fledged

browser thereby realizing a more significant result due to the ability to gauge the various factors

such as performance (time and space complexity), model verification (the validity of the model

in solving the intended problem) and implementation results (to check if the model is suitable

in the real world scenario). The implementation has been made in a old version of FireFox and

is not currently portable to a later version of the browser. The browser implements a simple

security lattice comprising of a high and a low level.

The ZaphodFacets2 is an implementation of the faceted approach as a plug-in in Firefox.

It use the Narcissus JavaScript engine3. The Narcissus engine is a JavaScript interpreter writ-

ten in JavaScript. It was developed to test some experimental features in FireFox and uses

undocumented APIs to implement the JavaScript interpreter. The engine runs from an exten-

sion to FireFox called Zaphod which can be installed from the Mozilla webstore. There is less

documentation on Narcissus due to the experimental nature of the engine. However, the im-

plementation is capable of handling multiple principals and is hence not restricted to a simple

high-low lattice.

It must be noted that while SME and faceted approach provide good formal guarantees,

executing the various paths that are not part of the current execution can have unintended

consequences. This is because, while the server sits on the output of the system, it is also

expected to receive secret data. Hence, a function such as XMLHttpRequest would be executed

2https://github.com/taustin/ZaphodFacets
3http://en.wikipedia.org/wiki/Narcissus_(JavaScript_engine)

https://github.com/taustin/ZaphodFacets
http://en.wikipedia.org/wiki/Narcissus_(JavaScript_engine)

60 Related Work on IFC

;

a = 1 high ;

POLICY:

b = 3 low

a high
PUBLIC OUTPUT FN: console.log

if (a == 1 || a == 2)

{

 b = 2;

}
else
{
 var xhr = new XMLHttpRequest();

 xhr.open("POST", “/serverLog”, false);

 xhr.send(“Error: Something went wrong”);

 if (xhr.status === 200) {
 console.log(xhr.responseText);
 }
}

;getInput();

true false

2 high

}

{ {

}

PC={high}

PC = {}

PC = {}

PC = {}

∅ low

;3 low ;3 low

High process Low process

var xhr = new XMLHttpRequest();

xhr.open("POST", “/serverLog”, false);

xhr.send(“Error: Something went wrong”);

console.log(xhr.responseText);

{

}}

{ PC={high}

PC = {}

PC = {}

PC = {}

PUBLIC OUTPUT FN: XMLHttpRequest

Figure 2.20: XMLHttpRequest in SME
.

and would pass the server false data at every execution. In the example shown in Figure 2.20,

a is expected to get an input of 1 or 2. Any other input implies an error that needs to be notified

to the server. In this example, it can be seen that the server would log an error regardless of

the input for the secret variable a. This is because only the low level process can send such

an output. While this action would adhere with non-interference, it would cause an immense

amount of difficulty for the server.

This is one of the main reasons that we felt the need to avoid execution of alternate paths

was an important consideration for our dynamic analysis approach. Our model adheres to this

principle of not forcefully executing these branches for these practical considerations.

Another disadvantage of these approaches is that they are not able to protect sensitive data

from being modified if there is a malicious XSS in the web page. This is a very specific problem

to JavaScript since other programming languages have constructs such as private classes in Java

to prevent unrestricted access to sensitive variables. Considering the example in Figure 2.13,

it can be seen that an addition operation modifies both parts of the variable. Our model also

considers the possibility of such malicious functions and tries to protect sensitive variables

from unintended modifications.

Conclusion 61

2.5 Conclusion

The IFC models aim to address the granularity at the variables level. In this way, these models

are suitable candidates for a holistic approach towards web browser security. Indeed, the infor-

mation flow control allows to guarantee that the variables can only be accessed by authorized

functions, and that no unauthorized modifications are done to the variables. In this regard, it

allows to protect web browser against illegitimate scripts, and thus significantly reducing the

effects of XSS and the risk of CSRF.

In this thesis, we propose a new IFC-based approach designed for the web browsers and

JavaScript. Our approach falls into the category of dynamics approaches because we believe

that the JavaScript’s dynamic nature causes complexities to static analysis, in particular with

respect to the eval function.

Our approach is similar to the faceted approach in the context of having multiple copies

for each variable. However, the similarities stop there. In our approach we keep one true copy

and one junk copy for a given variable. Thus, the growth in the number of copies held does not

exceed two.

In our approach, we do not evaluate multiple branches exhaustively preferring the cau-

tionary least required execution of the tainting models than the exploratory executions of the

faceted approach and SME. SME and faceted approach perform such an analysis to enforce

non-interference security guarantees. From this point of view, our model suffers by not provid-

ing the same guarantees as the faceted approach and SME.

62 Related Work on IFC

Chapter 3

Address Split Design

Our approach focuses on typical web browser which generally consists of the JavaScript engine

and a rendering engine. The JavaScript engine is composed of the interpreter and the interface

to the rendering engine. We believe that an effective IFC could be achieved by directly modi-

fying the interpreter. This is consistent with related research [Aus13, GDNP12].

Our model is termed the Address split design (ASD). The core of the model is the address-

split. An address-split occurs when a variable is classified as a secret. This involves creating a

dummy variable address space referring to the secret variable. Hence, for every secret variable,

this process of splitting the variable is instantiated when the scope at which the variable exists

is entered.

We represent a secret variable in the form of dpublicp ‖ privatesc. The split variable con-

sists of a public value and a private value which are stored in different memory locations. A

general outline of the model and its working is described in Section 3.1. This is followed by

a detailed description of ASD with formal semantics in Section 3.2. This is followed by some

IFC examples in Section 3.3. We provide a comparison of the working of our model with other

models in Section 3.4.

3.1 General working of Address Split Design

Figure 3.1 represents the general working of the model. The various elements with a white

background represent the existing mechanisms in JavaScript. The elements represented in blue

are the new components introduced by our approach. In the figure, it can be seen that there

are two different memory addresses for the variables A, B and C. This represents that these

variables contain secret values. Our model would influence the JavaScript engine (JS Engine)

to choose between the dummy public value and the private value when a lookup for the variable

63

64 Address Split Design

JS Engine

Java Script

function f1() {
 A = xxx;
 B = C;
 D = 4;
 f2();
...
}

function f2() {
 f3();
}

function f3() {
 A = YYY;
}

Dictionnaries

Policy File

{
 "functionReferences":["f1"],
 "hasAccess":
 [
 {
 "objectReference":"A",
 "accessType":"RW"
 }
 {
 "objectReference":"C",
 "accessType":"R"
 }
 ...
]
},
{
 "functionReferences":["f3"],
 "hasAccess": []
}

Memory

A
(public)

A
(private)

C
(public)

C
(private)

DB
(public)

B
(private)

R

Private
address

RWB

AccessReference

C

RWAf1,f2

f3

Monitor

Figure 3.1: The address split design

is needed. To implement our model, we use a monitor which hooks on to the JavaScript engine.

The monitor overloads the symbol table and determines which value would be used when a

variable is used by the JavaScript function at runtime. The public values will be the default

values of the variables and the memory handling for the private values is implemented by

our approach. The various initial secret variables are given in the policies to the webpage.

The monitor keeps track of the functions’ privilege to access the variable using data-structures

called dictionaries which it uses to overload the symbol table.

3.1.1 Policy specification

The policies specified for the webpage are passed to the monitor which is a component added

to the JS Engine. The monitor is also responsible for keeping track of the information’s level

throughout the program’s execution and subsequently propagating the privileges based on the

execution steps. Hence, it performs both classification and declassification. Classification

is when the variable is split and a secret value flows into it while declassification is when a

previously unauthorized function is allowed to access the secret value.

The policy specification for the JavaScript program is passed concurrently with the program

itself. However, due to the nature of JavaScript, it must be noted that the entire code segment

General working of Address Split Design 65

would be visible to any script accessing it. It is hence unsafe to pass any policies in the form

of ‘pragma marks’ or comments or any other form that could have a textual representation in

the code section. In our experience, the safest place to pass any such value would be the HTTP

headers.

The policies are loaded before any JavaScript on the page is executed. This is an important

consideration since the policies are not bound to variable references but rather to the objects

that lie under these references. This means that as the variable reference evolves to reference

different objects, the various rights given to the references will have changed. This is how the

information flow evolves the various access rights.

A simple Backus–Naur form (BNF) grammar showing the syntax of our policy specifica-

tion is shown in Figure 3.2. The list of policies specified are a collection function policies.

Each function policy specifies the functions’ references, the optional checksum of the func-

tion, the option parameter of providing the entire function string, and a list of privileges that

are provided to the function initially. Every privilege attributed to a function will contain the

variable-name as well as the type of privilege the function can obtain. The variable name is

represented as a combination of the variable container as well as the name of the variable ref-

erence. For example, a global variable a, would be represented by the container global and

variable reference a. A valid name is simply the acceptable variable name as restrained by the

JavaScript language. A string is any arbitary string which is a collection of letters, digits and

numbers.

3.1.2 Privileges

In JavaScript, variables are essentially pointers to objects. Given this consideration, we take

a unique stand that it is vital to protect the variable references along with the actual variable

object. Hence, we use privileges to assist the IFC mechanism in handling the protection of both

the variable reference and the object pointed to by the variable. In our approach, we consider

two privileges, read access and write access. The read access is used to protect the object. A

function can gain or loose read access based on the object that is pointed to by the variable.

For example, let us consider that function f1() has access to variable a and f2() have

access to both variable a and b. If function f2() includes the instruction a = b; then the

execution of function f2 would propagate the value of variable b into a. In this case, the

function f1 would loose access to a since it is not privileged to read the information from

variable b.

The write access implies that the function can change the variable’s value. In our model,

a function cannot loose write access to a variable reference regardless of the information flow.

However the read access evolves with the information flow. If secret information that a func-

66 Address Split Design

< p o l i c y− l i s t > : : = <empty> | < f u n c t i o n−p o l i c y > |
< f u n c t i o n−p o l i c y > < p o l i c y− l i s t >

< f u n c t i o n−p o l i c y > : : = < f u n c t i o n−r e f e r e n c e s− l i s t > <opt−f u n c t i o n−checksum>
<opt−f u n c t i o n−s t r i n g > < p r i v i l e g e − l i s t >

< f u n c t i o n−r e f e r e n c e s− l i s t > : : = < f u n c t i o n−name> |
< f u n c t i o n−name> < f u n c t i o n−r e f e r e n c e s >

<opt−f u n c t i o n−checksum> : : = <empty> | < s t r i n g >
<opt−f u n c t i o n−s t r i n g > : : = <empty> | < s t r i n g >
< p r i v i l e g e − l i s t > : : = < p r i v i l e g e > | < p r i v i l e g e > < p r i v i l e g e − l i s t >
< p r i v i l e g e > : : = < v a r i a b l e−name> < p r i v i l e g e −t y p e >
< v a r i a b l e−name> : : = < v a r i a b l e−c o n t a i n e r > "." < v a r i a b l e−r e f e r e n c e−name>
< v a r i a b l e−c o n t a i n e r > : : = < v a l i d−name> | < v a l i d−name> "." < v a l i d−name>
< v a r i a b l e−r e f e r e n c e−name> : : = < v a l i d−name>
< f u n c t i o n−name> : : = < v a l i d−name>
< p r i v i l e g e −t y p e > : : = "R" | "RW" | "W" | ""
< v a l i d−name> : : = < l e t t e r > | < l e t t e r > <name−s t r i n g >
< s t r i n g > : : = < l e t t e r > | <number> | < symbols > | < l e t t e r > < s t r i n g > |

<number> < s t r i n g > | < symbols > < s t r i n g >
<name−s t r i n g > : : = <number> | <name−symbols > |

< l e t t e r > <name−s t r i n g > | <number> <name−s t r i n g > |
<name−symbols > <name−s t r i n g >

< l e t t e r > : : = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
"J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
"S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" | "a" |
"b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" |
"k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" |
"t" | "u" | "v" | "w" | "x" | "y" | "z"

< d i g i t > : : = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
<symbol> : : = "|" | " " | "-" | "!" | "#" | "$" | "%" | "&" | "(" | ")" |

"*" | "+" | "," | "-" | "." | "/" | ":" | ";" | "<" | "=" |
">" | "?" | "@" | "[" | "\" | "] " | "^" | "_" | " ‘" | "{" |
" | " | "}" | "~" | " \ n" | " \ t "

<name-symbols> ::= "_"

Figure 3.2: Policy BNF grammar

tion cannot access flows into the variable, the function will loose read access to that variable.

The monitor keeps track of the privileges of various functions using data structures called dic-

tionaries.

3.1.3 Dictionaries

Dictionaries provide the actual address spaces of the various secret values. When a dictionary

is loaded, it overloads the symbol table and provides the actual destination for the variable. It

hence resembles the symbol table in its data representation. However, being a custom com-

ponent, it is extensible and also contains additional meta-data that is useful to our IFC model.

The dictionary is a component that is specific to a function.

General working of Address Split Design 67

Each dictionary contains the variable reference as the key and a memory location as a

value. The dictionaries provide data on the variable based on the various privileges. Based on

this information, the monitor will return the private or the public part of the variable.

In our model, the monitor will refer to the dictionaries associated to the function for each

time a variable is read from or written to during the execution of the function. The monitor

infers the address to be used based on the privilege of the function and returns the private

address or the public address accordingly. Such an inference is repeated for everytime the

variable is read from or written to since the dictionary is an evolving data-structure that depends

on the information flow.

…

Variable reference Access rights Address

b f1().1

c ObjId#d

R W

R W

R W

Dictionary of Function F1

a global @Pr a global

@Pr b f1().1

@Pr c ObjId#d

Figure 3.3: Dictionary example

An example of a simple dictionary is shown in Figure 3.3. In this example, it can be seen

that the dictionary maintains data about a variable name, the privileges to that variable and the

address of the variable itself. The variable name consists of the base object in which the name

exists in as well as the name of the variable. In this example, global represents the global

scope object. Similarly f1().1 refers to a function scoped object. Here, f1() signifies that

the variable is a local variable belonging to the function f1 and 1 is an identifier to differentiate

the various executions of the function for example in case of recursion. In case of an object

property such as d.c, the representation will be scoped in ObjId#d where ObjId is the unique

identifier of the allocated object d in the heap.

3.1.4 Function privileges

Functions are the components which can receive the privilege to access the secret variables. We

propose that functions be segregated into varying types based on their required functionalities

so as to simplify the policy specification.

68 Address Split Design

The biggest difference in our model to that of the other approaches is in the way we provide

privileges. In other models, functions which perform public output are added to a blacklist and

if secret information flows into these functions, it will trigger the unauthorized information

handler (see Section 2.3). There is no policy defining the privileges of other functions. These

function in these models can access the secret values. In our model, functions are directly

associated to their respective lattice levels. Assigning privileges directly to functions allows

the policy specification to cater to the needs of individual functions.

In the ideal case, all functions are given necessary privileges in the policy specification.

Since the privileges in the policy specification are reflected in the dictionaries, the functions

are associated to these dictionaries. If a function is loaded, the associated dictionaries are

also loaded and hence the various secrets are accessible. For the sake of clarity, we term all

functions with defined privileges as Self-Sufficient Function (SSF). SSF are directly mentioned

in the policy specification. In the Figure 3.1, f1, f2 and f3 are SSF.

The SSF provide the fundamental components where the information flow control is de-

fined. However, in a typical JavaScript scenario, functions are not always independent. The

use of libraries to do various actions is very common. For example, the function may use the

jQuery1 library to perform various actions such as post requests or regular expression opera-

tions. It might also use native functions such as XMLHttpRequests, Console.log, alert, etc. It

would not be appropriate to give explicit permissions to these libraries under normal circum-

stances. This is because the libraries themselves can be used by both authorized as well as

unauthorized functions in the same webpage. It is very important to ensure that the libraries

hence must have no privileges to access secret variables when called by unauthorized func-

tions. However, to ensure functionality, the libraries must have privileges corresponding to the

authorized function that call them. These functions are hence classified as Utility Functions

(UF).

An UF is a constant declassification mechanism that is part of our model. It is considered as

a modular piece of code that has been made into a function for easier maintenance and reuse.

Considering this, the UF does not have any privileges of its own. Every instance of an UF

adheres to the privileges of its caller. This behavior is transitive over the function call. When

laid in terms of the PER model [SS98], the UF perform the declassification ‘when’ they are

called by a SSF. By default, a function is considered to be an UF if it does not feature in the

policy specification. These functions bring a lot of functionality to life since they help perform

a huge majority of actions as long as the caller SSF has the privileges. This is explained

in the Figure 3.4. This Figure 3.4(a) shows that in case of Self Sufficient Functions SSF1,

SSF2 and SSF3, each function uses its own dictionary during execution. However in case of

1https://jquery.com/

https://jquery.com/

General working of Address Split Design 69

SSF 1
Dictionary

SSF1

SSF 2

UF 1

Dictionary
SSF2

SSF 1
Dictionary

SSF1

SSF 2
Dictionary

SSF2

SSF 3
Dictionary

SSF3

(a)
Self-Sufficient Function

(b)
Utility Function

Figure 3.4: Working of utility functions

Utility Functions, the function UF1 uses the dictionary of its calling function SSF1 as shown in

Figure 3.4(b).

It must be noted that an UF is not envisioned with an intention to perform tasks such as

public output, but is meant to apply to cases such as performing a square-root, calculating the

interest given a number and other use-cases which are provided to do common functionality to

the program.

The list of UF can be restricted in the policy to include only native functions and functions

tied to a specific URL. In this case, any other function would by default be considered a SSF

with no privileges. Since the function itself is a normal JavaScript variable, it can also be

split. In case of a split function, the public part of the variable would become a SSF with no

privileges. However, the private part of the variable would either become a SSF if there is

a policy associated to it or it would become an UF. This is done to protect the reference of

the variable. If a native function is split, only the private part of the variable becomes an UF.

For example, if the console.log which performs a print operation is split, the functions with

access to console.log in their policy can print secret variables to which they have read access

else no secret variable can be printed.

70 Address Split Design

SSF 2 SSF
P2

SSF 1 UF 1 SSF
P1

SSF
PN

.

.

.

Perimeter Self-
Sufficient Functions

———————

Examples:
——————————
print
console.log
XMLHttpRequest

UF 2

UF N

.

.

.

Utility Functions
——————

Examples:
——————————
Math.pow
(jQuery)toFixed
(mathjs) eval

Observable
output

Self-Sufficient
Functions
——————

Examples:
——————————
login
doPayment

Access
—————————————

Subset of
variables

Access
—————————————

inherit calling
function

Access
—————————————
No sensitive
variables

SSF N

.

.

.

Figure 3.5: Defining the Perimeter using Self-Sufficient Functions

It must be noted that our model is able to perform similar operations as the label based

approaches by defining perimeter functions which are responsible for public output. These

perimeter functions are simply SSF without any privileges. The Figure 3.5 shows how the

perimeter functions are able to prevent any sensitive variables from appearing in the public

output.

Regardless of the privileges of the functions that call them, the perimeter functions would

not have any privileges to print the secret because they contain empty dictionaries. This is hence

synonymous with public output functions in traditional approaches. For example, functions

such as the native console.log and alert could be considered public output functions with no

privileges. In this case, no secret data would be accidentally printed or sent as an alert dialog

General working of Address Split Design 71

during execution. An even more fine case could be achieved by splitting XMLHttpRequest.

In this case, the public part of XMLHttpRequest would become a perimeter function (a SSF

with no privileges) and the private part would become a utility function. This would allow

authorized functions to send secrets using XMLHttpRequest while XMLHttpRequest would

act as a perimeter function for unauthorized functions.

It must also be noted that since all functions need access rights to access the variables, even

the intermediary functions cannot change or corrupt the values of the variables if they do not

have the suitable access rights. Traditional models have such restrictions only on the public

output functions and all other functions can modify all the available parts of the variables.

This would imply that for a language such as JavaScript where scripts and functions can be

arbitrarily added at runtime, the traditional approaches cannot prevent corruption of data held

in the variable. ASD can however protect crutial secrets from being corrupted by unauthorized

functions even if these functions are not output/perimeter functions.

Let us consider the example illustrated in the Figure 3.6. In the figure, Pr represents the

private value of a secret variable and is indicated by the color red and a public value is indicated

by the color green. There is a function h(), and a global secret x. Since, x is a global object,

changing the variable reference will have an impact across the rest of the program. The rep-

resentation read(x)->true implies that the monitor has inferred from the dictionary of h()

that the function has read access to the variable x. write(x)->true implies that the monitor

has inferred from the dictionary of h() that the function has write access to the variable x.

Let us consider that x = d2|1c. There are four cases in this figure namely case (RW), case

(R), case (W) and case (ø). In the case (RW), the function has both read as well as write

access to the secret variable. This implies that the function h() will be able to read the private

part of the variable and change the object pointed to at the private part. In our approach, a

function must always try to use the private part of the variable whenever possible. case (W)

exemplifies this characteristic of our approach. In this case, the value is a public value and

hence there is no restriction on using it to write into the private part of the secret variable. It

can also be observed that in the case (R), the result contains a secret value. However, x has

already been split and h() cannot change x’s private value. Hence, in case (R) the result is

discarded. This is represented by crossing out the operation split x. This mechanism adds

a lot of malleability to our model since it induces a lot of fine-tuned control when handling

information flows.

3.1.5 Dependency tracker

In JavaScript, when a variable is assigned a value, it implies that the variable is a pointer

reference to that particular value. Hence, when a new secret value is assigned to the variable,

72 Address Split Design

Dictionary of Function h()

Function h()
{
 x = x + 1;

}

{
 read(x) true

 = + 1

 result =

 write(x) true

 x =
}

1 Pr

2 Pr

Pr: 2Pu: 2

Dictionary of Function h()

{
 read(x) true

 = + 1

 result =

 write(x) false

 split x;

 x =
}

1 Pr

2 Pr

Pr: 1Pu: 2

x global R W

Dictionary of Function h()

Function h()
{
 x = x + 1;

}

{
 read(x) false

 = + 1

 result =

 write(x) true

 x =
}

Pr: 3Pu: 2

Dictionary of Function h()

{
 read(x) false

 = + 1

 result =

 write(x) false

 x =
}

Pr: 1Pu: 3

case (RW) case (R)

case (W) case (ø)

x global R W @Pr a global x global R W @Pr a global

@Pr a global

2 2

3 3

Figure 3.6: The various access rights

ASD description and semantics 73

the address to the variable needs to be updated in the respective dictionaries as well. It is

therefore important to keep track of various read/write operations to variables.

To keep track of the information flow of various read/write operations, our model uses a

Dependency Tracker (DT). It keeps track of two pieces of information: the secret variable read

from and the type of information flows associated to these variables (direct or indirect).

The DT keeps track of the various secret variables that are being used in the execution of

a statement. When a private value is being read, the corresponding variable is added to the

dependency tracker. This dependency tracker is then used to re-evaluate the affected dictio-

naries when a write is performed. The dependency tracker is attached to the function and is

re-evaluated at every statement. A read operation is performed when the value of the variable

is used in a statement including computation of expressions, as a function call parameter or as

a return parameter. A write operation is performed due to an assignment operation.

Let us consider the case (RW) in the Figure 3.6. In this case, the DT is empty when the

function starts executing. When the private part of the variable x is read, the variable x is added

to the DT. In this statement, the resulting value is written back to variable x. Since the DT is

non-empty, the value can only be written to the private part of x.

This concludes the general introduction to our model. In the following section, we give a

more detailed description of our approach along with the formalisms related to this model.

3.2 ASD description and semantics

In this section, we describe the formalism along with the concepts involved in our approach.

The semantics used by this paper is inspired by the while language [Ald06, CHM07]. While

language is relatively simple when compared to a real language such as JavaScript and its usage

is beneficial to explain the working of the model.

3.2.1 Metavariables and environment

We first define the list of metavariables and the environment in the declaration 1. These list of

metavariables define the variables, values, mapping between variables and values, functions,

and constants used in the rest of the model. Constants include λ which represents the null

value, and boolean constants (true and false). There are special variables namely the current

function (c f) and the variable that is returned (returnVar) which are used by the model for

propagating some information needed to access the secret variables based on the execution.

The c f is maintained by the environment to keep track of the procedure that is currently being

executed and the returnVar is used to maintained the returned value at the end of a function

call. The getVal provides a mapping between the variables and values respectively.

74 Address Split Design

Declaration 1: [METAVARIABLES AND ENVIRONMENT]

Let,Variables x,y ∈Var

Values ν ∈Value

Constants c ∈Const

Null λ ⊂Const

Boolean constants true⊂Const

false⊂Const

Functions f ∈ F

Current Function c f ∈ F

Return Value returnVar ∈Var

getVal Var→Value

State s ∈ {sp,ss}
Privilege Priv ∈ {read,write,read +write}

getVar (Var× s)→Var

isSplit Var→ boolean

Dictionary D : (F×Var×Priv)→ boolean

Flow Type FL ∈ {FLe,FLi}
Dependency Tracker dtF ⊂Var×FL

Element E ∈ {dtF,λ}
Dependency Tracker Stack DTS : (Stk, push, pop,nthElem, top)

Stk : E∗

push : (Stk×E)→ Stk

pop : Stk→ (Stk×E)

nthElem : (Stk×N)→ E

top : Stk→ E

prevDT S : Stk→ E

Environment η ∈ Env

η :


getVal
getVar
isSplit
DTS
D


where,η(x) 7→ η(getVal(x))

ASD description and semantics 75

We also define some metavariables that are specially created for our model. The states,

s, are represented as public, sp, or secret, ss, for every split variable. To access the variables,

the privilege given to a function can be between read, write or both. To maintain such privi-

leges, our model used the dictionary data-structure, which is represented by D. The dictionary

contains a list of variables, and the privilege to access the variable for a given function. The

environment also maintains a mapping, isSplit, to keep track of whether or not the current

variables have been split. The Dependency Tracker (dt) is used to keep track of the secret

variables whose private values are influencing the current statement of the running function.

When there are multiple functions called by one another, the stack of dependency trackers DTS

is used. A new dt is pushed every time a function is called and is popped when the function

returns. A Flow Type (FL) is used to keep track of whether the current information flow is an

explicit flow or an implicit flow.

The environment itself is represented by η . It contains the mappings from variable to value

(getVal), a mapping to get the variable based on the state (getVar), a mapping to check if the

current variable has been split (isSplit), a mapping to the dependency tracker (DTS) and a

mapping maintained by the dictionary D. The shorthand η [x] is used instead of η [getVal(x)].

3.2.2 Syntax

We define the syntax used by the semantic rules in the declaration 2. In these rules, the general

syntax of the while language has been modified to better define our model.

The arithmetic expressions are represented by a while the conditional operations are repre-

sented by b. The special cases of the arithmetic operation containing a variable x is represented

by ax and a conditional operation containing the variable x is represented by bx. Hence, ax

would imply that the computation of arithmetic expression requires the value of x and the same

implies for bx.

The various statements used in the semantics are represented by S. In these, the statements

of split, callFn, loadPROC and removeFLe are custom internal events of ASD. These custom

events are not supposed to be present in the original program written by the developer but are

added by the interpreter. These events are triggered by the monitor and are used to influence

the model specific environment. The split event triggers a variable split if the variable has not

been split before. This event is triggered both when interpreting the policy as well as when a

variable is being dynamically split due to information flows. The removeFLe is an event that

is used when the DT needs to purge all explicit flow dependencies. The callFn and loadPROC

are function specific custom events. A function in our semantics is a set of statements followed

by a return statement. For the sake of simplicity, we do not consider local variables and other

features in a function in our rules. We however define function stacks which keep track of the

76 Address Split Design

Declaration 2: [SYNTAX]

Arithmetic a ∈ Aexp

a := c|x|a1Fa2

where, F := binary operation

Arithmetic with variable x ax ∈ Aexp

ax := x|ax
1Fa2|a1Fax

2

Conditional operations b ∈Conditional

b := true| f alse|a1 ∗a2|(b1&b2)|(b1 p b2)

where, ∗ :== |> |< |>= |<=

Conditional operations with x bx ∈Conditional

bx := ax
1 ∗a2|a1 ∗ax

2|(b1&bx
2)|(bx

1&b2)|(bx
1 | b2)|(b1 | bx

2)

Statements S ∈ Stm

S := x = a| Skip| S1;S2

| if b then S1 else S2| while b do S

| split(x)| return x

| call f with(y1, ...,yn)| loadPROC(f)

| x = callFn(f ,{y1, ..,yn})| removeFLe

Procedures PROC : F → S;return x;

Function Stack FunStk : (FStk, pushF, popF,nthElemF, topF)

FStk : F∗

pushF : (FStk×F)→ FStk

popF : FStk→ (FStk×F)

nthElemF : (FStk×N)→ F

topF : FStk→ F

prevF : FStk→ F

ASD description and semantics 77

current function as well as the list of function calls to the current function.

3.2.3 Splitting model

The semantic using these syntax pertaining to our model are defined in the Rules 1 to 25. The

first and simplest action that forms the core of the model is to split the variable into two address

spaces. We first define how a variable is split in the Rule 1. The variable is split either at the

stage of policy specification or when it is upgraded due to information flows. In both cases,

the split event is triggered. In this rule, two other variables, getVar(x,sp) and getVar(x,ss),

are created. They are used based on whether the public or private values need to be used

respectively.

Rule 1: [SPLIT]

η(isSplit(x)) = false
(η ,split(x)) 7→ η [getVar(x,ss) 7→ λ ,getVar(x,sp) 7→ getVal(x), isSplit(x) 7→ true]

The public variable is used under when there is no privilege to access the secret. The public

variable is hence associated to the previous value of x before the split event was triggered. We

should notice that the variable x itself is split but the resolved public variable getVar(x,sp) and

the resolved private variable getVar(x,ss) are not split by default.

Rule 2: [RUNTIME: RESOLVE VARIABLE VALUES]

η(x) = ν η(isSplit(x)) = false
η ` x ↓ ν

It must be noted that the value of a split variable needs to have been substituted with ei-

ther the public or the private variable before any of the other operations such as assignment

can be made. This is defined in the Rule 2. If we consider an unsplit variable, the Rule 2

applies directly and the value is resolved. If the variable is split however, such an application

is impossible, the variable would fail to be resolved into a value. For all the rules pertaining

to evaluation of arithmetic or boolean expressions, a variable needs to be resolved into a value

before such an operation can be carried forward. Once all the split variable have been sub-

stituted, the expression can be evaluated using standard semantics for arithmetic and boolean

expressions. If the variable has already been split, the variable would need to be substituted.

The semantics for such substitutions are explained in the forthcoming Section 3.2.4.

78 Address Split Design

The standard semantics for a sequence of statements as well as a sequence containing the

skip statement are defined in Rule 3 and Rule 4.

Rule 3: [RUNTIME: STATEMENT SEQUENCE]

(η ,S1) 7→ (η ′,S′1)
(η ,S1;S2) 7→ (η ′,S′1;S2)

Rule 4: [RUNTIME: SKIP SEQUENCE]

(η ,Skip;S2) 7→ (η ,S2)

3.2.4 Assignment and substitution

The Rules 5-11 describe the various actions to be taken when an assignment operation is carried

out. When the variable is not split, and the DT is empty, the value flows into the variable

without any other changes to the environment as shown in the Rule 5.

Rule 5: [ASSIGNMENT: UNSPLIT VARIABLE]

η(isSplit(x)) = false η(top(DTS)) = λ ` a ↓ ν

(η ,x = a) 7→ η [x 7→ ν]

The Rules 6 to 9 state the actions that need to be taken when there is an information flow

into a split variable. In the Rule 6, the dictionaries that have permission to read the current

value will have to satisfy the DT to retain their access rights.

Rule 6: [ASSIGNMENT: SPLIT VARIABLE]

η [isSplit(x) 7→ true, top(DTS) 7→ λ ,c f 7→ f ,D(f ,x,write) 7→ true] ` a ↓ ν

(η ,x = a) 7→ η [getVar(x,ss) 7→ ν]

Rule 7 states that if the value does not contain secrets and the DT is empty, the value of

the public part of the variable is updated. Rule 8 shows that no real update is performed to

any part of the variable if a secret value tries to flow into the public part of the variable. This

ASD description and semantics 79

is consistent with the example shown in Figure 3.6. For all these rules where the DT is non-

empty, the event removeFLe is triggered to remove all the explicit dependencies at the end of

the statement.

Rule 7: [ASSIGNMENT: SPLIT VARIABLE 2]

η [isSplit(x) 7→ true, top(DTS) 7→ λ ,c f 7→ f ,D(f ,x,write) 7→ false] ` a ↓ ν

(η ,x = a) 7→ η [getVar(x,sp) 7→ ν]

Rule 8: [ASSIGNMENT: SPLIT VARIABLE 3]

η [isSplit(x) 7→ true, top(DTS) 6= λ ,c f 7→ f ,D(f ,x,write) 7→ false] ` a ↓ ν

(η ,x = a) 7→ η ` removeFLe(c f)

In the Rule 9, the DT is non-empty and hence the rights of various functions change at the

end of the information flow. In this case, only the functions having the rights to all the elements

in the DT would continue to have access to the variable.

There are a lot of variables that would become containers for secret values over the course

of the information flow. These variables are hence upgraded at runtime. Any upgrade involves

the splitting of the variable, adding the variable to the appropriate dictionaries and then assign-

ing the various access control rights for the variable before running the statement. It can be

noticed that all the dictionaries get the write access to this dynamically split variable. This is

because, the variable was initially public and upgraded only for the information it holds. The

container itself is hence not protected though the data inside is secret. Hence, while read access

is withheld from other functions, they are still permitted to write into the variable. This is the

information recited by the rules 10.

The Rule 11 is a specific rule which defines the event of removing the various explicit flows

from the DT at the end of the assignment. This rule is only triggered if the DT is non-empty.

Rule 11: [RUNTIME: REMOVE EXPLICIT FLOW]

η(top(DTS)) 6= λ η(c f) = f
(η ,removeFLe(f)) 7→ η [∀(x,FL = e) ∈ top(DTS){top(DTS) 7→ top(DTS)−{(x,FL = e)}}]

The Rules 12 to 15 provide the rules for substitution of the public or private variables for

a given split variables. In the Rules 12 and 13, the simple case of reading a variable x that has

been split is shown. In this case, there is substitution of the variable x with its secret variable

80 Address Split Design

Rule 9: [ASSIGNMENT: SPLIT VARIABLE 4]

η [isSplit(x) 7→ true, top(DTS) 6= λ ,c f 7→ f ,D(f ,x,write) 7→ true] ` a ↓ ν ;

(η ,x = a) 7→ η


getVar(x,ss) 7→ ν ,

(∀ f1 ∈ Fss)


i f D(f1,x,read) then i f (∀(y,FL) ∈ top(DTS)){D(f ,y,read)}

then D(f ,x,read) 7→ true
else D(f ,x,read) 7→ false






` removeFLe(c f)

Rule 10: [ASSIGNMENT: VARIABLE UPGRADE]

η [isSplit(x) 7→ false, top(DTS) 6= λ] ` a ↓ ν ;
(η ,x = a) 7→ η [(∀ f1 ∈ Fss){D(f1,x,write) 7→ true,}] ;split(x);x = a;

obtained using getVar(x,ss) and the public value using getVar(x,sp). Similarly, substitutions

can also be done to the conditional statements b as shown in the Rule 14 and Rule 15.

Rule 12: [RUNTIME: FUNCTION READ ACCESS]

η(isSplit(x)) = true η(c f) = f η(D(f ,x,read)) = true
(η ,ax) 7→ η [top(DTS) 7→ (top(DTS)

⋃
{(x,FLe)})] ` agetVar(x,ss)

Rule 13: [RUNTIME: FUNCTION READ ACCESS DENIED]

η(isSplit(x)) = true η(c f) = f η(D(f ,x,read)) = false
(η ,ax) 7→ (η ` agetVar(x,sp))

Rule 14: [RUNTIME: FUNCTION READ ACCESS : CONDITIONAL]

η(isSplit(x)) = true η(c f) = f η(D(f ,x,read)) = true
(η ,= bx) 7→ η [top(DTS) 7→ (top(DTS)

⋃
{x,FLi})] ` bgetVar(x,ss)

ASD description and semantics 81

Rule 15: [RUNTIME: FUNCTION READ ACCESS DENIED : CONDITIONAL]

η(isSplit(x)) = true η(c f) = f η(D(f ,x,read)) = false
(η ,bx) 7→ η ` bgetVar(x,sp)

3.2.5 Functions

The Rules 16 to 25 represent the various rules that are used to quantify the actions performed

in the context of a function. In this formalism, we consider all the functions present to be self

sufficient in nature. The Rules 16 to 19 are necessary to enumerate the rules for the actions to

be followed at the end of a function’s execution.

The Rule 16 is used to quantify the actions to be taken at the end of the execution of a

function when there is no split variable and there are no dependencies in the DT. In this case,

the function is popped out of the function stack and the environment’s returnVar is initialized

with the return value of the function. The DT that corresponds to the function is also popped

out of the DTS.

Rule 16: [SELF-SUFFICIENT FUNCTION: EXECUTION ENDED]

η(isSplit(x)) = false η(top(DTS)) = λ

(η ,return x) 7→ η

[
popF(FunStk),returnVar 7→ getVal(x),

, pop(DTS),c f = topF(FunStk)

]

In our semantics, a function must always return a value (thought this might also be λ).

When a function ends the execution, the current function is changed in the environment and

the DT corresponding to the function is removed. The value to be returned (returnVar) is set

to the secret value if the calling function also has access to the elements in the DT. Else a value

of λ is passed. These are shown in Rules 17 and 18.

Rule 17: [SELF-SUFFICIENT FUNCTION: EXECUTION ENDED : ANY VARIABLE]

η(top(DTS)) 6= λ ∃(y,FL1) ∈ top(DTS),η(D(prevF(FunStk),y,read)) = false

(η ,return x) 7→ η

[
popF(FunStk),returnVar 7→ λ ,

, pop(DTS),c f = topF(FunStk)

]

Once this value is returned, it is used in the assignment operation of the calling function as

shown in the Rule 19. In this case, the environment variable returnVar is checked for non null

82 Address Split Design

Rule 18: [SELF-SUFFICIENT FUNCTION: EXECUTION ENDED : SECRET VALUE]

η(top(DTS)) 6= λ ∀(y,FL1) ∈ top(DTS),η(D(prevF(FunStk),y,read)) = true

(η ,return x) 7→ η

 popF(FunStk),returnVar 7→ ν ,
∀(y′,FL) ∈ top(DTS){prevDT S(top(DTS)

⋃
{y′,FLe}} ,

pop(DTS),c f = topF(FunStk)



values. The assignment of the variable is made to the value held in returnVar and subsequently

returnVar is reinitialized to ∅.

Rule 19: [SELF-SUFFICIENT FUNCTION: RETURN VALUE]

η [returnVar 6=∅] ` x ↓ call f with(y1, ...,yn)

(η ,x = call f with(y1, ...,yn)) 7→ η [x 7→ returnVar,returnVar 7→∅]

The Rules 20 to 25 describe the rules for calling a function. When there is a function

call, we perform a transformation and execute the function before the actual call as shown in

Rule 20. A callFn event is introduced into the execution. When evaluating callFn, the DT

is checked before loading the various statements of the function. These rules are enumerated

in Rules 21, 22, 23, and 24. If the function does not have read access to any of the variables

that are in the the DT due to an implicit flow, there is no procedure that is loaded as shown in

Rule 24. The return value is then used to evalutate the arithmetic expression when the function

execution has ended as shown in the Rule 19. Such an evaluation ensures that the function calls

are handled correctly.

Rule 20: [SELF-SUFFICIENT TRANSFORM]

η [returnVar 7→∅] ` x ↓ call f with(y1, ...,yn)

(η ,x = call f with(y1, ...,yn)) 7→ η ` callFn(f ,{y1, ...,yn});x = call f with(y1, ...,yn);

3.2.6 Example in While language

Let us consider an example shown in the Figure 3.7. In this case, let us consider the policy that

the variable x is a secret and that the function f has read and write access to x.

When the policy is loaded (before the code itself is loaded), variable x is split according to

the Rule 1. The isSplit(x) is hence set to true and there is now a public and a private variable

corresponding to x.

ASD description and semantics 83

Rule 21: [SELF-SUFFICIENT BEFORE FN CALL]

η

c f 7→ f1,
(∀(y, priv1 = FLi) ∈ top(DTS))D(f ,y,read) 7→ true

(∀(x) ∈ {y1, ...,yn})(!isSplit(x))


(η ,callFn(f ,{y1, ...,yn})) 7→ η [DTS 7→ push(DTS, f),c f 7→ f] ` loadPROC(f);

Rule 22: [SELF-SUFFICIENT BEFORE FN CALL]

η

c f 7→ f1,
(∀(y, priv1 = FLi) ∈ top(DTS))D(f ,y,read) 7→ true
(∃(x) ∈ {y1, ...,yn})((isSplit(x)) D(f ,x,read) 7→ false


(η ,callFn(f ,{y1, ...,yn})) 7→ η ` callFn

(
f ,
{
∀y0 ∈ {y1, , ...,yn}

i f x = y0 then getVar(x,sp) else y0

})

Rule 23: [SELF-SUFFICIENT BEFORE FN CALL]

η

c f 7→ f1,
(∀(y, priv1 = FLi) ∈ top(DTS))D(f ,y,read) 7→ true

(∃(x) ∈ {y1, ...,yn})((isSplit(x)) D(f ,x,read) 7→ true


(η ,callFn(f ,{y1, ...,yn})) 7→ η ` callFn

(
f ,
{
∀y0 ∈ {y1, , ...,yn}

i f x = y0 then getVar(x,ss) else y0

})

Rule 24: [SELF-SUFFICIENT BEFORE FN CALL]

η

[
c f 7→ f1,
(∃(y, priv1 = FLi) ∈ top(DTS))D(f ,y,read) 7→ false

]
(η ,callFn(f ,{y1, ...,yn})) 7→ η [returnVar 7→ λ] ` skip();

Rule 25: [SELF-SUFFICIENT CALLED]

η(PROC(f)) = S1;S2; ...;Sn;return x
(η , loadPROC(f)) 7→ η ` S1;S2; ...;Sn;return x;

84 Address Split Design

1 PROC: f with () →
2 {
3 x = 2;
4 z = x;
5 return z;
6 };
7 x = 1;
8 y = call f with ();

Figure 3.7: Simple Information flow example

In line 7 the global scope does not have access to the variable x. Therefore, the Rule 7 ap-

plies to evaluate the assignment. Hence, the value is added to the public variable corresponding

to variable x.

The function f is called in line 8. Before this function is called, the code is transformed

to insert the callFn event using the Rule 20. Subsequently, due to Rule 21, the loadPROC

event is triggered and the function is loaded by the Rule 25. The variable assignment of line

2 modifies the private variable corresponding to x as per the Rule 6. An unsplit variable z is

assigned a value in line 4, and this assignment corresponds to the Rule 5. The function then

returns the value corresponding to z which is stored in the environment variable returnVar as

shown in Rule 16. This value is subsequently used in the assignment operation of the variable

y in line 8 by first resolving the value using Rule 19 and then assigning it using the Rule 5.

There are however limitations to our proposed approach due to some of the design choices

made for our model. For instance, we choose to pop the DT at the end of the execution of a

SSF without transferring the implicit dependencies to the calling function. We deliberately do

this to keep this approach more practical. By doing this, we are unable to provide any formal

guarantees such as TINI because it is possible to leak information regarding the state of the

variable. The main reason for this is because in case of an implicit flow, dynamic splitting of

variables would not occur if that branch was not taken. Our over-approximation ensures that

this would not affect any of the operations in the function’s execution. However, by popping

the DT at the end of the execution, we choose to end the over-approximation. In this case,

at the end of the function’s execution, the global variables may or may not be split based on

the branch taken. Generally, our model would continue using either of the values and the

rules of our model tend to be less intrusive. However, there is one intrusive rule, namely the

Rule 24 which prevents the execution of a function based on the implicit flow. Therefore if a

dynamically split global variable is used in an implicit flow and this prevents the execution of

the function, the fact that the variable has been split can be determined. To explain this further

we provide an example in Figure 3.8. In this example, the variable V1 is a secret variable. Here

ASD description and semantics 85

we consider that the functions f4 and f6 have read access to V1. The function f5 does not have

access to V1.

1 //V1 = secret true/ false
2 V10 = true;
3 V11 = true;
4 PROC: f4 with () →
5 {
6 if V1
7 then V10 = false
8 else skip;
9 if V10

10 then V11 = false
11 else skip;
12 return V11;
13 };
14 PROC: f5 with (x) →
15 {
16 y = x + 1;
17 call print with (y);
18 return 0;
19 };
20 PROC: f6 with () →
21 {
22 if V10
23 then call f5 with (V10)
24 else call f5 with (0);
25 return 0;
26 };
27 call f4 with ();
28 call f6 with ();

Figure 3.8: ASD Limitation Example

During the execution, the function f4 is first executed. In the line 6, there is a conditional

if statement. This triggers the Rule 14 and the variable V1 is added to the DT. If V1 = trues,

in line 7, the public variable V10 becomes a split variable due to the variable upgrade Rule 10.

In this case, the functions f6 and f5 would get access to the variable V10 using the Rule 9.

If V1 = falses, in line 10, the public variable V11 becomes a split variable due to the variable

upgrade Rule 10. This is because the DT still contains the variable V1 due to the conditional

statement on line 6. This is the over-approximation in our approach. However, at the end of

the execution of the function f4, the DT is popped.

When the function f6 is called, it would execute f5 in case of V1= falses, since V10 is not

split. However in the case that V1 = trues, the function f5 would not be executed due to the

86 Address Split Design

Rule 24 because it does not have read access to the split variable V10. Hence, our model could

leak whether a variable has been split. However, the actual value contained in the variable is

not leaked.

It must be noted that had the DT not been popped, the over-approximation would remain

and the function f5 would never be called, thereby, making it possible to provide security

guarantees. However, for issues of practicality, we choose to drop the over-approximation at

the end of a function’s execution.

3.2.7 Applying the model to JavaScript

In the previous sections, we have formally defined our model using the while language to

present the core concepts of our approach. This formal model does not take into account many

of the mechanisms of JavaScript and is rudimentary. However, it is sufficient to explain the

working of our model and its intended behavior with regard to JavaScript.

The limitations of the model described above include the following. The functions in the

formal model have been restricted to always return a value. This value can only be assigned

to a variable and cannot be used directly inside an expression. However, this is done merely

to simplify the explanation of the core of ASD and is not a limitation of our approach. Simi-

larly, the formal model of the while language only consists of the if-then-else conditional

branching statement and while-do conditional looping statement. The language does not in-

clude the more complex for, for-in, for-of and switch-case branches which are part of

the JavaScript logic. However, we assume that explanations for the branching statements that

we have provided suffice in providing an understanding of how ASD handles these scenarios

without being complete in the context of JavaScript.

Further, we only describe general variables and do not delve into the other data-types of

JavaScript such as objects, arrays and properties of objects. We assume that the splitting pro-

cess for the variables is extensible to the objects , properties of the objects and arrays. We also

do not handle exceptions as part of the model. This is true for both the formal model and for

ASD in general.

While language consists of assignment rules, handles statements and conditionals which

are all part of a programming language. JavaScript does not provide direct access to any of the

concurrently models such as threading. Further, all the notations used in while language form

a valid subset of JavaScript. Hence, we believe that explaining ASD for while language would

be beneficial towards understanding its workings.

Examples on JavaScript 87

3.3 Examples on JavaScript

The following example illustrates the different concepts described in the previous sections.

We use one example application to explain the different notions of our model. However, we

provide incremental code and policy modifications on a need to know basis. We will first

present the basic functionalities of our model in section 3.3.1. The section 3.3.2 illustrates

right propagations.

3.3.1 Basic functionalities: variable splitting and policy interpretation

Let us consider the code in Figure 3.9. In this example, there are variables a, b and c and there

are functions init, compute, printc and unauth. printc is a function which performs a

public output on the variable c. The function unauth is an unauthorized random function that

has been added to this context.

1 var a = 1;
2 var b = 2;
3 var c = 10;
4 var init = function ()
5 {
6 a = 4;
7 b = 10;
8 };
9 var compute = function ()

10 {
11 c = b - a;
12 }
13 var printc = function ()
14 {
15 console.log(c);
16 };
17 init();
18 compute ();
19 printc ();
20
21 var unauth = function ()
22 {
23 c = b - a;
24 printc ();
25 };
26 unauth ();

Figure 3.9: Example for flow

We will interpret these above steps using different policies to show how they would in-

88 Address Split Design

terpret with each change in policy. The first policy is shown in Figure 3.10. This policy is

quite simple. It outlines that the functions init and compute have been assigned rights to

the variable a. The function printc is a SSF that does not have access to any secret variable.

If this function were to attempt to print any value with a secret, such an operation would be

suppressed.

1 [
2 {
3 "functionReferences":["init","compute"],
4 "hasAccess":
5 [
6 {
7 "objectReference":"a",
8 "accessType":"RW"
9 }

10]
11 },
12 {
13 "functionReferences":["printc"],
14 "hasAccess":
15 [
16
17]
18 }
19]

Figure 3.10: A detailed Policy Specification

The policy specification is loaded as directed in the Section 3.1.1. This implies that the

policies are loaded prior to the loading of the JavaScript. This is an important consideration

since it will influence variable splitting. Indeed, each variable that is mentioned in a policy

specification of a given function will be split before execution.

The function init is the initialization function that provides the starting secret value for

the variable a. Hence, at the end of the execution of the function init, the variable a is d1|4c
and variable b is 10.

When the function compute is executed, the variable c is split because the secret value

from variable a flows into the variable c. It must be noted that the variable b has not been split

during this entire period. Hence, at the end of execution of the function compute, the value of

the variable c is d10|4c. At this point the function printc would not have access to the variable

c and would hence only be able to print the public value of 10.

Now let us consider a scenario with the presence of an unauthorized piece of code. In this

case there is an unauthorized function unauth which is an UF. In this case, the function can

Examples on JavaScript 89

only impact the public value of the variable c and print only this value.

3.3.2 Dictionary evolution and rights propagation

Let us consider two more functions compute2 and staticFunction, shown in Figure 3.11.

This example illustrates the propagation of the various variable accesses across the dictionaries

in greater detail.

1 var d = 0; // Global scoped public variables
2 var compute2 =
3 function ()
4 {
5 var localA = a - 1;
6 d = c - localA;
7 };
8 var staticFunction =
9 function ()

10 {
11 ...
12 };
13 compute2 ();

Figure 3.11: Example for flow

In addition to the first policy specification, detailed in Figure 3.10 for the functions init,

compute and printc, we specify policies for functions compute2 and staticFunction in

Figure 3.12. We assume that the function compute2 is executed after the function printc in

line number 19 of Figure 3.10.

The local variables that are added into the dictionary have the parameter describing their

scope. For variables with the function scope, the corresponding scope is defined in the dictio-

nary. The functions are assigned unique scope identifiers when they are run and this is used

as a reference to identify the corresponding variable in the dictionary. We use the terminology

function().instanceId to denote that the function’s current run’s scope identifier is used.

Since the function compute2 has as both read and write access to the variables a and d, at

the end of the execution of line 5 in Figure 3.11, the dictionaries would change as follows. In

the various dictionaries shown in figures 3.13, 3.14, 3.15 and 3.16, we highlight the last added

row in gray.

90 Address Split Design

1 [{
2 "functionReferences":["compute2"],
3 "hasAccess":
4 [
5 {
6 "objectReference":"a",
7 "accessType":"RW"
8 },
9 {

10 "objectReference":"d",
11 "accessType":"RW"
12 }
13]
14 },
15 {
16 "functionReferences":["staticFunction"],
17 "hasAccess":
18 [
19 {
20 "objectReference":"a",
21 "accessType":"R"
22 },
23 {
24 "objectReference":"d",
25 "accessType":"W"
26 }
27]
28 },
29]

Figure 3.12: A detailed Policy Specification

Variable reference

a global

Access rights Address

c global R W

R W

Dictionary of Function compute2

d global R W

localA compute2().1 R W

@Pr a global

@Pr c global

@Pr d global

@Pr localA compute2().1

Figure 3.13: Dictionary of function compute2

Examples on JavaScript 91

Dictionary of Function staticFunction

Variable reference

a global

Access rights Address

c global

R W

d global

localA compute2().1 R W

@Pr a global

@Pr c global

@Pr d global

@Pr localA compute2().1

R W

R W

Figure 3.14: Dictionary of function staticFunction

Variable reference

a global

Access rights Address

c global R W

R W

Dictionary of Function compute

localA compute2().1 R W

@Pr a global

@Pr c global

@Pr localA compute2().1

Figure 3.15: Dictionary of function compute

Variable reference

a global

Access rights Address

c global R W

R W

Dictionary of Function compute

localA compute2().1 R W

@Pr a global

@Pr c global

@Pr localA compute2().1

Figure 3.16: Dictionary of function init

It can be seen that the various local variable localA of the function compute2 are being

added to all the dictionaries. This is a necessary step since this information is needed to com-

pute the various objects that the function has access to. This is an important consideration in

IFC since the flow of information needs to be reflected by flow of privileges. The various new

objects created, which are referenced by local variables, could be used to affect global vari-

92 Address Split Design

ables or might be used as a returned parameter. Therefore, we add them to the dictionaries of

all functions that have sufficient privileges to access these objects.

When the function completes execution, the final dictionaries would have changed to reflect

that the function scoped variables no longer exist. Figures 3.17 and 3.18 give the final dictio-

nnaries of functions compute2 and staticFunction. While the dictionaries of the function

compute and init also have some minor updates, we do not show them since the changes are

not significant.

Variable reference

a global

Access rights Address

c global R W

R W

Dictionary of Function compute2

d global R W

localA compute2().1 R W

@Pr a global

@Pr c global

@Pr d global

@Pr localA compute2().1

Figure 3.17: Dictionary of function compute2

Dictionary of Function staticFunction

Variable reference

a global

Access rights Address

c global

R W

d global

localA compute2().1 R W

@Pr a global

@Pr c global

@Pr d global

@Pr localA compute2().1

R W

R W

Figure 3.18: Dictionary of function staticFunction

The variable d gets data from variable a and this is reflected in the information flow. It

is interesting to see that the function staticFunction is now having both read and write

access to d though it initially only had a write access to the variable d. While this may seem

like a privilege escalation, the write permission is there to protect the reference to the object

rather than the object itself. Hence we do not propagate the write permission. At the end of the

execution of the function, all the variables that are associated with that instance of the function

are to be deleted from every dictionary.

Comparison of the approaches 93

3.4 Comparison of the approaches

As seen from the formalism, our model is capable of handling both implicit and explicit flows.

However, it uses over-approximation to handle implicit flows rather than evaluating all alterna-

tive branches. This over-approximation is used by our model to help in deciding the classifica-

tion of a variable. We show this in the comparison of the various approaches in this section.

The Figure 3.19 and Figure 3.20 compares our approach with the different approaches

explained in the literature review using a simple example. The various approaches that have

been compared use different representations. The approaches of No Sensitive Upgrade (NSU)

(Section 2.3.3.2) and the approach by Hedin & Sabelfeld (Section 2.4.1) use labels and program

counter (pc). The faceted approach uses principals and program counter (pc). Our model

uses functions and DT. The set of functions that have access to a particular variable can be

comparable to the principal for that variable.

In this example, we use a secret variable x which is labeled as high (h). This variable is

represented as part of a principal P1 in the faceted approach. The principal represents all the

functions which are allowed to access the secret values at the high level or at the respective

principal. Finally, our approach keeps track of secret variables directly and this is represented

by adding the variable reference x to the DT. Since only functions with a dictionary entry for the

variable can access the variable, the function h(x) can access the variable x which is similar to

how the principal has access to the variable x in the faceted approach.

The Figure 3.19 and Figure 3.20 refer to the same function with the variable x being false

and true respectively. These two cases are explained in greater detail below.

Figure 3.19 - [x = false]: In this case, only our approach performs a significantly different

analysis when compared to the others. Both the naive methods of NSU and the sophisticated

algorithms of the faceted approach and SME categorize the variable z as public and proceed

accordingly. However, this is not true in our approach. In our case, the DT is augmented with

the variables’ label. Our approach classifies z at step 6 as secret in this case because of the

over-approximation we used.

The key difference however lies in the fact that the DT determines the return value. If

the calling function in the stack has access to the variables in the DT (x in our example), our

mechanism will permit the value to be passed. The notation DT ↓?false : undefined; means that

only if the calling function has read access to the dependencies, the value false is returned. If

not, the value returned is undefined. The DT of the calling function, represented as DTprev is

augmented with the current list of dependencies before the final return is completed.

In this case, the value of z remains true for the public part in our approach which is a

94 Address Split Design

 x = ;

Function h()
{ y = true;

 z = true;

 if (x)

 y = false;

 if (y)

 z = false;

 return z;
}

{ y = PC = {}

 z = PC = {}

 PC = {h}

 -

 PC = {}

 z = PC = {}

 return

}

c
a
s
e

(
N
S
U
-
f
a
l
s
e
)

true
Low

true
Low

false
High

true
Lowfalse

Low

false
Low

false
High

 x = ;

{ y = PC = {}

 z = PC = {}

 PC = {h}

 -

 PC = {}

 z = PC = {}

 return

}

c
a
s
e

(
P
U
-
f
a
l
s
e
)

true
Low

true
Low

false
High

true
Lowfalse

Low

false
Low

false
High

 x = ;

{ y = PC = {}

 z = PC = {}

 PC = {P1 }

-

 PC = {}

 z = PC = {}

 return

}

c
a
s
e

(
F
A
-
f
a
l
s
e
)

false
P1

P1
?

:
false

false

Dictionary of Function h()

c
a
s
e

(
A
S
D
-
f
a
l
s
e
)

 x = ;
Pr

f
a
l
s
e

Pu

f
a
l
s
e

{ y = DT = {}

 z = DT = {}

 DT = {x}

 -

 DT = {x}

 z = DT = {x}

(DT↓)?{DTprev +=DT;return }

 :{return }
}

false
Pr

Pr

f
a
l
s
e

Pu

t
r
u
e

false
Pr

Principal: P1
Secret Variable: xP1

Levels: High (h), Low (l)
Secret Variable: xh

Levels: High (h), Low (l)
Secret Variable: xh

No Sensitive Upgrade
Hedin & Sabelfeld

SME/ Faceted Approach
Address Split Design

C
A
S
E

h
(
x

=

f
a
l
s
e
)

L.No.1.2.3.4.5.6.7.

a
global

R
W

@Pr
a

global

DT↓ => If previous (calling) function has read access to all the elements in the DT
DTprev => The DT of the previous (calling) function

true

true
true

true

true

false

true

false

undefined

Figure
3.19:C

om
parison

betw
een

various
approaches

-C
ase

h(x=false)

Comparison of the approaches 95

 x
 =

;

c
a
s
e

(
N
S
U
-
f
a
l
s
e
)

tr
ue

Hi
gh

 x
 =

;

c
a
s
e

(
P
U
-
f
a
l
s
e
)

tr
ue

Hi
gh

c
a
s
e

(
F
A
-
f
a
l
s
e
)

Di
ct

io
na

ry
 o

f
Fu

nc
ti

on
 h

()

c
a
s
e

(
A
S
D
-
f
a
l
s
e
)

 x
 =

 ;

Pr

t
r
u
e

Pu

f
a
l
s
e

Pr
in

ci
pa

l:
 P

1
Se

cr
et

 V
ar

ia
bl

e:
 x

P 1

Le
ve

ls
:

Hi
gh

 (
h)

,
Lo

w
(l

)
Se

cr
et

 V
ar

ia
bl

e:
 x

h

Le
ve

ls
:

Hi
gh

 (
h)

,
Lo

w
(l

)
Se

cr
et

 V
ar

ia
bl

e:
 x

h

No
 S

en
si

ti
ve

 U
pg

ra
de

He
di

n
&

Sa
be

lf
el

d
SM

E/
 F

ac
et

ed
 A

pp
ro

ac
h

Ad
dr

es
s

Sp
li

t
De

si
gn

C
A
S
E

h
(
x

=

t
r
u
e
)

{

y
=

P
C
 =

 {
}

z

=

P
C
 =

 {
}

P
C
 =

 {
h}

y
=

fa
ls

e;

P
C
 =

 {
h}

S
t
o
p

E
x
e
c
u
t
i
o
n

}

tr
ue

Lo
w

tr
ue

Lo
w

tr
ue

Hi
gh

Fu
nc

ti
on

 h
()

{
 y

 =
 t

ru
e;

 z

 =
 t

ru
e;

 i

f
(x

)

 y
 =

 f
al

se
;

 i

f
(y

)

 z
 =

 f
al

se
;

 r

et
ur

n
z;

}

{

y
=

P
C
 =

 {
}

z

=

P
C
 =

 {
}

P
C
 =

 {
h}

y
=

P
C
 =

 {
h}

i
f
(

)

P
C
 =

 {
h}

S
t
o
p

E
x
e
c
u
t
i
o
n

}

tr
ue

Lo
w

tr
ue

Lo
w

tr
ue

Hi
gh

UP
G

fa
ls

e
Hi

gh UP
G

fa
ls

e
Hi

gh

{

y
=

 P
C
 =

 {
}

z

=

 P

C
 =

 {
}

P
C
 =

 {
P 1

}

P
C
 =

 {
}

y
=

 P
C
 =

 {
P 1

}

 -

 P
C
 =

 {
P 1

}

P
C
 =

 {
}

 z

 =

 P
C
 =

 {
}

re

tu
rn

tr
ue

P 1
P 1

?
:

fa
ls

e
fa

ls
e

y
=

;
P 1

?
:

tr
ue

fa
ls

e

fa
ls

e
P 1

z
=

;
P 1

?
:

fa
ls

e
tr

ue

P 1
?

:
fa

ls
e

tr
ue

 x
 =

 ;

P 1
?

:
fa

ls
e

tr
ue

{

y
=

D
T
 =

 {
}

z

=

D
T
 =

 {
}

D
T
 =

 {
x}

y
=

D
T
 =

 {
x}

D
T
 =

 {
x,

y}

 -

(D
T↓

)?
{D

T p
re

v
∪D

T;
re

tu
rn

}

:{
re

tu
rn

 }

}

tr
ue

Pr

Pr

f
a
l
s
e

Pu

t
r
u
e

fa
ls

e
Pr

L.
No

. 1. 2. 3. 4. 5. 6. 7.

a
gl

ob
al

R
W

@P
r

a
gl

ob
al

D
T
↓

=>
 I
f

p
r
e
v
i
o
u
s

(
c
a
l
l
i
n
g
)

f
u
n
c
t
i
o
n

h
a
s

r
e
a
d

a
c
c
e
s
s

t
o

a
l
l

t
h
e

e
l
e
m
e
n
t
s

i
n

t
h
e

 D
T

D
T
p
r
e
v

=
>

T
h
e

D
T

o
f

t
h
e

p
r
e
v
i
o
u
s

(
c
a
l
l
i
n
g
)

f
u
n
c
t
i
o
n

tr
ue

tr
ue

fa
ls

e

tr
ue

fa
ls

e

tr
ue

tr
ue

tr
ue

un
de

fi
ne

d

Fi
gu

re
3.

20
:C

om
pa

ri
so

n
be

tw
ee

n
va

ri
ou

s
ap

pr
oa

ch
es

-C
as

e
h(

x=
tr

ue
)

96 Address Split Design

significant difference with the other approaches. Our approach is also rightly classifies z as

one which contains secret information. While this is a result of over-approximation, it must be

noted that other approaches are unable to do such a classification.

Figure 3.20 - Case [x = true] : In our model, the dependency on x still remains. This is

augmented with the dependency on the variable y. Hence, the assignment at step 6 is done to

the private value of the variable z. The approach of NSU (No-Sensitive Upgrade) results in a

stop in all execution since the upgrade is not permitted for such information flows. In the case

of the approach proposed by Hedin and Sabelfeld [HS12b], an upgrade instruction is necessary

for the variable y in line 4 before the flow can continue in a safe manner. Such limitations

are not necessary in our approach, or in the case of SME and Faceted approaches. The clear

difference between these SME/Faceted approaches and our model is that, in the step 5, in the

case of the statement if(y), the evaluation of this statement is different because y contains

multiple values. This statement is evaluated only once in the case of our model for the value of

y = false;. However, both the faceted approach and SME evaluate the other branch for the

public value of y = true;. This is significant because our approach predominantly handles

the various cases using over-approaximation. There is a significant overhead associated to

the other approaches and this increases exponentially with the number of facets. Further, in

a dynamic language such as JavaScript, there can be un-intended side-affects from executing

un-necessary statements which is avoided in our approach.

The final difference is that while the public output observed at the faceted approach is

always false, it is always true in the case of our approach. Further, there is no impact on the

performance in our approach as there is no execution of alternative branches.

The overall advantage of our model lies in the fact that the function does not allow the

secret to flow into the variable y and z in both cases without the need for executing multiple

branches. The approaches of NSU, and Hedin & Sabelfeld require declassification to complete

execution. The approaches of Faceted/SME require to be executed for both values of y. Our

approach provides the balance of not executing additional statement while also not requiring

declassification to complete the execution of the function for both values of x.

The disadvantage of our approach is that policies have to be precise with regard to the func-

tions’ privileges. In other approaches, only the public output functions are restricted. However,

in our model, functions can only access either the public or the private value of the secret

variable based on the policies. For example, when public output functions are provided with

blank policies, they would have no privileges and would never be able to use the secret value.

Similarly, functions need only be provided access to particular variables.

We wish to re-iterate that a utility function is not envisioned with an intention to perform

Conclusion 97

tasks such as public output, but is meant to apply to cases such as performing a square-root,

calculating the interest given a number and other use-cases which are provided to do common

functionality to the program. In these cases, the utility function takes on the privileges of the

calling function for that execution, which is also a different perspective to other approaches

brought about due to function-level policies. We consider that such fine-tuning is an advantage

of function-level policies that our model has over other approaches compared in this section.

This is especially useful in JavaScript where malicious functions can be injected due to

vulnerabilities like XSS. While all other traditional approaches allow such scripts to modify

the secret variables and corrupt the data, ASD provides mechanisms to protect against such

modifications. This is mainly due to access rights that are assigned to variables to protect them

from un-intended modifications and is unique to our approach.

3.5 Conclusion

ASD is a novel dynamic IFC model that is designed to function on the modern internet and

takes into consideration the nature of JavaScript. We show that it is configurable with func-

tion level fine-tuning and separate read/write privileges for functions to access secret variables.

Further, the model allows for constant selective declassification using its mechanism of util-

ity functions. Utility functions only gain access to the secrets when called by self-sufficient

functions. ASD provides mechanisms to control information at every level and not just at the

perimeter like traditional approaches. Using ASD, even intermediary functions would not gain

access to the actual secret data if they are not privy to such information.

98 Address Split Design

Chapter 4

Implementation and evaluation

In this chapter, we discuss about the practical implementation of our model on a web browser

and the results of our evaluation. To confirm our model we first implemented it in Chromium

and subsequently verified the security provided to data from access against unauthorized func-

tions.

4.1 Implementation details

We implemented our model on the Chromium V8 JavaScript engine. This JavaScript engine

is open source and is well documented. We also considered the use of the Narcissus engine,

which is a JavaScript interpreter written in JavaScript for the Mozilla Firefox browser. This

was because Narcissus was used in the implementation of the faceted approach, which we hold

in high regard. However, due to the experimental nature of the engine and inexistent support

to the project, we chose the V8 engine as our primary choice. We were further motivated in

using a realistic JavaScript engine to evaluate the effectiveness of our approach and measure

its impact on performance. Hence, while it is more complex to implement our approach on a

full-fledged engine such as V8, considering the maintenance, and documentation of the code

base, we choose to use the V8 engine.

We did however face some hurdles because of the size of the codebase and the need to do

very intrusive changes to the compilation process. It must be noted that the initial codebase of

Chromium consists of several gigabyte of data. The architecture of V8 is quite complex and

relies on three just in time (JIT) compilers, namely full codegen, crankshaft and TurboFan. V8

dynamically change the compiler to optimise JS code that is often executed. We decided to

modify only the primary compiler (full codegen) and disable the other compilers. Indeed, the

size of the codebase made it harder to identify all the points in the code blocks to insert hooks

99

100 ASD-DG

and this became increasingly difficult in case of more efficient compilers such as crankshaft

and TurboFan. We hence decided to focus on a single compiler and choose full codegen which

was easier to hook into than others though there were a lot of modifications to be made on this

compiler as well. We disable the other compilers, which degrades the performance of V8 for

JS code that are frequently executed.

During the course of our modifications we found several issues that were subsequently

solved with unique tailored solutions. The foremost of these was the inline caching mechanism.

This mechanism is used to cache previously used variables for faster subsequent access. We

disabled this mechanism and modified the code for the caching to force a lookup at every

variable access. Similarly, we had to modify the variable creation module. We had huge

difficulties in this module since there were a lot of complex memory checks performed for code

blocks and it was not feasible to change the variable block to contain two variables (to reflect a

split variable). Such modifications would have required several core files as well as the behavior

of the garbage collector to be modified. Hence, we modified the object properties of the global

object and intercepted the object creation module to be triggered twice for a split variable. Such

variables are mapped by ASD’s internal modules and maintained. These modules also needed

to be created in such a way that they were not accidentally garbage collected.

Another issue that needed to be handled was the way optimizations were done to function

parameter variables. In chromium’s compilation modules, the lookup for the function parame-

ter variable would be skipped and optimized completely if this parameter was only read from

and there was no observable write. If there is a write, chromium would de-optimize this mech-

anism at runtime. We modified the code of the function at compile time to be in a dynamic

lookup context to ensure that the code lookup occurs for every variable call. ASD hooks were

inserted into the variable lookup process to change the variable that needs to be used at runtime.

Our modifications to Chromium hence primarily involves the need to change the compila-

tion process and to add various hooks at the variable lookup level so as to make decisions on

using the public or the private version of the variable. It must be noted that our modifications

have been limited to the V8 JavaScript engine and our proof-of-concept implementation covers

only the global variable names and function local variable names. Further, we have not imple-

mented any hooks on the DOM variables from the blink rendering engine. While variables

related to the DOM such as innerHtml, class, name and data-elements are still parsed

through the V8 engine, the DOM rendering remains untouched in our prototype.

It must be noted that there is a high degree of optimization that takes place in the code

based on the number of function calls and variables used. We have disabled several of these

optimization mechanisms in the V8 engine to facilitate easier implementation of our mecha-

nisms. We have also added various hooks into V8. Every variable read and write operation

Performance evaluation 101

is monitored. We have done this by modifying the inline caching mechanism and the scope

getter/setter mechanisms.

Despite such hooks, our prototype implementation is crude to a great degree. We have

added a source code wrapper which changes the source code of the loaded JavaScript before

compilation. This wrapper helps to facilitate the loading/unloading of dictionaries, allowing/-

denying the function call, checking the function parameters for secret values, and adding the

function scoped variables to the monitor. These are made through inserting custom defined

JavaScript functions pointing to our C++ libraries. The wrapper uses a series of regular expres-

sions to modify the code. The wrapper has been added to the core compilation module of V8

and is capable of handling eval functions. There is hence an overhead introduced by our model

which we believe can be improved. One proposal is to add the functionality directly to the

compiler rather than adding wrappers to modify the code in a just-in-time manner and hooks

to third party implementations as is the case currently.

Over the course of our work we added a core ASD C++ code base of 3509 lines. These

do not include the other third party libraries we used or the code we added into specific parts

of V8 to add hooks to the engine. We added approximately 40 functional hooks at varying

locations. There were several more hooks that we used but later discarded due to finding

better alternatives or due to other complications. The code added is actually miniscule when

compared to the size of V8. The core of V8 alone is about 174.8 MB in size and our code

contributed towards around 700 kilobytes of data without including third party libraries such

as boost which we used in our process. We also ported our code to Chromium replacing the

default V8 compiler with the version of the ASD prototype. There were also some JavaScript

code added to the engine but these JavaScript code acted as native functions communicating

with the ASD libraries. Adding all our routines to the compilation manifest has been a tedious

process to interweave our approach into the core library with its immense number of integrity

checks.

4.2 Performance evaluation

In thi section, we further describe the various tests that have been performed to validate the

characteristics of the ASD implemented on a web browser. In the Subsection 4.2.1, we evaluate

the performance of performing read and write operations in case of a split variable on the V8

engine implementing ASD. The Subsection 4.2.2 provides some experiments to compare ASD

with the performance degradation of SME and faceted approach.

102 ASD-DG

4.2.1 Performance estimation based on number of dictionaries

First, we intended to measure the performance of read/write operations due to the implemen-

tation of our model with regard to the number of dictionaries. This is done by measuring the

execution time on the system. We reassert that when a secret variable is modified, every func-

tion that has write access to it needs to re-evaluate its dictionaries for continued access. Such a

modification would hence have a significant overhead associated to it. This is not the case for

read access. Only the dictionary of the current function that is being executed is used to infer

the value to be used.

The graph in Figure 4.1 shows the performance of V8 when a function which contains

read or write instructions to a secret variable is executed. This is quantified by measuring the

execution time of the read and write statements. The results were obtained by inserting code to

measure time before and after the statement and computing the difference. Each of these results

shown in these graphs is the average of the values obtained over 1000 tries. The Table 4.1

provides the maximum and minimum values obtained during the course of these trials and the

standard deviation obtained. We measure this time taken for execution for different number of

self-sufficient functions with their own dictionaries. In our test case, this number of dictionaries

ranges from 0 to 10000. The results computed are based on the fact that all functions have

access to the secret variable and hence their dictionaries would need to be modified when this

secret variable is modified.

In our setup we use a generic V8 engine which was modified to use only one of its three

compilers (codegen). The V8 with ASD also use only one compiler. However, it is also mod-

ified to have all the hooks related to ASD plus the setup phase which modifies the JavaScript

code to be executed, since some part of our monitor are directly inlined in the original source

code to be executed.

In Figure 4.1, the subfigure 4.1a shows the results obtained when the function only performs

one read. It can be seen that the impact is quite limited for increasing number of dictionaries.

This is because the read operation uses only the current function’s dictionary. The execution

time is increasing in this case since the number of dictionaries created and maintained by the

model is increasing. Hence, to load the dictionary corresponding to a given function takes

marginally greater amount of time. We estimate that using much more efficient data-structures

could reduce the time taken.

The overhead between the de-optimized V8 engine and the V8 engine running ASD de-

pends to a great extend on the setup phase which inlines the modification to the JavaScript.

This setup phase is only executed once, when the JavaScript is loaded and is constant with re-

gard to the number of dictionaries. This is also highlighted by the subfigure 4.1c representing

100 reads performed by the JavaScript function. In that case the relative overhead between

Performance evaluation 103

ASD-V8 and V8 is less important since the overhead due to the setup phase does not depends

on the number of reads.

When looking at write operations, the dictionaries of all functions need to be re-evaluated

when a secret variable is changed. This causes a significant performance degradation on write

operations as can be observed in subfigure 4.1b in comparison to the read operation in sub-

figure 4.1a. This difference is observable at 10000 dictionaries. Similarly, the subfigure 4.1d

which represents 100 writes amplifies this issue.

Despite the overhead presented in the graphs, we consider such a scenario of 10000 self-

sufficient functions to be an abnormal usecase. To verify the number of functions in a standard

website, we used a list of websites from Alexa top 1251. This is a standard list of websites

that is maintained by the Alexa compagny to rank the various websites across the world based

on their traffic. We iterated through Alexa top 125 websites and computed the list of functions

present in each of them. Our tests on the these websites resulted in a maximum of 8500 named

functions and a minimum of 141 named functions with an average of around 2780 functions.

These figures include all libraries, advertisements and cross-domain scripts that run on the

webpage.

Our fundamental design choices have been made with the assumption that the number of

self-sufficient functions would be low, i.e. most functions would not need to access secret

variables.

In a scenario where every function is self-sufficient, other optimizations such as a group of

functions sharing the same dictionary or a single dictionary based on script origin URL can be

used to reduce the overhead. In this case, all the access rights of all the functions that fall in

this group would be the same and there would need to be only one dictionary. This would be

comparable with a label based approach having one label for all the functions in that group. It

is possible to group functions based on their origin URL as well. In this case, any functions that

are obtained from a particular URL could be grouped together into a single category having the

same privileges. For example, all functions in a file named login.js could be given access to

a variable username. This would provide for a possible optimization to reduce the number of

dictionaries maintained by the compiler.

1https://www.alexa.com/topsites

https://www.alexa.com/topsites

104 ASD-DG

0.35	

0.91	
 0.93	
 0.95	
 0.96	

0.99	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

v8	
 ASD-­‐v8	

	
 [0]	

ASD-­‐v8	
 	

[1]	

ASD-­‐v8	
 	

[100]	

ASD-­‐v8	

	
 [1000]	

ASD-­‐v8	
 	

[10000]	

Ti
m
e	

in
	
 m

s	

Engine	
 used	
 with	
 number	
 of	
 dic4onaries	

V8	
 /	
 ASD-­‐V8	
 [Number	
 of	
 dic4onaries]	

Performance	
 for	
 a	
 single	
 read	
 opera4on	

	
 (average	
 over	
 1000	
 tries)	

(a) Performance for 1 read

0.36	

0.92	
 0.94	

1.01	

1.1	

2.1	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

2.2	

2.4	

v8	
 ASD-­‐v8	

	
 [0]	

ASD-­‐v8	
 	

[1]	

ASD-­‐v8	
 	

[100]	

ASD-­‐v8	

	
 [1000]	

ASD-­‐v8	
 	

[10000]	

Ti
m
e	

in
	
 m

s	

Engine	
 used	
 with	
 number	
 of	
 dic4onaries	

V8	
 /	
 ASD-­‐V8	
 [Number	
 of	
 dic4onaries]	

Performance	
 for	
 a	
 single	
 write	
 opera4on	

	
 (average	
 over	
 1000	
 tries)	

(b) Performance for 1 write

Performance evaluation 105

3.307	

4.012	
 4.1	
 4.12	
 4.2	

4.4	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

v8	
 ASD-­‐v8	

	
 [0]	

ASD-­‐v8	
 	

[1]	

ASD-­‐v8	
 	

[100]	

ASD-­‐v8	

	
 [1000]	

ASD-­‐v8	
 	

[10000]	

Ti
m
e	

in
	
 m

s	

Engine	
 used	
 with	
 number	
 of	
 dic4onaries	

V8	
 /	
 ASD-­‐V8	
 [Number	
 of	
 dic4onaries]	

Performance	
 for	
 100	
 read	
 opera4ons	

	
 (average	
 over	
 1000	
 tries)	

(c) Performance for 100 reads

4.16	
 4.22	
 4.35	

5.6	

7	

10.8	

0	

2	

4	

6	

8	

10	

12	

v8	
 ASD-­‐v8	

	
 [0]	

ASD-­‐v8	
 	

[1]	

ASD-­‐v8	
 	

[100]	

ASD-­‐v8	

	
 [1000]	

ASD-­‐v8	
 	

[10000]	

Ti
m
e	

in
	
 m

s	

Engine	
 used	
 with	
 number	
 of	
 dic4onaries	

V8	
 /	
 ASD-­‐V8	
 [Number	
 of	
 dic4onaries]	

Performance	
 for	
 	
 100	
 write	
 opera4osn	

	
 (average	
 over	
 1000	
 tries)	

(d) Performance for 100 writes

Figure 4.1: Performance tests of V8 vs ASD.V8

106 ASD-DG

Table 4.1: Standard deviation for the performance test

Operation Number of operations Engine/No. of Dictionaries Max Min SD
Read 1 V8 0.36 0.34 0.0058
Read 1 ASD-V8/0 0.95 0.87 0.0234
Read 1 ASD-V8/10 0.98 0.88 0.028
Read 1 ASD-V8/100 1 0.9 0.0286
Read 1 ASD-V8/1000 1.02 0.901 0.0351
Read 1 ASD-V8/10000 1.04 0.94 0.0284
Write 1 V8 0.42 0.3 0.0346
Write 1 ASD-V8/0 0.96 0.88 0.0230
Write 1 ASD-V8/10 0.97 0.91 0.0173
Write 1 ASD-V8/100 1.04 0.98 0.0170
Write 1 ASD-V8/1000 1.14 1.06 0.0230
Write 1 ASD-V8/10000 2.169 2.03 0.0391
Read 100 V8 3.347 3.267 0.0228
Read 100 ASD-V8/0 4.062 3.962 0.0286
Read 100 ASD-V8/10 4.14 4.06 0.0228
Read 100 ASD-V8/100 4.15 4.09 0.0170
Read 100 ASD-V8/1000 4.22 4.18 0.0116
Read 100 ASD-V8/10000 4.45 4.35 0.0287
Write 100 V8 4.23 4.09 0.0407
Write 100 ASD-V8/0 4.24 4.2 0.0114
Write 100 ASD-V8/10 4.4 4.3 0.0294
Write 100 ASD-V8/100 5.659 5.54 0.0352
Write 100 ASD-V8/1000 7.04 6.96 0.0227
Write 100 ASD-V8/10000 10.83 10.77 0.0167

4.2.2 Comparison of performance with SME and faceted approach

In this section we present an experiment that is used to measure the performance deterioration

of the various approaches with increasing number of dictionaries. Our approach aims to have

a reduced performance consumption and the results that we obtained are consistent with our

expectations.

The Table 4.2 shows the time difference between the evaluation of SME, faceted approach

and ASD for the program used in the Figure 3.20 in Section 3.4. The tests have been performed

for different number of principals in SME and faceted approach, and number of dictionaries

for ASD. The implementation of SME and faceted approach use the Narcissus JavaScript en-

gine [Wike].2 It must be noted that the time taken for executing this program on a standard

2Obtained by email from Dr. Thomas Austin, the developer of this code base. http://www.sjsu.edu/
people/thomas.austin/

http://www.sjsu.edu/people/thomas.austin/
http://www.sjsu.edu/people/thomas.austin/

Performance evaluation 107

Mechanism: SME Faceted Approach ASD
Best Case Worst Case Best Case Worst Case

Number of
principals or
dictionaries

Time in ms

0 3 5 5 2 2
1 4 5 5 3 3
2 10 6 6 3 3
3 21 6 7 3 3
4 58 6 13 3 3
5 112 6 25 3 3
6 222 7 30 3 3
7 470 7 42 3 3
8 1026 8 75 3 3

Table 4.2: Comparison between SME, Faceted Approach and ASD

Narcissus engine was 3ms. Similarly the time taken to run this program on a standard V8

engine was 2ms.

Regardless of the number of principals to be satisfied to have access to the secret, SME

executes the program 2n times, where n is the total number of principals. Faceted approach

has a best case and a worst case. The number of times it executes the implicit flow depends

on the principals that need to be satisfied for access to the secret. The best case implies that

there is only one principal that needs to be satisfied for access to the secret though there are n

principals in the program. The worst case implies that there are n principals and all of them

need to be satisfied to get access to the secret. In any case, ASD performance are quite similar

to the best case for the faceted approach as shown in the table. The best case for ASD is

when only one dictionary has read access to the variable, hence only one dictionary needs to

be modified. The worst case for ASD is when all dictionaries have read access to the variable

thereby requiring more number of updates when the value of the variable changes. There is no

observable difference in ASD results for the best and the worst case scenario for the number of

dictionaries used in the program. As shown in the read, write tests above, ASD is able to scale

better than SME and faceted approach. It only shows significant deterioration in performance

above 10000 dictionaries which is a reasonable limit.

4.2.3 Impact of ASD on real websites

In this section we measured the impact of using a browser with an active asd implementation

on the Alexa top 125. These tests are intended to measure the performance degradation due

108 ASD-DG

to the additional computation performed due to the presence of ASD as well as measure the

differences in the page loads between a browser with asd and one without asd.

For all these tests we have used three versions of the Chromium browser. The first is the

unmodified original Chromium browser that was compiled in the system. We refer to this as

“original Chromium”. The second is the Chromium with inline caching disabled and using

only the full-codegen compiler of V8. We call this the “de-optimized Chromium”. These de-

optimizations have also been used in the version that implements the ASD model. We call this

“ASD Chromium ”.

For the first test we intent to find if there is any noticeable difference between a webpage

loaded in the original Chromium and a page loaded by ASD Chromium. This is done to verify

if adding ASD adversely affects the actual working of a browser. However, in the modern

web, the webpages are no longer static and differ in their content by user, time and many

other factors. The first step it to have a base vector to compare with. The original chromium

browser is allowed to load a webpage and this webpage is recorded. Then it is used to load

the page a second time and the similarities between the two page loads are noted. Finally,

ASD Chromium loads the same webpage and the similarity between ASD Chromium and the

first run of the original chromium browser are made. This is done by obtaining the rendered

document tree after the page load is completed, as a string representation and then computing

the difference between these two strings.

The Table 4.3 shows a portion of these results. It can be seen from this table that ASD’s in-

tegration has not adversely affected the page load of the browser. In this table, pages that have

no dynamic content such as Tco are not supposed to have any difference between two consec-

utive loads on two different browsers. Hence, the percentahe similarity is at 100%. However,

for pages such as Youtube, there is notable difference between different page loads. This is

because even if a few video recommendations change or the order of the recommendations

change, it significantly affects the similarity score. In blogspot while the percentage similarity

was 100% on the original Chromium between multiple loads, ASD Chromium did not have

the same similarity with the original browser. This was because one of the elements loaded

by the server had a different dynamic HTML5 “data” attribute string associated to it. The re-

sult disparity in Stackoverflow is because the list of “Top Questions” on the page is refreshed

very often. This behavior is consistent across all browsers. The % Similarity for ASD in the

case of Stackoverflow is high because majority of the questions were the same at the time both

browsers loaded the page due to coincidence.

In almost all other cases, the results were quite similar as the expected results as per the

page’s dynamic behavior. This can be seen from a the Figure 4.2 which estimates the difference

between the similarities observed by the original Chromium and ASD Chromium. In this figure

Performance evaluation 109

it can be seen that in more than 72% of the websites, both browsers have a difference of less

than 1% and only 2.8% of websites have a difference greater than 10%. Our observations

indicate that these differences were because of the dynamic content in the webpage being very

different or arranged in very different orders. There was no observable error that was unique to

either browser.

0-­‐1%,	

72.85714286	

2-­‐3%,	

11.42857143	

4-­‐5%,	
 10	

5-­‐10%,	

2.857142857	

>10%,	

2.857142857	

Figure 4.2: Percentage difference between the similarities by original Chromium and ASD
Chromium

% %
NAME SITE SIMILARITY SIMILARITY

ASD
Youtube http://youtube.com 77.0942 82.4149

Facebook http://facebook.com 77.7414 77.0141

Baidu http://baidu.com 99.5651 99.6272

Amazon http://amazon.com 98.2958 98.1195

Wikipedia http://wikipedia.org 100 100

GoogleIn http://google.co.in 99.6008 99.7876

Twitter http://twitter.com 98.9562 98.5978

Live http://live.com 97.3093 96.4687

http://youtube.com
http://facebook.com
http://baidu.com
http://amazon.com
http://wikipedia.org
http://google.co.in
http://twitter.com
http://live.com

110 ASD-DG

GoogleJp http://google.co.jp 99.6781 99.6638

Bing http://bing.com 98.432 96.7512

YahooJp http://yahoo.co.jp 88.4197 85.1356

Linkedin http://linkedin.com 99.7962 99.6703

Vk http://vk.com 99.9041 99.8374

YandexRu http://yandex.ru 95.0448 94.527

GoogleDe http://google.de 93.2195 93.2175

GoogleRu http://google.ru 99.7186 99.5478

AmazonJp http://amazon.co.jp 97.835 97.9298

GoogleUK http://google.co.uk 99.5479 99.4161

360cn http://360.cn 99.7773 99.8856

Tmail http://tmall.com 97.9849 95.4378

GoogleBr http://google.com.br 99.6878 99.3843

Tco http://t.co 100 100

MailRu http://mail.ru 99.0407 99.1003

Microsoft http://microsoft.com 97.2932 98.3188

Paypal http://paypal.com 98.7449 98.8882

Wordpress http://wordpress.com 99.756 99.7543

Onclickads http://onclickads.net 99.3622 99.7267

GoogleEs http://google.es 99.6989 99.4232

Blogger http://blogspot.com 100 99.911

Tumblr http://tumblr.com 96.5471 94.9632

Apple http://apple.com 99.9947 99.4453

Imgur http://imgur.com 96.4429 99.7809

Stackoverflow http://stackoverflow.com 71.0377 96.5764

Gmw http://gmw.com 98.5964 98.3954

Aliexpress http://aliexpress.com 89.9766 91.8698

GoogleMx http://google.com.mx 99.6573 99.5413

Imdb http://imdb.com 93.4776 93.0096

Fc2 http://fc2.com 99.7609 99.7788

GoogleHk http://google.com.hk 99.6541 99.5967

Chinadaily http://chinadaily.com 99.4052 100

OkRu http://ok.ru 88.0338 99.8105

Naver http://naver.com 89.096 90.6036

http://google.co.jp
http://bing.com
http://yahoo.co.jp
http://linkedin.com
http://vk.com
http://yandex.ru
http://google.de
http://google.ru
http://amazon.co.jp
http://google.co.uk
http://360.cn
http://tmall.com
http://google.com.br
http://t.co
http://mail.ru
http://microsoft.com
http://paypal.com
http://wordpress.com
http://onclickads.net
http://google.es
http://blogspot.com
http://tumblr.com
http://apple.com
http://imgur.com
http://stackoverflow.com
http://gmw.com
http://aliexpress.com
http://google.com.mx
http://imdb.com
http://fc2.com
http://google.com.hk
http://chinadaily.com
http://ok.ru
http://naver.com

Performance evaluation 111

AmazonDe http://amazon.de 97.9261 97.9848

Github http://github.com 98.3017 98.1234

Ask http://ask.com 99.7212 99.7064

Diply http://diply.com 97.9284 98.3483

Rakuten http://rakuten.co.jp 85.1809 86.5742

GoogleId http://google.co.id 99.4116 99.2816

Office http://office.com 99.8268 99.9263

GoogleTr http://google.com.tr 99.4653 99.7198

Tianya http://tianya.cn 97.297 99.3753

Alibaba http://alibaba.com 98.2012 99.8124

Craigslist http://craigslist.com 99.9867 100

Pixnet http://pixnet.net 84.5572 84.7843

Jd http://jd.com 91.6158 95.1255

Niconico http://nicovideo.jp 94.4795 97.5141

AmazonIn http://amazon.in 98.1498 98.2191

AmazonUK http://amazon.co.uk 97.8823 97.9771

GoogleKr http://google.co.kr 99.8599 99.5936

Cctv http://cntv.cn 100 100

GooglePl http://google.pl 99.5443 99.5497

Whatsapp http://whatsapp.com 100 100

GoogleAu http://google.com.au 99.6765 99.6493

Outbrain http://outbrain.com 97.2997 99.5575

Dropbox http://dropbox.com 81.7632 82.1363

Coccoc http://coccoc.com 98.3057 99.7119

Adobe http://adobe.com 96.1428 96.8437

Sogou http://sogou.com 92.186 99.6805

Microsoftonline http://microsoftonline.com 93.9214 91.9238

China http://china.com 98.8469 99.6702

Table 4.3: Percentage Similarity of pages across multiple page loads

We also verified the errors (if any) that were displayed on the page. In any case, if there

were any errors in the original browser, they were also reflected in ASD. We have not encoun-

tered any error that was unique to either browser during the course of our experimentation.

We continued further experimentation on the Alexa 125 to check the performance degra-

http://amazon.de
http://github.com
http://ask.com
http://diply.com
http://rakuten.co.jp
http://google.co.id
http://office.com
http://google.com.tr
http://tianya.cn
http://alibaba.com
http://craigslist.com
http://pixnet.net
http://jd.com
http://nicovideo.jp
http://amazon.in
http://amazon.co.uk
http://google.co.kr
http://cntv.cn
http://google.pl
http://whatsapp.com
http://google.com.au
http://outbrain.com
http://dropbox.com
http://coccoc.com
http://adobe.com
http://sogou.com
http://microsoftonline.com
http://china.com

112 ASD-DG

dation due to the presence of ASD. To do this we implemented a plugin and forcefully inserted

policies at page load to ensure that the ASD mechanism has some active dictionaries at the

run-time of these functions. The plugin also computed and aggregated the page load times for

the various websites. The plugin starts loading the website and after the load is completed, the

default Chromium APIs are used to obtain the load time for the page. The results are shown in

Table 4.4.

The page load times of the de-optimized Chromium and ASD Chromium have been then

compared to check the degradation caused by ASD. There are some cases where ASD performs

better than the de-optimized Chromium. However, these are specific cases due to network

lag, or because there have been limited JavaScript in the page (such as Tco). Many Chinese

domain name sites such as Weibo experience a significant and inconsistent lag when loading

the page. This is the reason we could determine for the negative percentage difference. We

also believe that there are some other network caching mechanisms provided by the internet

provider which influence load time of resources. AmazonDe which experienced significant

performance degradation did not have any network issues and the performance degradation can

be directly correlated to the JavaScript on the page being executed with ASD hooks. However,

this is the maximum % difference observed by us over all our samples. The second highest was

on ebay at 180.22% and the third was on AmazonJp at 150.82%.

To understand more on this, we made an analysis as shown in Figure 4.3. In this analysis,

the pages where ASD consumed more load time as measured. In this case for 41% of the

webpages, ASD consumed less than 10% overhead to load the page. Only for 6% of the pages

did ASD consume more than 50% more of overhead.

Name Page Load Time ASD Page Load Time % Difference
Youtube 1698 2224 30.98

Facebook 1749 2841 62.44

Amazon 1498 1570 4.81

Wikipedia 409 624 52.57

GoogleIn 113 134 18.58

Twitter 1016 717 -29.43

Taobao 9302 11372 22.25

Live 247 292 18.22

Sina 27151 36042 32.75

Bing 219 319 45.66

Msn 523 1064 103.44

YahooJp 6563 11538 75.8

Performance evaluation 113

Weibo 6881 4861 -29.36

LinkedIn 647 737 13.91

Vk 896 876 -2.23

YandexRu 1144 1230 7.52

Instagram 1249 1222 -2.16

Ebay 2654 7437 180.22

GoogleRu 671 106 -84.2

AmazonJp 1523 3820 150.82

Reddit 4643 4851 4.48

GoogleUK 705 814 15.46

360cn 10125 13207 30.44

Tmail 10254 17060 66.37

Pinterest 1237 1467 18.59

Tco 187 117 -37.43

MailRu 2847 3655 28.38

Microsoft 1173 1018 -13.21

GoogleIt 740 782 5.68

Paypal 505 945 87.13

Wordpress 1046 1165 11.38

Onclickads 813 1165 43.3

GoogleEs 633 797 25.91

Blogger 781 811 3.84

Tumblr 5834 6608 13.27

Apple 1038 1098 5.78

Imgur 2096 1878 -10.4

Stackoverflow 563 682 21.14

Gmw 19221 26603 38.41

Aliexpress 4372 3088 -29.37

GoogleMx 479 492 2.71

Fc2 768 1059 37.89

GoogleHk 138 153 10.87

Chinadaily 21198 22431 5.82

OkRu 1748 1898 8.58

GoogleCa 87 107 22.99

114 ASD-DG

Naver 11115 12929 16.32

AmazonDe 1796 6194 244.88

Github 1492 1481 -0.74

Ask 972 539 -44.55

Diply 1846 2095 13.49

Rakuten 27448 36662 33.57

GoogleId 652 739 13.34

Office 1094 1265 15.63

GoogleTr 131 116 -11.45

Tianya 10871 20310 86.83

Alibaba 10874 18740 72.34

Sogou 12820 15557 21.35

Craigslist 1368 1341 -1.97

Pixnet 8214 10840 31.97

Jd 18591 19767 6.33

Table 4.4: Load times of the original and ASD integrated Chromium browsers

Our implementation can hence be achieved with a low loss in performance to modern web

pages and is not disruptive to the current pages on the internet. It is our belief that it is hence

practical for a modern web browser.

4.2.4 Standard benchmark tests

In this section we list the results obtained when ASD is run on standard benchmarks and tested

for both conformance as well as performance degradation due to the presence of ASD.

To check if implementing ASD adhered to the conformance of web standards we performed

the acid3 tests [Wika] on both the original Chromium browser and the Chromium browser

which is implementing the ASD model.

This is a standard test suite developed by the Web Standards Project to the check the

browser’s compliance with the various web standards. Both the original Chromium browser

and the ASD Chromium browser obtained a score of 100/100 which means that addition of the

ASD module did not break any of the standard web functionalities of the web browser with

regard to CSS and JavaScript.

Other than the conformance test, we also performed tests on six standard benchmarks.

These results are shown in the Figure 4.4. The first of these is SunSpider [Webc]. This bench-

Performance evaluation 115

<10%	

41%	

10-­‐20%	

25%	

20-­‐30%	

14%	

30-­‐40%	

8%	

40-­‐50%	

6%	

>50%	

6%	

Percentage	
 difference	
 in	
 page	
 load	
 0mes	
 	

<10%	
 10-­‐20%	
 20-­‐30%	
 30-­‐40%	
 40-­‐50%	
 >50%	

Figure 4.3: Percentage difference between the page load times of de-optimized Chromium and
ASD Chromium

mark only tests the core JavaScript implementation and does not check the DOM or CSS.

However, it is a test that focuses on use-case based analysis such as code compression, encryp-

tion and text manipulation. The results of this test are shown in the subfigure 4.4a. It must be

noted that a lower result is better in this analysis. The modified de-optimized Chromium only

performed marginally better than ASD Chromium in this case. This result is within expec-

tations since the benchmark focuses on use-case based analysis rather than performing more

intense tests.

Another benchmark, named Kraken [Mozc], was developed along the same line of thought

of SunSpider by Mozilla. This benchmark performs some additional tests such as an A-star

search algorithm and some cryptographic routines. These results are shown in the subfig-

ure 4.4b. Following SunSpider, the results for this benchmark are also better if they are lower.

However, Kraken is significantly more intensive than SunSpider and the tests reveal that the

ASD Chromium browser takes about 30% more time for the same set of JavaScript tests. This

is an overhead due to our mechanism.

Dromaeo [Mozb] is a benchmark suite that performs both JavaScript and DOM test. It

is maintained by Mozilla. The results for this test are shown in the subfigure 4.4c. Unlike

other tests prior to this, it computes number of runs per second. Hence, a higher result is

better. ASD performs significantly well in this test by only causing a 4.8% overhead over the

116 ASD-DG

modified de-optimized Chromium. This is because the code is re-run multiple number of times

and the wrapper function that is used prior to compilation need not be reused many times in

this use-case.

Original(
Chromium(

Modified(
Chromium((Chromium2ASD(

Sunspider(1.947(2.835(3.008(

0(

0.5(

1(

1.5(

2(

2.5(

3(

3.5(

Ti
m
e%
in
%se

co
nd

s%

Sunspider%

(a) Sunspider benchmark

Original(Chromium(Modified(
Chromium((Chromium2ASD(

Kraken(127.999(165.53(215.413(

0(

50(

100(

150(

200(

250(

Ti
m
e%
in
%se

co
nd

s%

Kraken%

(b) Kraken benchmark

Original(
Chromium(

Modified(
Chromium((Chromium2ASD(

Dromaeo(1118.91(960.34(914.35(

0(

200(

400(

600(

800(

1000(

1200(

Ru
ns
%p
er
%se

co
nd

%

Dromaeo%

(c) Dromaeo benchmark

Original(
Chromium(

Modified(
Chromium((Chromium2ASD(

Peacekeeper(1162(1065(1008(

0(

200(

400(

600(

800(

1000(

1200(

1400(

Pe
ac
ek
ee
pe

r(S
co
re
(

Peacekeeper(

(d) Peacekeeper benchmark

Original(Chromium(Modified(
Chromium((Chromium2ASD(

JetStream(7.823(6.2659(5.6203(

0(
1(
2(
3(
4(
5(
6(
7(
8(
9(

Je
tS
tr
ea
m
(S
co
re
(

JetStream(

(e) JetStream

Original(Chromium(Modified(
Chromium((Chromium2ASD(

Octane(789(659(589(

0(
100(
200(
300(
400(
500(
600(
700(
800(
900(

O
ct
an

e'
Sc
or
e'

Octane'

(f) Octane benchmark

Figure 4.4: Standard benchmark comparisons between Original Chromium, Modified
Chromium and Chromium-ASD

Peacekeeper [Fut] is a benchmark to measure JavaScript performance using test cases de-

rived from pages such as youtube. It tests many new HTML5 technologies such as WebGL

and video. The result obtained is a peacekeeper score which is computed at the end of the

execution and is shown in subfigure 4.4d. A higher score is better in this benchmark. It must

Security considerations: handling vulnerabilities 117

be noted that peacekeeper is a realistic test case, hence does not exclusively test the rendering,

DOM manipulation or JavaScript but is a combination of all three. ASD chromium performs

significantly well in this test by only causing a 5.35% overhead over the modified de-optimized

Chromium. This is because this test contains many components including the rendering of

HTML5 video on the page. These features are not directly impeded by our implementation

and the tests involving the rendering engine are not affected due to our model. However, the

test also requires JavaScript which is processed by the V8 engine and these are affected due to

ASD. Further many of these tests are related to parts of the code where the hooks by ASD are

done purely in C++ and hence the better efficiency.

Finally, we performed tests using Octane [Goo] and JetStream [Webb] benchmarks. These

tests also verify the time taken to compile and then run the same code multiple times. The

results are shown in subfigure 4.4e and subfigure 4.4f. In both these tests the higher score

is better. In this case, due to having no optimizations especially without inline caching, the

modified de-optimized Chromium and the ASD Chromium have a significant performance de-

gradation in performance.

The benchmarks and performance analysis show that ASD is practical in the modern web.

The overhead for 66% of the Alexa top 125 pages is less than 20%. Only 6% of the webpages

in the Alexa 125 require more than 50% overhead to load the page. There is less than 5%

difference in page load similarity for obout 95% of the webpages in the Alexa 125 as well.

This assures that implementing ASD does not break the core of the browser and also assures

that the overhead is within acceptable limits.

4.3 Security considerations: handling vulnerabilities

In this section, we intend to evaluate how our approach is useful in remediating the problems

caused by vulnerabilities present in modern websites. It must be noted that ASD is not capa-

ble of directly eliminating the vulnerability, it is there to protect key information from being

affected despite the presence of these vulnerabilities. However, information flow control in

general, and especially our approach, provides solutions to the various problems mentioned in

Section 1.2. In this section we list how ASD can handle these problems.

In all the examples listed below, we assume that there is legitimate code running on the

system and that malicious code was inserted into the system. Such malicious code could be

triggered by the presence of vulnerabilities such as cross-site scripting, malicious advertise-

ments, malicious browser extensions and unverified libraries hosted by the server. Once any

JavaScript is loaded on the DOM, it will be executed. Often, a tiny malicious script is first

loaded using any of the mechanisms mentioned above and this script creates more <script>

118 ASD-DG

DOM elements therefore extending its capabilities.

4.3.1 Protecting the Cross-Site Request Forgery Token

In the example listed in the code 4.1, a CSRF token is used to prevent CSRF. However, it is

necessary to keep this string a secret from unnecessary functions in the page. This variable is

then used in every subsequent request. The function XMLHttpRequest would only be able to

use the secret value of csrfToken when the function setUserFirstName calls it.

It must be noted that Cross-Site Request Forgery is a vulnerability where the server is not

able to distinguish between a legitimate and an illegitimate request, as explained earlier in

Section 1.2.2. For example, if a malicious request was sent to make a bank transfer and the

server processes the request, it could be devastating. In this example, this malicious action is

done in the function maliciousSetParameter, that is supposed to be injected. This function

is able to use the variable csrfToken to send another legitimate request to the server.

1 var csrfToken = 0;
2 function initToken ()
3 {
4 csrfToken = ’jkhahhahsjhasdkkdhkcbh2e23u ’;
5 };
6 function setUserFirstName ()
7 {
8 if(confirm(’Set first name

to:’+document.getElementById(’EditFN ’).value+’ ?’))
9 {

10 XMLHttpRequest(’/setusername?fname=’
11 + urlencode(document.getElementById(’EditFN ’).value)
12 + ’&csrftoken=’ + csrfToken);
13 }
14 };
15 initToken ();
16 setUserFirstName ();
17 function maliciousSetParameter ()
18 {
19 var xhr3 = new XMLHttpRequest ();
20 xhr3.open("GET", ’/setusername?fname=’ +

urlencode(’badString ’) + ’&csrftoken=’ + csrfToken , false);
21 xhr3.send(null);
22 if (xhr3.status === 200) {
23 responseMessage = (xhr3.responseText);

Security considerations: handling vulnerabilities 119

24 }
25 };

Code 4.1: CSRS example

initToken

setUserFirstName

csrfToken

csrfToken

R

Function Name Variable Ref. Access

W

Perimeter Functions:

console.log

console.error

console.exception

Utility Functions:

setUserFirstName XMLHttpRequest R

[Native]*

[http://domain/1.js]*

Figure 4.5: Policy for CSRF

In this example, we present a solution using ASD as shown in Figure 4.5, the functions

initToken and setUserFirstName are the authorized functions to access the csrfToken.

The function initToken is used to get the initiate the csrftoken using a hardcoded string.

This string is set to different values by the server when the page is loaded. Hence, it is given

write access to the variable. This token is used in the function setUserFirstName. Here, we

consider the perimeter functions of console.log to be a public output with no privileges while

XMLHttpRequest is used as a utility function. Since it is a utility function, XMLHttpRequest

would take on the privileges of calling function at runtime. It must be noted that the XML-

HttpRequest used here is also a split variable with the function setUserFirstName having

read access to it. Since no policies for the function has been specified, the private part of

the variable becomes a utility function. However, by convention of split functions, the pub-

lic part of the variable becomes a self-sufficient function with no privileges. Hence, private

part of XMLHttpRequest inherits the rights of the calling function a.k.a. setUserFirstName.

However the public part cannot have any rights to inherit when accessed from the function

maliciousSetParameter.

Hence, only specific privileges need to be given to specific functions and this would ensure

120 ASD-DG

that only permitted actions would be performed. ASD is capable of handling this task. In this

example, even if the malicious script tried to modify XMLHttpRequest, it would only affect the

public part of XMLHttpRequest, making it futile to affect even the reference of the variable.

4.3.2 WebRTC

WebRTC is a modern technology with a specific recommendation that only trusted scripts

should be allowed in the website since the various variables required for secure communication

remain accessible to all scripts in the page. It is hence necessary to focus on protecting these

variables from insecure scripts.

Let us consider the attack in Code 4.2. It can be seen that this piece of code first tries to

overload the onmessage function of the MessageChannel which is referenced by the variable

mc. This is done in the function maliciousHook. In this function, the event onmessage is

changed to infer to malicious function. This function triggers changeAllIdentities which

then changes the sdp object therefore effectively hijacking the connection.

1 // rpc is a RTCPeerConnection object
2 // mc is a MessageChannel object
3 function maliciousHook ()
4 {
5 mc.port1.onmessage = function(e) {
6 newOffer.sdp = changeAllIdentities(e.data ,mc.offer.sdp);
7 rpc.trueCallback(newOffer);
8 };
9 };

10 maliciousHook ();
11 function changeAllIdentities(newIdentity ,sdp){
12 identityExtraction = base64(newIdentity);
13 return sdp.replace (/ identity:[A-Z0 -9]*\n/g,

’identity:’+identityExtraction);
14 };
15 function passMessage(message ,mc)
16 {
17 ...
18 };

Code 4.2: WebRTC

Consider the policy as specified in the Figure 4.6. In this case, the sdp objects need to

be secure and accessible only to authorized functions. ASD is capable of performing such an

action on the web browser.

Security considerations: handling vulnerabilities 121

passMessage

createConnection

mc

mc

R

Function Name Variable Ref. Access

RW

Perimeter Functions:

console.log

console.error

XMLHttpRequest

Utility Functions:

[Native]*

[http://domain/1.js]*

Figure 4.6: Policy for WebRTC

The use of our model allows protection of WebRTC objects from untrusted scripts in the

page thereby being an effective remediation to this issue. In a similar manner we are also able

to keep the connection objects of the Websockets safe as shown in the next subsection.

4.3.3 Websockets

WebSockets [FM11] is a modern HTML5 standard which makes communication between

client and server a lot more simpler than ever. Modern technologies have made it possible

to sandbox the browser on a whole new scale thereby making it possible for riskier modes of

access to be made. Hence a lot of newer technologies have been introduced including Web-

Sockets. WebSockets is slightly different than the standard TCP or UDP socket implementa-

tion. In this case, the protocol is still HTTPS and this makes it more versatile than opening a

TCP connection on another port since WebSockets would have no problems in working with

HTTP proxies. The protocol is itself symbolized by ws[s]:// and it keeps the established con-

nection open to continuously send or receive messages.

Once a connection is established, it is kept open for further transmission of data. It must be

noted that authentication is completed when the connection is established and hence a secure

channel is available to the web page for further communication.

In the example shown in Code 4.3, the function maliciousJS uses an established connec-

tion websocketConnection to pass a message posing as the user. There are four functions

in this program. Three of these are legitimate functions and there is a malicious function rep-

resented by maliciousJS. The connection is first created when the initiateConnection is

122 ASD-DG

called to start the connection to the host. The functions onGotMessage and onWSOpen are reg-

istered to the events of the connections. The maliciousJS here, tries to send a message using

the sensitive channel.

1 var websocketConnection;
2 function onGotMessage(evt)
3 { console.log("Received from server: " + evt.data); };
4 function onWSOpen () {
5 console.log("Connected to " + malwsUri);
6 websocketConnection.send(’hello ’);
7 };
8 function initiateConnection ()
9 {

10 var wsUri = "wss://" + document.location.host + "/wsendpoint";
11 websocketConnection = new

WebSocket(wsUri+’?csrftoken=’+csrftoken);
12 websocketConnection.onmessage = onGotMessage;
13 websocketConnection.onopen = onWSOpen;
14 };
15 initiateConnection ();
16 function maliciousJS ()
17 {
18 websocketConnection.send(’Try this app at

http :// malicious.com/app’);
19 };
20 maliciousJS ();

Code 4.3: jsonp.js

Security considerations: handling vulnerabilities 123

initiateConnection

onGotMessage

websocketConnection

websocketConnection

RW

Function Name Variable Ref. Access

R

Perimeter Functions:

console.log

console.error

XMLHttpRequest

Utility Functions:

onWSOpen websocketConnection R

[Native]*

[http://domain/1.js]*

Figure 4.7: Policy for WebSockets

The policy shown in the Figure 4.7 provides a possible remediation using ASD. The policy

intends to make the websocketConnection a secret variable thereby avoiding this misuse by

the function maliciousJS. Once the variable websocketConnection is made a secret, the

function maliciousJS would not have access to it.

Hence, is can be stated that the ASD model is able to protect variables effectively from

access from malicious scripts in the webpage. We prove this in multiple critical scenarios on

the modern web by protecting the csrf token, the secure link between two clients in WebRTC

and then the communication channel to a server in case of web sockets. Further, ASD is also

able to protect core functions from modifications. We conclude that ASD can be an efficient

and effective solution to handle the common problems in the web.

124 ASD-DG

Conclusion

This chapter concludes our thesis.We first sum-up the results we have achieved and then give

some perspective and future work.

Results

The objective of our work has been to provide a methodology that provides information flow

control for the web browser. The main characteristic we intended for our approach is to con-

tinue further execution without blocking and to have a limited impact on performance. Another

important consideration was to provide a mechanism to prevent unauthorized functions from

modifying secret variables.

Over the course of our work, we have proposed the Address Split Design (ASD) which

focuses on splitting the memory into two different locations to maintain the two possible states

for each secret variable. Based on the context of the operation, the approach switches between

the public and the secret states. We choose to have a model that focuses on more fine-tuned

function level control instead of traditional approaches. In this case, we consider that each

function needs to be given access rights and not just the public output functions as is the case

in traditional approaches. Since each function needs to be provided specific access rights to

the split variables, it allows a policy where functions can be given access to only a subset of

variables to which they are expected to have read access.

Since our approach provides access rights, functions can only modify secret variables if

they have such privileges. This is effective against malicious scripts inserted via vulnerabilities

such as cross-site scripting. This mechanism is unique to ASD and is only feasible due to the

function level control.

We have also made a formal description of our approach and implemented this model

on the chromium V8 engine, a full-fledged JavaScript engine and subsequently ported these

changes to the Chromium web browser as well. Following the implementation, performance

and conformance testing were done on our implementation. The measured performance drop

125

126 Conclusion

is significantly smaller than other comparative approaches. We further showed that implemen-

tation of our approach does not affect the general working of existing websites by performing

such a test over the top websites of the internet. Further, we have also been able to verify

that our model can be used to protect variables in several scenarios that would have otherwise

caused disclosure of secret information.

Open questions and future work

While we have accomplished the objectives of our work, questions still remain on how to

improve the model and make it more feasible to be adapted by the larger audience.

Over the course of the work, we use a data structure called the dependency tracker to

keep track of the secrets that could influence the information flow. The dependency tracker

makes some over-approximations on implicit information flow to forsake additional compu-

tation. To make the approach more practical, we discard the over-approximations in the de-

pendency tracker at the end of the execution of the function. By choosing to do so, we forgo

providing any strong security guarantees for the model. It is possible to have had a strong

security guarantee if we had maintained the over-approximations throughout the execution but

such a choice would have resulted in a largely impractical approach as the over-approximations

would augment over time.

Therefore the open question remains on how to remain practical as well as improve the

security guarantees provided by our model. The solution to the problem, with regard to ASD

is to make all variables attain the same state (split/unsplit) regardless of the path taken. One of

the solutions would be to use machine learning to learn about the variables that are dynamically

split over different executions of the function thereby analyzing the different possible execution

paths. We believe that using such a model, eventually, all paths could be analyzed. In this

approach, the possible leaks in ASD for a given function would decrease as the function is

executed multiple number of times eventually tending towards zero. Such a mechanism could

slowly improve the guarantees provided over time.

Further, we also think that the information flow mechanism we are using, which is possi-

bilistic in nature, could be extended to assimilate probabilistic information flows. One solution

is to prevent information flow from splitting variables if the information leakage is less than a

particular entropy.

Finally, we also believe that the performance can be enhanced by sharing dictionaries be-

tween several functions and implementing the model in other more efficient compilers.

Acronyms

ASD Address split design. 61, 69, 84, 95, 98–100, 103–107, 109, 110, 112, 113, 115, 117,

118, 121, 123, 124, 142

BNF Backus–Naur form. 63

CORS Cross-Origin Resource Sharing. 25

CSRF Cross-Site Request Forgery. 6, 16, 19, 22–24, 27, 28, 116

DOM Document Object Model. 13, 18, 19, 26, 28, 98, 115, 116

DTLS Datagram Transport Layer Security. 14

HTTP Hyper-Text Transport Protocol. 10, 11, 23, 25, 119

IdP Identity Provider. 14, 15, 20

IFC Information Flow Control. 8, 28, 29, 31, 32, 34–36, 38, 40, 44, 55–57, 59, 61, 63, 64, 89,

95

MAC Mandatory Access Control. 30, 31

OSI Open Systems Interconnection. 14

SDP Session Description Protocol. 15, 21, 141

SME Secure Multi-Execution. 47–50, 55–59, 91, 94, 104, 105, 142

SOP Same-Origin Policy. 25, 26

SRTP Secure Real-time Transport Protocol. 14, 15

127

128 Acronyms

SSF Self-Sufficient Function. 66

TCP Transmission Control Protocol. 10, 14, 119

UDP User Datagram Protocol. 14

WebRTC Web Real-Time Communication. 9, 13–16, 20–22, 119, 141

XSS Cross-Site Scripting. 6, 16–20, 22–24, 26, 27, 95, 141

Bibliography

[AAP10] Mário S. Alvim, Miguel E. Andrés, and Catus Palamidessi. Probabilistic Informa-

tion Flow. In 25th Annual IEEE Symposium on Logic in Computer Science, pages

314–321. IEEE, July 2010. doi:10.1109/LICS.2010.53.

[ACPS12] Mário S. Alvim, Kostas Chatzikokolakis, Catuscia Palamidessi, and Geoffrey

Smith. Measuring Information Leakage Using Generalized Gain Functions. In

2012 IEEE 25th Computer Security Foundations Symposium, volume 0, pages

265–279. IEEE, June 2012. doi:10.1109/CSF.2012.26.

[ADO04] ADOC. Une nouvelle méthode d’organisation de pot. Revue Française pour une

soutenance de thèse bien arro... réussie, page 1, 2004.

[AF09] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic information

flow analysis. ACM SIGPLAN Notices, 44(8):20, December 2009. doi:10.1145/

1667209.1667223.

[AHSS08] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-

insensitive noninterference leaks more than just a bit. In Proceedings of the

13th European Symposium on Research in Computer Security, pages 333 – 348.

Springer-Verlag Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-88313-5\

_22.

[Ald06] Jonathan Aldrich. Semantics of WHILE, 17-654/17-754: Analysis of Soft-

ware Artifacts, 2006. URL: http://www.cs.cmu.edu/{~}aldrich/courses/

654-sp06/notes/2-semantics-notes.pdf.

[Alv14] H. Alvestrand. Overview: Real Time Protocols for Browser-based Applica-

tions. Internet-Draft draft-ietf-rtcweb-overview-13, Internet Engineering Task

Force, November 2014. Work in progress. URL: http://tools.ietf.org/

html/draft-ietf-rtcweb-overview-13.

129

http://dx.doi.org/10.1109/LICS.2010.53
http://dx.doi.org/10.1109/CSF.2012.26
http://dx.doi.org/10.1145/1667209.1667223
http://dx.doi.org/10.1145/1667209.1667223
http://dx.doi.org/10.1007/978-3-540-88313-5_22
http://dx.doi.org/10.1007/978-3-540-88313-5_22
http://www.cs.cmu.edu/{~}aldrich/courses/654-sp06/notes/2-semantics-notes.pdf
http://www.cs.cmu.edu/{~}aldrich/courses/654-sp06/notes/2-semantics-notes.pdf
http://tools.ietf.org/html/draft-ietf-rtcweb-overview-13
http://tools.ietf.org/html/draft-ietf-rtcweb-overview-13

130 Bibliography

[AN16] M. Assaf and D. A. Naumann. Calculational design of information flow monitors.

In 2016 IEEE 29th Computer Security Foundations Symposium (CSF), pages 210–

224, June 2016. doi:10.1109/CSF.2016.22.

[Ang] AngularJS. AngularJS. URL: https://angularjs.org/.

[AR80] Gregory R. Andrews and Richard P. Reitman. An axiomatic approach to infor-

mation flow in programs. ACM Trans. Program. Lang. Syst., 2(1):56–76, jan

1980. URL: http://doi.acm.org/10.1145/357084.357088, doi:10.1145/

357084.357088.

[Aus] Thomas H. Austin. Original ZaphodFacets. URL: https://github.com/

taustin/ZaphodFacets.

[Aus13] TH Austin. Dynamic information flow analysis for Javascript in a web browser.

PhD thesis, University of California, Santa Cruz, 2013.

[Bac05] Michael Backes. Quantifying Probabilistic Information Flow in Computational

Reactive Systems. In Proceedings of 10th European Symposium on Research

in Computer Security (ESORICS), pages 336–354, Milan, Italy, 2005. Springer.

URL: http://link.springer.com/chapter/10.1007%2F11555827_20, doi:

10.1007/11555827_20.

[BBC14] V. Beltran, E. Bertin, and N. Crespi. User identity for webrtc services: A matter

of trust. Internet Computing, IEEE, 18(6):18–25, Nov 2014. doi:10.1109/MIC.

2014.128.

[BBJ13] Frédéric Besson, Nataliia Bielova, and Thomas Jensen. Hybrid Informa-

tion Flow Monitoring Against Web Tracking. Computer Security Foundations

Symposium (CSF), 2013. URL: http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=6595832.

[BBJN15] Adam Bergkvist, Daniel C. Burnett, Cullen Jennings, and Anant Narayanan. We-

bRTC 1.0: Real-Time Communication Between Browsers. W3C Editor’s Draft,

2015.

[BDD+14] Bert Bos, Elwyn Davies, Lieven Desmet, Stephen Farrell, Martin Johns, and Rigo

Wenning. D1.2 Case Study: Security Assessment of WebRTC. Technical re-

port, STREWS project consortium, 2014. https://www.strews.eu/images/

webrtc.pdf. URL: https://www.strews.eu/images/webrtc.pdf.

http://dx.doi.org/10.1109/CSF.2016.22
https://angularjs.org/
http://doi.acm.org/10.1145/357084.357088
http://dx.doi.org/10.1145/357084.357088
http://dx.doi.org/10.1145/357084.357088
https://github.com/taustin/ZaphodFacets
https://github.com/taustin/ZaphodFacets
http://link.springer.com/chapter/10.1007%2F11555827_20
http://dx.doi.org/10.1007/11555827_20
http://dx.doi.org/10.1007/11555827_20
http://dx.doi.org/10.1109/MIC.2014.128
http://dx.doi.org/10.1109/MIC.2014.128
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6595832
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6595832
https://www.strews.eu/images/webrtc.pdf
https://www.strews.eu/images/webrtc.pdf
https://www.strews.eu/images/webrtc.pdf

Bibliography 131

[BDHK07] Michael Backes, Markus Dürmuth, Dennis Hofheinz, and Ralf Küsters. Con-

ditional reactive simulatability. International Journal of Information Security,

7(2):155–169, October 2007. URL: http://link.springer.com/10.1007/

s10207-007-0046-6, doi:10.1007/s10207-007-0046-6.

[Bib75] K. J. Biba. Integrity Considerations for Secure Computer Systems. Technical

report, The Mitre Corporation, 1975.

[Bie13] Nataliia Bielova. Survey on JavaScript security policies and their enforcement

mechanisms in a web browser. The Journal of Logic and Algebraic Programming,

82(8):243–262, 2013. doi:10.1016/j.jlap.2013.05.001.

[Bit] The problems and some security implications of websockets - Cross-site WebSock-

ets Scripting (XSWS). http://subudeepak.bitbucket.org/#!/reading/0.

[Online; accessed November 01, 2015].

[BL73] DE Bell and LJ LaPadula. Secure Computer Systems : Mathematical Foundations.

Technical report, dtic.mil, 1973. URL: http://oai.dtic.mil/oai/oai?verb=

getRecord&metadataPrefix=html&identifier=AD0770768.

[BMN+04a] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. The Secure

Real-time Transport Protocol. RFC 3711, Mar 2004. URL: https://tools.

ietf.org/html/rfc3711.

[BMN+04b] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. The

Secure Real-time Transport Protocol (SRTP). RFC 3711 (Proposed Standard),

March 2004. Updated by RFCs 5506, 6904. URL: http://www.ietf.org/rfc/

rfc3711.txt.

[BP04] Michael Backes and Birgit Pfitzmann. Computational probabilistic noninterfer-

ence. International Journal of Information Security, 3(1):42–60, July 2004. URL:

http://link.springer.com/10.1007/s10207-004-0039-7, doi:10.1007/

s10207-004-0039-7.

[BS06] N. Broberg and David Sands. Flow locks: Towards a core calculus for dynamic

flow policies. In Lecture Notes in Computer Science, pages 180–196, 2006.

[BS10] Niklas Broberg and David Sands. Paralocks: Role-based information flow con-

trol and beyond. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT

http://link.springer.com/10.1007/s10207-007-0046-6
http://link.springer.com/10.1007/s10207-007-0046-6
http://dx.doi.org/10.1007/s10207-007-0046-6
http://dx.doi.org/10.1016/j.jlap.2013.05.001
http://subudeepak.bitbucket.org/#!/reading/0
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0770768
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0770768
https://tools.ietf.org/html/rfc3711
https://tools.ietf.org/html/rfc3711
http://www.ietf.org/rfc/rfc3711.txt
http://www.ietf.org/rfc/rfc3711.txt
http://link.springer.com/10.1007/s10207-004-0039-7
http://dx.doi.org/10.1007/s10207-004-0039-7
http://dx.doi.org/10.1007/s10207-004-0039-7

132 Bibliography

Symposium on Principles of Programming Languages, POPL ’10, pages 431–

444, New York, NY, USA, 2010. ACM. URL: http://doi.acm.org/10.1145/

1706299.1706349, doi:10.1145/1706299.1706349.

[BT14] R.L. Barnes and M. Thomson. Browser-to-browser security assurances for webrtc.

Internet Computing, IEEE, 18(6):11–17, Nov 2014. doi:10.1109/MIC.2014.

106.

[CBR11] Eric Y Chen, Jason Bau, and Charles Reis. App isolation: get the security of

multiple browsers with just one. In Proceedings of the 18th ACM conference on

Computer and communications security, pages 227–238. ACM, 2011. doi:10.

1145/2046707.2046734.

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: a unified lattice

model for static analysis of programs by constuction or approzimation of fixpoints.

In ACM Symposium on Principles of Programming Languages, pages 238–252,

1977.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.

Journal of Logic and Computation, 2(4):511–547, 1992. URL: http:

//logcom.oxfordjournals.org/content/2/4/511.abstract, arXiv:

http://logcom.oxfordjournals.org/content/2/4/511.full.pdf+html,

doi:10.1093/logcom/2.4.511.

[Ced14] Jorgen Cederlof. Authentication in quantum key growing. PhD thesis, Linkop-

ings Universitet, 2014. URL: http://www.lysator.liu.se/~jc/mthesis/

mthesis.pdf.

[CF07] Deepak Chandra and Michael Franz. Fine-Grained Information Flow Analysis

and Enforcement in a Java Virtual Machine. In Twenty-Third Annual Computer

Security Applications Conference (ACSAC 2007), pages 463–475. IEEE, Decem-

ber 2007. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4413012, doi:10.1109/ACSAC.2007.37.

[CHM07] David Clark, Sebastian Hunt, and Pasquale Malacaria. A static analysis for quan-

tifying information flow in a simple imperative language. Journal of Computer

Security, 15(3):321–371, 2007.

[CMJL09] Ravi Chugh, Jeffrey a. Meister, Ranjit Jhala, and Sorin Lerner. Staged information

flow for javascript. In Proceedings of the 2009 ACM SIGPLAN conference on

http://doi.acm.org/10.1145/1706299.1706349
http://doi.acm.org/10.1145/1706299.1706349
http://dx.doi.org/10.1145/1706299.1706349
http://dx.doi.org/10.1109/MIC.2014.106
http://dx.doi.org/10.1109/MIC.2014.106
http://dx.doi.org/10.1145/2046707.2046734
http://dx.doi.org/10.1145/2046707.2046734
http://logcom.oxfordjournals.org/content/2/4/511.abstract
http://logcom.oxfordjournals.org/content/2/4/511.abstract
http://arxiv.org/abs/http://logcom.oxfordjournals.org/content/2/4/511.full.pdf+html
http://arxiv.org/abs/http://logcom.oxfordjournals.org/content/2/4/511.full.pdf+html
http://dx.doi.org/10.1093/logcom/2.4.511
http://www.lysator.liu.se/~jc/mthesis/mthesis.pdf
http://www.lysator.liu.se/~jc/mthesis/mthesis.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4413012
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4413012
http://dx.doi.org/10.1109/ACSAC.2007.37

Bibliography 133

Programming language design and implementation, volume 44, pages 50–62, May

2009. doi:10.1145/1543135.1542483.

[Cou] Patrick Cousot. Abstract interpretation in a nutshell. URL: http://www.di.ens.

fr/~cousot/AI/IntroAbsInt.html.

[DD77] D.E. Denning and P.J. Denning. Certification of programs for secure information

flow. Communications of the ACM, 20(7):504–513, July 1977.

[Den75] Dorothy Elizabeth Robling Denning. Secure Information Flow in Computer

Systems. PhD thesis, Purdue University, West Lafayette, IN, USA, 1975.

AAI7600514.

[Den76] Dorothy E. Denning. A lattice model of secure information flow. Commun. ACM,

19(5):236–243, May 1976. URL: http://doi.acm.org/10.1145/360051.

360056, doi:10.1145/360051.360056.

[DFST02] Nicoletta De Francesco, Antonella Santone, and Luca Tesei. Abstract interpreta-

tion and model checking for checking secure information flow in concurrent sys-

tems. Fundam. Inf., 54(2-3):195–211, June 2002. URL: http://dl.acm.org/

citation.cfm?id=873906.873913.

[DG09] Mohan Dhawan and Vinod Ganapathy. Analyzing information flow in JavaScript-

based browser extensions. In Annual Computer Security Applications Conference

2009, pages 382–391, 2009. doi:10.1109/ACSAC.2009.43.

[DGSJ+16] Willem De Groef, Deepak Subramanian, Martin Johns, Frank Piessens, and

Lieven Desmet. Ensuring endpoint authenticity in webrtc peer-to-peer communica-

tion. In Proceedings of the 31st Annual ACM Symposium on Applied Computing,

SAC ’16, pages 2103–2110, New York, NY, USA, 2016. ACM. URL: http://

doi.acm.org/10.1145/2851613.2851804, doi:10.1145/2851613.2851804.

[DJ14] Lieven Desmet and Martin Johns. Real-time communications security on the web.

Internet Computing, IEEE, 18(6):8–10, Nov 2014. doi:10.1109/MIC.2014.117.

[DP10] Dominique Devriese and Frank Piessens. Noninterference through Secure Multi-

execution. 2010 IEEE Symposium on Security and Privacy, pages 109–124, 2010.

doi:10.1109/SP.2010.15.

[ECM15a] ECMA. Draft ECMAScript 2015 Language Specification (RC4). [online], http:

//people.mozilla.org/~jorendorff/es6-draft.html, April 2015.

http://dx.doi.org/10.1145/1543135.1542483
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://doi.acm.org/10.1145/360051.360056
http://doi.acm.org/10.1145/360051.360056
http://dx.doi.org/10.1145/360051.360056
http://dl.acm.org/citation.cfm?id=873906.873913
http://dl.acm.org/citation.cfm?id=873906.873913
http://dx.doi.org/10.1109/ACSAC.2009.43
http://doi.acm.org/10.1145/2851613.2851804
http://doi.acm.org/10.1145/2851613.2851804
http://dx.doi.org/10.1145/2851613.2851804
http://dx.doi.org/10.1109/MIC.2014.117
http://dx.doi.org/10.1109/SP.2010.15
http://people.mozilla.org/~jorendorff/es6-draft.html
http://people.mozilla.org/~jorendorff/es6-draft.html

134 Bibliography

[Ecm15b] Ecma International. ECMAScript 2015 Language Specification, 2015. URL:

http://www.ecma-international.org/ecma-262/6.0/.

[Emb] EmberJS. EmberJS. URL: http://emberjs.com/.

[Epi] Epic Privacy Browser. URL: https://www.epicbrowser.com/.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, Jun 1999. URL: https:

//tools.ietf.org/html/rfc2616#section-1.3.

[FM11] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455, Dec 2011. URL:

https://tools.ietf.org/html/rfc6455.

[For] Chromium Forum. Bug tracker on Chromium: Basic Authentication. URL:

https://bugs.chromium.org/p/chromium/issues/detail?id=82250#c7.

[Fut] Peacekeeper Benchmark. URL: http://peacekeeper.futuremark.com/faq.

action.

[GDNP12] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.

FlowFox: a web browser with flexible and precise information flow control. In

Proceedings of the 2012 ACM conference on Computer and communications

security, pages 748—-759, Raleigh, North Carolina, USA, 2012. ACM. doi:

10.1145/2382196.2382275.

[GM82] J. A. Goguen and J. Mesajuer. Security policies and Security Models. In IEEE

Symposium on Security and Privacy, pages 11–20, 1982.

[Goo] Octane Benchmark. URL: https://developers.google.com/octane/.

[HCS+10] Steve Hanna, Eui Chul, Richard Shin, Devdatta Akhawe, Arman Boehm, Prateek

Saxena, and Dawn Song. The emperor’s new apis: On the (in) secure usage of new

client-side primitives. In Web 2.0 Security and Privacy (W2SP 2010), 2010. URL:

http://www.eecs.berkeley.edu/~sch/w2sp2010ena.pdf.

[Hic15a] Ian Hickson. HTML5 Web Messaging. W3C Recommendation, 2015. http:

//www.w3.org/TR/webmessaging/.

[Hic15b] Ian Hickson. The Cross-Document Messaging Standard, May 2015. URL: https:

//www.w3.org/TR/webmessaging/.

http://www.ecma-international.org/ecma-262/6.0/
http://emberjs.com/
https://www.epicbrowser.com/
https://tools.ietf.org/html/rfc2616#section-1.3
https://tools.ietf.org/html/rfc2616#section-1.3
https://tools.ietf.org/html/rfc6455
https://bugs.chromium.org/p/chromium/issues/detail?id=82250#c7
http://peacekeeper.futuremark.com/faq.action
http://peacekeeper.futuremark.com/faq.action
http://dx.doi.org/10.1145/2382196.2382275
http://dx.doi.org/10.1145/2382196.2382275
https://developers.google.com/octane/
http://www.eecs.berkeley.edu/~sch/w2sp2010ena.pdf
http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/webmessaging/
https://www.w3.org/TR/webmessaging/
https://www.w3.org/TR/webmessaging/

Bibliography 135

[HMM+12] T. S. Hoang, A. K. McIver, L. Meinicke, C. C. Morgan, A. Sloane, and

E. Susatyo. Abstractions of non-interference security: probabilistic versus pos-

sibilistic. Formal Aspects of Computing, 26(1):169–194, June 2012. URL:

http://link.springer.com/10.1007/s00165-012-0237-4, doi:10.1007/

s00165-012-0237-4.

[HR98] Nevin Heintze and Jon G. Riecke. The slam calculus: Programming with secrecy

and integrity. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’98, pages 365–377, New York,

NY, USA, 1998. ACM. URL: http://doi.acm.org/10.1145/268946.268976,

doi:10.1145/268946.268976.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in

operating systems. Commun. ACM, 19(8):461–471, aug 1976. URL: http:

//doi.acm.org/10.1145/360303.360333, doi:10.1145/360303.360333.

[HS12a] Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow control. In

Benedikt Hauptmann Tobias Nipkow, Orna Grumberg, editor, NATO Science for

Peace and Security Series - D: Information and Communication Security, volume

33: Software Safety and Security, pages 319 – 347. IOS Press, 2012. doi:10.

3233/978-1-61499-028-4-319.

[HS12b] Daniel Hedin and Andrei Sabelfeld. Information-Flow Security for a Core of

JavaScript. In 2012 IEEE 25th Computer Security Foundations Symposium, pages

3–18. IEEE, June 2012. doi:10.1109/CSF.2012.19.

[HSY+15] Stefan Heule, Deian Stefan, Edward Z. Yang, John C. Mitchell, and Alejandro

Russo. IFC inside: Retrofitting languages with dynamic information flow control.

In Conference on Principles of Security and Trust (POST). Springer, April 2015.

[HTML07] Guillaume Hiet, Triem Tong, Benjamin Morin, and M Ludovic. Monitoring both

OS and Program Level Information Flows to Detect Intrusions against Network

Servers. In IEEE Workshop on "Monitoring, Attack Detection and Mitigation",

2007.

[JDS+03] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, and K. Summers. Session

Initiation Protocol (SIP) Basic Call Flow Examples. RFC 3665 (Best Current Prac-

tice), December 2003. URL: http://www.ietf.org/rfc/rfc3665.txt.

[khr] WebGL Security. URL: http://www.khronos.org/webgl/security/.

http://link.springer.com/10.1007/s00165-012-0237-4
http://dx.doi.org/10.1007/s00165-012-0237-4
http://dx.doi.org/10.1007/s00165-012-0237-4
http://doi.acm.org/10.1145/268946.268976
http://dx.doi.org/10.1145/268946.268976
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://dx.doi.org/10.1145/360303.360333
http://dx.doi.org/10.3233/978-1-61499-028-4-319
http://dx.doi.org/10.3233/978-1-61499-028-4-319
http://dx.doi.org/10.1109/CSF.2012.19
http://www.ietf.org/rfc/rfc3665.txt
http://www.khronos.org/webgl/security/

136 Bibliography

[Kno] KnockoutJS. KnockoutJS. URL: http://knockoutjs.com/.

[KWH11] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing- and

Termination-Sensitive Secure Information Flow: Exploring a New Approach. In

2011 IEEE Symposium on Security and Privacy, pages 413–428. IEEE, May

2011. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5958043, doi:10.1109/SP.2011.19.

[LCQC14] Li Li, Wu Chou, Zhihong Qiu, and Tao Cai. Who is calling which page on the

web? Internet Computing, IEEE, 18(6):26–33, Nov 2014. doi:10.1109/MIC.

2014.105.

[LGBJS07] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A. Schmidt.

Automata-based confidentiality monitoring. In Proceedings of the 11th Asian

Computing Science Conference on Advances in Computer Science: Secure

Software and Related Issues, ASIAN’06, pages 75–89, Berlin, Heidelberg, 2007.

Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1782734.

1782741.

[LGJ07] Gurvan Le Guernic and Thomas Jensen. Monitoring Information Flow. In

Proceedings of the 20th IEEE Computer Security Foundations Symposium

(CSFS20), pages 19–30. IEEE Computer Society, jul 2007.

[Mas94] James L Maseey. Guessing and Entropy. In Proceedings of International

Symposium on Information Theory, page 204. IEEE, 1994.

[Mas05] Isabella Mastroeni. Abstract Non-Interference - An Abstract Interpretation-based approach to Secure Information Flow.

PhD thesis, Universit‘ a degli Studi di Verona, 2005.

[Mit] CWE - CWE-200: Information Exposure.

[ML97] Andrew C Myers and Barbara Liskov. A Decentralized Model for Information

Flow Control. In Proceedings of the 16th ACM Symposium on Operating System

Principles, October 1997.

[MMR10] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using Relays around NAT

(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN). RFC

5766 (Proposed Standard), April 2010. URL: http://www.ietf.org/rfc/

rfc5766.txt.

[Moza] HTML5 - Web developer guide. URL: https://developer.mozilla.org/

en-US/docs/Web/Guide/HTML/HTML5.

http://knockoutjs.com/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5958043
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5958043
http://dx.doi.org/10.1109/SP.2011.19
http://dx.doi.org/10.1109/MIC.2014.105
http://dx.doi.org/10.1109/MIC.2014.105
http://dl.acm.org/citation.cfm?id=1782734.1782741
http://dl.acm.org/citation.cfm?id=1782734.1782741
http://www.ietf.org/rfc/rfc5766.txt
http://www.ietf.org/rfc/rfc5766.txt
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

Bibliography 137

[Mozb] Dromaeo Benchmark. URL: https://wiki.mozilla.org/Dromaeo.

[Mozc] Kracken Benchmark. URL: https://wiki.mozilla.org/Kraken.

[Mye99] Andrew C Myers. JFlow : Practical Mostly-Static Information Flow Control. In

Symposium on Principles of Programming Languages, pages 228–241, January

1999.

[Naf] Ahamed Nafeez. JS Suicide: Using Javascript security features to kill itself. Pre-

sented at BlackHat Asia 2014. URL: https://www.blackhat.com/asia-14/

briefings.html#Nafeez.

[NCC+04] Efstratios Nikolaidis, Sophie Chen, Harley Cudney, Raphael Haftka, and Raluca

Rosca. Comparison of probability and possibility for design against catastrophic

failure under uncertainty. 126, 05 2004.

[Opea] Category:OWASP Top Ten Project - OWASP. URL: https://www.owasp.org/

images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf.

[Opeb] Clickjacking - OWASP. URL: https://www.owasp.org/index.php/

Clickjacking.

[Opec] Cross-Site Request Forgery (CSRF) - OWASP. URL: https://www.owasp.org/

index.php/Cross-Site_Request_Forgery_(CSRF).

[Oped] Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet - OWASP. URL:

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_

(CSRF)_Prevention_Cheat_Sheet.

[Opee] Cross Site Scripting Flaw - OWASP. URL: https://www.owasp.org/index.

php/Cross_Site_Scripting_Flaw.

[Opef] DOM Based XSS. URL: https://www.owasp.org/index.php/DOM_Based_

XSSl.

[PF06] Stefano Di Paola and Giorgio Fedon. 23 rd ccc conference subverting ajax 1, 2006.

[Pli00] John O Pliam. On the Incomparability of Entropy and Marginal Guesswork

in Brute-Force Attacks. In Progress in Cryptology - INDOCRYPT 2000, First

International Conference in Cryptology in India, pages 67–79, 2000. doi:10.

1007/3-540-44495-5_7.

https://wiki.mozilla.org/Dromaeo
https://wiki.mozilla.org/Kraken
https://www.blackhat.com/asia-14/briefings.html#Nafeez
https://www.blackhat.com/asia-14/briefings.html#Nafeez
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross_Site_Scripting_Flaw
https://www.owasp.org/index.php/Cross_Site_Scripting_Flaw
https://www.owasp.org/index.php/DOM_Based_XSSl
https://www.owasp.org/index.php/DOM_Based_XSSl
http://dx.doi.org/10.1007/3-540-44495-5_7
http://dx.doi.org/10.1007/3-540-44495-5_7

138 Bibliography

[PS03] François Pottier and Vincent Simonet. Information flow inference for ml. ACM

Trans. Program. Lang. Syst., 25(1):117–158, January 2003. URL: http://doi.

acm.org/10.1145/596980.596983, doi:10.1145/596980.596983.

[Ren60] Alfred Renyi. ON MEASURES OF ENTROPY AND INFORMATION. In

Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and

Probability, Volume 1: Contributions to the Theory of Statistics, pages 547–561,

1960.

[Res15a] E. Rescorla. Security Considerations for WebRTC. Internet-Draft

draft-ietf-rtcweb-security-08, Internet Engineering Task Force, Febru-

ary 2015. Work in progress. URL: http://tools.ietf.org/html/

draft-ietf-rtcweb-security-08.

[Res15b] E. Rescorla. WebRTC Security Architecture. Internet-Draft draft-

ietf-rtcweb-security-arch-11, Internet Engineering Task Force, March

2015. Work in progress. URL: http://tools.ietf.org/html/

draft-ietf-rtcweb-security-arch-11.

[Ric53] H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision Problems.

Transactions of the American Mathematical Society, 74(2):358–366, 1953. URL:

http://www.jstor.org/stable/1990888.

[RM12] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version 1.2.

RFC 6347 (Proposed Standard), January 2012. URL: http://www.ietf.org/

rfc/rfc6347.txt.

[RMMW08] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utilities for

NAT (STUN). RFC 5389 (Proposed Standard), October 2008. Updated by RFC

7350. URL: http://www.ietf.org/rfc/rfc5389.txt.

[Ros10] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Net-

work Address Translator (NAT) Traversal for Offer/Answer Protocols. RFC

5245 (Proposed Standard), April 2010. Updated by RFC 6336. URL: http:

//www.ietf.org/rfc/rfc5245.txt.

[RS02] J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with Session Descrip-

tion Protocol (SDP). RFC 3264 (Proposed Standard), June 2002. Updated by RFC

6157. URL: http://www.ietf.org/rfc/rfc3264.txt.

http://doi.acm.org/10.1145/596980.596983
http://doi.acm.org/10.1145/596980.596983
http://dx.doi.org/10.1145/596980.596983
http://tools.ietf.org/html/draft-ietf-rtcweb-security-08
http://tools.ietf.org/html/draft-ietf-rtcweb-security-08
http://tools.ietf.org/html/draft-ietf-rtcweb-security-arch-11
http://tools.ietf.org/html/draft-ietf-rtcweb-security-arch-11
http://www.jstor.org/stable/1990888
http://www.ietf.org/rfc/rfc6347.txt
http://www.ietf.org/rfc/rfc6347.txt
http://www.ietf.org/rfc/rfc5389.txt
http://www.ietf.org/rfc/rfc5245.txt
http://www.ietf.org/rfc/rfc5245.txt
http://www.ietf.org/rfc/rfc3264.txt

Bibliography 139

[Ré60] Alfred Rényi. ON MEASURES OF ENTROPY AND INFORMATION. In

Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and

Probability, Volume 1: Contributions to the Theory of Statistics, pages 547–561,

1960.

[Ré61] Alfréd Rényi. On measures of entropy and information. In Proceedings of the

Fourth Berkeley Symposium on Mathematical Statistics and Probability, volume 1,

pages 547–561, 1961.

[SA11] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. RFC

6120 (Proposed Standard), March 2011. URL: http://www.ietf.org/rfc/

rfc6120.txt.

[Sey15] Ryan Seys. Mozilla Tin Can, 2015. URL: https://addons.mozilla.org/

en-us/firefox/addon/tin-can-auth.

[Sha48] CE Shannon. A Mathematical theory of communication. Bell System Technical

Journal, 27:379–423,625–656, 1948.

[SHB] Deepak Subramanian, Guillaume Hiet, and Christophe Bidan. Inflow code base.

URL: https://gforge.inria.fr/git/inflow/inflow.git.

[SHB16] Deepak Subramanian, Guillaume Hiet, and Christophe Bidan. Preventive informa-

tion flow control through a mechanism of split addresses. In ACM 9th International

Conference on Security of Information and Networks 2016. ACM, july 2016.

doi:10.1145/2947626.2947645.

[SHB17] Deepak Subramanian, Guillaume Hiet, and Christophe Bidan. A Self-correcting

Information Flow Control Model for the Web-Browser, pages 285–301. Springer

International Publishing, Cham, 2017. URL: http://dx.doi.org/10.1007/

978-3-319-51966-1_19, doi:10.1007/978-3-319-51966-1_19.

[SM03] Andrei Sabelfeld and A.C. Myers. Language-based information-flow security.

IEEE Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

doi:10.1109/JSAC.2002.806121.

[SS98] Andrei Sabelfeld and David Sands. A per model of secure information flow

in sequential programs. Higher-order and symbolic computation, 14:40–58,

1998. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.

1.22.2737.

http://www.ietf.org/rfc/rfc6120.txt
http://www.ietf.org/rfc/rfc6120.txt
https://addons.mozilla.org/en-us/firefox/addon/tin-can-auth
https://addons.mozilla.org/en-us/firefox/addon/tin-can-auth
https://gforge.inria.fr/git/inflow/inflow.git
http://dx.doi.org/10.1145/2947626.2947645
http://dx.doi.org/10.1007/978-3-319-51966-1_19
http://dx.doi.org/10.1007/978-3-319-51966-1_19
http://dx.doi.org/10.1007/978-3-319-51966-1_19
http://dx.doi.org/10.1109/JSAC.2002.806121
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.2737
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.2737

140 Bibliography

[SS13] Sooel Son and Vitaly Shmatikov. The Postman Always Rings Twice: Attacking

and Defending postMessage in HTML5 Websites. In Network and Distributed

System Security Symposium (NDSS’13), 2013.

[Ste07] R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed Stan-

dard), September 2007. Updated by RFCs 6096, 6335, 7053. URL: http:

//www.ietf.org/rfc/rfc4960.txt.

[STK09] Deepak Subramanian, Ha Thanh, and Kok Keong. Assuring Quality in Vulnera-

bility Reports for Security Risk Analysis. International Journal on Advances in

Security, 2(2 & 3):226–241, 2009.

[Sub] Deepak Subramanian. Modified Zaphod-Facets — Bitbucket. URL: https://

bitbucket.org/subudeepak/zaphod-facets.

[SYM+14] Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman,

Brad Karp, and David Mazières. Protecting users by confining JavaScript with

COWL. In Symposium on Operating Systems Design and Implementation (OSDI).

USENIX, October 2014.

[Tec11] Technical Committee : ISO/IEC JTC 1/SC 22. ISO/IEC 16262:2011 - Infor-

mation technology – Programming languages, their environments and system

software interfaces – ECMAScript language specification, 2011. URL: https:

//www.iso.org/standard/55755.html.

[VIS96] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for

secure flow analysis. J. Comput. Secur., 4(2-3):167–187, January 1996. URL:

http://dl.acm.org/citation.cfm?id=353629.353648.

[vK14] Anne van Kesteren. Cross-origin resource sharing. W3c technical reports, W3C,

jan 2014. URL: https://www.w3.org/TR/cors/.

[VS97a] Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum

typings. In Proceedings of the 10th IEEE Workshop on Computer Security

Foundations, CSFW ’97, pages 156–, Washington, DC, USA, 1997. IEEE Com-

puter Society. URL: http://dl.acm.org/citation.cfm?id=794197.795081.

[VS97b] Dennis M. Volpano and Geoffrey Smith. A type-based approach to program se-

curity. In Proceedings of the 7th International Joint Conference CAAP/FASE

http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc4960.txt
https://bitbucket.org/subudeepak/zaphod-facets
https://bitbucket.org/subudeepak/zaphod-facets
https://www.iso.org/standard/55755.html
https://www.iso.org/standard/55755.html
http://dl.acm.org/citation.cfm?id=353629.353648
https://www.w3.org/TR/cors/
http://dl.acm.org/citation.cfm?id=794197.795081

Bibliography 141

on Theory and Practice of Software Development, TAPSOFT ’97, pages 607–

621, London, UK, UK, 1997. Springer-Verlag. URL: http://dl.acm.org/

citation.cfm?id=646620.697712.

[W3C] Confinement with Origin Web Labels - W3C working draft. URL: https://www.

w3.org/TR/COWL.

[WBV15] Mike West, Adam Barth, and Dan Veditz. Content Security Policy Level 2. W3C

Working Draft, W3C, jul 2015. Work in progress. http://www.w3.org/TR/

2015/CR-CSP2-20150721/.

[Weba] DOM Based XSS - report (Web Application Security Consortium). URL: http:

//www.webappsec.org/projects/articles/071105.shtml.

[Webb] JetStream Benchmark. URL: https://webkit.org/perf/sunspider/

sunspider.html.

[Webc] SunSpider Benchmark. URL: https://webkit.org/perf/sunspider/

sunspider.html.

[WFHJ07] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin Jackson. Protection and

communication abstractions for web browsers in MashupOS. In Proceedings of

twenty-first ACM SIGOPS symposium on Operating systems principles - SOSP

’07, pages 1–16, New York, New York, USA, 2007. ACM Press. doi:10.1145/

1294261.1294263.

[Whi] WhiteHat Aviator. URL: https://www.whitehatsec.com/aviator/.

[Wika] Acid3. URL: https://en.wikipedia.org/wiki/Acid3.

[Wikb] Bank card number. URL: http://en.wikipedia.org/wiki/Bank_card_

number.

[Wikc] JSONP. http://en.wikipedia.org/wiki/JSONP. [Online; accessed November

01, 2013].

[Wikd] Mashup (web application hybrid). URL: https://en.wikipedia.org/wiki/

Mashup_%28web_application_hybrid%29.

[Wike] Narcissus (JavaScript engine). URL: http://en.wikipedia.org/wiki/

Narcissus_(JavaScript_engine).

[Wikf] Oracle machine. URL: http://en.wikipedia.org/wiki/Oracle_machine.

http://dl.acm.org/citation.cfm?id=646620.697712
http://dl.acm.org/citation.cfm?id=646620.697712
https://www.w3.org/TR/COWL
https://www.w3.org/TR/COWL
http://www.w3.org/TR/2015/CR-CSP2-20150721/
http://www.w3.org/TR/2015/CR-CSP2-20150721/
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
https://webkit.org/perf/sunspider/sunspider.html
https://webkit.org/perf/sunspider/sunspider.html
https://webkit.org/perf/sunspider/sunspider.html
https://webkit.org/perf/sunspider/sunspider.html
http://dx.doi.org/10.1145/1294261.1294263
http://dx.doi.org/10.1145/1294261.1294263
https://www.whitehatsec.com/aviator/
https://en.wikipedia.org/wiki/Acid3
http://en.wikipedia.org/wiki/Bank_card_number
http://en.wikipedia.org/wiki/Bank_card_number
http://en.wikipedia.org/wiki/JSONP
https://en.wikipedia.org/wiki/Mashup_%28web_application_hybrid%29
https://en.wikipedia.org/wiki/Mashup_%28web_application_hybrid%29
http://en.wikipedia.org/wiki/Narcissus_(JavaScript_engine)
http://en.wikipedia.org/wiki/Narcissus_(JavaScript_engine)
http://en.wikipedia.org/wiki/Oracle_machine

142 Bibliography

[Wikg] PAN Truncation. URL: http://en.wikipedia.org/wiki/PAN_truncation.

[Wikh] Same-Origin Policy. URL: http://en.wikipedia.org/wiki/Same-origin_

policy.

[Wiki] Site-specific browser. URL: http://en.wikipedia.org/wiki/

Site-specific_browser.

[XSS] Excess-XSS. URL: https://excess-xss.com/#xss-attacks.

[Zan12] Matteo Zanioli. Information Flow Analysis by Abstract Interpretation. PhD thesis,

Universit‘ a Ca’ Foscari di Venezia Via, 2012.

[ZM01] Steve Zdancewic and Andrew C. Myers. Robust declassification. In in Proc. IEEE

Computer Security Foundations Workshop, pages 15–23. IEEE Computer Society

Press, 2001.

http://en.wikipedia.org/wiki/PAN_truncation
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Site-specific_browser
http://en.wikipedia.org/wiki/Site-specific_browser
https://excess-xss.com/#xss-attacks

List of Figures

1.1 Uniform Resource Locator . 12

1.2 The process of loading a page . 13

1.3 Simple eval function example . 14

1.4 A typical webpage . 15

1.5 Simple architectural view of WebRTC . 16

1.6 WebRTC architecture based on [Res15b] . 17

1.7 WebRTC integration of the Identity Provider. 18

1.8 OM based XSS example [Opef] . 21

1.9 Example attack showing how to compromise the certificate fingerprint by re-

placing the SDP offer with an attacker-controlled version. 23

1.10 Example attack showing how to modify the identity string to a fake identity. . . 24

2.1 Partial order on information . 32

2.2 Explicit/Implicit Flow . 34

2.3 Information Flow Working . 35

2.4 Information flow code example . 36

2.5 Termination-insensitive non-interference . 39

2.6 Timing- and Termination- sensitive non-interference 40

2.7 Secure-type system [SM03, VIS96] . 43

2.8 Abstract interpretation semantics [DFST02] 45

2.9 Label based taint marking . 47

2.10 Indirect flows in no-sensitive upgrade . 48

2.11 Secure Multi-Execution . 49

2.12 Indirect flows in SME . 50

2.13 Faceted Approach . 51

2.14 Faceted evaluation . 52

2.15 Faceted Approach - implicit flow . 53

143

144 List of Figures

2.16 Hybrid Information Flow Control with the assignment rule 55

2.17 Hybrid Information Flow Control with the conditional rule 56

2.18 Hybrid Information flow without the conditional rule 57

2.19 Example of references to same object in JavaScript 58

2.20 XMLHttpRequest in SME . 60

3.1 The address split design . 64

3.2 Policy BNF grammar . 66

3.3 Dictionary example . 67

3.4 Working of utility functions . 69

3.5 Defining the Perimeter using Self-Sufficient Functions 70

3.6 The various access rights . 72

3.7 Simple Information flow example . 84

3.8 ASD Limitation Example . 85

3.9 Example for flow . 87

3.10 A detailed Policy Specification . 88

3.11 Example for flow . 89

3.12 A detailed Policy Specification . 90

3.13 Dictionary of function compute2 . 90

3.14 Dictionary of function staticFunction . 91

3.15 Dictionary of function compute . 91

3.16 Dictionary of function init . 91

3.17 Dictionary of function compute2 . 92

3.18 Dictionary of function staticFunction . 92

3.19 Comparison between various approaches - Case h(x=false) 94

3.20 Comparison between various approaches - Case h(x=true) 95

4.1 Performance tests of V8 vs ASD.V8 . 105

4.2 Percentage difference between the similarities by original Chromium and ASD

Chromium . 109

4.3 Percentage difference between the page load times of de-optimized Chromium

and ASD Chromium . 115

4.4 Standard benchmark comparisons between Original Chromium, Modified Chromium

and Chromium-ASD . 116

4.5 Policy for CSRF . 119

4.6 Policy for WebRTC . 121

4.7 Policy for WebSockets . 123

Résumé

Le monde moderne a évolué au point où de nombreux services tels que la banque et le shopping

sont fournis grâce aux applications web. Ces applications Web dépendent de logiciels reposant

sur le modèle client-serveur. Parce que ces applications Web fournissent aux utilisateurs des

services sensibles tels que la banque et le shopping, leur sécurité est d’une importance cru-

ciale. Du côté serveur, la gamme des menaces de sécurité comprend des attaques telles que

le déni de service, la mauvaise configuration de sécurité et l’injection de code malveillant par

exemple, l’injection SQL). Du côté client, la majeure partie des problèmes de sécurité relève

du navigateur Web qui est l’interface entre les utilisateurs et l’application côté serveur: comme

n’importe quel logiciel, il peut être sujet à des attaques telles que des dépassements de tampon.

Cependant, il n’est pas suffisant d’empêcher indépendamment les menaces de sécurité côté

client et côté serveur, car certains problèmes de sécurité des applications Web sont intrinsèques

aux applications Web elles-mêmes. Par exemple, dans l’Internet moderne, une page Web se

compose de plusieurs pages Web aggrégées. Cette aggrégation de pages Web permet de con-

struire une application Web qui utilise le contenu de plusieurs sources pour créer un seul nou-

veau service accessible via une interface graphique unique. Plus généralement, la difficulté

de la sécurité des applications web réside dans le fait que l’exploitation d’une vulnérabilité

côté serveur peut avoir un impact côté client, et inversement. Il est à noter que de nombreuses

vulnérabilités côté serveur telles que Cross-Site Scripting (XSS) et Cross-Site Request Forgery

(CSRF) ont un impact direct sur le navigateur Web.

Dans cette thèse, nous nous concentrons sur la sécurité côté client, c’est-à-dire des nav-

igateurs web, et nous nous limitons au contexte de Javascript. Nous ne considérons pas la

résolution des vulnérabilités elles-mêmes, mais fournissons un mécanisme dans lequel les in-

formations sensibles de l’utilisateur sont protégées de la divulgation (confidentialité) ainsi que

des modifications non autorisées (intégrité) malgré la vulnérabilité exploitée. À cet effet, nous

affirmons que les vulnérabilités basées sur des scripts malveillants sont caractérisées par des

flux d’informations illégaux. Par conséquent, nous proposons une approche basée sur le con-

trôle du flux d’information (IFC - Information Flow Control). En effet, les approches basées sur

IFC sont plus globales dans leur portée pour résoudre les problèmes et fournissent également

des solutions plus simples pour gérer la sécurité de l’information dans son intégralité. Notre ap-

proche est basée sur un modèle IFC concret, appelé Address Split Design (ASD), qui consiste à

séparer toute variable contenant des données sensibles et à maintenir la table de symboles pour

protéger les accès à la partie secrète de telles variables. Nous avons implémenté notre modèle

dans le moteur V8 chrome, un moteur JavaScript à part entière. Après la mise en œuvre, des

tests de performance et de conformité ont été effectués sur notre implémentation. La baisse de

performance mesurée est significativement plus faible que d’autres approches comparatives.

Nous avons également démontré que la mise en œuvre de notre approche n’affecte pas le fonc-

tionnement général des sites Web existants en effectuant un test sur les principaux sites Web

d’Internet. De plus, nous avons également pu vérifier que notre modèle peut être utilisé pour

protéger des variables dans plusieurs scénarios qui auraient autrement provoqué la divulgation

d’informations secrètes.

Abstract

The modern world has evolved to the point where many services such as banking and shopping

are provided thanks to web applications. These Web applications depend on server-side as

well as client-side software. Because these web applications provide to users sensitive services

such as banking and shopping, their security is of pivotal importance. From the server side, the

range of the security threats includes attacks such as denial of service, security misconfiguration

and injection of malicious code (i.e. SQL injection). From the client side, major part of the

security issues come with the web browser that is the interface between the users and server

side application: as any software, it can be subject to attacks such as buffer overflows.

However, it is not sufficient to independently prevent security threats from each side, be-

cause some security issues of web applications are intrinsic to the web applications themselves.

For instance, the modern internet consists of several webpages which are mashup webpages. A

mashup, in web development, is a web page, or web application, that uses content from more

than one source to create a single new service displayed in a single graphical interface. More

generally, the difficulty of web application security lies in the fact that exploiting a server-side

vulnerability can have a client-side impact, and vice versa. It must be noted that many vulner-

abilities on the server side such as Cross-Site Scripting (XSS) and Cross-Site Request Forgery

(CSRF) have a direct impact on the web browser.

In this thesis, we focus on the client side security of the web browsers, and limit ourselves

to the context of Javascript. We do not consider solving the vulnerabilities themselves but

providing a mechanism where user’s sensitive information is protected from disclosure (con-

fidentiality) as well as unauthorized modifications (integrity) despite the vulnerability being

exploited. For that purpose, we affirm that the vulnerabilities based on malicious script are

characterized by illegal information flows. Hence, we propose an approach based on Informa-

tion Flow Control (IFC). Indeed, IFC-based approaches are more encompassing in their scope

to solve problems and also provide more streamlined solutions to handling the information se-

curity in its entirety. Our approach is based on a practical IFC model, called Address Split De-

sign (ASD), that consists in splitting any variable that contains sensitive data and maintaining

the symbol table to protect accesses to the secret part of these variables. We have implemented

our model on the chromium V8 engine, a full-fledged JavaScript engine. Following the im-

plementation, performance and conformance testing have been done on our implementation.

The measured performance drop is significantly smaller than other comparative approaches.

We further showed that implementation of our approach does not affect the general working of

existing websites by performing such a test over the top websites of the internet. Further, we

have also been able to verify that our model can be used to protect variables in several scenarios

that would have otherwise caused disclosure of secret information.

List of Publications

The various publications made during the course of our work are listed below

International Peer-Reviewed Publications

1. Ensuring endpoint authenticity in webrtc peer-to-peer communication, Willem De

Groef, Deepak Subramanian, Martin Johns, Frank Piessens, and Lieven Desmet, In: Pro-

ceedings of the 31st Annual ACM Symposium on Applied Computing, pages 2103–2110,

ACM, July 2016, doi:10.1145/2851613.2851804.

2. Preventive information flow control through a mechanism of split addresses, Deepak

Subramanian, Guillaume Hiet, and Christophe Bidan, Pages 1-8. In: ACM 9th In-

ternational Conference on Security of Information and Networks 2016. New York,

doi:10.1145/2947626.2947645.

3. Self-correcting Information Flow Control Model for the Web-Browser, Deepak Sub-

ramanian, Guillaume Hiet, and Christophe Bidan. In: Cuppens F., Wang L., Cuppens-

Boulahia N., Tawbi N., Garcia-Alfaro J. (eds) Foundations and Practice of Security

2016, Lecture Notes in Computer Science, vol 10128, pages 285–301. Springer, Cham,

2016, doi:10.1007/978-3-319-51966-1_19.

National Peer-Reviewed Publications

1. Preventive information flow control through a mechanism of split addresses, Deepak

Subramanian, Guillaume Hiet, and Christophe Bidan. In: 9ème Conférence sur la Sécu-

rité des Architectures Réseaux et des Systèmes d’Information, Saint-Germain-Au-Mont-

d’Or, France, May 2014. URL: https://hal.inria.fr/hal-01344563.

149

https://hal.inria.fr/hal-01344563

	Acknowledgements
	Table of contents
	Introduction
	Web browser security
	Web browser technologies
	Working of a web browser
	JavaScript
	Typical modern webpage
	WebRTC

	Vulnerabilities on modern webpages
	Cross-Site Scripting
	Cross-Site Request Forgery
	Vulnerabilities on WebRTC

	Web security mechanisms
	Security mechanisms on the server side
	Security mechanisms on the web browser side
	Conclusion

	Related work on information flow control
	Background on Information Flow Control
	Information flow control in programming languages
	Working of IFC
	IFC models
	IFC properties
	Types of IFC analysis

	Possibilistic web browser security models using IFC
	Traditional tainting models
	SME and Faceted approach

	Conclusion

	Address Split Design
	General working of Address Split Design
	Policy specification
	Privileges
	Dictionaries
	Function privileges
	Dependency tracker

	ASD description and semantics
	Metavariables and environment
	Syntax
	Splitting model
	Assignment and substitution
	Functions
	Example in While language
	Applying the model to JavaScript

	Examples on JavaScript
	Basic functionalities: variable splitting and policy interpretation
	Dictionary evolution and rights propagation

	Comparison of the approaches
	Conclusion

	Implementation and evaluation
	Implementation details
	Performance evaluation
	Performance estimation based on number of dictionaries
	Comparison of performance with SME and faceted approach
	Impact of ASD on real websites
	Standard benchmark tests

	Security considerations: handling vulnerabilities
	Protecting the Cross-Site Request Forgery Token
	WebRTC
	Websockets

	Conclusion
	Bibliography
	Table of Figures
	List of Publications

