C. J. Stam, Modern network science of neurological disorders, Nat Rev Neurosci, vol.15, pp.683-695, 2014.

B. M. Tijms, Alzheimer's disease: connecting findings from graph theoretical studies of brain networks, Neurobiol. Aging, vol.34, pp.2023-2036, 2013.

C. J. Stam, Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders, Journal of the Neurological Sciences, vol.289, pp.128-134, 2010.

G. L. Wenk, Neuropathologic changes in Alzheimer's disease, J Clin Psychiatry, vol.64, issue.9, pp.7-10, 2003.

S. E. Rose, Loss of connectivity in Alzheimer's disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging, J. Neurol. Neurosurg. Psychiatr, vol.69, pp.528-530, 2000.

Y. Zhou, Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer's disease and mild cognitive impairment, Alzheimers Dement, vol.4, pp.265-270, 2008.

C. Lo, Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer's disease, J. Neurosci, vol.30, pp.16876-16885, 2010.

E. J. Sanz-arigita, Loss of 'Small-World' Networks in Alzheimer's Disease: Graph Analysis of fMRI Resting-State Functional Connectivity, PLOS ONE, vol.5, p.13788, 2010.

C. J. Stam, Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease, Brain, vol.132, pp.213-224, 2009.

W. De-haan, Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory, BMC Neuroscience, vol.10, p.101, 2009.

F. Scientific-reports-|-;-miraglia, F. Vecchio, and P. M. Rossini, Searching for signs of aging and dementia in EEG through network analysis, Behavioural Brain Research, vol.317, pp.292-300, 2017.

D. S. Bassett, Dynamic reconfiguration of human brain networks during learning, PNAS, vol.108, pp.7641-7646, 2011.

N. A. Crossley, The hubs of the human connectome are generally implicated in the anatomy of brain disorders, Brain, vol.137, pp.2382-2395, 2014.

R. L. Buckner, Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease, J. Neurosci, vol.29, pp.1860-1873, 2009.

W. De-haan, Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer's disease, NeuroImage, vol.59, pp.3085-3093, 2012.

M. M. Engels, Declining functional connectivity and changing hub locations in Alzheimer's disease: an EEG study, BMC Neurol, vol.15, 2015.

F. De-vico-fallani, J. Richiardi, M. Chavez, and S. Achard, Graph analysis of functional brain networks: practical issues in translational neuroscience, Phil. Trans. R. Soc. B, vol.369, p.20130521, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01062386

E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci, vol.10, pp.186-198, 2009.

R. T. Canolty and R. T. Knight, The functional role of cross-frequency coupling, Trends in Cognitive Sciences, vol.14, pp.506-515, 2010.

V. Jirsa and V. Müller, Cross-frequency coupling in real and virtual brain networks, Front Comput Neurosci, vol.7, 2013.

M. J. Brookes, A multi-layer network approach to MEG connectivity analysis, NeuroImage, vol.132, pp.425-438, 2016.

F. J. Fraga, T. H. Falk, P. A. Kanda, and R. Anghinah, Characterizing Alzheimer's Disease Severity via Resting-Awake EEG Amplitude Modulation Analysis, PLoS One, vol.8, 2013.

K. J. Blinowska, Functional and effective brain connectivity for discrimination between Alzheimer's patients and healthy individuals: A study on resting state EEG rhythms, Clin Neurophysiol, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443255

Y. Ghanbari, Functionally driven brain networks using multi-layer graph clustering, Med Image Comput Comput Assist Interv, vol.17, pp.113-120, 2014.

T. Simas, M. Chavez, P. R. Rodriguez, and A. Diaz-guilera, An algebraic topological method for multimodal brain networks comparisons, Front Psychol, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01263828

F. Battiston, V. Nicosia, M. Chavez, and V. Latora, Multilayer motif analysis of brain networks, Chaos, vol.27, issue.4, p.47404, 2017.

M. De-domenico, S. Sasai, and A. Arenas, Mapping Multiplex Hubs in Human FunctionalBrain Networks, Front Neurosci, vol.15, p.326, 2016.

F. Battiston, V. Nicosia, and V. Latora, Structural measures for multiplex networks, Phys. Rev. E, vol.89, p.32804, 2014.

M. De-domenico, Mathematical Formulation of Multilayer Networks, Phys. Rev. X, vol.3, p.41022, 2013.

M. F. Folstein, S. E. Folstein, and P. R. Mchugh, Mini-mental state". A practical method for grading the cognitive state of patients for the clinician, J Psychiatr Res, vol.12, pp.189-198, 1975.

H. Buschke, Cued recall in Amnesia, Journal of Clinical Neuropsychology, vol.6, pp.433-440, 1984.

E. Grober, H. Buschke, H. Crystal, S. Bang, and R. Dresner, Screening for dementia by memory testing, Neurology, vol.38, pp.900-903, 1988.

B. Pillon, B. Deweer, Y. Agid, and B. Dubois, Explicit memory in Alzheimer's, Huntington's, and Parkinson's diseases, Arch. Neurol, vol.50, pp.374-379, 1993.

M. Sarazin, Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study, Neurology, vol.69, pp.1859-1867, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00169640

S. Taulu and J. Simola, Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements, Phys. Med. Biol, vol.51, p.1759, 2006.

B. He, Brain electric source imaging: scalp Laplacian mapping and cortical imaging, Crit Rev Biomed Eng, vol.27, pp.149-188, 1999.

S. Baillet, Evaluation of inverse methods and head models for EEG source localization using a human skull phantom, Phys Med Biol, vol.46, pp.77-96, 2001.

B. Fischl, Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain, Neuron, vol.33, pp.341-355, 2002.

B. Fischl, Sequence-independent segmentation of magnetic resonance images, Neuroimage, vol.23, issue.1, pp.69-84, 2004.

F. Tadel, Brainstorm: A User-Friendly Application for MEG/EEG Analysis, Brainstorm: A User-Friendly Application for MEG/ EEG Analysis. Computational Intelligence and Neuroscience, Computational Intelligence and Neuroscience, p.879716, 2011.

F. Lin, Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates, NeuroImage, vol.31, pp.160-171, 2006.

C. Destrieux, B. Fischl, A. Dale, and E. Halgren, Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature, Neuroimage, vol.53, pp.1-15, 2010.

G. C. Carter, Coherence and time delay estimation, Proceedings of the IEEE, vol.75, pp.236-255, 1987.

C. J. Stam, Generalized synchronization of MEG recordings in Alzheimer's Disease: evidence for involvement of the gamma band, J Clin Neurophysiol, vol.19, pp.562-574, 2002.

C. Babiloni, Abnormal fronto-parietal coupling of brain rhythms in mild Alzheimer's disease: a multicentric EEG study, Eur. J. Neurosci, vol.19, pp.2583-2590, 2004.

M. Rubinov and O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, NeuroImage, vol.52, pp.1059-1069, 2010.

R. Guimerà and L. A. Amaral, Cartography of complex networks: modules and universal roles, J Stat Mech, pp.2001-2002, 2005.

M. E. Newman, Finding community structure in networks using the eigenvectors of matrices, Phys. Rev. E, vol.74, p.36104, 2006.

M. Kivelä, Multilayer networks, vol.2, pp.203-271, 2014.

S. Boccaletti, The structure and dynamics of multilayer networks, Physics Reports, vol.544, pp.1-122, 2014.

F. De-vico-fallani, Interhemispheric Connectivity Characterizes Cortical Reorganization in Motor-Related Networks After Cerebellar Lesions, Cerebellum, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01427519

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, Journal of the Royal Statistical Society. Series B (Methodological), vol.57, pp.289-300, 1995.

J. Zar, Biostatistical analysis, 1999.

Y. Benjamini and D. Yekutieli, The Control of the False Discovery Rate in Multiple Testing under Dependency, The Annals of Statistics, vol.29, pp.1165-1188, 2001.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer Series in Statistics, 2009.

C. Babiloni, Mapping distributed sources of cortical rhythms in mild Alzheimer's disease. A multicentric EEG study, Neuroimage, vol.22, pp.57-67, 2004.

J. Jeong, EEG dynamics in patients with Alzheimer's disease, Clin Neurophysiol, vol.115, pp.1490-1505, 2004.

J. Dauwels, F. Vialatte, and A. Cichocki, Diagnosis of Alzheimer's Disease from EEG Signals: Where Are We Standing?, Current Alzheimer Research, vol.7, pp.487-505, 2010.

R. Wang, Power spectral density and coherence analysis of Alzheimer's EEG, Cogn Neurodyn, vol.9, pp.291-304, 2015.

. Scientific-reports-|,

R. L. Buckner, J. R. Andrews-hanna, and D. L. Schacter, The Brain's Default Network, Annals of the New York Academy of Sciences, vol.1124, pp.1-38, 2008.

C. J. Stam, Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer's disease, NeuroImage, vol.32, pp.1335-1344, 2006.

D. Purves, Neuroscience, 2001.

R. C. Pearson, M. M. Esiri, R. W. Hiorns, G. K. Wilcock, and T. P. Powell, Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease, Proc. Natl. Acad. Sci. USA, vol.82, pp.4531-4534, 1985.

S. E. Arnold, B. T. Hyman, J. Flory, A. R. Damasio, and G. W. Van-hoesen, The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease, Cereb. Cortex, vol.1, pp.103-116, 1991.

M. Catani and D. H. Ffytche, The rises and falls of disconnection syndromes, Brain, vol.128, pp.2224-2239, 2005.

W. H. Miltner, C. Braun, M. Arnold, H. Witte, and E. Taub, Coherence of gamma-band EEG activity as a basis for associative learning, Nature, vol.397, pp.434-436, 1999.

T. J. Buschman and E. K. Miller, Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices, Science, vol.315, pp.1860-1862, 2007.

M. Siegel, T. H. Donner, R. Oostenveld, P. Fries, and A. K. Engel, Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention, Neuron, vol.60, pp.709-719, 2008.

G. G. Gregoriou, S. J. Gotts, H. Zhou, and R. Desimone, High-frequency, long-range coupling between prefrontal and visual cortex during attention, Science, vol.324, pp.1207-1210, 2009.

J. F. Hipp, A. K. Engel, and M. Siegel, Oscillatory synchronization in large-scale cortical networks predicts perception, Neuron, vol.69, pp.387-396, 2011.

R. T. Canolty, High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex, Science, vol.313, pp.1626-1628, 2006.

N. Axmacher, Cross-frequency coupling supports multi-item working memory in the human hippocampus, PNAS, vol.107, pp.3228-3233, 2010.

R. Goutagny, Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aß overproduction in a mouse model of Alzheimer's disease, Eur J Neurosci, vol.37, pp.1896-1902, 2013.

Y. Li, Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features, Neurobiol. Aging, vol.33, 2012.

J. Wang, Disrupted functional brain connectome in individuals at risk for Alzheimer's disease, Biol. Psychiatry, vol.73, pp.472-481, 2013.

C. Wee, Enriched white matter connectivity networks for accurate identification of MCI patients, Neuroimage, vol.54, pp.1812-1822, 2011.

C. Wee, Identification of MCI individuals using structural and functional connectivity networks, Neuroimage, vol.59, pp.2045-2056, 2012.

B. Horwitz and J. B. Rowe, Functional biomarkers for neurodegenerative disorders based on the network paradigm, Progress in Neurobiology, vol.95, pp.505-509, 2011.

D. Dai, H. He, J. Vogelstein, and Z. Hou, Network-Based Classification Using Cortical Thickness of AD Patients, Machine Learning in Medical Imaging, vol.7009, pp.193-200, 2011.

J. Shao, Prediction of Alzheimer's disease using individual structural connectivity networks, Neurobiol Aging, vol.33, pp.2756-2765, 2012.

L. Zhou, Hierarchical Anatomical Brain Networks for MCI Prediction: Revisiting Volumetric Measures, PLOS ONE, vol.6, p.21935, 2011.

Z. Dai, Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3), NeuroImage, vol.59, pp.2187-2195, 2012.

N. Shu, Disrupted topological organization in white matter structural networks in amnestic mild cognitive impairment: relationship to subtype, Radiology, vol.265, pp.518-527, 2012.

C. J. Stam, B. F. Jones, G. Nolte, M. Breakspear, and P. Scheltens, Small-world networks and functional connectivity in Alzheimer's disease, Cereb. Cortex, vol.17, pp.92-99, 2007.

E. Grober, A. E. Sanders, C. Hall, and R. B. Lipton, Free and cued selective reminding identifies very mild dementia in primary care, Alzheimer Dis Assoc Disord, vol.24, pp.284-290, 2010.

L. Velayudhan, Review of brief cognitive tests for patients with suspected dementia, Int Psychogeriatr, vol.26, pp.1247-1262, 2014.

T. N. Tombaugh and N. J. Mcintyre, The mini-mental state examination: a comprehensive review, J Am Geriatr Soc, vol.40, pp.922-935, 1992.

R. A. Sperling, Functional Alterations in Memory Networks in Early Alzheimer's Disease, Neuromolecular Med, vol.12, pp.27-43, 2010.

R. L. Buckner, Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory, J. Neurosci, vol.25, pp.7709-7717, 2005.

M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon, Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI, Proc Natl Acad Sci, vol.101, pp.4637-4642, 2004.

M. Yu, Selective impairment of hippocampus and posterior hub areas in Alzheimer's disease: an MEG-based multiplex network study, Brain, vol.140, pp.1466-1485, 2017.

M. Vidal, M. E. Cusick, and A. Barabási, Interactome networks and human disease, Cell, vol.144, pp.986-998, 2011.

R. C. Craddock, Imaging human connectomes at the macroscale, Nat. Methods, vol.10, pp.524-539, 2013.

S. Palva and J. M. Palva, Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs, Trends in Cognitive Sciences, vol.16, pp.219-230, 2012.

R. Srinivasan, W. R. Winter, J. Ding, P. L. Nunez, M. Eeg et al., measures of functional connectivity at distinct spatial scales of neocortical dynamics, J. Neurosci. Methods, vol.166, pp.41-52, 2007.

K. Sekihara, J. P. Owen, S. Trisno, and S. S. Nagarajan, Removal of Spurious Coherence in MEG Source-Space Coherence Analysis, IEEE Transactions on Biomedical Engineering, vol.58, pp.3121-3129, 2011.

J. Schoffelen and J. Gross, Source connectivity analysis with MEG and EEG. Hum Brain Mapp, vol.30, pp.1857-1865, 2009.

G. L. Colclough, How reliable are MEG resting-state connectivity metrics?, Neuroimage, vol.138, pp.284-293, 2016.

G. Nolte, Identifying true brain interaction from EEG data using the imaginary part of coherency, Clinical Neurophysiology, vol.115, pp.2292-2307, 2004.

R. Milo, S. Shen-orr, S. Itzkovitz, N. Kashtan, D. Chklovskii et al., Network motifs: simple building blocks of complex networks, Science, vol.298, pp.824-827, 2002.

M. Girvan and M. Newman, Community structure in social and biological networks, Proc. Natl Acad. Sci. USA, vol.99, pp.7821-7826, 2002.

S. Fortunato, Community detection in graphs, Phys. Rep, vol.486, pp.75-174, 2010.

S. P. Borgatti and M. G. Everett, Models of core/ periphery structures, Soc. Networks, vol.21, pp.375-395, 2000.

P. Csermely, A. London, L. Wu, and B. Uzzi, Structure and dynamics of core/periphery networks, J. Complex Networks, vol.1, pp.93-123, 2013.

M. Rombach, M. Porter, J. Fowler, and P. Mucha, , 2014.

, Core-periphery structure in networks, SIAM J. Appl. Math, vol.74, pp.167-190

J. P. Boyd, W. J. Fitzgerald, M. C. Mahutga, and D. A. Smith, Computing continuous core/periphery structures for social relations data with MINRES/ SVD, Soc. Networks, vol.32, pp.125-137, 2010.

X. Zhang, T. Martin, and M. Newman, Identification of core-periphery structure in networks, Phys. Rev. E, vol.91, p.32803, 2015.

F. Luo, B. Li, X. Wan, and R. H. Scheuermann, Core and periphery structures in protein interaction networks, BMC Bioinformatics, vol.10, 2009.

P. Barucca and F. Lillo, Disentangling bipartite and core-periphery structure in financial networks, Chaos Solitons Fractals, vol.88, pp.244-253, 2016.

T. Verma, F. Russmann, A. Nam, J. Nagler, and H. J. Herrmann, Emergence of core-peripheries in networks, Nat. Commun, vol.7, 2016.

G. Fagiolo, J. Reyes, and S. Schiavo, The evolution of the world trade web: a weighted-network analysis, J. Evol. Econ, vol.20, pp.479-514, 2010.

V. Colizza, A. Flammini, M. A. Serrano, and A. Vespignani, Detecting rich-club ordering in complex networks, Nat. Phys, vol.2, pp.110-115, 2006.

S. Zhou and R. J. Mondragon, The rich-club phenomenon in the Internet topology, IEEE Commun. Lett, vol.8, pp.180-182, 2004.

L. M. Vaquero and M. Cebrian, The rich club phenomenon in the classroom, 2013.

A. Ma and R. J. Mondragón, Rich-cores in networks, PLoS ONE, vol.10, 2015.

H. Mpvd and O. Sporns, Rich-club organization of the human connectome, J. Neurosci, vol.31, pp.775-790, 2011.

L. Harriger, H. Mpvd, and O. Sporns, Rich club organization of macaque cerebral cortex and its role in network communication, PLoS ONE, vol.7, 2012.

M. P. Van-den-heuvel, O. Sporns, C. G. Scheewe, T. Mandl, R. Cahn et al., Abnormal rich club organization and functional brain dynamics in schizophrenia, JAMA Psychiatry, vol.70, pp.783-792, 2013.

G. Ball, Rich-club organization of the newborn human brain, Proc. Natl Acad. Sci. USA, vol.111, pp.7456-7461, 2014.

M. A. Bertolero, B. Yeo, and M. D'esposito, The diverse club, Nat. Commun, vol.8, p.1277, 2017.

E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci, vol.10, pp.186-198, 2009.

C. J. Stam, Modern network science of neurological disorders, Nat. Rev. Neurosci, vol.15, pp.683-695, 2014.

P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey et al., Mapping the structural core of human cerebral cortex, PLoS Biol, vol.6, p.159, 2008.

R. L. Buckner, J. R. Andrews-hanna, and D. L. Schacter, The brain's default network, Ann. NY Acad. Sci, vol.1124, pp.1-38, 2008.

K. J. Friston, Functional and effective connectivity: a review, Brain Connect, vol.1, pp.13-36, 2011.

D. Vico-fallani, F. Richiardi, J. Chavez, M. Achard, and S. , Graph analysis of functional brain networks: practical issues in translational neuroscience, Phil. Trans. R. Soc. B, vol.369, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01062386

M. De-domenico, A. Solé-ribalta, E. Cozzo, M. Kivelä, Y. Moreno et al., Mathematical formulation of multilayer networks, Phys. Rev. X, vol.3, p.41022, 2013.

M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno et al., Multilayer networks, J. Complex Networks, vol.2, pp.203-271, 2014.

S. Boccaletti, G. Bianconi, R. Criado, C. I. Del-genio, J. Gómez-gardeñes et al., The structure and dynamics of multilayer networks, Phys. Rep, vol.544, pp.1-122, 2014.

F. Battiston, V. Nicosia, and V. Latora, Structural measures for multiplex networks, Phys. Rev. E, vol.89, p.32804, 2014.

F. Battiston, V. Nicosia, and V. Latora, The new challenges of multiplex networks: measures and models, Eur. Phys. J. Spec. Top, vol.226, pp.401-416, 2017.

F. Battiston, V. Nicosia, M. Chavez, and V. Latora, , 2017.

, Multilayer motif analysis of brain networks, Chaos, vol.27, p.47404

M. De-domenico, S. Sasai, and A. Arenas, Mapping multiplex hubs in human functional brain networks, Front. Neurosci, vol.10, 2016.

J. Guillon, Y. Attal, O. Colliot, V. L. Corte, B. Dubois et al., Loss of brain inter-frequency hubs in Alzheimer's disease, Sci. Rep, vol.7, p.10879, 2017.

N. Azimi-tafreshi, J. Gómez-gardeñes, and S. N. Dorogovtsev, K-core percolation on multiplex networks. rsif.royalsocietypublishing.org, J. R. Soc. Interface, vol.15, p.20180514, 2014.

, Phys. Rev. E Stat. Nonlin. Soft Matter Phys, vol.90, p.32816

B. Corominas-murtra and S. Thurner, The weak core and the structure of elites in social multiplex networks, Interconnected networks, understanding complex systems, pp.165-177, 2016.

B. Van-wijk, C. J. Stam, and A. Daffertshofer, Comparing brain networks of different size and connectivity density using graph theory, PLoS ONE, vol.5, 2010.

A. Fornito, A. Zalesky, and M. Breakspear, Graph analysis of the human connectome: promise, progress, and pitfalls, NeuroImage, vol.80, pp.426-444, 2013.

D. Vico-fallani, F. Latora, V. Chavez, and M. , A topological criterion for filtering information in complex brain networks, PLoS Comput. Biol, vol.13, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01443254

L. L. Gollo, A. Zalesky, R. M. Hutchison, M. Van-den-heuvel, and M. Breakspear, Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuations, Phil. Trans. R. Soc. B, vol.370, 2015.

M. Daianu, N. Jahanshad, T. M. Nir, C. R. Jack, M. W. Weiner et al., , 2015.

, Rich club analysis in the Alzheimer's disease connectome reveals a relatively undisturbed structural core network, Hum. Brain Mapp, vol.36, pp.3087-3103

H. Mpvd and H. Pol, Exploring the brain network: a review on resting-state fMRI functional connectivity, Eur. Neuropsychopharmacol, vol.20, pp.519-534, 2010.

D. Tomasi and N. D. Volkow, Association between functional connectivity hubs and brain networks, Cereb. Cortex, vol.21, 2003.

R. Srinivasan, D. P. Russell, G. M. Edelman, and G. Tononi, Increased synchronization of neuromagnetic responses during conscious perception, J. Neurosci, vol.19, pp.5435-5448, 1999.

B. Biswal, F. Zerrin-yetkin, V. M. Haughton, and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar MRI, Magn. Reson. Med, vol.34, pp.537-541, 1995.

J. Xiong, L. M. Parsons, J. H. Gao, and P. T. Fox, Interregional connectivity to primary motor cortex revealed using MRI resting state images, Hum. Brain Mapp, vol.8, pp.151-156, 1999.

R. Salvador, J. Suckling, M. Coleman, J. Pickard, D. Menon et al., Neurophysiological architecture of functional magnetic resonance images of human brain, Cereb. Cortex, vol.15, pp.1332-2342, 2005.

J. Damoiseaux, S. Rombouts, F. Barkhof, P. Scheltens, C. Stam et al., Consistent resting-state networks across healthy subjects, Proc. Natl Acad. Sci. USA 103, vol.13, pp.848-861, 2006.

E. Rykhlevskaia, G. Gratton, and M. Fabiani, Combining structural and functional neuroimaging data for studying brain connectivity: a review, Psychophysiology, vol.45, pp.173-187, 2008.

X. Lei, D. Ostwald, J. Hu, C. Qiu, C. Porcaro et al., Multimodal functional network connectivity: an EEG-fMRI fusion in network space, PLoS ONE, vol.6, 2011.

T. Simas, M. Chavez, P. R. Rodriguez, and A. Diaz-guilera, An algebraic topological method for multimodal brain networks comparisons, Front. Psychol, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01263828

E. Amico and J. Goñi, Mapping hybrid functionalstructural connectivity traits in the human connectome, 2017.

C. Bédard, H. Kröger, and A. Destexhe, Does the 1/f frequency scaling of brain signals reflect selforganized critical states?, Phys. Rev. Lett, vol.97, p.118102, 2006.

N. Dehghani, C. Bédard, S. S. Cash, E. Halgren, and A. Destexhe, Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media, J. Comput. Neurosci, vol.29, pp.405-421, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00520481

B. Corominas-murtra, B. Fuchs, and S. Thurner, Detection of the elite structure in a virtual multiplex social system by means of a generalised K-core, PLoS ONE, vol.9, 2014.

T. P. Peixoto, Inferring the mesoscale structure of layered, edge-valued, and time-varying networks, Phys. Rev. E, vol.92, p.42807, 2015.

J. A. Brown and J. D. Van-horn, Connected brains and minds-the UMCD repository for brain connectivity matrices, NeuroImage, vol.124, pp.1238-1241, 2016.

S. Mori and P. Van-zijl, Fiber tracking: principles and strategies-a technical review, NMR Biomed, vol.15, pp.468-480, 2002.

J. A. Brown, J. D. Rudie, A. Bandrowski, J. D. Van-horn, and S. Y. Bookheimer, The UCLA multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis, Front. Neuroinform, vol.6, 2012.

R. C. Craddock, G. James, P. E. Holtzheimer, X. P. Hu, and H. S. Mayberg, A whole brain fMRI atlas generated via spatially constrained spectral clustering, Hum. Brain Mapp, vol.33, 1914.

J. Schmahmann and D. Pandya, Disconnection Syndromes of Basal Ganglia Thalamus, and Cerebrocerebellar Systems, Cortex, vol.44, issue.8, pp.1037-66, 2008.

X. Delbeuck, F. Collette, and M. Van-der-linden, Is Alzheimers Disease a Disconnection Syndrome?, Neuropsychologia, vol.45, issue.14, pp.3315-3338, 2007.

Y. Lakmache, M. Lassonde, S. Gauthier, J. Frigon, and F. Lepore, Interhemispheric Disconnection Syndrome in Alzheimers Disease, Proceedings of the National Academy of Sciences, vol.95, pp.9042-9088, 1998.

A. Cronin-golomb, Parkinson's Disease as a Disconnection Syndrome, Springer Nature, vol.20, pp.191-208, 2010.

K. J. Blinowska, M. Franciszek-rakowski, F. Kaminski, . De-vico, C. D. Fallani et al., Functional and Effective Brain Connectivity for Discrimination between Alzheimer's Patients and Healthy Individuals: A Study on Resting State EEG Rhythms, Clinical Neurophysiology, vol.128, issue.4, pp.667-80, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01443255

Z. T. Sankari, Local and Distal Coherence as a Measure of Cortical Connectivity in Alzheimers Disease, 2010.

, Alzheimers & Dementia, vol.6, issue.4

G. Adler, S. Brassen, and A. Jajcevic, EEG Coherence in Alzheimer?s Dementia, Journal of Neural Transmission, vol.110, issue.9, pp.1051-58, 2003.

C. Babiloni, R. Ferri, G. Binetti, F. Vecchio, G. B. Frisoni et al., Directionality of EEG Synchronization in Alzheimers Disease Subjects, Neurobiology of Aging, vol.30, issue.1, pp.93-102, 2009.

C. Luo, X. Guo, W. Song, B. Zhao, B. Cao et al., Decreased Resting-State Interhemispheric Functional Connectivity in Parkinson's Disease, pp.1-8, 2015.

K. T. Dubbelink, A. Olde, D. Hillebrand, J. Stoffers, . Berend-deijen et al., Disrupted Brain Network Topology in Parkinson's Disease: a Longitudinal Magnetoencephalography Study, Brain, vol.137, issue.1, pp.197-207, 2013.

C. J. Stam, Modern Network Science of Neurological Disorders, Springer Nature, vol.15, pp.683-95, 2014.

F. Battiston, J. Guillon, M. Chavez, V. Latora, and F. Fallani, Multiplex Core-Periphery Organization of the Human Connectome, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02349201

J. Kennedy, R. P. Eberhart.-n.d-;-m, and O. Sporns, Rich-Club Organization of the Human Connectome, Proceedings of ICNN95 -International Conference on Neural Networks. IEEE, pp.15775-86, 2011.

P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, J. Christopher et al., Mapping the Structural Core of Human Cerebral Cortex, PLoS Biology, vol.6, issue.7, p.159, 2008.

M. J. Brookes, K. Prejaas, . Tewarie, A. E. Benjamin, S. E. Hunt et al., A Multi-Layer Network Approach to MEG Connectivity Analysis, NeuroImage, vol.132, pp.425-463, 2016.

J. Guillon, Y. Attal, O. Colliot, V. L. Corte, B. Dubois et al., Loss of Brain Inter-Frequency Hubs in Alzheimers Disease, Scientific Reports, vol.7, issue.1, 2017.

M. Domenico and . De, Multilayer Modeling and Analysis of Human Brain Networks, GigaScience 6 (5), 2017.

M. Daianu, N. Jahanshad, T. M. Nir, C. R. Jack, M. W. Weiner et al., Rich Club Analysis in the Alzheimers Disease Connectome Reveals a Relatively Undisturbed Structural Core Network, Human Brain Mapping, vol.36, issue.8, pp.3087-3103, 2015.

J. L. Vincent, Z. Abraham, M. D. Snyder, B. J. Fox, J. R. Shannon et al., Coherent Spontaneous Activity Identifies a Hippocampal-Parietal Memory Network, Journal of Neurophysiology, p.96, 2006.

, , pp.3517-3548

A. D. Wagner, J. Benjamin, I. Shannon, R. L. Kahn, and . Buckner, Parietal Lobe Contributions to Episodic Memory Retrieval, Trends in Cognitive Sciences, vol.9, issue.9, pp.445-53, 2005.

L. R. Squire, Memory and the Hippocampus: A Synthesis from Findings with Rats Monkeys, and Humans: Correction, Psychological Review, vol.99, issue.3, pp.582-82, 1992.

B. Gordon, Memory Amnesia, and the Hippocampal System, Electroencephalography and Clinical Neurophysiology, vol.95, issue.6, pp.90026-90034, 1995.

J. M. Buldú and D. Papo, Can Multilayer Brain Networks Be a Real Step Forward, Physics of Life Reviews, vol.24, pp.153-55, 2018.

B. Fischl, FreeSurfer, NeuroImage, vol.62, issue.2, pp.774-81, 2012.

P. Jezzard and R. S. Balaban, Correction for Geometric Distortion in Echo Planar Images from B0 Field Variations, Magnetic Resonance in Medicine, vol.34, issue.1, pp.65-73, 1995.

N. J. Tustison, B. Brian, . Avants, A. Philip, Y. Cook et al., N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, vol.29, issue.6, pp.1310-1330, 2010.

B. Jeurissen, J. Tournier, T. Dhollander, and A. Connelly, Multi-Tissue Constrained Spherical Deconvolution for Improved Analysis of Multi-Shell Diffusion MRI Data, NeuroImage, vol.103, pp.411-437, 2014.

B. He, Brain Electric Source Imaging: Scalp Laplacian Mapping and Cortical Imaging, Crit Rev Biomed Eng, vol.27, issue.3-5, pp.149-88, 1999.

S. Baillet, J. J. Riera, G. Marin, J. F. Mangin, J. Aubert et al., Evaluation of Inverse Methods and Head Models for EEG Source Localization Using a Human Skull Phantom, Phys Med Biol, vol.46, issue.1, pp.77-96, 2001.

. Fischl, D. H. Bruce, E. Salat, M. Busa, M. Albert et al., Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain, Neuron, vol.33, issue.3, pp.341-55, 2002.

. Fischl, D. H. Bruce, . Salat, J. W. Andrã©, N. Van-der-kouwe et al., Sequence-Independent Segmentation of Magnetic Resonance Images, Neuroimage, vol.23, pp.69-84, 2004.

F. Tadel, S. §ois, J. C. Baillet, D. Mosher, R. M. Pantazis et al., Brainstorm: A User-Friendly Application for MEG/EEG Analysis, Brainstorm: A User-Friendly Application for MEG/EEG Analysis". Computational Intelligence and Neuroscience, Computational Intelligence and Neuroscience, p.879716, 2011.

. Lin, T. Fa-hsuan, . Witzel, P. Seppo, S. M. Ahlfors et al., Assessing and Improving the Spatial Accuracy in MEG Source Localization by Depth-Weighted Minimum-Norm Estimates, NeuroImage, vol.31, issue.1, pp.160-71, 2006.

C. J. Stam, A. Marie-van-cappellen-van-walsum, Y. A. Pijnenburg, H. W. Berendse, J. C. De-munck et al., Generalized Synchronization of MEG Recordings in Alzheimer's Disease: Evidence for Involvement of the Gamma Band, J Clin Neurophysiol, vol.19, issue.6, pp.562-74, 2002.

C. Babiloni, R. Ferri, D. V. Moretti, A. Strambi, G. Binetti et al., Functionally Linked Resting-State Networks Reflect the Underlying Structural Connectivity Architecture of the Human Brain, Human Brain Mapping, vol.19, issue.9, pp.3127-3168, 2004.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar Mri, Magnetic Resonance in Medicine, vol.34, issue.4, pp.537-578, 1995.

D. Cordes, . Haughton, . Arfanakis, P. A. Carew, C. H. Turski et al., Frequencies Contributing to Functional Connectivity in the Cerebral Cortex in Resting-State Data, AJNR Am J Neuroradiol, vol.22, pp.1326-1359, 2001.

B. Achard, S. , and E. Bullmore, Efficiency and Cost of Economical Brain Functional Networks, PLOS Computational Biology, vol.3, issue.2, p.17, 2007.

S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs, Journal of Neuroscience, vol.26, issue.1, pp.63-72, 2006.

S. Afshari and M. Jalili, Directed Functional Networks in Alzheimer's Disease: Disruption of Global and Local Connectivity Measures, IEEE Journal of Biomedical and Health Informatics, vol.21, issue.4, pp.949-55, 2017.

D. C. Alexander, Multiple-Fiber Reconstruction Algorithms for Diffusion MRI, Annals of the New York Academy of Sciences, vol.1064, issue.1, pp.113-146, 2005.

S. Arslan, S. I. Ktena, A. Makropoulos, E. C. Robinson, D. Rueckert et al., Human Brain Mapping: A Systematic Comparison of Parcellation Methods for the Human Cerebral Cortex, NeuroImage, Segmenting the Brain, vol.170, pp.5-30, 2018.

L. A. Baccalá and K. Sameshima, Partial Directed Coherence: A New Concept in Neural Structure Determination, Biological Cybernetics, vol.84, issue.6, pp.463-74, 2001.

P. Basser, D. Mattiello, and . Lebihan, MR Diffusion Tensor Spectroscopy and Imaging, Biophysical Journal, vol.66, issue.1, pp.259-67, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00349721

P. J. Basser, C. Sinisa-pajevic, J. Pierpaoli, A. Duda, and . Aldroubi, In Vivo Fiber Tractography Using DT-MRI Data, Magnetic Resonance in Medicine, vol.44, issue.4, pp.625-657, 2000.

D. S. Bassett and E. T. Bullmore, Small-World Brain Networks Revisited, The Neuroscientist, vol.23, issue.5, pp.499-516, 2017.

D. S. Bassett, A. Meyer-lindenberg, S. Achard, T. Duke, and E. Bullmore, Adaptive Reconfiguration of Fractal Small-World Human Brain Functional Networks, Proceedings of the National Academy of Sciences of the United States of America, vol.103, issue.51, pp.19518-19541, 2006.


D. S. Bassett, F. Nicholas, M. A. Wymbs, P. J. Porter, J. M. Mucha et al., Dynamic Reconfiguration of Human Brain Networks during Learning, Proceedings of the National Academy of Sciences, vol.108, issue.18, pp.7641-7687, 2011.

D. S. Bassett, F. Nicholas, M. P. Wymbs, M. A. Rombach, P. J. Porter et al., Task-Based Core-Periphery Organization of Human Brain Dynamics, PLOS Computational Biology, vol.9, issue.9, p.1003171, 2013.

D. S. Bassett, M. Yang, N. F. Wymbs, and S. T. Grafton, Learning-Induced Autonomy of Sensorimotor Systems, Nature Neuroscience, vol.18, issue.5, pp.744-51, 2015.

F. Battiston, V. Nicosia, M. Chavez, and V. Latora, Multilayer Motif Analysis of Brain Networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.27, issue.4, p.47404, 2017.

F. Battiston, V. Nicosia, and V. Latora, Structural Measures for Multiplex Networks, Physical Review E, vol.89, issue.3, p.32804, 2014.

H. Becker, L. Albera, P. Comon, R. Gribonval, F. Wendling et al., Brain-Source Imaging: From Sparse to Tensor Models, IEEE Signal Processing Magazine, vol.32, issue.6, pp.100-112, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01190559


M. Beckmann, H. Johansen-berg, and M. F. Rushworth, Connectivity-Based Parcellation of Human Cingulate Cortex and Its Relation to Functional Specialization, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.29, issue.4, pp.1175-90, 2009.

C. M. Bennett, L. George, M. B. Wolford, and . Miller, The Principled Control of False Positives in Neuroimaging, Social Cognitive and Affective Neuroscience, vol.4, issue.4, pp.417-439, 2009.


R. F. Betzel and D. S. Bassett, Multi-Scale Brain Networks, NeuroImage, Functional Architecture of the Brain, vol.160, pp.73-83, 2017.

R. F. Betzel, L. Byrge, Y. He, J. Goñi, . Xi-nian et al., Changes in Structural and Functional Connectivity among Resting-State Networks across the Human Lifespan, NeuroImage, vol.102, pp.345-57, 2014.

T. Blumensath, S. Jbabdi, M. F. Glasser, D. C. Van-essen, K. Ugurbil et al., Spatially Constrained Hierarchical Parcellation of the Brain with Resting-State FMRI, NeuroImage, vol.76, pp.313-337, 2013.

S. Boccaletti, G. Bianconi, R. Criado, C. I. Del-genio, J. Gómez-gardeñes et al., The Structure and Dynamics of Multilayer Networks, The structure and dynamics of multilayer networks, vol.544, pp.1-122, 2014.

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Complex Networks: Structure and Dynamics, Physics Reports, vol.424, issue.4, pp.175-308, 2006.

R. Boer, H. A. De, M. Vrooman, M. W. Ikram, M. M. Vernooij et al., Accuracy and Reproducibility Study of Automatic MRI Brain Tissue Segmentation Methods, NeuroImage, vol.51, issue.3, pp.1047-56, 2010.

D. A. Bohan, C. Vacher, A. Tamaddoni-nezhad, A. Raybould, A. J. Dumbrell et al., Next-Generation Global Biomonitoring: Large-Scale, Automated Reconstruction of Ecological Networks, Trends in Ecology & Evolution, vol.32, issue.7, pp.477-87, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606909

M. R. Brier, B. Jewell, A. M. Thomas, J. Fagan, . Hassenstab et al., Functional Connectivity and Graph Theory in Preclinical Alzheimer's Disease, Neurobiology of Aging, vol.35, issue.4, 2014.

M. J. Brookes, K. Prejaas, . Tewarie, A. E. Benjamin, S. E. Hunt et al., A Multi-Layer Network Approach to MEG Connectivity Analysis, NeuroImage, vol.132, pp.425-463, 2016.

R. L. Buckner, R. Jessica, D. L. Andrews-hanna, and . Schacter, The Brain's Default Network, Annals of the New York Academy of Sciences, vol.1124, issue.1, pp.1-38, 2008.

R. L. Buckner, Z. Abraham, B. J. Snyder, G. Shannon, R. Larossa et al., Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.25, issue.34, pp.7709-7726, 2005.


J. M. Buldú and D. Papo, Can Multilayer Brain Networks Be a Real Step Forward?: Comment on 'Network Science of Biological Systems at Different Scales: A Review' by M. Gosak et Al, Physics of Life Reviews, vol.24, pp.153-55, 2018.

J. M. Buldú and M. A. Porter, Frequency-Based Brain Networks: From a Multiplex Framework to a Full Multilayer Description, Network Neuroscience, vol.2, issue.4, pp.418-459, 2017.

E. Bullmore, J. Fadili, V. Maxim, L. ?endur, B. Whitcher et al., Wavelets and Functional Magnetic Resonance Imaging of the Human Brain, NeuroImage, Mathematics in Brain Imaging, vol.23, pp.234-283, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01128152


E. Bullmore and O. Sporns, Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems, Nature Reviews. Neuroscience, vol.10, issue.3, pp.186-98, 2009.

, Questions and Answers in MRI, 2018.

J. Cao and K. Worsley, The Geometry of Correlation Fields with an Application to Functional Connectivity of the Brain, The Annals of Applied Probability, vol.9, issue.4, pp.1021-57, 1999.

A. R. Carter, L. Gordon, M. Shulman, and . Corbetta, Why Use a Connectivity-Based Approach to Study Stroke and Recovery of Function?, NeuroImage, vol.62, issue.4, pp.2271-80, 2012.


K. Ciftçi, Minimum Spanning Tree Reflects the Alterations of the Default Mode Network during Alzheimer's Disease, Annals of Biomedical Engineering, vol.39, issue.5, pp.1493-1504, 2011.

K. A. Clark, H. Keith, R. F. Nuechterlein, L. S. Asarnow, O. R. Hamilton et al., Mean Diffusivity and Fractional Anisotropy as Indicators of Disease and Genetic Liability to Schizophrenia, Journal of Psychiatric Research, vol.45, issue.7, pp.980-88, 2011.

, Cohen Veterans Bioscience. n.d. Diffusion Spectrum Imaging (DSI): A Tool for Unraveling Disrupted Structural Connectivity in PTSD? Accessed September 30, 2018.

G. L. Colclough, M. W. Woolrich, P. K. Tewarie, M. J. Brookes, A. J. Quinn et al., How Reliable Are MEG Resting-State Connectivity Metrics?, NeuroImage, vol.138, pp.284-93, 2016.


R. W. Cox, AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages, Computers and Biomedical Research, vol.29, issue.3, pp.162-73, 1996.

R. Craddock, P. Cameron, S. Bellec, and . Jbabdi, Neuroimage Special Issue on Brain Segmentation and Parcellation -Editorial, NeuroImage, Segmenting the Brain, vol.170, pp.1-4, 2018.


R. Craddock, S. Cameron, . Jbabdi, J. T. Chao-gan-yan, F. X. Vogelstein et al., Imaging Human Connectomes at the Macroscale, Nature Methods, vol.10, issue.6, pp.524-563, 2013.

J. J. Crofts, M. Forrester, and R. D. O'dea, Structure-Function Clustering in Multiplex Brain Networks, Europhysics Letters), vol.116, issue.1, p.18003, 2016.

M. Daianu, N. Jahanshad, T. M. Nir, C. R. Jack, M. W. Weiner et al., Rich Club Analysis in the Alzheimer's Disease Connectome Reveals a Relatively Undisturbed Structural Core Network, Human Brain Mapping, vol.36, issue.8, pp.3087-3103, 2015.


M. Daianu, N. Jahanshad, T. M. Nir, A. W. Toga, C. R. Jack et al., Breakdown of Brain Connectivity Between Normal Aging and Alzheimer's Disease: A Structural k-Core Network Analysis, Brain Connectivity, vol.3, issue.4, pp.407-429, 2013.

. De-domenico and . Manlio, Multilayer Modeling and Analysis of Human Brain Networks, GigaScience, vol.6, issue.5, 2017.

D. Domenico, S. Manlio, A. Sasai, and . Arenas, Mapping Multiplex Hubs in Human Functional Brain Networks, Frontiers in Neuroscience, vol.10, 2016.

D. Domenico, A. Manlio, E. Solé-ribalta, M. Cozzo, Y. Kivelä et al., Mathematical Formulation of Multilayer Networks, Physical Review X, vol.3, issue.4, p.41022, 2013.

. De-vico-fallani, V. Fabrizio, M. Latora, and . Chavez, A Topological Criterion for Filtering Information in Complex Brain Networks, PLoS Computational Biology, vol.13, issue.1, p.1005305, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01443254

. De-vico-fallani, J. Fabrizio, M. Richiardi, S. Chavez, and . Achard, Graph Analysis of Functional Brain Networks: Practical Issues in Translational Neuroscience, Phil. Trans. R. Soc. B, vol.369, 1653.
URL : https://hal.archives-ouvertes.fr/hal-01062386

R. S. Desikan, F. Ségonne, B. Fischl, B. T. Quinn, B. C. Dickerson et al., An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans into Gyral Based Regions of Interest, NeuroImage, vol.31, issue.3, pp.968-80, 2006.


C. E. Destrieux, . Halgren, . Dale, M. I. Fischl, and . Sereno, Variability of the Human Brain Studied on the Flattened Cortical Surface, Soc Neurosci Abstr, vol.24, p.1164, 1998.

C. Destrieux, B. Fischl, A. Dale, and E. Halgren, Automatic Parcellation of Human Cortical Gyri and Sulci Using Standard Anatomical Nomenclature, NeuroImage, vol.53, issue.1, pp.1-15, 2010.

H. M. Duvernoy, The Human Brain: Surface, Three-Dimensional Sectional Anatomy with MRI, and Blood Supply, 1999.

S. B. Eickhoff, G. Bertrand-thirion, D. Varoquaux, and . Bzdok, Connectivity-Based Parcellation: Critique and Implications, Human Brain Mapping, vol.36, issue.12, pp.4771-92, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01184563

E. Estrada and N. Hatano, Communicability in Complex Networks, Physical Review E, vol.77, issue.3, p.36111, 2008.

P. Fillard, M. Descoteaux, A. Goh, S. Gouttard, B. Jeurissen et al., Quantitative Evaluation of 10 Tractography Algorithms on a Realistic Diffusion MR Phantom, NeuroImage, vol.56, issue.1, pp.220-254, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00559191

A. Fornito, A. Zalesky, and M. Breakspear, The Connectomics of Brain Disorders, Nature Reviews. Neuroscience, vol.16, issue.3, pp.159-72, 2015.

B. Gourévitch, R. Le-bouquin-jeannès, and G. Faucon, Linear and Nonlinear Causality between Signals: Methods, Examples and Neurophysiological Applications, Biological Cybernetics, vol.95, issue.4, pp.349-69, 2006.

R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, and S. G. Fabri, Michalis Zervakis, Petros Xanthopoulos, Vangelis Sakkalis, and Bart Vanrumste, Journal of Neuroengineering and Rehabilitation, vol.5, p.25, 2008.

A. Griffa, B. Ricaud, K. Benzi, X. Bresson, A. Daducci et al., Transient Networks of Spatio-Temporal Connectivity Map Communication Pathways in Brain Functional Systems, NeuroImage, vol.155, pp.490-502, 2017.

J. Guillon, Y. Attal, O. Colliot, V. L. Corte, B. Dubois et al., Loss of Brain Inter-Frequency Hubs in Alzheimer's Disease, Scientific Reports, vol.7, issue.1, p.10879, 2017.

W. Haan, W. M. De, T. Van-der-flier, L. L. Koene, P. Smits et al., Disrupted Modular Brain Dynamics Reflect Cognitive Dysfunction in Alzheimer's Disease, NeuroImage, vol.59, issue.4, pp.3085-93, 2012.

W. Haan, Y. A. De, R. L. Pijnenburg, Y. Strijers, . Van-der-made et al., Functional Neural Network Analysis in Frontotemporal Dementia and Alzheimer's Disease Using EEG and Graph Theory, BMC Neuroscience, vol.10, p.101, 2009.

P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey et al., Mapping the Structural Core of Human Cerebral Cortex, PLOS Biology, vol.6, issue.7, p.159, 2008.

P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, J. Van et al., Mapping Human Whole-Brain Structural Networks with Diffusion MRI, PLOS ONE, vol.2, issue.7, 2007.

M. P. Heuvel, O. Van-den, and . Sporns, Rich-Club Organization of the Human Connectome, Journal of Neuroscience, vol.31, issue.44, pp.15775-86, 2011.

J. Hlinkaa, M. Palu?a, M. Vejmelkaa, D. Mantini, and M. Corbetta, Functional Connectivity in Resting-State FMRI: Is Linear Correlation Sufficient?, NeuroImage, vol.54, issue.3, pp.2218-2243, 2011.

P. Holme and J. Saramäki, Temporal Networks, Physics Reports, Temporal Networks, vol.519, issue.3, pp.97-125, 2012.

T. A. Huisman, Diffusion-Weighted and Diffusion Tensor Imaging of the Brain, Made Easy, Cancer Imaging, vol.10, issue.1A, pp.163-71, 2010.

M. D. Humphries, T. Gurney, and . Prescott, The Brainstem Reticular Formation Is a, Proceedings of the Royal Society B: Biological Sciences, vol.273, pp.503-514, 1585.

M. Jalili, Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?, Scientific Reports, vol.6, p.29780, 2016.

D. K. Jones, Challenges and Limitations of Quantifying Brain Connectivity in Vivo with Diffusion MRI, Imaging in Medicine, vol.2, issue.3, pp.341-55, 2010.

M. J. Kaminski and K. J. Blinowska, A New Method of the Description of the Information Flow in the Brain Structures, Biological Cybernetics, vol.65, issue.3, pp.203-213, 1991.

. Khalsa, S. D. Sakh, M. Mayhew, M. Chechlacz, A. P. Bagary et al., The Structural and Functional Connectivity of the Posterior Cingulate Cortex: Comparison between Deterministic and Probabilistic Tractography for the Investigation of Structure-Function Relationships, NeuroImage, Multimodal Data Fusion, vol.102, pp.118-145, 2014.

M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno et al., Multilayer Networks, Journal of Complex Networks, vol.2, issue.3, pp.203-71, 2014.

J. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela, Measuring Phase Synchrony in Brain Signals, Human Brain Mapping, vol.8, issue.4, pp.194-208, 1999.

V. Latora and M. Marchiori, Economic Small-World Behavior in Weighted Networks, The European Physical Journal B -Condensed Matter and Complex Systems, vol.32, issue.2, pp.249-63, 2003.

M. Lazar, Mapping Brain Anatomical Connectivity Using White Matter Tractography, NMR in Biomedicine, vol.23, issue.7, pp.821-856, 2010.

Y. Li, Y. Qin, X. Chen, and W. Li, Exploring the Functional Brain Network of Alzheimer's Disease: Based on the Computational Experiment, PloS One, vol.8, issue.9, p.73186, 2013.

A. W. Liew, .. , and H. Yan, Current Methods in the Automatic Tissue Segmentation of 3D Magnetic Resonance Brain Images, 2006.

V. Litvak, J. Mattout, S. Kiebel, C. Phillips, R. Henson et al., EEG and MEG Data Analysis in SPM8, Computational Intelligence and Neuroscience, p.852961, 2011.

S. Lopes-da and F. , EEG and MEG: Relevance to Neuroscience, Neuron, vol.80, issue.5, pp.1112-1140, 2013.

F. Lüsebrink, A. Sciarra, H. Mattern, R. Yakupov, and O. Speck, T1-Weighted in Vivo Human Whole Brain MRI Dataset with an Ultrahigh Isotropic Resolution of 250 ?m, Scientific Data, vol.4, p.170032, 2017.

K. H. Maier-hein, F. Peter, J. Neher, M. Houde, E. Côté et al., The Challenge of Mapping the Human Connectome Based on Diffusion Tractography, Nature Communications, vol.8, issue.1, p.1349, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01631578

K. Mandke, J. Meier, M. J. Brookes, R. D. O'dea, P. Van-mieghem et al., Comparing Multilayer Brain Networks between Groups: Introducing Graph Metrics and Recommendations, NeuroImage, vol.166, pp.371-84, 2018.


A. V. Mantzaris, D. S. Bassett, N. F. Wymbs, E. Estrada, M. A. Porter et al., Dynamic Network Centrality Summarizes Learning in the Human Brain, Journal of Complex Networks, vol.1, issue.1, pp.83-92, 2013.

D. S. Margulies, A. M. , C. Kelly, L. Q. Uddin, B. B. Biswal et al., Mapping the Functional Connectivity of Anterior Cingulate Cortex, NeuroImage, vol.37, issue.2, pp.579-88, 2007.

A. M. Mendrik, L. Koen, H. J. Vincken, M. Kuijf, W. H. Breeuwer et al., MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans, 2015.

C. M. Michel, M. Micah, G. Murray, S. Lantz, L. Gonzalez et al., EEG Source Imaging, Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, vol.115, issue.10, pp.2195-2222, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00617795

. Mori, B. J. Susumu, V. P. Crain, P. C. Chacko, and . Van-zijl, Three-Dimensional Tracking of Axonal Projections in the Brain by Magnetic Resonance Imaging, Annals of Neurology, vol.45, issue.2, pp.265-69, 1999.

E. C. Mormino, A. Smiljic, A. O. Hayenga, S. H. Onami, M. D. Greicius et al., Relationships between Beta-Amyloid and Functional Connectivity in Different Components of the Default Mode Network in Aging, Cerebral Cortex, vol.21, issue.10, pp.2399-2407, 2011.

P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J. Onnela, Community Structure in Time-Dependent, Multiscale, and Multiplex Networks, Science, vol.328, issue.5980, pp.876-78, 2010.

, NeuroImageN -High Angular Resolution Diffusion Imaging (HARDI) Tools, 2018.

M. E. Newman, Fast Algorithm for Detecting Community Structure in Networks, Proceedings of the National Academy of Sciences, vol.69, issue.6, pp.8577-82, 2004.

G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach et al., Identifying True Brain Interaction from EEG Data Using the Imaginary Part of Coherency, Clinical Neurophysiology, vol.115, issue.10, pp.2292-2307, 2004.

S. Ogawa, T. Lee, D. Kay, and . Tank, Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation, Proceedings of the National Academy of Sciences of the United States of America, vol.87, issue.24, pp.9868-72, 1990.

R. Oostenveld, P. Fries, and E. Maris, FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data, Computational Intelligence and Neuroscience, p.156869, 2011.

J. B. Pochon, R. Levy, P. Fossati, S. Lehericy, J. B. Poline et al., The Neural System That Bridges Reward and Cognition in Humans: An FMRI Study, Proceedings of the National Academy of Sciences of the United States of America, vol.99, issue.8, pp.5669-74, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00349710

C. Pradal, G. Varoquaux, and H. Peter-langtangen, Publishing Scientific Software Matters, Journal of Computational Science, vol.4, issue.5, pp.311-323, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00858663

M. E. Raichle, Two Views of Brain Function, Trends in Cognitive Sciences, vol.14, issue.4, pp.180-90, 2010.

, The Brain's Default Mode Network, Annual Review of Neuroscience, vol.38, issue.1, pp.433-480, 2015.

M. E. Raichle, A. M. Macleod, A. Z. Snyder, W. J. Powers, D. A. Gusnard et al., A Default Mode of Brain Function, Proceedings of the National Academy of Sciences, vol.98, issue.2, pp.676-82, 2001.

M. E. Raichle and M. A. Mintun, Brain Work and Brain Imaging, Annual Review of Neuroscience, vol.29, issue.1, pp.449-76, 2006.

M. A. Reus, M. P. De, . Van-den, and . Heuvel, The Parcellation-Based Connectome: Limitations and Extensions, NeuroImage, Mapping the Connectome, vol.80, pp.397-404, 2013.


M. Rubinov and O. Sporns, Complex Network Measures of Brain Connectivity: Uses and Interpretations, NeuroImage, Computational Models of the Brain, vol.52, issue.3, pp.1059-69, 2010.


V. Sakkalis, Review of Advanced Techniques for the Estimation of Brain Connectivity Measured with EEG/MEG, Computers in Biology and Medicine, Special Issue on Techniques for Measuring Brain Connectivity, vol.41, issue.12, pp.1110-1127, 2011.

E. J. Sanz-arigita, M. Menno, J. S. Schoonheim, S. A. Damoiseaux, E. Rombouts et al., Loss of 'Small-World' Networks in Alzheimer's Disease: Graph Analysis of FMRI Resting-State Functional Connectivity, PLOS ONE, vol.5, issue.11, p.13788, 2010.

A. Schnitzler and J. Gross, Normal and Pathological Oscillatory Communication in the Brain, Nature Reviews Neuroscience, vol.6, issue.4, pp.285-96, 2005.

E. Seo, D. Y. Hyun, J. Lee, J. Lee, B. K. Park et al., Whole-Brain Functional Networks in Cognitively Normal, Mild Cognitive Impairment, and Alzheimer's Disease, PLOS ONE, vol.8, issue.1, p.53922, 2013.

K. K. Seunarine and D. C. Alexander, Chapter 6 -Multiple Fibers: Beyond the Diffusion Tensor, Diffusion MRI, pp.105-128, 2014.

G. L. Shulman, J. A. Fiez, M. Corbetta, R. L. Buckner, F. M. Miezin et al., Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex, Journal of Cognitive Neuroscience, vol.9, issue.5, pp.648-63, 1997.

T. Simas, M. Chavez, P. R. Rodriguez, and A. Diaz-guilera, An Algebraic Topological Method for Multimodal Brain Networks Comparisons, Frontiers in Psychology, vol.6, p.904, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01263828

S. L. Simpson and P. J. Laurienti, Disentangling Brain Graphs: A Note on the Conflation of Network and Connectivity Analyses, Brain Connectivity, vol.6, issue.2, pp.95-98, 2016.

S. P. Singh, Magnetoencephalography: Basic Principles, Annals of Indian Academy of Neurology, vol.17, issue.1, pp.107-119, 2014.

C. J. Stam and B. W. Van-dijk, Synchronization Likelihood: An Unbiased Measure of Generalized Synchronization in Multivariate Data Sets, Physica D: Nonlinear Phenomena, vol.163, issue.3, pp.386-390, 2002.

C. J. Stam, W. De-haan, A. Daffertshofer, B. F. Jones, I. Manshanden et al., Graph Theoretical Analysis of Magnetoencephalographic Functional Connectivity in Alzheimer's Disease, Brain, vol.132, issue.1, pp.213-237, 2009.

C. J. Stam, B. F. Jones, G. Nolte, M. Breakspear, and P. Scheltens, Small-World Networks and Functional Connectivity in Alzheimer's Disease, Cerebral Cortex, vol.17, issue.1, pp.92-99, 2007.

C. J. Stam, Modern Network Science of Neurological Disorders, Nature Reviews. Neuroscience, vol.15, issue.10, pp.683-95, 2014.

C. J. Stam, A. Guido-nolte, and . Daffertshofer, Phase Lag Index: Assessment of Functional Connectivity from Multi Channel EEG and MEG with Diminished Bias from Common Sources, Human Brain Mapping, vol.28, issue.11, pp.1178-93, 2007.

F. T. Sun, M. Lee, M. Miller, and . Esposito, Measuring Interregional Functional Connectivity Using Coherence and Partial Coherence Analyses of FMRI Data, NeuroImage, vol.21, issue.2, pp.647-58, 2004.

K. Supekar, V. Menon, D. Rubin, M. Musen, and M. D. Greicius, Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease, PLoS Comput Biol, vol.4, issue.6, p.1000100, 2008.

M. Symms, H. R. Jäger, K. Schmierer, and T. A. Yousry, A Review of Structural Magnetic Resonance Neuroimaging, Neurosurgery & Psychiatry, vol.75, issue.9, pp.1235-1279, 2004.


F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, R. M. Leahy et al., Brainstorm: A User-Friendly Application for MEG/EEG Analysis, Brainstorm: A User-Friendly Application for MEG/EEG Analysis, Computational Intelligence and Neuroscience, p.879716, 2011.

P. Tewarie, A. Hillebrand, B. W. Van-dijk, C. J. Stam, G. C. O'neill et al., Integrating Cross-Frequency and within Band Functional Networks in Resting-State MEG: A Multi-Layer Network Approach, NeuroImage, vol.142, pp.324-360, 2016.

B. Thirion, G. Varoquaux, E. Dohmatob, and J. Poline, Which FMRI Clustering Gives Good Brain Parcellations?, Frontiers in Neuroscience, vol.8, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01015172

P. M. Thompson, C. Schwartz, R. T. Lin, A. A. Khan, and A. W. Toga, Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.16, issue.13, pp.4261-74, 1996.

B. M. Tijms, W. Alle-meije-wink, W. M. De-haan, C. J. Van-der-flier, P. Stam et al., Alzheimer's Disease: Connecting Findings from Graph Theoretical Studies of Brain Networks, Neurobiology of Aging, vol.34, issue.8, pp.2023-2059, 2013.

J. Toppi, F. De-vico-fallani, G. Vecchiato, A. G. Maglione, F. Cincotti et al., How the Statistical Validation of Functional Connectivity Patterns Can Prevent Erroneous Definition of Small-World Properties of a Brain Connectivity Network, Computational and Mathematical Methods in Medicine, p.130985, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01443263

J. Tournier, F. Donald, D. G. Calamante, A. Gadian, and . Connelly, Direct Estimation of the Fiber Orientation Density Function from Diffusion-Weighted MRI Data Using Spherical Deconvolution, NeuroImage, vol.23, issue.3, pp.1176-85, 2004.

J. Tournier, F. Donald, A. Calamante, and . Connelly, Robust Determination of the Fibre Orientation Distribution in Diffusion MRI: Non-Negativity Constrained Super-Resolved Spherical Deconvolution, NeuroImage, vol.35, issue.4, pp.1459-72, 2007.

J. Travers and S. Milgram, An Experimental Study of the Small World Problem, Sociometry, vol.32, issue.4, pp.425-468, 1969.

D. S. Tuch, G. Timothy, M. R. Reese, N. Wiegell, J. W. Makris et al., High Angular Resolution Diffusion Imaging Reveals Intravoxel White Matter Fiber Heterogeneity, Magnetic Resonance in Medicine, vol.48, issue.4, pp.577-82, 2002.

D. S. Tuch, G. Timothy, M. R. Reese, V. J. Wiegell, and . Wedeen, Diffusion MRI of Complex Neural Architecture, Neuron, vol.40, issue.5, pp.885-95, 2003.

N. Tzourio-mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard et al., Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain, NeuroImage, vol.15, issue.1, pp.273-89, 2002.

F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, The Brainweb: Phase Synchronization and Large-Scale Integration, Nature Reviews. Neuroscience, vol.2, issue.4, pp.229-268, 2001.

J. Velmurugan, S. Sinha, and P. Satishchandra, Magnetoencephalography Recording and Analysis, Annals of Indian Academy of Neurology, vol.17, issue.1, pp.113-132, 2014.

R. Vijayalakshmi, D. Nandagopal, N. Dasari, B. Cocks, N. Dahal et al., Minimum Connected Component -A Novel Approach to Detection of Cognitive Load Induced Changes in Functional Brain Networks, Neurocomputing, Advances on Biological Rhythmic Pattern Generation: Experiments, Algorithms and Applications, vol.170, pp.15-31, 2015.

A. G. Vlassenko, S. N. Vaishnavi, L. Couture, D. Sacco, B. J. Shannon et al., Spatial Correlation between Brain Aerobic Glycolysis and Amyloid-? (A?) Deposition, Proceedings of the National Academy of Sciences, vol.107, issue.41, pp.17763-67, 2010.

J. Wang, X. Zuo, Z. Dai, M. Xia, Z. Zhao et al., Disrupted Functional Brain Connectome in Individuals at Risk for Alzheimer's Disease, Biological Psychiatry, vol.73, issue.5, pp.472-81, 2013.

Y. Wang, K. Lin, Y. Qi, Q. Lian, S. Feng et al., Estimating Brain Connectivity With Varying-Length Time Lags Using a Recurrent Neural Network, IEEE Transactions on Biomedical Engineering, vol.65, issue.9, pp.1953-63, 2018.

. Ward and H. Joe, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, vol.58, issue.301, pp.236-280, 1963.

D. J. Watts, H. Steven, and . Strogatz, Collective Dynamics of 'Small-World' Networks, Nature, vol.393, issue.6684, pp.440-482, 1998.

J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, The Structure of the Nervous System of the Nematode Caenorhabditis Elegans, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol.314, pp.1-340, 1165.

. Yo, A. Ting-shuo, M. Anwander, P. Descoteaux, C. Fillard et al., Quantifying Brain Connectivity: A Comparative Tractography Study, In Medical Image Computing and Computer-Assisted Intervention -MICCAI, pp.886-93, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00502714

. Yu, . Meichen, M. A. Marjolein, A. Engels, . Hillebrand et al., Selective Impairment of Hippocampus and Posterior Hub Areas in Alzheimer's Disease: An MEG-Based Multiplex Network Study, Brain, vol.140, issue.5, pp.1466-85, 2017.

. Yu, . Meichen, M. A. Marjolein, A. Engels, . Hillebrand et al., Selective Impairment of Hippocampus and Posterior Hub Areas in Alzheimer's Disease: An MEG-Based Multiplex Network Study, Brain, vol.140, issue.5, pp.1466-85, 2017.

A. Zalesky, A. Fornito, and E. Bullmore, On the Use of Correlation as a Measure of Network Connectivity, NeuroImage, vol.60, issue.4, pp.2096-2106, 2012.

X. Zhao, Y. Liu, X. Wang, B. Liu, Q. Xi et al., Disrupted Small-World Brain Networks in Moderate Alzheimer's Disease: A Resting-State FMRI Study, PLOS ONE, vol.7, issue.3, p.33540, 2012.

K. Zilles, A. Schleicher, C. Langemann, K. Amunts, P. Morosan et al., Quantitative Analysis of Sulci in the Human Cerebral Cortex: Development, Regional Heterogeneity, Gender Difference, Asymmetry, Intersubject Variability and Cortical Architecture, Human Brain Mapping, vol.5, issue.4, pp.218-239, 1997.