, Une grande partie de ce chapitre a fait l'objet d'un article publié dans Surfaces, vol.2, p.20, 2019.

M. C. Daniel and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev, vol.104, pp.293-346, 2004.

C. Burda, X. B. Chen, R. Narayanan, and M. A. El-sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev, vol.105, pp.1025-1102, 2005.

P. K. Jain, X. H. Huang, I. H. El-sayed, and M. A. El-sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Accounts Chem. Res, vol.41, pp.1578-1586, 2008.

M. A. El-sayed, Some interesting properties of metals confined in time and nanometer space of different shapes, Accounts Chem. Res, vol.34, pp.257-264, 2001.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, The Journal of Physical Chemistry B, vol.107, pp.668-677, 2003.

N. R. Jana, L. Gearheart, and C. J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods, The Journal of Physical Chemistry B, vol.105, pp.4065-4067, 2001.

J. E. Millstone, G. S. Metraux, and C. A. Mirkin, Controlling the edge length of gold nanoprisms via a seed-mediated approach, Adv. Funct. Mater, vol.16, pp.1209-1214, 2006.

A. R. Tao, S. Habas, and P. D. Yang, Shape control of colloidal metal nanocrystals, vol.4, pp.310-325, 2008.

C. J. Orendorff and C. J. Murphy, Quantitation of metal content in the silver-assisted growth of gold nanorods, The Journal of Physical Chemistry B, vol.110, pp.3990-3994, 2006.

H. Wang, L. L. Zhu, L. L. Yang, F. Liao, M. Q. Sheng et al., Prominent electrocatalytic methanol oxidation from cauli-flower shape gold with high-index facets, Mater. Chem. Phys, vol.186, pp.301-304, 2017.

M. Xu, Y. M. Sui, G. J. Xiao, X. Y. Yang, Y. J. Wei et al., Kinetically controlled synthesis of nanoporous Au and its enhanced electrocatalytic activity for glucose-based biofuel cells, Nanoscale, vol.9, pp.2514-2520, 2017.

F. Cho, Y. Lin, and Y. Lai, Electrochemically fabricated gold dendrites with high-index facets for use as surface-enhanced Raman-scattering-active substrates, Appl. Surf. Sci, vol.402, pp.147-153, 2017.

A. Brouzgou and P. Tsiakaras, Electrocatalysts for glucose electrooxidation reaction: a review, Top. Catal, vol.58, pp.1311-1327, 2015.

J. Monzo, Y. Malewski, F. J. Vidal-iglesias, J. Solla-gullon, and P. Rodriguez, Electrochemical oxidation of small organic molecules on Au nanoparticles with preferential surface orientation, vol.2, pp.958-962, 2015.

Y. Zhang, F. Lu, S. Liu, D. Lu, D. Su et al., Oxygen reduction on gold nanocrystal surfaces in alkaline electrolyte: evidence for surface proton transfer effects, ECS Transactions, vol.85, pp.93-110, 2018.

U. Harten, A. M. Lahee, J. P. Toennies, and C. Woll, Observation of a soliton reconstruction of Au(111) by high-resolution helium-atom diffraction, Phys. Rev. Lett, vol.54, pp.2619-2622, 1985.

A. H. Guerrero, H. J. Fasoli, and J. L. Costa, Why gold and copper are colored but silver is not, J. Chem. Educ, vol.76, pp.200-200, 1999.

C. Corti, R. Holliday, and . Gold, , 2010.

H. Schmidbaur, S. Cronje, B. Djordjevic, and O. Schuster, Understanding gold chemistry through relativity, Chemical Physics, pp.151-161, 2005.

B. Hammer and J. K. Norskov, Why gold is the noblest of all the metals, Nature, vol.376, pp.238-240, 1995.

A. D. Maynard, Don't define nanomaterials, Nature, vol.475, pp.31-31, 2011.

A. Iwakoshi, T. Nanke, and T. Kobayashi, Coating materials containing gold nanoparticles, Gold Bull, vol.38, pp.107-112, 2005.

B. Hvolbaek, T. V. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen et al., Catalytic activity of Au nanoparticles, vol.2, pp.14-18, 2007.

S. W. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu et al., A review on functionalized gold nanoparticles for biosensing applications, vol.6, pp.491-506, 2011.

E. Silva, D. E. Souto, J. T. Barragan, J. D. Giarola, A. C. De-moraes et al., Electrochemical biosensors in point-of-care devices: recent advances and future trends, pp.778-794, 2017.

N. P. Truong, M. R. Whittaker, C. W. Mak, and T. P. Davis, The importance of nanoparticle shape in cancer drug delivery, Expert Opin. Drug Deliv, vol.12, pp.129-142, 2015.

J. Y. Zhang, M. Wang, and T. J. Webster, Growth process and anticancer properties of gold nanorods, J. Biomed. Mater. Res. Part A, vol.105, pp.2616-2621, 2017.

K. Kinoshita, Small-particle effects and structural considerations for electrocatalysis, Modern Aspects of Electrochemistry, pp.557-637, 1982.

J. T. Miller, A. J. Kropf, Y. Zha, J. R. Regalbuto, L. Delannoy et al., The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts, J. Catal, vol.240, pp.222-234, 2006.

T. V. Janssens, B. S. Clausen, B. Hvolbaek, H. Falsig, C. H. Christensen et al., Insights into the reactivity of supported Au nanoparticles: combining theory and experiments, vol.44, pp.15-26, 2007.

G. C. Bond, Gold: a relatively new catalyst, Gold Bull, vol.34, pp.117-140, 2001.

L. M. Liz-marzan, Tailoring surface plasmons through the morphology and assembly of metal nanoparticles, Langmuir, vol.22, pp.32-41, 2006.

M. Treguer-delapierre, J. Majimel, S. Mornet, E. Duguet, and S. Ravaine, Synthesis of non-spherical gold nanoparticles, Gold Bull, vol.41, pp.195-207, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00301528

V. Sharma, K. Park, and M. Srinivasarao, Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly, Materials Science & Engineering R -Reports, vol.65, pp.1-38, 2009.

S. Schlucker, Surface-enhanced raman spectroscopy: concepts and chemical applications, Angew. Chem.-Int. Edit, vol.53, pp.4756-4795, 2014.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van-duyne, SERS: Materials, applications, and the future, pp.16-25, 2012.

S. Y. Tee, C. P. Teng, and E. Y. Ye, Metal nanostructures for non-enzymatic glucose sensing, Mater. Sci. Eng. C-Mater. Biol. Appl, vol.70, pp.1018-1030, 2017.

N. Tian, Z. Y. Zhou, and S. G. Sun, Platinum metal catalysts of high-index surfaces: from singlecrystal planes to electrochemically shape-controlled nanoparticles, The Journal of Physical Chemistry C, vol.112, pp.19801-19817, 2008.

A. Hamelin, Cyclic voltammetry at gold single-crystal surfaces .1. Behaviour at low-index faces, J. Electroanal. Chem, vol.407, pp.1-11, 1996.

B. Lang, R. W. Joyner, and G. A. Somorjai, Low energy electron diffraction studies of chemisorbed gases on stepped surfaces of platinum, Surf. Sci, vol.30, pp.454-474, 1972.

N. Takeuchi, C. T. Chan, and K. M. Ho, Au(111) -A theoretical-study of the surface reconstruction and the surface electronic-structure, Phys. Rev. B, vol.43, pp.13899-13906, 1991.

A. Y. Lozovoi and A. Alavi, Reconstruction of charged surfaces: general trends and a case study of Pt(110) and Au(110), Phys. Rev. B, vol.68, pp.1-18, 2003.

Z. Crljen, P. Lazic, D. Sokcevic, and R. Brako, Relaxation and reconstruction on (111) surfaces of Au, Pt, and Cu, Phys. Rev. B, vol.68, pp.1-8, 2003.

H. Hakkinen, M. Moseler, and U. Landman, Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises, Phys. Rev. Lett, vol.89, pp.1-4, 2002.

Y. Grunder and C. A. Lucas, Surface X-ray diffraction studies of single crystal electrocatalysts, Nano Energy, vol.29, pp.378-393, 2016.

Y. Hasegawa and P. Avouris, Manipulation of the reconstruction of the Au(111) surface with the STM, Science, vol.258, pp.1763-1765, 1992.

R. Meyer, C. Lemire, S. K. Shaikhutdinov, and H. Freund, Surface chemistry of catalysis by gold, Gold Bull, vol.37, pp.72-124, 2004.

A. Hamelin, Underpotential deposition of lead on single-crystal faces of gold .1. The influence of crystallographic orientation of the substrate, J. Electroanal. Chem, vol.165, pp.167-180, 1984.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev, vol.105, pp.1103-1169, 2005.

A. Hamelin, Note on the behaviour of the (111) gold face in electrolytic solutions, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.210, pp.303-309, 1986.

D. M. Kolb and J. Schneider, Surface reconstruction in electrochemistry, Electrochim. Acta, vol.100, pp.929-936, 1986.

Z. L. Wang, R. P. Gao, B. Nikoobakht, and M. A. El-sayed, Surface reconstruction of the unstable {110} surface in gold nanorods, The Journal of Physical Chemistry B, vol.104, pp.5417-5420, 2000.

M. J. Yacaman, J. A. Ascencio, and G. , Observation of surface relaxation surface steps and surface reconstruction in gold nanorods, Surf. Sci, vol.486, pp.449-453, 2001.

G. Z. Li, Y. J. Jiang, D. L. Chen, J. Li, and S. X. Lu, Increased silver activity as a result of controllable reaction-driven reconstruction for high-index facets, J. Catal, vol.317, pp.83-90, 2014.

G. J. Brug, M. Sluyters-rehbach, J. H. Sluyters, and A. Hemelin, The kinetics of the reduction of protons at polycrystalline and monocrystalline gold electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.181, pp.245-266, 1984.

L. A. Kibler, Hydrogen electrocatalysis, pp.985-991, 2006.

S. ?trbac and R. R. Adzic, The influence of OH -chemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions, J. Electroanal. Chem, vol.403, pp.169-181, 1996.

S. ?trbac, R. R. Ad?i?, and A. Hamelin, Oxide formation on gold single crystal stepped surfaces, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.249, pp.291-310, 1988.

N. Markovic, M. Hanson, G. Mcdougall, and E. Yeager, The effects of anions on hydrogen electrosorption on platinum single-crystal electrodes, J. Electroanal. Chem, vol.214, pp.555-566, 1986.

R. De-levie, A simple empirical correlation between the potential of zero charge and the density of broken bonds, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, pp.179-183, 1990.

L. Wei, T. Sheng, J. Y. Ye, B. A. Lu, N. Tian et al., Seeds and potentials mediated synthesis of high-index faceted gold nanocrystals with enhanced electrocatalytic activities, Langmuir, pp.6991-6998, 2017.

M. H. Holzle, V. Zwing, and D. M. Kolb, The influence of steps on the deposition of Cu onto Au, vol.40, pp.1237-1247, 1995.

A. Kuzume, E. Herrero, J. M. Feliu, R. J. Nichols, and D. J. Schiffrin, Copper underpotential deposition at high index single crystal surfaces of Au, J. Electroanal. Chem, vol.570, pp.157-161, 2004.

S. Garcia, D. Salinas, C. Mayer, E. Schmidt, G. Staikov et al., Ag UPD on Au(100) and Au, vol.43, pp.3007-3019, 1998.

L. A. Kibler, M. Kleinert, and D. M. Kolb, Initial stages of Pd deposition on Au(hkl) part II: Pd on Au(100), vol.461, pp.155-167, 2000.

Z. Dursun, S. Ben-aoun, and I. Taniguchi, Electrocatalytic oxidation of D-glucose using a Cd adatom-modified Au(111) electrode in alkaline solution, Turk. J. Chem, vol.32, pp.423-430, 2008.

A. Rodes, E. Herrero, J. M. Feliu, and A. Aldaz, Structure sensitivity of irreversibly adsorbed tin on gold single-crystal electrodes in acid media, J. Chem. Soc.-Faraday Trans, vol.92, pp.3769-3776, 1996.

Y. Chen, L. S. Wang, A. Pradel, A. Merlen, M. Ribes et al., Underpotential deposition of selenium and antimony on gold, J. Solid State Electrochem, vol.19, pp.2399-2411, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01196059

A. Hamelin, Lead adsorption on gold single-crystal stepped surfaces, J. Electroanal. Chem, vol.101, pp.285-290, 1979.

A. Hamelin, A. Katayama, G. Picq, and P. Vennereau, Surface characterization by underpotential deposition -Lead on gold surfaces, J. Electroanal. Chem, vol.113, pp.293-300, 1980.

K. Engelsmann, W. J. Lorenz, and E. Schmidt, Underpotential deposition of lead on polycrystalline and single-crystal gold surfaces: Part I. Thermodynamics, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.114, pp.1-10, 1980.

S. Moniwa and A. Aramata, Au(100) and Au(110) electrodes, Underpotential deposition of Zn 2+ ions on Au, vol.376, pp.203-206, 1994.

R. R. Ad?i? and J. X. Wang, Bromide adsorption induced formation of thallium bromide adlayers with varying composition and structure on the Au(111) electrode surface, The Journal of Physical Chemistry B, vol.102, pp.6305-6308, 1998.

R. Amadelli, N. Markovi?, R. Ad?i?, and E. Yeager, Oxygen reduction on electrode surfaces modified by underpotential deposited species: thallium on gold, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, pp.391-412, 1983.

S. Abaci, L. Zhang, and C. Shannon, The influence of counter anions on the underpotential deposition of mercury(II) on Au(111): temperature-dependent studies, J. Electroanal. Chem, vol.571, pp.169-176, 2004.

J. P. Ganon and J. Clavilier, Electrical resistance measurement in electrochemical adsorption experiments of lead and bismuth on thin films of gold, Surf. Sci, vol.II, pp.583-598, 1984.

R. Adz-i?, V. Jovanc-i?evi?, and M. Podlavicky, Optical and electrochemical study of underpotential deposition of bismuth on gold electrode, Electrochim. Acta, vol.25, pp.1143-1146, 1980.

J. Gooyoung and R. Choong-kyun, Two electrochemical processes for the deposition of Sb on Au(100) and Au(111): irreversible adsorption and underpotential deposition, J. Electroanal. Chem, vol.436, pp.277-280, 1997.

A. Vaskevich, F. Sinapi, Z. Mekhalif, J. Delhalle, and I. Rubinstein, Underpotential deposition of nickel on {111}-textured gold electrodes in dimethyl sulfoxide, J. Electrochem. Soc, vol.152, pp.744-750, 2005.

J. L. Bubendorff, L. Cagnon, V. Costakieling, J. P. Bucher, and P. Allongue, Anion promoted Niunderpotential deposition on Au, vol.384, pp.836-843, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00995348

Y. Chen, L. S. Wang, A. Pradel, M. Ribes, and M. C. Record, A voltammetric study of the underpotential deposition of cobalt and antimony on gold, J. Electroanal. Chem, vol.724, pp.55-61, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01121564

L. H. Mendoza-huizar and C. H. Rios-reyes, Cobalt electrodeposition onto polycrystalline gold from ammoniacal solutions, Cent, Eur. J. Chem, vol.11, pp.1381-1392, 2013.

M. Fayette, U. Bertocci, and G. R. Stafford, In situ stress measurements during cobalt electrodeposition on (111)-textured Au, J. Electrochem. Soc, vol.163, pp.146-153, 2016.

W. P. Li, S. T. Zhang, L. T. Yang, and Z. D. Wei, Study on underpotential deposition of manganese by density functional calculation and cyclic voltammetry, Acta Chim. Sin, vol.67, pp.529-534, 2009.

A. Hamelin and J. Lipkowski, Underpotential deposition of lead on gold single-crystal faces .2. General discussion, J. Electroanal. Chem, vol.171, pp.317-330, 1984.

A. Hamelin and A. Katayama, Lead underpotential deposition on gold single-crystal surfaces -The (100) face and its vicinal faces, J. Electroanal. Chem, vol.117, pp.221-232, 1981.

R. Ad?i?, E. Yeager, and B. D. Cahan, Optical and electrochemical studies of underpotential deposition of lead on gold evaporated and single-crystal electrodes, J. Electrochem. Soc, vol.121, pp.474-484, 1974.

E. Schmidt, N. Wuthrich, R. Adzic, E. Yeager, and B. D. Cahan, Optical and electrochemical studies of underpotential deposition of lead on gold evaporated and single-crystal electrodes, J. Electrochem. Soc, vol.121, pp.1610-1612, 1974.

Y. Yu, Q. B. Zhang, B. Liu, and J. Y. Lee, Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates, J. Am. Chem. Soc, vol.132, pp.18258-18265, 2010.

B. Hammer and J. K. Norskov, Theoretical surface science and catalysis -Calculations and concepts, Advances in Catalysis, pp.71-129, 2000.

G. D. Barmparis and I. N. Remediakis, First-principles atomistic Wulff constructions for gold nanoparticles, 2011.

E. Ringe, R. Van-duyne, and L. Marks, Wulff construction for alloy nanoparticles, Nano Lett, vol.11, pp.3399-3403, 2011.

W. X. Niu, S. L. Zheng, D. W. Wang, X. Q. Liu, H. J. Li et al., Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals, J. Am. Chem. Soc, vol.131, pp.697-703, 2009.

S. Bandyopadhyay, G. Singh, and W. R. Glomm, Shape tunable synthesis of anisotropic gold nanostructures through binary surfactant mixtures, Materials Today Chemistry, vol.3, pp.1-9, 2017.

J. Li, M. M. Chang, H. Peng, X. M. Zhou, D. P. Li et al., Growth of elongated tetrahexahedral gold nanoparticles with high-index facets and their enhanced electrocatalytic properties, Mater. Lett, vol.120, pp.216-218, 2014.

Z. W. Quan, Y. X. Wang, and J. Y. Fang, High-index faceted noble metal nanocrystals, Accounts Chem. Res, vol.46, pp.191-202, 2013.

J. Li, L. H. Wang, L. Liu, L. Guo, X. D. Han et al., Synthesis of tetrahexahedral Au nanocrystals with exposed high-index surfaces, Chem. Commun, vol.46, pp.5109-5111, 2010.

T. Ming, W. Feng, Q. Tang, F. Wang, L. D. Sun et al., Growth of tetrahexahedral gold nanocrystals with high-index facets, J. Am. Chem. Soc, vol.131, pp.16350-16351, 2009.

H. L. Wang, S. Zhou, K. D. Gilroy, Z. S. Cai, and Y. N. Xia, Icosahedral nanocrystals of noble metals: synthesis and applications, vol.15, pp.121-144, 2017.

S. Nyembe, S. Mpelane, P. Shumbula, R. Harris, N. Moloto et al., Platonic gold nanocrystals: formation of icosahedron and decahedron nanostructures through twining mechanism, J. Nanosci. Nanotechnol, vol.16, pp.9832-9837, 2016.

Y. T. Wang, S. Teitel, and C. Dellago, Melting and equilibrium shape of icosahedral gold nanoparticles, Chemical Physics Letters, vol.394, pp.257-261, 2004.

H. B. Zhang, Y. G. Lu, C. L. Guan, N. Song, Y. Y. Zhang et al., One-pot controllable synthesis of the missing uniform icosidodecahedral gold nanocrystals with high-index facets and their plasmonic properties, J. Mater. Chem. C, vol.5, pp.645-653, 2017.

Y. N. Xia, Y. J. Xiong, B. Lim, and S. E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?, Angew. Chem.-Int. Edit, vol.48, pp.60-103, 2009.

L. Shao, A. S. Susha, L. S. Cheung, T. K. Sau, A. L. Rogach et al., Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments, Langmuir, pp.8979-8984, 2012.

J. Y. Xiao and L. M. Qi, Surfactant-assisted, shape-controlled synthesis of gold nanocrystals, Nanoscale, vol.3, pp.1383-1396, 2011.

K. Chandra, K. S. Culver, S. E. Werner, R. C. Lee, and T. W. Odom, Manipulating the anisotropic structure of gold nanostars using Good's buffers, Chem. Mat, vol.28, pp.6763-6769, 2016.

W. X. Niu, Y. A. Chua, W. Q. Zhang, H. J. Huang, and X. M. Lu, Highly symmetric gold nanostars: crystallographic control and surface-enhanced raman scattering property, J. Am. Chem. Soc, vol.137, pp.10460-10463, 2015.

S. V. Mers, S. Umadevi, and V. Ganesh, Controlled growth of gold nanostars: effect of spike length on SERS signal enhancement, ChemPhysChem, vol.18, pp.1358-1369, 2017.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jackel, and J. Feldmann, Single gold nanostars enhance Raman scattering, Appl. Phys. Lett, vol.94, pp.402-407, 2009.

K. D. Gilroy, A. Ruditskiy, H. C. Peng, D. Qin, and Y. N. Xia, Bimetallic nanocrystals: syntheses, properties, and applications, Chem. Rev, vol.116, pp.10414-10472, 2016.

L. Zhang, Z. X. Xie, and J. L. Gong, Shape-controlled synthesis of Au-Pd bimetallic nanocrystals for catalytic applications, Chem. Soc. Rev, vol.45, pp.3916-3934, 2016.

L. Zhang, Q. L. Chen, X. Wang, and Z. Y. Jiang, Nucleation-mediated synthesis and enhanced catalytic properties of Au-Pd bimetallic tripods and bipyramids with twinned structures and highenergy facets, Nanoscale, vol.8, pp.2819-2825, 2016.

L. Zhang, Q. L. Chen, Z. Y. Jiang, Z. X. Xie, and L. S. Zheng, Cu 2+ underpotential-deposition assisted synthesis of Au and Au-Pd alloy nanocrystals with systematic shape evolution, Crystengcomm, vol.17, pp.5556-5561, 2015.

L. Sun, Q. Zhang, G. G. Li, E. Villarreal, X. Fu et al., Multifaceted gold-palladium bimetallic nanorods and their geometric, compositional, and catalytic tunabilities, ACS Nano, vol.11, pp.3213-3228, 2017.

T. Ma, F. Liang, R. S. Chen, S. M. Liu, and H. J. Zhang, Synthesis of Au-Pd bimetallic nanoflowers for catalytic reduction of 4-nitrophenol, Nanomaterials, vol.7, pp.239-248, 2017.

F. Y. Liu, J. Ni, H. Hao, W. Wang, W. Chen et al., Rational selection of halide ions for synthesizing highly active Au@Pd nanobipyramids, RSC Adv, vol.7, pp.36867-36875, 2017.

N. S. Satyavolu, L. H. Tan, and Y. Lu, DNA-mediated morphological control of Pd-Au bimetallic nanoparticles, J. Am. Chem. Soc, vol.138, pp.16542-16548, 2016.

L. B. Wang, Y. C. Wang, H. Y. Guo, J. L. Huang, Y. L. Zhao et al., Au-Pd alloy octapods with high electrocatalytic activity for the oxidation of formic acid, Part. Part. Syst. Charact, vol.32, pp.295-300, 2015.

L. Zhang, W. X. Niu, W. Y. Gao, L. M. Qi, J. P. Lai et al., Synthesis of convex hexoctahedral palladium@gold core-shell nanocrystals with {431} high-index facets with remarkable electrochemiluminescence activities, ACS Nano, vol.8, pp.5953-5958, 2014.

C. Koenigsmann, E. Sutter, R. R. Adzic, and S. S. Wong, Size-and composition-dependent enhancement of electrocatalytic oxygen reduction performance in ultrathin palladium-gold, The Journal of Physical Chemistry C, vol.116, pp.15297-15306, 2012.

C. L. Lu, K. S. Prasad, H. L. Wu, J. A. Ho, and M. H. Huang, Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity, J. Am. Chem. Soc, vol.132, pp.14546-14553, 2010.

M. Chen, D. Kumar, C. W. Yi, and D. W. Goodman, The promotional effect of gold in catalysis by palladium-gold, Science, pp.291-293, 2005.

J. J. Wei, C. X. Kan, Y. K. Lou, Y. Ni, H. Y. Xu et al., Synthesis and stability of bimetallic Au@Ag nanorods, vol.100, pp.315-323, 2016.

L. S. Zhang, F. Zhao, Z. P. Li, Y. Fang, and P. J. Wang, Tailoring of localized surface plasmon resonances of core-shell Au@Ag nanorods by changing the thickness of Ag shell, Plasmonics, vol.11, pp.1511-1517, 2016.

A. Londono-calderon, D. Bahena, and M. J. Yacaman, Controlled synthesis of Au@AgAu yolk-shell cuboctahedra with well-defined facets, Langmuir, vol.32, pp.7572-7581, 2016.

Y. Yang, W. F. Wang, X. L. Li, W. Chen, N. N. Fan et al.,

. Huang, Controlled growth of Ag/Au bimetallic nanorods through kinetics control, vol.25, pp.34-41, 2013.

D. Seo, C. Yoo, J. Jung, and H. Song, Ag-Au-Ag heterometallic nanorods formed through directed anisotropic growth, J. Am. Chem. Soc, vol.130, pp.2940-2941, 2008.

P. Raveendran, J. Fu, and S. L. Wallen, A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles, Green Chem, vol.8, pp.34-38, 2006.

B. Rodriguez-gonzalez, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-marzan, Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties, J. Mater. Chem, vol.15, pp.1755-1759, 2005.

M. Z. Liu and P. Guyot-sionnest, Synthesis and optical characterization of Au/Ag core/shell nanorods, The Journal of Physical Chemistry B, vol.108, pp.5882-5888, 2004.

X. B. Xie, G. H. Gao, S. D. Kang, Y. H. Lei, Z. Y. Pan et al., Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core-shell heterostructures for ultrasensitive SERS probes, pp.1-7, 2017.

L. Zhang, S. N. Yu, J. J. Zhang, and J. L. Gong, Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities, Chem. Sci, vol.7, pp.3500-3505, 2016.

Y. Holade, A. Lehoux, H. Remita, K. B. Kokoh, and T. W. Napporn, Au@Pt core-shell mesoporous nanoballs and nanoparticles as efficient electrocatalysts toward formic acid and glucose oxidation, The Journal of Physical Chemistry C, vol.119, pp.27529-27539, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01491215

A. Habrioux, W. Vogel, M. Guinel, L. Guetaz, K. Servat et al., Structural and electrochemical studies of Au-Pt nanoalloys, Phys. Chem. Chem. Phys, vol.11, pp.3573-3579, 2009.

A. Habrioux, E. Sibert, K. Servat, W. Vogel, K. B. Kokoh et al., Activity of platinum-gold alloys for glucose electrooxidation in biofuel cells, The Journal of Physical Chemistry B, vol.111, pp.10329-10333, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00417392

A. Henglein, Preparation and optical aborption spectra of Au core Pt shell and Pt core Au shell colloidal nanoparticles in aqueous solution, The Journal of Physical Chemistry B, vol.104, pp.2201-2203, 2000.

D. Mott, J. Luo, P. N. Njoki, Y. Lin, L. Y. Wang et al., Synergistic activity of goldplatinum alloy nanoparticle catalysts, Catal. Today, vol.122, pp.378-385, 2007.

S. Back, J. H. Kim, Y. T. Kim, and Y. Jung, Bifunctional interface of Au and Cu for improved CO 2 ? electroreduction, ACS applied materials & interfaces, vol.8, pp.23022-23027, 2016.

L. Bazan-diaz, R. Mendoza-cruz, J. J. Velazquez-salazar, G. Plascencia-villa, D. Romeu et al., Gold-copper nanostars as photothermal agents: synthesis and advanced electron microscopy characterization, Nanoscale, vol.7, pp.20734-20742, 2015.

S. Y. Tee, E. Y. Ye, P. H. Pan, C. J. Lee, H. K. Hui et al., Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose, Nanoscale, vol.7, pp.11190-11198, 2015.

J. Christophe, T. Doneux, and C. Buess-herman, Electroreduction of carbon dioxide on copperbased electrodes: activity of copper single crystals and copper-gold alloys, Electrocatalysis, issue.3, pp.139-146, 2012.

L. Y. Chen, T. Fujita, Y. Ding, and M. W. Chen, A three-dimensional gold-decorated nanoporous copper core-shell composite for electrocatalysis and nonenzymatic biosensing, Adv. Funct. Mater, vol.20, pp.2279-2285, 2010.

R. Mendoza-cruz, L. Bazan-diaz, J. J. Velazquez-salazar, J. E. Samaniego-benitez, F. M. Ascencio-aguirre et al., Order-disorder phase transitions in Au-Cu nanocubes: from nano-thermodynamics to synthesis, vol.9, pp.9267-9274, 2017.

C. L. Bracey, P. R. Ellis, and G. J. Hutchings, Application of copper-gold alloys in catalysis: current status and future perspectives, Chem. Soc. Rev, vol.38, pp.2231-2243, 2009.

F. Bao, J. F. Li, B. Ren, J. L. Yao, R. A. Gu et al., Synthesis and characterization of Au@Co and Au@Ni core-shell nanoparticles and their applications in surface-enhanced Raman Spectroscopy, The Journal of Physical Chemistry C, vol.112, pp.345-350, 2008.

R. Negishi, S. Naya, H. Kobayashi, and H. Tada, Gold(core)-lead(shell) nanoparticle-loaded titanium(IV) oxide prepared by underpotential photodeposition: plasmonic water oxidation, Angew. Chem.-Int. Edit, vol.56, pp.10347-10351, 2017.

D. S. Wang and Y. D. Li, Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications, Adv. Mater, vol.23, pp.1044-1060, 2011.

R. G. Weiner, A. F. Smith, and S. E. Skrabalak, Synthesis of hollow and trimetallic nanostructures by seed-mediated co-reduction, Chem. Commun, vol.51, pp.8872-8875, 2015.

P. Mulvaney, M. Giersig, and A. Henglein, Surface-chemistry of colloidal gold -Deposition of lead and accompanying optical effects, The Journal of Physical Chemistry, vol.96, pp.10419-10424, 1992.

R. Huang, G. F. Shao, Y. H. Wen, and S. G. Sun, Tunable thermodynamic stability of Au-CuPt coreshell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations, Phys. Chem. Chem. Phys, vol.16, pp.22754-22761, 2014.

S. Ghosh, Y. Holade, H. Remita, K. Servat, P. Beaunier et al., One-pot synthesis of reduced graphene oxide supported gold-based nanomaterials as robust nanocatalysts for glucose electrooxidation, Electrochim. Acta, vol.212, pp.864-875, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01548379

R. G. Weiner and S. E. Skrabalak, Seed-mediated co-reduction as a route to shape-controlled trimetallic nanocrystals, Chem. Mat, vol.28, pp.4139-4142, 2016.

M. Lin, G. H. Kim, J. H. Kim, J. W. Oh, and J. M. Nam, Transformative heterointerface evolution and plasmonic tuning of anisotropic trimetallic nanoparticles, J. Am. Chem. Soc, vol.139, pp.10180-10183, 2017.

J. X. Kang, T. W. Chen, D. F. Zhang, and L. Guo, PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation, Nano Energy, vol.23, pp.145-152, 2016.

B. K. Patra, S. Khilari, D. Pradhan, and N. Pradhan, Monodisperse AuCuSn trimetallic nanocube catalysts, Chem. Commun, vol.52, pp.1614-1617, 2016.

J. Li, H. M. Yin, X. B. Li, E. Okunishi, Y. L. Shen et al., Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction, Nat. Energy, vol.2, pp.1-9, 2017.

L. Wan, Y. Qin, and J. Xiang, Rapid electrochemical fabrication of porous gold nanoparticles for high-performance electrocatalysis towards oxygen reduction, Electrochim. Acta, vol.238, pp.220-226, 2017.

J. Plummer, Nanoporous gold single crystals, Nat. Mater, vol.15, pp.3-3, 2016.

L. C. Wang, M. L. Personick, S. Karakalos, R. Fushimi, C. M. Friend et al., Active sites for methanol partial oxidation on nanoporous gold catalysts, J. Catal, vol.344, pp.778-783, 2016.

J. Y. Sun, F. Wang, Y. A. Liu, Y. H. Ni, H. Q. Zhou et al., Gold micromeshes as highly active electrocatalysts for methanol oxidation reaction, RSC Adv, vol.7, pp.22479-22484, 2017.

G. Sanzo, I. Taurino, R. Antiochia, L. Gorton, G. Favero et al., Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose, Bioelectrochemistry, vol.112, pp.125-131, 2016.

S. Pedireddy, H. K. Lee, C. S. Koh, J. M. Tan, W. W. Tjiu et al., Nanoporous gold bowls: a kinetic approach to control open shell structures and size-tunable lattice strain for electrocatalytic applications, Small, vol.12, pp.4531-4540, 2016.

A. Sharma, J. K. Bhattarai, A. J. Alla, A. V. Demchenko, and K. J. Stine, Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps, Nanotechnology, vol.26, pp.1-11, 2015.

A. Wittstock and M. Baumer, Catalysis by unsupported skeletal gold catalysts, Accounts Chem. Res, vol.47, pp.731-739, 2014.

M. K. Khristosov, L. Bloch, M. Burghammer, Y. Kauffmann, A. Katsman et al., Spongelike nanoporous single crystals of gold, Nat. Commun, vol.6, pp.1-7, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01573000

M. K. Khristosov, L. Bloch, M. Burghammer, P. Zaslansky, Y. Kauffmann et al., A gold complex single crystal comprising nanoporosity and curved surfaces, Cryst. Growth Des, vol.17, pp.221-227, 2017.

M. K. Khristosov, S. Dishon, I. Noi, A. Katsman, and B. Pokroy, Pore and ligament size control, thermal stability and mechanical properties of nanoporous single crystals of gold, Nanoscale, vol.9, pp.14458-14466, 2017.

A. Wittstock, B. Neumann, A. Schaefer, K. Dumbuya, C. Kubel et al., The Journal of Physical Chemistry C, vol.113, pp.5593-5600, 2009.

J. Hernandez, J. Solla-gullon, E. Herrero, J. M. Feliu, and A. Aldaz, In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles, J. Nanosci. Nanotechnol, vol.9, pp.2256-2273, 2009.

M. T. Koper, Structure sensitivity and nanoscale effects in electrocatalysis, Nanoscale, vol.3, pp.2054-2073, 2011.

F. Zaera, Shape-controlled nanostructures in heterogeneous catalysis, ChemSusChem, vol.6, pp.1797-1820, 2013.

B. Ni and X. Wang, Face the edges: catalytic active sites of nanomaterials, Adv. Sci, vol.2, pp.1-22, 2015.

J. K. Norskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem, vol.1, pp.37-46, 2009.

T. Cheng, Y. F. Huang, H. Xiao, and W. A. Goddard, Predicted structures of the active sites responsible for the improved reduction of carbon dioxide by gold nanoparticles, The journal of physical chemistry letters, vol.8, pp.3317-3320, 2017.

A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, and J. K. Norskov, Surface electronic structure and reactivity of transition and noble metals, J. Mol. Catal. A-Chem, vol.115, pp.421-429, 1997.

J. W. Niemantsverdriet, Spectroscopy in catalysis, 2007.

S. Hebie, T. W. Napporn, C. Morais, and K. B. Kokoh, Size-dependent electrocatalytic activity of free gold nanoparticles for the glucose oxidation reaction, ChemPhysChem, vol.17, pp.1454-1462, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01433379

P. N. Zhang, Y. J. Xiahou, J. Wang, L. H. Hang, D. Y. Wang et al., Revitalizing spherical Au@Pd nanoparticles with controlled surface-defect density as high performance electrocatalysts, J. Mater. Chem. A, vol.5, pp.6992-7000, 2017.

X. L. Xu, X. Zhang, H. Sun, Y. Yang, X. P. Dai et al., Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties, Angew. Chem.-Int. Edit, vol.53, pp.12522-12527, 2014.

Y. Wu, X. Sun, Y. Yang, J. Li, Y. Zhang et al., Enriching silver nanocrystals with a second noble metal, Accounts Chem. Res, vol.50, pp.1774-1784, 2017.

J. W. Hong, Y. Kim, Y. Kwon, and S. W. Han, Noble-metal nanocrystals with controlled facets for electrocatalysis, Chem.-Asian J, vol.11, pp.2224-2239, 2016.

L. Huang, X. P. Zhang, Y. J. Hang, Q. Q. Wang, Y. X. Fang et al., High-index facets bounded platinum-lead concave nanocubes with enhanced electrocatalytic properties, Chem. Mat, vol.29, pp.4557-4562, 2017.

H. Moller and P. C. Pistorius, The electrochemistry of gold-platinum alloys, J. Electroanal. Chem, vol.570, pp.243-255, 2004.

Y. J. Kang, J. Snyder, M. F. Chi, D. G. Li, K. L. More et al., Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts, Nano Lett, vol.14, pp.6361-6367, 2014.

Y. H. Song, C. X. Bi, C. S. Wu, H. P. He, L. H. Huang et al., Promoting charge transfer in hyperbranched, trisoctahedral-shaped core-shell Au@PdPt nanoparticles by facet-dependent construction of transition layers as high performance electrocatalysts, J. Mater. Chem. A, vol.5, pp.18878-18887, 2017.

Y. C. Xing, Y. Cai, M. B. Vukmirovic, W. P. Zhou, H. Karan et al., Enhancing oxygen reduction reaction activity via Pd-Au alloy sublayer mediation of Pt monolayer electrocatalysts, The journal of physical chemistry letters, vol.1, pp.3238-3242, 2010.

A. Heller and B. Feldman, Electrochemical glucose sensors and their applications in diabetes management, Chem. Rev, vol.108, pp.2482-2505, 2008.

S. Kerzenmacher, J. Ducrée, R. Zengerle, and F. Stetten, Energy harvesting by implantable abiotically catalyzed glucose fuel cells, J. Power Sources, vol.182, pp.1-17, 2008.

S. Ben-aoun, Z. Dursun, T. Koga, G. S. Bang, T. Sotomura et al., Effect of metal adlayers on Au(111) electrodes on electrocatalytic oxidation of glucose in an alkaline solution, J. Electroanal. Chem, vol.567, pp.175-183, 2004.

M. Pasta, F. L. Mantia, and Y. Cui, Mechanism of glucose electrochemical oxidation on gold surface, Electrochim. Acta, vol.55, pp.5561-5568, 2010.

L. D. Burke, Premonolayer oxidation and its role in electrocatalysis, Electrochim. Acta, vol.39, pp.1841-1848, 1994.

N. N. Nikolaeva, O. A. Khazova, and Y. B. Vasilev, Main principles of the electrooxidation of glucose on a gold electrode, Soviet Electrochemistry, vol.19, pp.934-940, 1983.

M. W. Hsiao, R. R. Adzic, and E. B. Yeager, The effects of adsorbed anions on the oxidation of deuterium-glucose on gold single-crystal electrodes, Electrochim. Acta, vol.37, pp.357-363, 1992.

T. Ju?ík, P. Pode?va, Z. Farka, D. Ková?, P. Skládal et al., Nanostructured gold deposited in gelatin template applied for electrochemical assay of glucose in serum, Electrochim. Acta, vol.188, pp.277-285, 2016.

M. W. Hsiao, R. R. Adzic, and E. B. Yeager, Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer, J. Electrochem. Soc, vol.143, pp.759-767, 1996.

K. E. Toghill and R. G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation, Int. J. Electrochem. Sci, vol.5, pp.1246-1301, 2010.

P. Parpot, N. Nunes, and A. P. Bettencourt, Electrocatalytic oxidation of monosaccharides on gold electrode in alkaline medium: structure-reactivity relationship, J. Electroanal. Chem, vol.596, pp.65-73, 2006.

J. W. Zhao, X. G. Kong, W. Y. Shi, M. F. Shao, J. B. Han et al., Selfassembly of layered double hydroxide nanosheets/Au nanoparticles ultrathin films for enzyme-free electrocatalysis of glucose, J. Mater. Chem, vol.21, pp.13926-13933, 2011.

Y. Bai, W. Yang, Y. Sun, and C. Sun, Enzyme-free glucose sensor based on a three-dimensional gold film electrode, Sensors and Actuators B: Chemical, vol.134, pp.471-476, 2008.

R. R. Ad?i?, M. W. Hsiao, and E. B. Yeager, Electrochemical oxidation of glucose on single crystal gold surfaces, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.260, pp.475-485, 1989.

R. R. Ad?i? and M. Avramovivic, Structural effects in electrocatalysis -oxidation of ethylene-glycol on single-crystal gold electrodes in alkaline-solutions, J. Catal, vol.101, pp.532-535, 1986.

A. M. Pessoa, J. L. Fajín, J. R. Gomes, and M. N. Cordeiro, Cluster and periodic DFT calculations of adsorption of hydroxyl on the Au(hkl) surfaces, Journal of Molecular Structure: THEOCHEM, vol.946, pp.43-50, 2010.

S. Hebie, L. Cornu, T. W. Napporn, J. Rousseau, and B. K. Kokoh, Insight on the surface structure effect of free gold nanorods on glucose electrooxidation, The Journal of Physical Chemistry C, vol.117, pp.9872-9880, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932220

A. Habrioux, K. Servat, T. Girardeau, P. Guerin, T. W. Napporn et al., Activity of sputtered gold particles layers towards glucose electrochemical oxidation in alkaline medium, Curr. Appl. Phys, vol.11, pp.1149-1152, 2011.

S. Hebie, T. W. Napporn, and K. B. Kokoh, Beneficial promotion of underpotentially deposited lead adatoms on gold nanorods toward glucose electrooxidation, Electrocatalysis, vol.8, pp.67-73, 2017.

I. G. Casella, M. Gatta, M. R. Guascito, and T. R. Cataldi, Highly-dispersed copper microparticles on the active gold substrate as an amperometric sensor for glucose, Anal. Chim. Acta, vol.357, pp.63-71, 1997.

K. Kokoh, J. Léger, B. Beden, and C. Lamy, On line" chromatographic analysis of the products resulting from the electrocatalytic oxidation of D-glucose on Pt, Au and adatoms modified Pt electrodes -Part I. Acid and neutral media, Electrochim. Acta, vol.37, pp.1333-1342, 1992.

F. Matsumoto, M. Harada, N. Koura, and S. Uesugi, Electrochemical oxidation of glucose at Hg adatom-modified Au electrode in alkaline aqueous solution, Electrochemistry Communications, vol.5, pp.42-46, 2003.

S. B. Aoun, G. S. Bang, T. Koga, Y. Nonaka, T. Sotomura et al., Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions, Electrochemistry Communications, vol.5, pp.317-320, 2003.

L. Yu and R. Akolkar, Lead underpotential deposition for the surface characterization of silver adatom modified gold electrocatalysts for glucose oxidation, J. Electroanal. Chem, vol.792, pp.61-65, 2017.

M. Tominaga, M. Nagashima, K. Nishiyama, and I. Taniguchi, Surface poisoning during electrocatalytic monosaccharide oxidation reactions at gold electrodes in alkaline medium, Electrochemistry Communications, vol.9, pp.1892-1898, 2007.

P. Kanninen and T. Kallio, Activation of commercial Pt/C catalyst towards glucose electrooxidation by irreversible Bi adsorption, J. Energy Chem, vol.27, pp.1446-1452, 2017.

Y. Holade, K. Servat, J. Rousseau, C. Canaff, S. Poulin et al., Electrochemical and physicochemical characterizations of gold-based nanomaterials: correlation between surface composition and electrocatalytic activity, J. Electrochem. Soc, vol.162, pp.929-937, 2015.

M. Zhang, F. L. Cheng, Z. Q. Cai, and H. J. Yao, Glucose biosensor based on highly dispersed Au nanoparticles supported on palladium nanowire arrays, Int. J. Electrochem. Sci, vol.5, pp.1026-1031, 2010.

C. C. Shen, J. Su, X. Z. Li, J. J. Luo, and M. H. Yang, Electrochemical sensing platform based on Pd-Au bimetallic cluster for non-enzymatic detection of glucose, Sens. Actuator B-Chem, vol.209, pp.695-700, 2015.

K. J. Chen, W. N. Su, C. J. Pan, S. Y. Cheng, J. Rick et al.,

C. H. Yang, B. J. Wang, and . Hwang, Dendritic platinum-decorated gold nanoparticles for non-enzymatic glucose biosensing, J. Mat. Chem. B, vol.1, pp.5925-5932, 2013.

M. Tominaga, T. Shimazoe, M. Nagashima, H. Kusuda, A. Kubo et al., Electrocatalytic oxidation of glucose at gold-silver alloy, silver and gold nanoparticles in an alkaline solution, J. Electroanal. Chem, vol.590, pp.37-46, 2006.

Z. Liu, L. Huang, L. Zhang, H. Ma, and Y. Ding, Electrocatalytic oxidation of D-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions, Electrochim. Acta, vol.54, pp.7286-7293, 2009.

C. Xu, J. Su, X. Xu, P. Liu, H. Zhao et al., Low temperature CO oxidation over unsupported nanoporous gold, J. Am. Chem. Soc, vol.129, pp.42-43, 2007.

S. Lai, N. Lebedeva, T. Housmans, and M. Koper, Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes, Top. Catal, vol.46, pp.320-333, 2007.

B. B. Blizanac, M. Arenz, P. N. Ross, and N. M. Markovic, Surface electrochemistry of CO on reconstructed gold single crystal surfaces studied by infrared reflection absorption spectroscopy and rotating disk electrode, J. Am. Chem. Soc, vol.126, pp.10130-10141, 2004.

G. J. Edens, A. Hamelin, and M. J. Weaver, Mechanism of carbon monoxide electrooxidation on monocrystalline gold surfaces: identification of a hydroxycarbonyl intermediate, The Journal of Physical Chemistry, vol.100, pp.2322-2329, 1996.

S. C. Chang, A. Hamelin, and M. J. Weaver, Dependence of the electrooxidation rates of carbon monoxide at gold on the surface crystallographic orientation: A combined kinetic-surface infrared spectroscopic study, The Journal of Physical Chemistry, vol.95, pp.5560-5567, 1991.

P. Rodriguez, N. Garcia-araez, and M. T. Koper, Self-promotion mechanism for CO electrooxidation on gold, Phys. Chem. Chem. Phys, vol.12, pp.9373-9380, 2010.

N. Lopez, T. V. Janssens, B. S. Clausen, Y. Xu, M. Mavrikakis et al., On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation, J. Catal, vol.223, pp.232-235, 2004.

I. N. Remediakis, N. Lopez, and J. K. Norskov, CO oxidation on gold nanoparticles: theoretical studies, vol.291, pp.13-20, 2005.

P. Rodriguez, D. Plana, D. J. Fermin, and M. T. Koper, New insights into the catalytic activity of gold nanoparticles for CO oxidation in electrochemical media, J. Catal, vol.311, pp.182-189, 2014.

P. Rodriguez, J. M. Feliu, and M. T. Koper, Unusual adsorption state of carbon monoxide on singlecrystalline gold electrodes in alkaline media, Electrochemistry Communications, vol.11, pp.1105-1108, 2009.

D. Geng and G. Lu, Size effect of gold nanoparticles on the electrocatalytic oxidation of carbon monoxide in alkaline solution, Journal of Nanoparticle Research, vol.9, pp.1145-1151, 2007.

J. Zhang, Y. Liang, N. Li, Z. Li, C. Xu et al., A remarkable activity of glycerol electrooxidation on gold in alkaline medium, Electrochim. Acta, pp.156-159, 2012.

A. Hamelin, Y. H. Ho, S. C. Chang, X. P. Gao, and M. J. Weaver, Surface crystallographic dependence of voltammetric oxidation of polyhydric alcohols and related systems at monocrystalline gold acidic aqueous interfaces, Langmuir, vol.8, pp.975-981, 1992.

M. Avramov-ivi?, J. Leger, C. Lamy, V. Jovi?, and S. Petrovi?, The electro-oxidation of glycerol on the gold (100)-oriented single-crystal surface and poly crystalline surface in 0.1 M NaOH, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.308, pp.309-317, 1991.

M. Valter, M. Busch, B. Wickman, H. Gronbeck, J. Baltrusaitis et al., Electrooxidation of glycerol on gold in acidic medium: a combined experimental and DFT study, The Journal of Physical Chemistry C, vol.122, pp.10489-10494, 2018.

C. C. Jin, J. H. Zhu, R. L. Dong, Z. D. Chen, and Q. S. Huo, Modification of Ag nanoparticles/reduced graphene oxide nanocomposites with a small amount of Au for glycerol oxidation, Int. J. Hydrog. Energy, pp.16851-16857, 2016.

J. F. Gomes, A. C. Garcia, L. H. Gasparotto, N. E. Souza, E. B. Ferreira et al., Influence of silver on the glycerol electro-oxidation over AuAg/C catalysts in alkaline medium: a cyclic voltammetry and in situ FTIR spectroscopy study, Electrochim. Acta, vol.144, pp.361-368, 2014.

Y. Holade, K. Servat, T. W. Napporn, and K. B. Kokoh, Bromide Anion Exchange" method -Investigations of glucose and glycerol oxidation, Electrochim. Acta, vol.162, pp.205-214, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01339039

H. Xu, J. Wang, B. Yan, S. Li, C. Wang et al., Facile construction of fascinating trimetallic PdAuAg nanocages with exceptional ethylene glycol and glycerol oxidation activity, Nanoscale, vol.9, pp.17004-17012, 2017.

Y. Kwon, K. J. Schouten, and M. T. Koper, Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes, vol.3, pp.1176-1185, 2011.

A. Q. Li, Y. J. Chen, W. Y. Duan, C. Y. Wang, and K. L. Zhuo, Shape-controlled electrochemical synthesis of Au nanocrystals in reline: control conditions and electrocatalytic oxidation of ethylene glycol, RSC Adv, vol.7, pp.19694-19700, 2017.

J. Hernandez, J. Solla-gullon, E. Herrero, A. Aldaz, and J. M. Feliu, Methanol oxidation on gold nanoparticles in alkaline media: unusual electrocatalytic activity, Electrochim. Acta, vol.52, pp.1662-1669, 2006.

Z. Borkowska, A. Tymosiak-zielinska, and G. Shul, Electrooxidation of methanol on polycrystalline and single crystal gold electrodes, Electrochim. Acta, vol.49, pp.1209-1220, 2004.

B. K. Jena and C. R. Raj, Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen, Langmuir, vol.23, pp.4064-4070, 2007.

L. Zhang, H. Wang, X. C. Li, F. L. Xia, Y. Liu et al., One-step synthesis of palladium-gold-silver ternary nanoparticles supported on reduced graphene oxide for the electrooxidation of methanol and ethanol, Electrochim. Acta, pp.42-51, 2015.

P. Rodriguez, Y. Kwon, and M. T. Koper, The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst, Nat. Chem, vol.4, pp.177-182, 2012.

P. Rodríguez, A. A. Koverga, and M. T. Koper, Carbon monoxide as a promoter for its own oxidation on a gold electrode, Angewandte Chemie International Edition, vol.49, pp.1241-1243, 2010.

A. Capon and R. Parson, The oxidation of formic acid at noble metal electrodes: I. Review of previous work, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, pp.1-7, 1973.

N. Kristian, Y. S. Yan, and X. Wang, Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation, Chem. Commun, pp.353-355, 2008.

M. Shao, Q. Chang, J. Dodelet, and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction, Chem. Rev, vol.116, pp.3594-3657, 2016.

X. Ge, A. Sumboja, D. Wuu, T. An, B. Li et al., Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts, ACS Catal, vol.5, pp.4643-4667, 2015.

F. Lu, Y. Zhang, S. Z. Liu, D. Y. Lu, D. Su et al., Surface proton transfer promotes four-electron oxygen reduction on gold nanocrystal surfaces in alkaline solution, J. Am. Chem. Soc, vol.139, pp.7310-7317, 2017.

P. Quaino, N. Luque, R. Nazmutdinov, E. Santos, and W. Schmickler, Why is gold such a good catalyst for oxygen reduction in alkaline media?, Angewandte Chemie International Edition, vol.51, pp.12997-13000, 2012.

J. Hernandez, J. Solla-gullon, E. Herrero, A. Aldaz, and J. M. Feliu, Electrochemistry of shapecontrolled catalysts: oxygen reduction reaction on cubic gold nanoparticles, The Journal of Physical Chemistry C, vol.111, pp.14078-14083, 2007.

J. Hernandez, J. Solla-gullon, and E. Herrero, Gold nanoparticles synthesized in a water-in-oil microemulsion: electrochemical characterization and effect of the surface structure on the oxygen reduction reaction, J. Electroanal. Chem, vol.574, pp.185-196, 2004.

Z. Zong, K. Xu, D. L. Li, Z. H. Tang, W. He et al., Peptide templated Au@Pd core-shell structures as efficient bi-functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions, J. Catal, vol.361, pp.168-176, 2018.

A. R. Hernandez, M. E. Manriquez, A. E. Mejia, and E. M. Estrada, Shape effect of AuPd core-shell nanostructures on the electrocatalytical activity for oxygen reduction reaction in acid medium, Electrocatalysis, vol.9, pp.752-761, 2018.

D. Sawyer and R. Day, Kinetics for oxygen reduction at platinum, palladium and silver electrodes, Electrochim. Acta, vol.8, pp.589-594, 1963.

H. Erikson, A. Sarapuu, N. Alexeyeva, K. Tammeveski, J. Solla-gullón et al., Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions, Electrochim. Acta, pp.329-335, 2012.

N. Li, C. H. Wang, T. Z. Li, B. Latimer, Z. Liu et al., Au@Ag core-shell nanoparticles supported on carbon nanotubes as promising catalysts for oxygen electroreduction, Int. J. Electrochem. Sci, vol.13, pp.6756-6770, 2018.

R. Wang, J. J. Feng, W. D. Liu, L. Y. Jiang, and A. J. Wang, A novel label-free electrochemical immunosensor based on the enhanced catalytic currents of oxygen reduction by AuAg hollow nanocrystals for detecting carbohydrate antigen 199, Biosensors and Bioelectronics, vol.96, pp.152-158, 2017.

C. R. Laramy, L. K. Fong, M. R. Jones, M. N. O'brien, G. C. Schatz et al., Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles, Chemical Physics Letters, vol.683, pp.389-392, 2017.

P. Cubillas and M. W. Anderson, Synthesis mechanism: crystal growth and nucleation, Zeolites and Catalysis, pp.1-55

V. K. Lamer and R. H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc, vol.72, pp.4847-4854, 1950.

N. D. Burrows, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob et al.,

J. G. Dennison, C. J. Hinman, and . Murphy, Anisotropic nanoparticles and anisotropic surface chemistry, The journal of physical chemistry letters, vol.7, pp.632-641, 2016.

M. X. Yang, K. D. Gilroy, and Y. N. Xia, A general approach to the synthesis of M@Au/Ag( M = Au, Pd, and Pt) nanorattles with ultrathin shells less than 2.5 nm thick, vol.34, pp.1-8, 2017.

Y. Zhao, Y. Yang, Y. Sun, L. Cui, F. Zheng et al., Shell-encoded Au nanoparticles with tunable electroactivity for specific dual disease biomarkers detection, Biosensors and Bioelectronics, vol.99, pp.193-200, 2018.

M. L. Personick and C. A. Mirkin, Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles, J. Am. Chem. Soc, vol.135, pp.18238-18247, 2013.

T. K. Sau and C. J. Murphy, Seeded high yield synthesis of short Au nanorods in aqueous solution, Langmuir, vol.20, pp.6414-6420, 2004.

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, Defining rules for the shape evolution of gold nanoparticles, J. Am. Chem. Soc, vol.134, pp.14542-14554, 2012.

A. Gole and C. J. Murphy, Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed, Chem. Mat, vol.16, pp.3633-3640, 2004.

B. J. Wiley, Y. J. Xiong, Z. Y. Li, Y. D. Yin, and Y. N. Xia, Right bipyramids of silver: a new shape derived from single twinned seeds, Nano Lett, vol.6, pp.765-768, 2006.

Q. F. Zhang, L. L. Han, H. Jing, D. A. Blom, Y. Lin et al., Facet control of gold nanorods, vol.10, pp.2960-2974, 2016.

A. Umar, J. Lee, J. Dey, and S. M. Choi, Seedless synthesis of monodisperse cuboctahedral gold nanoparticles with tunable sizes, Chem. Mat, vol.28, pp.4962-4970, 2016.

J. H. Zhang, C. X. Xi, C. Feng, H. B. Xia, D. Y. Wang et al., High yield seedless synthesis of high-quality gold nanocrystals with various shapes, Langmuir, vol.30, pp.2480-2489, 2014.

P. C. Angelomé, H. Mezerji, B. Goris, I. Pastoriza-santos, J. Pérez-juste et al., Seedless synthesis of single crystalline Au nanoparticles with unusual shapes and tunable LSPR in the near-IR, vol.24, pp.1393-1399, 2012.

P. Zijlstra, C. Bullen, J. W. Chon, and M. Gu, High-temperature seedless synthesis of gold nanorods, The Journal of Physical Chemistry B, vol.110, pp.19315-19318, 2006.

L. Wei, B. A. Lu, M. J. Sun, N. Tian, Z. Y. Zhou et al., Overpotentialdependent shape evolution of gold nanocrystals grown in a deep eutectic solvent, Nano Res, vol.9, pp.3547-3557, 2016.

A. G. Silva, T. S. Rodrigues, S. J. Haigh, and P. H. Camargo, Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications, Chem. Commun, vol.53, pp.7135-7148, 2017.

Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang et al., Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles, Nanotechnology, vol.18, pp.1-5, 2007.

D. H. Wan, X. H. Xia, Y. C. Wang, and Y. N. Xia, Robust synthesis of gold cubic nanoframes through a combination of galvanic replacement, gold deposition, and silver dealloying, Small, vol.9, pp.3111-3117, 2013.

M. A. Mahmoud and M. A. El-sayed, Metallic double shell hollow nanocages: the challenges of their synthetic techniques, Langmuir, pp.4051-4059, 2012.

X. H. Xia, Y. Wang, A. Ruditskiy, and Y. N. Xia, Galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties, Adv. Mater, vol.25, pp.6313-6333, 2013.

Y. G. Sun and Y. N. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium, J. Am. Chem. Soc, vol.126, pp.3892-3901, 2004.

S. E. Skrabalak, L. Au, X. D. Li, and Y. N. Xia, Facile synthesis of Ag nanocubes and Au nanocages, vol.2, pp.2182-2190, 2007.

K. Y. Niu, S. A. Kulinich, J. Yang, A. L. Zhu, and X. W. Du, Galvanic replacement reactions of activemetal nanoparticles, Chem.-Eur. J, vol.18, pp.4234-4241, 2012.

X. W. Liu, Cu 2 O microcrystals: a versatile class of self-templates for the synthesis of porous Au nanocages with various morphologies, RSC Adv, vol.1, pp.1119-1125, 2011.

Y. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai et al., Formation of hollow nanocrystals through the nanoscale Kirkendall Effect, vol.304, pp.711-714, 2004.

L. M. Moreau, C. A. Schurman, S. Kewalramani, M. M. Shahjamali, C. A. Mirkin et al., How Ag nanospheres are transformed into AgAu nanocages, J. Am. Chem. Soc, vol.139, pp.12291-12298, 2017.

G. Palazzo, G. Valenza, M. Dell'aglio, and A. D. Giacomo, On the stability of gold nanoparticles synthesized by laser ablation in liquids, J. Colloid Interface Sci, vol.489, pp.47-56, 2017.

Y. Liu, B. J. Austen, T. Cornwell, R. D. Tilbury, M. A. Buntine et al.,

. Arrigan, Collisional electrochemistry of laser-ablated gold nanoparticles by electrocatalytic oxidation of glucose, Electrochemistry Communications, vol.77, pp.24-27, 2017.

D. S. Zhang, B. Goekce, and S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications, Chem. Rev, vol.117, pp.3990-4103, 2017.

G. Gonzalez-rubio, A. Guerrero-martinez, and L. M. Liz-marzan, Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers, Accounts Chem. Res, vol.49, pp.678-686, 2016.

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water, Nanotechnology, vol.26, pp.1-8, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01418517

J. P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier et al., Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media, The Journal of Physical Chemistry B, vol.108, pp.16864-16869, 2004.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins, J. Am. Chem. Soc, vol.126, pp.7176-7177, 2004.

A. V. Kabashin and M. Meunier, Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water, J. Appl. Phys, vol.94, pp.7941-7943, 2003.

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. Luong, Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins, The Journal of Physical Chemistry B, vol.107, pp.4527-4531, 2003.

M. E. Meyre, M. Treguer-delapierre, and C. Faure, Radiation-induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis, Langmuir, vol.24, pp.4421-4425, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00300268

A. Kowal, S. L. Gojkovic, K. S. Lee, P. Olszewski, and Y. E. Sung, Synthesis, characterization and electrocatalytic activity for ethanol oxidation of carbon supported Pt, Pt-Rh, Pt-SnO 2 and Pt-Rh-SnO 2 nanoclusters, Electrochemistry Communications, vol.11, pp.724-727, 2009.

T. Tang and I. W. Hamley, Multiple morphologies of gold nano-plates by high-temperature polyol syntheses, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.336, pp.1-7, 2009.

Z. Y. Zhou, G. J. Bedwel, R. Li, S. Palchoudhury, P. E. Prevelige et al., Pathways for gold nucleation and growth over protein cages, Langmuir, pp.5925-5931, 2017.

E. H. Hill, N. Claes, S. Bals, and L. M. Liz-marzán, Layered silicate clays as templates for anisotropic gold nanoparticle growth, Chem. Mat, vol.28, pp.5131-5139, 2016.

C. Chomette, E. Duguet, S. Mornet, E. Yammine, V. N. Manoharan et al., Templated growth of gold satellites on dimpled silica cores, vol.191, pp.105-116, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01383258

J. H. Lee, K. J. Gibson, G. Chen, and Y. Weizmann, Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals, Nat. Commun, vol.6, pp.1-9, 2015.

M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, and C. A. Mirkin, Templated techniques for the synthesis and assembly of plasmonic nanostructures, Chem. Rev, vol.111, pp.3736-3827, 2011.

G. Sriram, P. Patil, M. P. Bhat, R. M. Hegde, K. V. Ajeya et al., Current trends in nanoporous anodized alumina platforms for biosensing applications, J. Nanomater, p.24, 2016.

G. Riveros, S. Green, A. Cortes, H. Gomez, R. E. Marotti et al., Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates, Nanotechnology, vol.17, pp.561-570, 2006.

X. Zhou, Q. Zhao, G. Q. Liu, H. W. Zhang, Y. Li et al., Temperature regulation growth of Au nanocrystals: from concave trisoctahedron to dendritic structures and their ultrasensitive SERSbased detection of lindane, J. Mater. Chem. C, vol.5, pp.10399-10405, 2017.

M. S. Bakshi, How surfactants control crystal growth of nanomaterials, Cryst. Growth Des, vol.16, pp.1104-1133, 2016.

W. Wang, B. Gu, L. Liang, and W. A. Hamilton, Adsorption and structural arrangement of cetyltrimethylammonium cations at the silica nanoparticle? water interface, The Journal of Physical Chemistry B, vol.108, pp.17477-17483, 2004.

C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, and S. Mann, Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis, J. Mater. Chem, vol.12, pp.1765-1770, 2002.

B. M. Kim, S. H. Seo, A. Joe, K. D. Shim, and E. S. Jang, Growth mechanism of gold nanorods in binary surfactant system, Bull. Korean Chem. Soc, vol.37, pp.931-937, 2016.

P. Kaur and B. Chudasama, Seedless co-surfactant-based dimensional and optical tunability of gold nanorods with simultaneous pH regulation, J. Mater. Sci, vol.52, pp.11675-11687, 2017.

X. C. Ye, C. Zheng, J. Chen, Y. Z. Gao, and C. B. Murray, Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods, Nano Lett, vol.13, pp.765-771, 2013.

T. W. Napporn, A. Habrioux, J. Rousseau, K. Servat, J. M. Leger et al., Effect of the cleaning step on the morphology of gold nanoparticles, vol.2, pp.24-27, 2011.

M. Boksebeld, N. P. Blanchard, A. Jaffal, Y. Chevolot, and V. Monnier, Shape-selective purification of gold nanorods with low aspect ratio using a simple centrifugation method, Gold Bull, vol.50, pp.69-76, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01701524

K. Nishida and H. Kawasaki, Effective removal of surface-bound cetyltrimethylammonium ions from thiolmonolayer-protected Au nanorods by treatment with dimethyl sulfoxide/citric acid, RSC Adv, vol.7, pp.18041-18045, 2017.

J. G. Mehtala, D. Y. Zemlyanov, J. P. Max, N. Kadasala, S. Zhao et al., Citrate-stabilized gold nanorods, vol.30, pp.13727-13730, 2014.

M. A. Wall, S. Harmsen, S. Pal, L. H. Zhang, G. Arianna et al.,

. Kircher, Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis, Adv. Mater, vol.29, pp.1-8, 2017.

S. E. Lohse, N. D. Burrows, L. Scarabelli, L. M. Liz-marzan, and C. J. Murphy, Anisotropic noble metal nanocrystal growth: the role of halides, Chem. Mat, vol.26, pp.34-43, 2014.

M. E. King and M. L. Personick, Bimetallic nanoparticles with exotic facet structures via iodideassisted reduction of palladium, Part. Part. Syst. Charact, vol.34, pp.1-8, 2017.

N. T. Tran, A. R. Li, P. Chen, Y. Wang, S. Z. Li et al., Gold mesoflowers with a high density of multilevel long sharp tips: synthesis and characterization, J. Mater. Chem. C, vol.5, pp.4884-4891, 2017.

N. R. Jana, L. Gearheart, and C. J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater, vol.13, pp.1389-1393, 2001.

M. Z. Liu and P. Guyot-sionnest, Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids, The Journal of Physical Chemistry B, vol.109, pp.22192-22200, 2005.

M. J. Walsh, S. J. Barrow, W. M. Tong, A. M. Funston, and J. Etheridge, Symmetry breaking and silver in gold nanorod growth, ACS Nano, vol.9, pp.715-724, 2015.

S. R. Jackson, J. R. Mcbride, S. J. Rosenthal, and D. W. Wright, Where's the silver? Imaging trace silver coverage on the surface of gold nanorods, J. Am. Chem. Soc, vol.136, pp.5261-5263, 2014.

J. A. Edgar, A. M. Mcdonagh, and M. B. Cortie, Formation of gold nanorods by a stochastic "popcorn" mechanism, ACS Nano, vol.6, pp.1116-1125, 2012.

M. L. Personick, M. R. Langille, J. Zhang, and C. A. Mirkin, Shape control of gold nanoparticles by silver underpotential deposition, Nano Lett, vol.11, pp.3394-3398, 2011.

J. A. Zhang, M. R. Langille, M. L. Personick, K. Zhang, S. Y. Li et al., Concave cubic gold nanocrystals with high-index facets, J. Am. Chem. Soc, vol.132, pp.14012-14014, 2010.

F. Lu, Y. Zhang, L. H. Zhang, Y. G. Zhang, J. X. Wang et al., Truncated ditetragonal gold prisms as nanofacet activators of catalytic platinum, J. Am. Chem. Soc, vol.133, pp.18074-18077, 2011.

E. Carbo-argibay, B. Rodriguez-gonzalez, S. Gomez-grana, A. Guerrero-martinez, I. Pastoriza-santos et al., The crystalline structure of gold nanorods revisited: evidence for higher-index lateral facets, Angew. Chem.-Int. Edit, vol.49, pp.9397-9400, 2010.

E. Carbo-argibay, B. Rodriguez-gonzalez, I. Pastoriza-santos, J. Perez-juste, and L. M. Liz-marzan, Growth of pentatwinned gold nanorods into truncated decahedra, pp.2377-2383, 2010.

Y. Xu, L. Chen, X. C. Ye, X. C. Wang, J. Q. Yu et al., Cooperative interactions among CTA + , Br -and Ag + during seeded growth of gold nanorods, Nano Res, vol.10, pp.2146-2155, 2017.

M. Grzelczak, J. Perez-juste, P. Mulvaney, and L. M. Liz-marzan, Chem. Soc. Rev, vol.37, pp.1783-1791, 2008.

J. H. Sun, M. Y. Guan, T. M. Shang, C. L. Gao, Z. Xu et al., Selective synthesis of gold cuboid and decahedral nanoparticles regulated and controlled by Cu 2+ ions, Cryst. Growth Des, vol.8, pp.906-910, 2008.

T. T. Tran and X. M. Lu, Synergistic effect of Ag and Pd ions on shape-selective growth of polyhedral Au nanocrystals with high-index facets, The Journal of Physical Chemistry C, vol.115, pp.3638-3645, 2011.

Z. N. Wang, G. Yang, Z. R. Zhang, M. S. Jin, and Y. D. Yin, Selectivity on etching: creation of highenergy facets on copper nanocrystals for CO 2 electrochemical reduction, ACS Nano, vol.10, pp.4559-4564, 2016.

H. Jing, Q. F. Zhang, N. Large, C. M. Yu, D. A. Blom et al., Tunable plasmonic nanoparticles with catalytically active high-index facets, Nano Lett, vol.14, pp.3674-3682, 2014.

A. Carattino, S. Khatua, and M. Orrit, In situ tuning of gold nanorod plasmon through oxidative cyanide etching, Phys. Chem. Chem. Phys, vol.18, pp.15619-15624, 2016.

X. A. Yang, K. D. Gilroy, M. Vara, M. Zhao, S. Zhou et al., Gold icosahedral nanocages: facile synthesis, optical properties, and fragmentation under ultrasonication, Chemical Physics Letters, vol.683, pp.613-618, 2017.

J. Sneddon and M. D. Vincent, ICP-OES and ICP-MS for the determination of metals: Application to oysters, Anal. Lett, vol.41, pp.1291-1303, 2008.

W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig, Determination of size and concentration of gold nanoparticles from UV-Vis spectra, Anal. Chem, vol.79, pp.4215-4221, 2007.

S. Trasatti and O. Petrii, Real surface area measurements in electrochemistry, Pure and Applied Chemistry, vol.63, pp.711-734, 1991.

U. Oesch and J. Janata, Electrochemical study of gold electrodes with anodic oxide-films .1. Formation and reduction behavior of anodic oxides on gold, Electrochim. Acta, pp.1237-1246, 1983.

M. O. Finot, G. D. Braybrook, and M. T. Mcdermott, Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes, J. Electroanal. Chem, vol.466, pp.234-241, 1999.

D. Rand and R. Woods, The nature of adsorbed oxygen on rhodium, palladium and gold electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.31, pp.29-38, 1971.

M. Grde?, M. ?ukaszewski, G. Jerkiewicz, and A. Czerwi?ski, Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption, Electrochim. Acta, vol.53, pp.7583-7598, 2008.

S. Maheswari, P. Sridhar, and S. Pitchumani, Carbon-supported silver as cathode electrocatalyst for alkaline polymer electrolyte membrane fuel cells, Electrocatalysis, issue.3, pp.13-21, 2012.

T. Vidakovi?, M. Christov, and K. Sundmacher, The use of CO stripping for in situ fuel cell catalyst characterization, Electrochim. Acta, vol.52, pp.5606-5613, 2007.

L. H. Yei, B. Beden, and C. Lamy, Electrocatalytic oxidation of glucose at platinum in alkaline medium: on the role of temperature, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.246, pp.349-362, 1988.

K. Arihara, T. Ariga, N. Takashima, K. Arihara, T. Okajima et al., Multiple voltammetric waves for reductive desorption of cysteine and 4-mercaptobenzoic acid monolayers self-assembled on gold substrates, Phys. Chem. Chem. Phys, vol.5, pp.3758-3761, 2003.

T. Doneux, M. Steichen, A. De-rache, and C. Buess-herman, Influence of the crystallographic orientation on the reductive desorption of self-assembled monolayers on gold electrodes, J. Electroanal. Chem, vol.649, pp.164-170, 2010.

J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, vol.11, pp.55-75, 1951.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot et al., Turkevich method for gold nanoparticle synthesis revisited, The Journal of Physical Chemistry B, vol.110, pp.15700-15707, 2006.

M. Wuithschick, A. Birnbaum, S. Witte, M. Sztucki, U. Vainio et al., Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis, vol.9, pp.7052-7071, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01572852

J. Perez-juste, L. M. Liz-marzan, S. Carnie, D. Y. Chan, and P. Mulvaney, Electric-field-directed growth of gold nanorods in aqueous surfactant solutions, Adv. Funct. Mater, vol.14, pp.571-579, 2004.

S. Gómez-graña, C. Fernández-lópez, L. Polavarapu, J. Salmon, J. Leng et al., Gold nanooctahedra with tunable size and microfluidic-induced 3D assembly for highly uniform SERS-active supercrystals, Chem. Mat, vol.27, pp.8310-8317, 2015.

S. Rodal-cedeira, V. Montes-garcía, L. Polavarapu, D. M. Solís, H. Heidari et al., Plasmonic Au@ Pd nanorods with boosted refractive index susceptibility and SERS efficiency: A multifunctional platform for hydrogen sensing and monitoring of catalytic reactions, Chem. Mat, vol.28, pp.9169-9180, 2016.

W. Niu, Z. Li, L. Shi, X. Liu, H. Li et al., Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes, Crystal Growth and Design, vol.8, pp.4440-4444, 2008.

C. L. Scortichnini and C. N. Reilley, Surface characterization of Pt electrodes using underpotential deposition of H and Cu: Part I. Pt(100), Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.139, pp.233-245, 1982.

J. M. Bockris, Z. Nagy, and A. Damjanovic, On the deposition and dissolution of zinc in alkaline solutions, J. Electrochem. Soc, vol.119, pp.285-295, 1972.

D. Kolb, M. Przasnyski, and H. Gerischer, Underpotential deposition of metals and work function differences, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.54, pp.25-38, 1974.

E. Kirowa-eisner, Y. Bonfil, D. Tzur, and E. Gileadi, Thermodynamics and kinetics of UPD of lead on polycrystalline silver and gold, J. Electroanal. Chem, vol.552, pp.171-183, 2003.

S. Szabó, Underpotential deposition of metals on foreign metal substrates, Int. Rev. Phys. Chem, vol.10, pp.207-248, 1991.

S. Swathirajan and S. Bruckenstein, Thermodynamics and kinetics of underpotential deposition of metal monolayers on polycrystalline substrates, Electrochim. Acta, vol.28, pp.865-877, 1983.

O. A. Oviedo, L. Reinaudi, S. G. García, and E. P. Leiva, Experimental techniques and structure of the underpotential deposition phase, pp.17-89, 2016.

S. Szabó, I. Bakos, F. Nagy, and T. Mallát, Study of the underpotential deposition of copper onto polycrystalline palladium surfaces, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.263, pp.137-146, 1989.

V. Rooryck, F. Reniers, C. Buess-herman, G. A. Attard, and X. Yang, The silver UPD on gold(111) revisited, J. Electroanal. Chem, vol.482, pp.93-101, 2000.

T. Hachiya, H. Honbo, and K. Itaya, Detailed underpotential deposition of copper on gold(111) in aqueous-solutions, J. Electroanal. Chem, vol.315, pp.275-291, 1991.

H. Uchida, M. Hiei, and M. Watanabe, Electrochemical quartz crystal microbalance study of copper adatoms on Au(111) electrodes in solutions of perchloric and sulfuric acid, J. Electroanal. Chem, vol.452, pp.97-106, 1998.

E. Herrero, S. Glazier, L. J. Buller, and H. D. Abruña, X-ray and electrochemical studies of Cu upd on single crystal electrodes in the presence of bromide: comparison between Au(111) and Pt(111) electrodes, J. Electroanal. Chem, vol.461, pp.121-130, 1999.

M. Nakamura, O. Endo, T. Ohta, M. Ito, and Y. Yoda, Surface X-ray diffraction study of Cu UPD on Au (111) electrode in 0.5 M H 2 SO 4 solution: the coadsorption structure of UPD copper, hydration water molecule and bisulfate anion on Au, vol.514, pp.227-233, 2002.

A. I. Danilov, E. B. Molodkina, A. V. Rudnev, Y. M. Polukarov, and J. M. Feliu, Kinetics of copper deposition on Pt(111) and Au(111) electrodes in solutions of different acidities, Electrochim. Acta, vol.50, pp.5032-5043, 2005.

B. Madry, K. Wandelt, and M. Nowicki, Deposition of copper and sulfate on Au(111): New insights, vol.388, pp.678-683, 2016.

B. Madry, K. Wandelt, and M. Nowicki, Sulfate structures on copper deposits on Au(111): In situ STM investigations, vol.217, pp.249-261, 2016.

P. Sebastián, E. Gómez, V. Climent, and J. M. Feliu, Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent: new insights, Electrochemistry Communications, vol.78, pp.51-55, 2017.

M. Z. Yang, H. X. Zhang, and Q. B. Deng, Understanding the copper underpotential deposition process at strained gold surface, Electrochemistry Communications, vol.82, pp.125-128, 2017.

M. G. Samant, M. F. Toney, G. L. Borges, L. Blum, and O. R. Melroy, Grazing incidence X-ray diffraction of lead monolayers at a silver (111) and gold (111) electrode/electrolyte interface, The Journal of Physical Chemistry, vol.92, pp.220-225, 1988.

J. Feliu, A. Fernandez-vega, J. Orts, and A. Aldaz, The behaviour of lead and bismuth adatoms on well-defined platinum surfaces, Journal De Chimie Physique, vol.88, pp.1493-1518, 1991.

J. X. Wang, R. R. Adzic, and B. M. Ocko, X-ray scattering study of Tl adlayers on the Au(111) electrode in alkaline solutions: metal monolayer, OH -coadsorption, and oxide formation, The Journal of Physical Chemistry, vol.98, pp.7182-7190, 1994.

D. R. Wheeler, J. X. Wang, and R. R. Ad?i?, The effects of anions on the underpotential deposition of Tl on Pt(111): a voltammetric study, J. Electroanal. Chem, vol.387, pp.115-119, 1995.

C. Batchelor-mcauley, G. G. Wildgoose, and R. G. Compton, The contrasting behaviour of polycrystalline bulk gold and gold nanoparticle modified electrodes towards the underpotential deposition of thallium, New J. Chem, vol.32, pp.941-946, 2008.

P. Rodriguez, N. García-aráez, E. Herrero, and J. M. Feliu, New insight on the behavior of the irreversible adsorption and underpotential deposition of thallium on platinum (111) and vicinal surfaces in acid electrolytes, Electrochim. Acta, pp.319-325, 2015.

Y. Bonfil, M. Brand, and E. Kirowa-eisner, Characteristics of subtractive anodic stripping voltammetry of lead, cadmium and thallium at silver-gold alloy electrodes, Electroanalysis, vol.15, pp.1369-1376, 2003.

M. Brust, S. A. Ramirez, and G. J. Gordillo, Site-specific modification of gold nanoparticles by underpotential deposition of cadmium atoms, ChemElectroChem, vol.5, pp.1586-1590, 2018.

L. A. Meier, D. R. Salinas, J. M. Feliu, and S. G. García,

, STM study, vol.10, pp.1583-1586, 2008.

S. Szabo, Investigations of copper, silver and bismuth deposition on palladium in perchloric acid media, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.77, pp.193-203, 1977.

J. P. Ganon and J. Clavilier, Electrochemical adsorption of lead and bismuth at gold single crystal surfaces with vicinal (111) orientations. I, Surf. Sci, vol.145, pp.487-518, 1984.

J. Clavilier, J. Feliu, and A. Aldaz, An irreversible structure sensitive adsorption step in bismuth underpotential deposition at platinum electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.243, pp.419-433, 1988.

K. Thiel, M. Hintze, A. Vollmer, and C. Donner, 1 1) electrode, Bismuth UPD on the modified Au, vol.1, pp.143-150, 2010.

R. Gómez, M. Llorca, J. Feliu, and A. Aldaz, The behaviour of germanium adatoms irreversibly adsorbed on platinum single crystals, J. Electroanal. Chem, vol.340, pp.349-355, 1992.

P. Rodriguez, E. Herrero, J. Solla-gullon, F. J. Vidal-iglesias, A. Aldaz et al., Specific surface reactions for identification of platinum surface domains -Surface characterization and electrocatalytic tests, Electrochim. Acta, vol.50, pp.4308-4317, 2005.

P. Rodríguez, E. Herrero, J. Solla-gullón, F. Vidal-iglesias, A. Aldaz et al., Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt (1 0 0), Electrochim. Acta, vol.50, pp.3111-3121, 2005.

M. Alvarez-rizatti and K. Jüttner, Electrocatalysis of oxygen reduction by UPD of lead on gold single-crystal surfaces, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.144, pp.351-363, 1983.

P. Parpot, K. B. Kokoh, B. Beden, E. M. Belgsir, J. M. Leger et al., Selective electrocatalytic oxidation of sucrose on smooth and upd-lead modified platinum electrodes in alkaline medium, Studies in Surface Science and Catalysis, vol.78, pp.439-445, 1993.

H. M. Chen, Z. L. Xing, S. Q. Zhu, L. L. Zhang, Q. W. Chang et al., Palladium modified gold nanoparticles as electrocatalysts for ethanol electrooxidation, J. Power Sources, vol.321, pp.264-269, 2016.

P. Vélez, A. Cuesta, E. P. Leiva, and V. A. Macagno, The underpotential deposition that should not be: Cu(1 × 1) on Au(111), vol.25, pp.54-57, 2012.

F. Möller, O. M. Magnussen, and R. J. Behm, CuCl adlayer formation and Cl induced surface alloying: an in situ STM study on Cu underpotential deposition on Au(110) electrode surfaces, Electrochim. Acta, vol.40, pp.1259-1265, 1995.

R. J. Nichols, D. M. Kolb, and R. J. Behm, STM observations of the initial stages of copper deposition on gold single-crystal electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.313, pp.109-119, 1991.

O. M. Magnussen, J. Hotlos, R. J. Nichols, D. M. Kolb, and R. J. Behm, Au(111) electrodes observed by in situ scanning tunneling microscopy, Atomic structure of Cu adlayers on Au(100) and, vol.64, pp.2929-2932, 1990.

O. E. Kongstein, U. Bertocci, and G. R. Stafford, In situ stress measurements during copper electrodeposition on (111)-textured Au, J. Electrochem. Soc, vol.152, pp.116-123, 2005.

H. Hagenström, M. A. Schneeweiss, and D. M. Kolb, Copper underpotential deposition on ethanethiol-modified Au(111) electrodes: kinetic effects, Electrochim. Acta, vol.45, pp.1141-1145, 1999.

Q. Deng, M. Smetanin, and J. Weissmüller, Mechanical modulation of reaction rates in electrocatalysis, J. Catal, vol.309, pp.351-361, 2014.

S. A. Akhade, I. T. Mccrum, and M. J. Janik, The impact of specifically adsorbed ions on the coppercatalyzed electroreduction of CO 2, J. Electrochem. Soc, vol.163, pp.477-484, 2016.

P. Mrozek, Y. Sung, M. Han, M. Gamboa-aldeco, A. Wieckowski et al.,

. Gewirth, Coadsorption of sulfate anions and silver adatoms on the Au (111) single crystal electrode. Ex situ and in situ comparison, Electrochim. Acta, vol.40, pp.17-28, 1995.

E. Rouya, S. Cattarin, M. L. Reed, R. G. Kelly, and G. Zangari, Electrochemical characterization of the surface area of nanoporous gold films, J. Electrochem. Soc, vol.159, pp.97-102, 2012.

F. Hernandez and H. Baltruschat, Hydrogen evolution and CuUPD at stepped gold single crystals modified with Pd, J. Solid State Electrochem, vol.11, pp.877-885, 2007.

S. Hebie, K. B. Kokoh, K. Servat, and T. W. Napporn, Shape-dependent electrocatalytic activity of free gold nanoparticles toward glucose oxidation, Gold Bull, vol.46, pp.311-318, 2013.

C. Jeyabharathi, M. Zander, and F. Scholz, Underpotential deposition of lead on quasi-spherical and faceted gold nanoparticles, J. Electroanal. Chem, vol.819, pp.159-162, 2017.

J. Schultze and D. Dickertmann, Potentiodynamic desorption spectra of metallic monolayers of Cu, Bi, Pb, Tl, and Sb adsorbed at (111),(100), and (110) planes of gold electrodes, Surf. Sci, vol.54, pp.489-505, 1976.

B. Conway, H. Angerstein-kozlowska, W. Sharp, and E. Criddle, Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation, Anal. Chem, vol.45, pp.1331-1336, 1973.

A. Zolfaghari, M. Chayer, and G. Jerkiewicz, Energetics of the underpotential deposition of hydrogen on platinum electrodes I. Absence of coadsorbed species, J. Electrochem. Soc, vol.144, pp.3034-3041, 1997.

J. Clavilier, J. M. Orts, R. Gómez, J. M. Feliu, and A. Aldaz, Comparison of electrosorption at activated polycrystalline and Pt(531) kinked platinum electrodes: surface voltammetry and charge displacement on potentiostatic CO adsorption, J. Electroanal. Chem, vol.404, pp.281-289, 1996.

Q. Chen, J. Solla-gullón, S. Sun, and J. M. Feliu, The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure: The role of anion adsorption in fundamental electrocatalysis, Electrochim. Acta, vol.55, pp.7982-7994, 2010.

F. Maillard, E. R. Savinova, and U. Stimming, CO monolayer oxidation on Pt nanoparticles: Further insights into the particle size effects, J. Electroanal. Chem, vol.599, pp.221-232, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00333785

C. L. Green and A. Kucernak, Determination of the platinum and ruthenium surface areas in platinum?ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts, The Journal of Physical Chemistry B, vol.106, pp.1036-1047, 2002.

E. Herrero, V. C. Climent, and J. M. Feliu, On the different adsorption behavior of bismuth, sulfur, selenium and tellurium on a Pt (775) stepped surface, Electrochemistry communications, vol.2, pp.636-640, 2000.

E. Molodkina, A. Danilov, and J. M. Feliu, Pt (410) of platinum single crystal electrodes, Cu UPD at Pt (100) and stepped faces Pt (610), vol.52, pp.890-900, 2016.

N. Markovic and P. Ross, Effect of anions on the underpotential deposition of copper on platinum (111) and platinum (100) surfaces, Langmuir, vol.9, pp.580-590, 1993.

F. Fiçicio?lu and F. Kadirgan, Characterization of a Pt+ Pd alloy electrode by underpotential deposition of copper, J. Electroanal. Chem, vol.346, pp.187-196, 1993.

J. Solla-gullón, F. Vidal-iglesias, E. Herrero, J. Feliu, and A. Aldaz, CO monolayer oxidation on semi-spherical and preferentially oriented (100) and (111) platinum nanoparticles, Electrochemistry Communications, vol.8, pp.189-194, 2006.

J. Solla-gullón, P. Rodríguez, E. Herrero, A. Aldaz, and J. M. Feliu, Surface characterization of platinum electrodes, Phys. Chem. Chem. Phys, vol.10, pp.1359-1373, 2008.

C. Coutanceau, P. Urchaga, and S. Baranton, Diffusion of adsorbed CO on platinum (100) and (111) oriented nanosurfaces, Electrochemistry Communications, vol.22, pp.109-112, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749878

J. Solla-gullón, F. Vidal-iglesias, P. Rodriguez, E. Herrero, J. Feliu et al., In situ surface characterization of preferentially oriented platinum nanoparticles by using electrochemical structure sensitive adsorption reactions, The Journal of Physical Chemistry B, vol.108, pp.13573-13575, 2004.

T. Chierchie, C. Mayer, and W. Lorenz, Structural changes of surface oxide layers on palladium, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.135, pp.211-220, 1982.

T. Chierchie and C. Mayer, Voltammetric study of the underpotential deposition of copper on polycrystalline and single crystal palladium surfaces, Electrochim. Acta, vol.33, pp.341-345, 1988.

M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet et al., Low-temperature oxidation of CO over gold supported on TiO 2 , ?-Fe 2 O 3 , and Co 3 O 4, J. Catal, vol.144, pp.175-192, 1993.

G. L. Beltramo, T. E. Shubina, and M. T. Koper, Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT, ChemPhysChem, vol.6, pp.2597-2606, 2005.

L. W. Guo, P. P. Du, X. P. Fu, C. Ma, J. Zeng et al.,

Y. , Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation, Nat. Commun, vol.7, pp.1-8, 2016.

S. C. Chang, A. Hamelin, and M. J. Weaver, Dependence of the electrooxidation rates of carbon monoxide at gold on the surface crystallographic orientation -A combined kinetic-surface infrared spectroscopic study, The Journal of Physical Chemistry, vol.95, pp.5560-5567, 1991.

S. D. Senanayake, D. Stacchiola, P. Liu, C. B. Mullins, J. Hrbek et al., HCOO, CO 3 , and HOCO as key intermediates in the water-gas shift reaction, vol.113, pp.19536-19544, 2009.

S. Kumar and S. Zou, Electrooxidation of carbon monoxide on gold nanoparticle ensemble electrodes: effects of particle coverage, The Journal of Physical Chemistry B, vol.109, pp.15707-15713, 2005.

M. M. Maye, Y. Lou, and C. Zhong, Core-shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation, Langmuir, vol.16, pp.7520-7523, 2000.

A. Piednoir, M. Languille, L. Piccolo, A. Valcarcel, F. C. Aires et al., Pd (111) versus Pd-Au (111) in carbon monoxide oxidation under elevated pressures, Catal. Lett, vol.114, pp.110-114, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00180290

J. Liu, A. Wang, Y. Chi, H. Lin, and C. Mou, Synergistic effect in an Au? Ag alloy nanocatalyst: CO oxidation, vol.109, pp.40-43, 2005.

A. Czerwi?ski and J. Sobkowski, The adsorption of carbon monoxide on a platinum electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.91, pp.47-53, 1978.

A. J. Trouiller, S. Hebie, F. E. Bahhaj, T. W. Napporn, and P. Bertrand, Chemistry for oncotheranostic gold nanoparticles, Eur. J. Med. Chem, vol.99, pp.92-112, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01365816

H. Erikson, A. Sarapuu, J. Solla-gullón, and K. Tammeveski, Recent progress in oxygen reduction electrocatalysis on Pd-based catalysts, J. Electroanal. Chem, vol.780, pp.327-336, 2016.

S. Hebie, Y. Holade, K. Maximova, M. Sentis, P. Delaporte et al.,

. Kabashin, Advanced electrocatalysts on the basis of bare Au nanomaterials for biofuel cell applications, ACS Catal, vol.5, pp.6489-6496, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01418521

S. Link and M. A. El-sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, The Journal of Physical Chemistry B, vol.103, pp.8410-8426, 1999.

C. C. Li, K. L. Shuford, Q. H. Park, W. P. Cai, Y. Li et al., High-yield synthesis of single-crystalline gold nano-octahedra, Angew. Chem.-Int. Edit, vol.46, pp.3264-3268, 2007.

Y. Chen, A. A. Fernandes, and A. Erbe, Control of shape and surface crystallography of gold nanocrystals for electrochemical applications, Electrochim. Acta, vol.113, pp.810-816, 2013.

A. Hamelin and A. M. Martins, Cyclic voltammetry at gold single-crystal surfaces .2. Behaviour of high-index faces, J. Electroanal. Chem, vol.407, pp.13-21, 1996.

C. Alegre, A. Stassi, E. Modica, C. L. Vecchio, A. Aricò et al., Investigation of the activity and stability of Pd-based catalysts towards the oxygen reduction (ORR) and evolution reactions (OER) in iron-air batteries, RSC Adv, vol.5, pp.25424-25427, 2015.

E. Herrero, L. J. Buller, and H. D. Abruna, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials, Chem. Rev, vol.101, pp.1897-1930, 2001.

S. Hebie, L. Cornu, T. W. Napporn, J. Rousseau, and B. K. Kokoh, Insight on the surface structure effect of free gold nanorods on glucose electrooxidation, J. Phys. Chem. C, pp.9872-9880, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932220

G. Tremiliosi-filho, L. H. Dall'antonia, and G. Jerkiewicz, Growth of surface oxides on gold electrodes under well-defined potential, time and temperature conditions, J. Electroanal. Chem, vol.578, pp.1-8, 2005.

G. Tremiliosi-filho, L. H. Dallantonia, and G. Jerkiewicz, Limit to extent of formation of the quasitwo-dimensional oxide state on Au electrodes, J. Electroanal. Chem, vol.422, pp.149-159, 1997.

B. E. Conway, B. Barnett, H. Angerstein-kozlowska, and B. V. Tilak, A surface-electrochemical basis for the direct logarithmic growth law for initial stages of extension of anodic oxide films formed at noble metals, The Journal of chemical physics, pp.8361-8373, 1990.

L. D. Burke and M. Mcrann, Thick oxide growth on gold in base, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.125, pp.387-399, 1981.

L. Burke and P. Nugent, The electrochemistry of gold: I the redox behaviour of the metal in aqueous media, Gold Bull, vol.30, pp.43-53, 1997.

S. ?trbac, A. Hamelin, and R. R. Adzi?, Electrochemical indication of surface reconstruction of (100), (311) and (111) gold faces in alkaline solutions, J. Electroanal. Chem, vol.362, pp.47-53, 1993.

J. Hernandez, J. Solla-gullon, E. Herrero, A. Aldaz, and J. M. Feliu, Characterization of the surface structure of gold nanoparticles and nanorods using structure sensitive reactions, The Journal of Physical Chemistry B, vol.109, pp.12651-12654, 2005.

W. Napporn, J. Léger, and C. Lamy, Electrocatalytic oxidation of carbon monoxide at lower potentials on platinum-based alloys incorporated in polyaniline, J. Electroanal. Chem, vol.408, pp.141-147, 1996.

Y. Lourié and A. Krjijevski, Aide-mémoire de chimie analytique: à l'usage des chimistes, ingénieurs, élèves des écoles techniques, 1975.

S. Karra, M. Wooten, W. Griffith, and W. Gorski, Morphology of gold nanoparticles and electrocatalysis of glucose oxidation, Electrochim. Acta, vol.218, pp.8-14, 2016.

S. Beyhan, Electrocatalytic properties of Au(hkl) electrodes towards oxidation of ethanol in alkaline media, Int. J. Electrochem. Sci, vol.9, pp.3259-3268, 2014.

X. L. Kang, Q. F. Ruan, H. Zhang, F. Bao, J. Guo et al., Concave gold bipyramids bound with multiple high-index facets: improved Raman and catalytic activities, vol.9, pp.5879-5886, 2017.

H. E. Lee, K. D. Yang, S. M. Yoon, H. Y. Ahn, Y. Y. Lee et al.,

K. T. Kim and . Nam, Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO 2 reduction, ACS Nano, vol.9, pp.8384-8393, 2015.

L. D. Li, Y. Peng, Y. H. Yue, Y. Hu, X. Liang et al., Synthesis of concave gold nanocuboids with high-index facets and their enhanced catalytic activity, Chem. Commun, vol.51, pp.11591-11594, 2015.

A. Hamelin, L. Stoicoviciu, G. J. Edens, X. Gao, and M. J. Weaver, Some electrochemical consequences of potential-induced surface reconstruction on Au(100): double-layer nonuniformity and electrode kinetics, J. Electroanal. Chem, vol.365, pp.47-57, 1994.

X. Gao, A. Hamelin, and M. J. Weaver, Reconstruction at ordered Au(110)-aqueous interfaces as probed by atomic-resolution scanning tunneling microscopy, Phys. Rev. B, vol.44, pp.10983-10986, 1991.

Z. Y. Zhou, N. Tian, J. T. Li, I. Broadwell, and S. G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage, Chem. Soc. Rev, vol.40, pp.4167-4185, 2011.

G. Paramasivam, N. Kayambu, A. M. Rabel, A. K. Sundramoorthy, and A. Sundaramurthy, Anisotropic noble metal nanoparticles: synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics, Acta Biomater, vol.49, pp.45-65, 2017.

K. B. Zhou and Y. D. Li, Catalysis based on nanocrystals with well-defined facets, Angew. Chem.-Int. Edit, vol.51, pp.602-613, 2012.

R. R. Ad?i?, M. W. Hsiao, E. B. Yeager, and G. Pruett, Scanning tunneling microscopy of stepped single crystal surfaces of gold, Surf. Sci, vol.273, pp.425-429, 1992.

R. R. Ad?i?, S. Strbac, and N. Anastasijevi?, Electrocatalysis of oxygen on single crystal gold electrodes, Mater. Chem. Phys, vol.22, pp.349-375, 1989.

Q. C. Wang, Y. Q. Wang, P. Z. Guo, Q. Li, R. X. Ding et al., Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties, Langmuir, vol.30, pp.440-446, 2014.

S. Gomez-grana, C. Fernandez-lopez, L. Polavarapu, J. B. Salmon, J. Leng et al., Gold Nanooctahedra with Tunable Size and Microfluidic-Induced 3D Assembly for Highly Uniform SERS-Active Supercrystals, vol.27, pp.8310-8317, 2015.

X. Ye, C. Zheng, J. Chen, Y. Gao, and C. B. Murray, Using Binary Surfactant Mixtures To Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods, Nano Letters, vol.13, pp.765-771, 2013.

J. Pérez-juste, L. M. Liz-marzán, S. Carnie, D. Y. Chan, and P. Mulvaney, Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions, Advanced Functional Materials, vol.14, pp.571-579, 2004.

X. Y. Wen, H. Shuai, and L. Min, Precise modulation of gold nanorods aspect ratio based on localized surface plasmon resonance, Opt. Mater, vol.60, pp.324-330, 2016.

S. Eustis and M. A. El-sayed, Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem. Soc. Rev, vol.35, pp.209-217, 2006.

H. Katz-boon, C. J. Rossouw, M. Weyland, A. M. Funston, P. Mulvaney et al., Three-Dimensional Morphology and Crystallography of Gold Nanorods, Nano Letters, vol.11, pp.273-278, 2011.

A. Hamelin, M. J. Sottomayor, F. Silva, S. C. Chang, and M. J. Weaver, Cyclic voltammetric characterization of oriented monocrystalline gold surfaces in aqueous alkaline-solution, J. Electroanal. Chem, vol.295, pp.291-300, 1990.

H. Angerstein-kozlowska, B. Conway, A. Hamelin, and L. Stoicoviciu, Elementary steps of electrochemical oxidation of single-crystal planes of Au-I. Chemical basis of processes involving geometry of anions and the electrode surfaces, Electrochim. Acta, pp.1051-1061, 1986.

F. Ke, B. Solomon, Y. Ding, G. Xu, S. Sun et al., Enhanced electrocatalytic activity on gold nanocrystals enclosed by high-index facets for oxygen reduction, Nano Energy, vol.7, pp.179-188, 2014.

J. F. Wang, J. X. Gong, Y. S. Xiong, J. D. Yang, Y. Gao et al., Shapedependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation, Chem. Commun, vol.47, pp.6894-6896, 2011.

J. V. Maya-girón, E. Zelaya, A. Rubert, G. Benítez, P. Carro et al., Surface Chemistry of 4-Mercaptobenzoic Acid Self-Assembled on Ag(111) and Ag Nanoparticles, vol.117, pp.24967-24974, 2013.

R. R. Ad?i? and N. M. Markovi?, Structural effects in electrocatalysis: oxygen and hydrogen peroxide reduction on single crystal gold electrodes and the effects of lead ad-atoms, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.138, pp.443-447, 1982.

P. Parpot, K. B. Kokoh, B. Beden, and C. Lamy, Electrocatalytic oxidation of saccharose in alkalinemedium, Electrochim. Acta, vol.38, pp.1679-1683, 1993.

P. Parpot, K. B. Kokoh, E. M. Belgsir, J. M. Leger, B. Beden et al., Electrocatalytic oxidation of sucrose: analysis of the reaction products, J. Appl. Electrochem, vol.27, pp.25-33, 1997.

Y. Tang and W. L. Cheng, Key parameters governing metallic nanoparticle electrocatalysis, Nanoscale, vol.7, pp.16151-16164, 2015.

S. Jones, A. Pramanik, C. Sweet, A. Keyes, S. Begum et al., Recent progress on the development of anisotropic gold nanoparticles: design strategies and growth mechanism, J. Environ. Sci. Health Pt. C-Environ. Carcinog. Ecotoxicol. Rev, vol.35, pp.47-66, 2017.

P. Priecel, H. A. Salami, R. H. Padilla, Z. Y. Zhong, and J. A. Lopez-sanchez, Anisotropic gold nanoparticles: preparation and applications in catalysis, Chin, J. Catal, vol.37, pp.1619-1650, 2016.

Y. Liu, S. L. Liu, Z. W. Che, S. C. Zhao, X. X. Sheng et al., Concave octahedral Pd@PdPt electrocatalysts integrating core-shell, alloy and concave structures for high-efficiency oxygen reduction and hydrogen evolution reactions, J. Mater. Chem. A, vol.4, pp.16690-16697, 2016.

N. N. Du, C. M. Wang, X. J. Wang, Y. Lin, J. Jiang et al., Trimetallic tristar nanostructures: tuning electronic and surface structures for enhanced electrocatalytic hydrogen evolution, Adv. Mater, vol.28, p.2077, 2016.

C. N. Brodsky, A. P. Young, K. C. Ng, C. H. Kuo, and C. K. Tsung, Electrochemically induced surface metal migration in well-defined core-shell nanoparticles and its general influence on electrocatalytic reactions, ACS Nano, vol.8, pp.9368-9378, 2014.

V. Celorrio, P. M. Quaino, E. Santos, J. Flórez-montaño, J. J. Humphrey et al., Strain effects on the oxidation of CO and HCOOH on Au-Pd core-shell nanoparticles, vol.7, pp.1673-1680, 2017.

V. Colic and A. S. Bandarenka, Pt alloy electrocatalysts for the oxygen reduction reaction: from model surfaces to nanostructured systems, ACS Catal, vol.6, pp.5378-5385, 2016.

A. Kulkarni, S. Siahrostami, A. Patel, and J. K. Norskov, Understanding catalytic activity trends in the oxygen reduction reaction, Chem. Rev, vol.118, pp.2302-2312, 2018.

S. Sui, X. Y. Wang, X. T. Zhou, Y. H. Su, S. Riffatc et al., A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells, J. Mater. Chem. A, vol.5, pp.1808-1825, 2017.

F. Jaouen, J. Herranz, M. Lefevre, J. Dodelet, U. I. Kramm et al., Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction, ACS applied materials & interfaces, vol.1, pp.1623-1639, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00800243

B. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction, J. Power Sources, vol.152, pp.1-15, 2005.

M. S. El-deab, T. Sotomura, and T. Ohsaka, Oxygen reduction at electrochemically deposited crystallographically oriented Au(100)-like gold nanoparticles, Electrochemistry Communications, vol.7, pp.29-34, 2005.

Q. Xue, J. Bai, C. Han, P. Chen, J. Jiang et al., Au nanowires@ Pd-polyethylenimine nanohybrids as highly active and methanol-tolerant electrocatalysts toward oxygen reduction reaction in alkaline media, ACS Catal, vol.8, pp.11287-11295, 2018.

Y. Zhao, W. Q. Zhang, H. M. Yin, J. He, and Y. Ding, Surface alloying of Pt monolayer on nanoporous gold for enhanced oxygen reduction, Electrochim. Acta, vol.274, pp.9-15, 2018.

M. Shao, T. Yu, J. H. Odell, M. Jin, and Y. Xia, Structural dependence of oxygen reduction reaction on palladium nanocrystals, vol.47, pp.6566-6568, 2011.

S. Kondo, M. Nakamura, N. Maki, and N. Hoshi, Active sites for the oxygen reduction reaction on the low and high index planes of palladium, The Journal of Physical Chemistry C, vol.113, pp.12625-12628, 2009.

J. L. Fernández, V. Raghuveer, A. Manthiram, A. J. Bard, ?. Pd et al., Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells, J. Am. Chem. Soc, vol.127, pp.13100-13101, 2005.

J. L. Fernández, D. A. Walsh, and A. J. Bard, Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy

M. Co-(m:-pd, A. Au, and ). , J. Am. Chem. Soc, vol.127, pp.357-365, 2005.

M. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki et al., Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction, Langmuir, vol.22, pp.10409-10415, 2006.

Y. Holade, R. G. Silva, K. Servat, T. W. Napporn, C. Canaff et al., Facile synthesis of highly active and durable PdM/C (M= Fe, Mn) nanocatalysts for the oxygen reduction reaction in an alkaline medium, J. Mater. Chem. A, vol.4, pp.8337-8349, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01434813

W. E. Mustain and J. Prakash, Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt-palladium electrocatalysts in acid media, J. Power Sources, vol.170, pp.28-37, 2007.

O. Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya et al., New palladium alloys catalyst for the oxygen reduction reaction in an acid medium, Electrochemistry communications, vol.6, pp.105-109, 2004.

T. Gunji, R. H. Wakabayashi, S. H. Noh, B. Han, F. Matsumoto et al., The effect of alloying of transition metals (M= Fe, Co, Ni) with palladium catalysts on the electrocatalytic activity for the oxygen reduction reaction in alkaline media, Electrochim. Acta, vol.283, pp.1045-1052, 2018.

T. Jurzinsky, C. Cremers, K. Pinkwart, and J. Tubke, On the influence of Ag on Pd-based electrocatalyst for methanol oxidation in alkaline media: a comparative differential electrochemical mass spectrometry study, Electrochim. Acta, vol.199, pp.270-279, 2016.

Q. H. Cui, Y. L. Zhang, and Z. Q. Peng, Dealloyed silver nanoparticles as efficient catalyst towards oxygen reduction in alkaline solution, Chem. Res. Chin. Univ, vol.32, pp.106-111, 2016.

Q. Wang, C. Xiaoqiang, W. Guan, L. Zhang, X. Fan et al., Shape-dependent catalytic activity of oxygen reduction reaction (ORR) on silver nanodecahedra and nanocubes, J. Power Sources, vol.269, pp.152-157, 2014.

N. Hoshi, M. Nakamura, N. Maki, S. Yamaguchi, and A. Kitajima, surfaces in alkaline solution, Structural effects on voltammograms of the low index planes of palladium and Pd, vol.624, pp.134-138, 2008.

A. Zalineeva, S. Baranton, C. Coutanceau, and G. Jerkiewicz, Electrochemical behavior of unsupported shaped palladium nanoparticles, Langmuir, pp.1605-1609, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01263958

S. L. Horswell, A. L. Pinheiro, E. R. Savinova, M. Danckwerts, B. Pettinger et al., A comparative study of hydroxide adsorption on the (111), (110), and (100) faces of silver with cyclic voltammetry, ex situ electron diffraction, and in situ second harmonic generation, Langmuir, vol.20, pp.10970-10981, 2004.

Y. Holade, C. Morais, S. Arrii-clacens, K. Servat, T. Napporn et al., New preparation of PdNi/C and PdAg/C nanocatalysts for glycerol electrooxidation in alkaline medium, Electrocatalysis, vol.4, pp.167-178, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932267

M. Li, P. Liu, and R. R. Adzic, Platinum monolayer electrocatalysts for anodic oxidation of alcohols, The journal of physical chemistry letters, vol.3, pp.3480-3485, 2012.

L. Kibler, Dependence of electrocatalytic activity on film thickness for the hydrogen evolution reaction of Pd overlayers on Au (1 1 1), vol.53, pp.6824-6828, 2008.

L. Demarconnay, C. Coutanceau, and J. Léger, Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol, Electrochim. Acta, pp.4513-4521, 2004.

C. Ghiabi, A. Ghaffarinejad, H. Kazemi, and R. Salahandish, In situ, one-step and coelectrodeposition of graphene supported dendritic and spherical nano-palladium-silver bimetallic catalyst on carbon cloth for electrooxidation of methanol in alkaline media, Renewable energy, vol.126, pp.1085-1092, 2018.

C. Wang, L. Ma, L. Liao, S. Bai, R. Long et al., A unique platinum-graphene hybrid structure for high activity and durability in oxygen reduction reaction, Scientific reports, vol.3, p.2580, 2013.

D. Sepa, M. Vojnovic, L. M. Vracar, and A. Damjanovic, Apparent enthalpies of activation of electrodic oxygen reduction at platinum in different current density regions-II. Alkaline solution, Electrochim. Acta, pp.97-101, 1986.

A. Holewinski and S. Linic, Elementary mechanisms in electrocatalysis: revisiting the ORR Tafel slope, J. Electrochem. Soc, vol.159, pp.864-870, 2012.

C. Coutanceau, S. Baranton, and R. S. Kouamé, Selective electrooxidation of glycerol into valueadded chemicals: a short overview, Frontiers in chemistry, vol.7, pp.1-15, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02162211

Y. Wang, L. Li, L. Hu, L. Zhuang, J. Lu et al., A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages, Electrochemistry Communications, vol.5, pp.662-666, 2003.

E. Antolini, Palladium in fuel cell catalysis, vol.2, pp.915-931, 2009.

M. Tadayyoni and M. J. Weaver, Adsorption and electrooxidation of carbon monoxide at the goldaqueous interface studied by surface-enhanced Raman spectroscopy, Langmuir, vol.2, pp.179-183, 1986.

N. Li, W. Xia, C. Xu, and S. Chen, Pt/C and Pd/C catalysts promoted by Au for glycerol and CO electrooxidation in alkaline medium, Journal of the Energy Institute, vol.90, pp.725-733, 2017.

A. Cuesta, N. Lopez, and C. Gutierrez, Electrolyte electroreflectance study of carbon monoxide adsorption on polycrystalline silver and gold electrodes, Electrochim. Acta, vol.48, pp.2949-2956, 2003.

A. J. Ahern, L. C. Nagle, and L. D. Burke, Electrocatalysis at polycrystalline silver in base: an example of the complexity of surface active state behaviour, J. Solid State Electrochem, vol.6, pp.451-462, 2002.

G. Orozco, M. C. Perez, A. Rincon, and C. Gutierrez, Adsorption and electrooxidation of carbon monoxide on silver, Langmuir, vol.14, pp.6297-6306, 1998.

S. Sreedhala, V. Sudheeshkumar, and C. P. Vinod, CO oxidation on large high-index faceted Pd nanostructures, J. Catal, vol.337, pp.138-144, 2016.

N. Li, P. X. Zhao, and D. Astruc, Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity, Angew. Chem.-Int. Edit, vol.53, pp.1756-1789, 2014.

J. Perezjuste, I. Pastorizasantos, L. Lizmarzan, and P. Mulvaney, Gold nanorods: synthesis, characterization and applications, Coord. Chem. Rev, vol.249, pp.1870-1901, 2005.

H. Kang, B. G. Kim, H. B. Na, and S. Hwang, Anti-galvanic reduction of silver ion on gold and its role in anisotropic growth of gold nanomaterials, The Journal of Physical Chemistry C, vol.119, pp.25974-25982, 2015.

L. Zhang, J. W. Zhang, Q. Kuang, S. F. Xie, Z. Y. Jiang et al., Cu 2+ -assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets, J. Am. Chem. Soc, vol.133, pp.17114-17117, 2011.

S. J. Guo and E. K. Wang, Synthesis and electrochemical applications of gold nanoparticles, Anal. Chim. Acta, vol.598, pp.181-192, 2007.

H. J. Zhang and N. Toshima, Glucose oxidation using Au-containing bimetallic and trimetallic nanoparticles, vol.3, pp.268-278, 2013.

Y. Holade, S. Tingry, K. Servat, T. W. Napporn, D. Cornu et al., Nanostructured inorganic materials at work in electrochemical sensing and biofuel cells, Catalysts, vol.7, p.42, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01670255

M. Tominaga, Y. Taema, and I. Taniguchi, Electrocatalytic glucose oxidation at bimetallic gold-copper nanoparticle-modified carbon electrodes in alkaline solution, J. Electroanal. Chem, vol.624, pp.1-8, 2008.

Y. L. Cao, S. Iqbal, P. J. Miedziak, D. R. Jones, D. J. Morgan et al., An investigation into bimetallic catalysts for base free oxidation of cellobiose and glucose, J. Chem. Technol. Biotechnol, vol.92, pp.2246-2253, 2017.

Q. F. Zhang, H. Jing, G. G. Li, Y. Lin, D. A. Bloni et al., Intertwining roles of silver ions, surfactants, and reducing agents in gold nanorod overgrowth: pathway switch between silver underpotential deposition and gold-silver codeposition, Chem. Mat, vol.28, pp.2728-2741, 2016.

S. Beyhan, K. Uosaki, J. M. Feliu, and E. Herrero, Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline media, J. Electroanal. Chem, vol.707, pp.89-94, 2013.

D. Dias, U. Hasse, K. Fricke, P. C. Nascimento, and F. Scholz, The interaction of a polycrystalline gold electrode with ethanethiol in alkaline solution, J. Electroanal. Chem, vol.690, pp.121-126, 2013.

I. Becerik and F. Kadirgan, The electrocatalytic properties of palladium electrodes for the oxidation of D-glucose in alkaline medium, Electrochim. Acta, vol.37, pp.2651-2657, 1992.

Q. R. Shi, P. N. Zhang, Y. J. Li, H. B. Xia, D. Y. Wang et al., Synthesis of open-mouthed, yolk-shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis, Chem. Sci, vol.6, pp.4350-4357, 2015.

R. Rajendra, P. K. Gangadharan, S. Tripathi, S. Kurungot, and N. Ballav, High-index faceted Au nanocrystals with highly controllable optical properties and electro-catalytic activity, Nanoscale, vol.8, pp.19224-19228, 2016.

, Les caractérisations électrochimiques telles que le dépôt sous potentiel de plomb par voltammétrie cyclique ont révélé l'orientation cristallographique et la présence des faces à hauts indices de Miller (par désorption réductrice d'acide 4-mercaptobenzoïque). L'oxydation de surface de ces nanoparticules en milieu électrolytique support dépend des différentes orientations cristallographiques. L'oxydation du CO sur des nanosphères d'or de 24 nm de diamètre a été observée dès 0.2 V vs. ERH. Les nanomatériaux d'or préparés en présence d'argent et de palladium montrent la meilleure activité en matière de potentiel de début d'oxydation du glucose (0.2 V vs. ERH soit 100 mV de moins que l'or tout seul), Les propriétés interfaciales des nanoparticules métalliques dépendent de leur taille, leur forme, leur composition et du milieu réactionnel. Ces propriétés inhabituelles offrent de nombreuses applications notamment en électrocatalyse

, Le coeur à base d'or ainsi que la coquille d'argent ont ainsi un effet bénéfique sur ces deux réactions avec la diminution des surtensions respectives. Mots clés : Electrocatalyse, nanoparticules d'or à forme contrôlée, structure cristallographique, coeur-coquille, oxydation, 65×10 ?3 mA.cm ?2 et un potentiel de début d'oxydation de 0.55 V vs. ERH