, Ces produits, obtenus avec tous les catalyseurs testés, sont non-toxiques

, Les résultats obtenus dans ce travail de thèse montrent que les catalyseurs bimétalliques d'or et de platine, supportés avec un faible taux de charge (20 wt. %) sur le matériau innovant qu'est l'oxyde de graphène réduit, présentent l'activité électrochimique et la stabilité requises pour constituer une anode de pile à combustible glucose/oxygène. Ces nanocatalyseurs sont fonctionnels en milieu physiologique

, Leur santé n'a pas été affectée par la présence des catalyseurs, et les anodes ont montré une activité en oxydation du glucose en milieu phosphate après extraction des rongeurs. Toutefois, l'intensité mesurée en chronoampérométrie était nulle après ajout de chlorures. Afin d'avoir une idée précise des performances et de la stabilité des catalyseurs, l'implantation d'une pile complète est indispensable, vol.201, p.202

. Références,

D. Mongin, Aux origines du programme atomique militaire français, Matériaux pour l'histoire de notre temps, vol.31, pp.13-21, 1993.

M. Mohammadi, Y. Noorollahi, B. Mohammadi-ivatloo, and H. Yousefi, Energy hub: From a model to a concept -A review, Renewable and Sustainable Energy Reviews, vol.80, pp.1512-1527, 2017.

S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, pp.294-303, 2012.

P. Mayé, Générateurs électrochimiques -Piles, accumulateurs et piles à combustible, 2010.

J. Wang, Electrochemical Glucose Biosensors, Chemical Reviews, vol.108, pp.814-825, 2008.

A. J. Appleby, From Sir William Grove to today: fuel cells and the future, Journal of Power Sources, vol.29, pp.3-11, 1990.

W. W. Jacques, Electricity direct from coal, Harper's Magazine, vol.94, pp.1896-1897

E. Baur and H. Preis, Über Brennstoff-Ketten mit Festleitern, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, vol.43, pp.727-732, 1937.

J. M. Andújar and F. Segura, Fuel cells: History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews, vol.13, pp.2309-2322, 2009.

P. Chandran and S. Ramaprabhu, Catalytic performance of non-platinum-based hybrid carbon heterostructure for oxygen reduction and hydrogen oxidation reactions in proton exchange membrane fuel cell, International Journal of Hydrogen Energy, vol.43, pp.18477-18487, 2018.

H. Miyaoka, H. Miyaoka, T. Ichikawa, T. Ichikawa, and Y. Kojima, Highly purified hydrogen production from ammonia for PEM fuel cell, International Journal of Hydrogen Energy, vol.43, pp.14486-14492, 2018.

K. Sakai, Y. Kitazumi, O. Shirai, K. Takagi, and K. Kano, High-Power Formate/Dioxygen Biofuel Cell Based on Mediated Electron Transfer Type Bioelectrocatalysis, vol.7, pp.5668-5673, 2017.

H. Q. Xia, K. Sakai, Y. Kitazumi, O. Shirai, K. Takagi et al., Carbon-nanotube-caged microbial electrodes for bioelectrocatalysis, Enzyme and Microbial Technology, vol.117, pp.41-44, 2018.

A. Ramanavicius, A. Kausaite, and A. Ramanaviciene, Enzymatic biofuel cell based on anode and cathode powered by ethanol, Biosens. Bioelectron, vol.24, pp.761-766, 2008.

Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, and K. Kano, Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis, Phys. Chem. Chem. Phys, vol.9, pp.1793-1801, 2007.

S. Srinivasan, Fuel cell principles, Fuel cells : from fundamentals to applications, pp.189-233, 2006.

T. G. Young, L. Hadjipetrou, and M. D. Lilly, Theoretical aspects of biochemical fuel cells, Biotechnol. Bioeng, vol.8, pp.581-593, 1966.

Y. Holade, Transformation Électrocatalytique de Sucres Couplée à la Réduction Enzymatique de l'Oxygène Moléculaire pour la Production d'Énergie, thèse de doctorat, 2015.

A. T. Yahiro, S. M. Lee, and D. O. Kimble, Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies, Biochimica et Biophysica Acta (BBA) -Specialized Section on Biophysical Subjects, vol.88, pp.375-383, 1964.

Q. Xu, F. Zhang, L. Xu, P. Leung, C. Yang et al., The applications and prospect of fuel cells in medical field: A review, Renewable and Sustainable Energy Reviews, vol.67, pp.574-580, 2017.

S. C. Barton, J. Gallaway, and P. Atanassov, Enzymatic biofuel cells for Implantable and microscale devices, vol.104, pp.4867-4886, 2004.

S. Cosnier, A. J. Gross, F. Giroud, and M. Holzinger, Beyond the hype surrounding biofuel cells: What's the future of enzymatic fuel cells?, Curr. Opin. Electrochem, vol.12, pp.148-155, 2018.

M. J. Cooney, E. Roschi, I. W. Marison, C. Comminellis, and U. Stockar, Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: Evaluation for use in a biofuel cell, Enzyme and Microbial Technology, vol.18, pp.358-365, 1996.

N. Mano, F. Mao, and A. Heller, A Miniature Biofuel Cell Operating in A Physiological Buffer, Journal of the American Chemical Society, vol.124, pp.12962-12963, 2002.

S. Kerzenmacher, J. Ducree, R. Zengerle, and F. Stetten, Energy harvesting by implantable abiotically catalyzed glucose fuel cells, Journal of Power Sources, vol.182, pp.1-17, 2008.

H. Warner and B. W. Robinson, 7th Int. Conf. on Medical and Biol. Engineering, p.530, 1967.

S. Kerzenmacher, J. Ducree, R. Zengerle, and F. Stetten, An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance, Journal of Power Sources, vol.182, pp.66-75, 2008.

A. Kloke, B. Biller, U. Kraling, S. Kerzenmacher, R. Zengerle et al., A Single Layer Glucose Fuel Cell Intended as Power Supplying Coating for Medical Implants, Fuel Cells, vol.11, pp.316-326, 2011.

A. W. Fonds and J. M. Los, Pulse polarography .6. mutarotation of d-glucose, Journal of Electroanalytical Chemistry, vol.36, pp.479-491, 1972.

F. Largeaud, K. B. Kokoh, B. Beden, and C. Lamy, On the electrochemical reactivity of anomers: electrocatalytic oxidation of ?-and ?-d-glucose on platinum electrodes in acid and basic media, Journal of Electroanalytical Chemistry, vol.397, pp.261-269, 1995.

K. B. Kokoh, J. M. Léger, B. Beden, H. Huser, and C. Lamy, On line" chromatographic analysis of the products resulting from the electrocatalytic oxidation of d-glucose on pure and adatoms modified Pt and Au electrodes-Part II. Alkaline medium, Electrochim. Acta, vol.37, pp.1909-1918, 1992.

K. B. Kokoh, J. M. Léger, B. Beden, and C. Lamy, On line" chromatographic analysis of the products resulting from the electrocatalytic oxidation of d-glucose on Pt, Au and adatoms modified Pt electrodes-Part I. Acid and neutral media, Electrochim. Acta, vol.37, pp.1333-1342, 1992.

E. M. Belgsir, E. Bouhier, H. E. Yei, K. B. Kokoh, B. Beden et al., Electrosynthesis in aqueous medium: a kinetic study of the electrocatalytic oxidation of oxygenated organic molecules, vol.36, pp.1157-1164, 1991.

R. Zhou, Y. Zheng, M. Jaroniec, and S. Qiao, Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment, ACS Catal, vol.6, pp.4720-4728, 2016.

J. O. Bockris and B. E. Conway, Modern Aspect of Electrochemistry, issue.16, 1967.

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2000.

E. Gileadi, Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists, 1993.

J. Larminie and A. Dicks, Fuel Cell System Explained, 2000.

X. Wang, X. Xia, X. Zhang, W. Meng, C. Yuan et al., Nonenzymatic glucose sensor based on Ag&Pt hollow nanoparticles supported on TiO2 nanotubes, Materials Science and Engineering: C, vol.80, pp.174-179, 2017.

S. Y. Tee, C. P. Teng, and E. Ye, Metal nanostructures for non-enzymatic glucose sensing, Materials Science and Engineering: C, vol.70, pp.1018-1030, 2017.

G. Siva, M. A. Aziz, and G. G. Kumar, Engineered Tubular Nanocomposite Electrocatalysts Based on CuS for High-Performance, Durable Glucose Fuel Cells and Their Stack, ACS Sustain. Chem. Eng, vol.6, pp.5929-5939, 2018.

D. Hwang, S. Lee, M. Seo, and T. D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors -A review, Analytica Chimica Acta, pp.1-34, 2018.

N. Alonso-vante, Platinum and Non-Platinum Nanomaterials for the Molecular Oxygen Reduction Reaction, ChemPhysChem, vol.11, pp.2732-2744, 2010.

A. Boronat-gonzalez, E. Herrero, and J. M. Feliu, Heterogeneous electrocatalysis of formic acid oxidation on platinum single crystal electrodes, Curr. Opin. Electrochem, vol.4, pp.26-31, 2017.

M. N. Cao, D. S. Wu, and R. Cao, Recent Advances in the Stabilization of Platinum Electrocatalysts for Fuel-Cell Reactions, vol.6, pp.26-45, 2014.

A. M. Gomez-marin and J. M. Feliu, Oxygen reduction at platinum electrodes: The interplay between surface and surroundings properties, Curr. Opin. Electrochem, vol.9, pp.166-172, 2018.

B. A. Lu, N. Tian, and S. G. Sun, Surface structure effects of platinum-based catalysts for oxygen reduction reaction, Curr. Opin. Electrochem, vol.4, pp.76-82, 2017.

N. Seselj, C. Engelbrekt, and J. D. Zhang, Graphene-supported platinum catalysts for fuel cells, Sci. Bull, vol.60, pp.864-876, 2015.

Q. Shao, F. M. Li, Y. Chen, and X. Q. Huang, The Advanced Designs of High-Performance Platinum-Based Electrocatalysts: Recent Progresses and Challenges, Adv. Mater. Interfaces, vol.5, pp.1-24, 2018.

V. S. Bagotzky and Y. B. Vasilyev, Some characteristics of oxidation reactions of organic compounds on platinum electrodes, Electrochim. Acta, vol.9, pp.869-882, 1964.

Y. Holade, A. B. Engel, K. Servat, T. W. Napporn, C. Morais et al., Electrocatalytic and Electroanalytic Investigation of Carbohydrates Oxidation on Gold-Based Nanocatalysts in Alkaline and Neutral pHs, J. Electrochem. Soc, vol.165, pp.425-436, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01860143

A. H. Blaesi and C. R. Buie, Characterization of the Electrochemical Oxidation of Glucose on Pt Nanoparticle Catalysts in pH Neutral Phosphate Buffer Solution, pp.41-48, 2011.

M. L. Rao and R. F. Drake, Studies of electrooxidation of dextrose in neutral media, J. Electrochem. Soc, vol.116, pp.334-337, 1969.

D. Basu and S. Basu, Synthesis and characterization of Pt-Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell, International Journal of Hydrogen Energy, vol.36, pp.14923-14929, 2011.

D. Basu and S. Basu, Performance studies of Pd-Pt and Pt-Pd-Au catalyst for electro-oxidation of glucose in direct glucose fuel cell, International Journal of Hydrogen Energy, vol.37, pp.4678-4684, 2012.

M. O. Pedersen, S. Helveg, A. Ruban, I. Stensgaard, E. Laegsgaard et al., How a gold substrate can increase the reactivity of a Pt overlayer, Surf. Sci, vol.426, pp.395-409, 1999.

C. Megías-sayago, L. F. Bobadilla, S. Ivanova, A. Penkova, M. A. Centeno et al., Gold catalyst recycling study in base-free glucose oxidation reaction, Catalysis Today, vol.301, pp.72-77, 2018.

M. Pasta, R. Ruffo, E. Falletta, C. M. Mari, and C. D. Pina, Alkaline glucose oxidation on nanostructured gold electrodes, Gold Bull, vol.43, pp.57-64, 2010.

Y. Holade, K. Servat, T. W. Napporn, C. Morais, J. M. Berjeaud et al., Highly Selective Oxidation of Carbohydrates in an Efficient Electrochemical Energy Converter: Cogenerating Organic Electrosynthesis, ChemSusChem, vol.9, pp.252-263, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687175

S. B. Aoun, Z. Dursun, T. Koga, G. S. Bang, T. Sotomura et al., Effect of metal ad-layers on Au(111) electrodes on electrocatalytic oxidation of glucose in an alkaline solution, Journal of Electroanalytical Chemistry, vol.567, pp.175-183, 2004.

M. J. Nicol, The anodic behaviour of gold, Gold Bull, vol.13, pp.105-111, 1980.

N. P. Finkelstein and R. D. Hancock, A new approach to the chemistry of gold, Gold Bull, vol.7, pp.72-77, 1974.

M. W. Hsiao, R. R. Adzic, and E. B. Yeager, The effects of adsorbed anions on the oxidation of deuteriumglucose on gold single-crystal electrodes, Electrochim. Acta, vol.37, pp.357-363, 1992.

F. V. Molina and D. Posadas, Temperature-dependence of the adsorption of chloride-ion on platinumelectrodes, Electrochim. Acta, vol.33, pp.661-665, 1988.

Z. Shi and J. Lipkowski, Chloride adsorption at the Au(111) electrode surface, Journal of Electroanalytical Chemistry, vol.403, pp.225-239, 1996.

A. M. Luna, A. E. Bolzan, M. F. Demele, and A. J. Arvia, The voltammetric electrooxidation of glucose and glucose residues formed on electrodispersed platinum-electrodes in acid electrolytes, Pure Appl. Chem, vol.63, pp.1599-1608, 1991.

R. R. Adzic, J. X. Wang, O. M. Magnussen, and B. M. Ocko, Structure of electrode surfaces in the course of electrocatalytic reactions: Oxidation of CO, glucose, and formaldehyde on reconstructed and unreconstructed Au(100), pp.513-517, 1996.

T. Rafaideen, S. Baranton, and C. Coutanceau, Pd-Shaped Nanoparticles Modified by Gold ad-Atoms: Effects on Surface Structure and Activity Toward Glucose Electrooxidation, vol.7, pp.1-10, 2019.

J. F. Wang, J. X. Gong, Y. S. Xiong, J. D. Yang, Y. Gao et al., Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation, Chem. Commun, vol.47, pp.6894-6896, 2011.

G. Kokkinidis, J. M. Leger, and C. Lamy, Structural effects in electrocatalysis -oxidation of d-glucose on pt(100), (110) and (111) single-crystal electrodes and the effect of upd adlayers of pb, tl and bi, Journal of Electroanalytical Chemistry, vol.242, pp.221-242, 1988.

M. Zhiani, A. Abedini, and S. Majidi, Comparison of Electro-Catalytic Activity of Fe-Ni-Co/C and Pd/C Nanoparticles for Glucose Electro-Oxidation in Alkaline Half-Cell and Direct Glucose Fuel Cell, Electrocatalysis, vol.9, pp.735-743, 2018.

L. Yan, A. Brouzgou, Y. Meng, M. Xiao, P. Tsiakaras et al., Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium, Applied Catalysis B: Environmental, pp.268-274, 2014.

C. H. Tsang and D. Y. Leung, Pd-Pt loaded graphene aerogel on nickel foam composite as binderfree anode for a direct glucose fuel cell unit, Solid State Sciences, vol.71, pp.123-129, 2017.

Y. Gu, Y. Liu, H. Yang, B. Li, and Y. An, Electrocatalytic glucose oxidation via hybrid nanomaterial catalyst of multi-wall TiO2 nanotubes supported Ni(OH)2 nanoparticles: Optimization of the loading level, Electrochim. Acta, vol.160, pp.263-270, 2015.

B. Tao, F. Miao, and P. K. Chu, Preparation and characterization of a novel nickel-palladium electrode supported by silicon nanowires for direct glucose fuel cell, Electrochim. Acta, pp.149-152, 2012.

J. Y. Chen, H. Zheng, J. Kang, F. Yang, Y. Cao et al., An alkaline direct oxidation glucose fuel cell using three-dimensional structural Au/Ni-foam as catalytic electrodes, RSC Adv, vol.7, pp.3035-3042, 2017.

W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai et al., 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor, Sci Rep, vol.7, pp.1-11, 2017.

Y. Zhao, X. H. Liu, X. Wang, P. P. Zhang, and J. F. Shi, Peony petal-like 3D graphene-nickel oxide nanocomposite decorated nickel foam as high-performance electrocatalyst for direct glucose alkaline fuel cell, International Journal of Hydrogen Energy, vol.42, pp.29863-29873, 2017.

A. Kloke, C. Kohler, R. Zengerle, and S. Kerzenmacher, Porous Platinum Electrodes Fabricated by Cyclic Electrodeposition of PtCu Alloy: Application to Implantable Glucose Fuel Cells, J. Phys. Chem. C, pp.19689-19698, 2012.

Y. Wang, S. Zhang, W. Bai, and J. Zheng, Layer-by-layer assembly of copper nanoparticles and manganese dioxide-multiwalled carbon nanotubes film: A new nonenzymatic electrochemical sensor for glucose, Talanta, pp.211-216, 2016.

Y. Liu, Y. Fan, and Z. Liu, Pyrolysis of iron phthalocyanine on activated carbon as highly efficient non-noble metal oxygen reduction catalyst in microbial fuel cells, Chem. Eng. J, vol.361, pp.416-427, 2019.

Y. Luo, J. Zhang, Y. Chen, Z. Li, J. Chen et al., MOF-derived porous carbon supported iron-based catalysts with optimized active sites towards oxygen reduction reaction, Journal of Electroanalytical Chemistry, vol.847, pp.1-7, 2019.

P. Cinquin, S. Cosnier, N. Belgacem, M. L. Cosnier, R. Molin et al., Iop, Implantable Glucose BioFuel Cells for Medical Devices, 13th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, 2013.

H. Aghahosseini, A. Ramazani, P. Asiabi, F. Gouranlou, F. Hosseini et al., Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance, vol.1, pp.183-204, 2016.

K. E. Toghill and R. G. Compton, Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation, Int. J. Electrochem. Sci, vol.5, pp.1246-1301, 2010.

A. Heller, Miniature biofuel cells, Phys. Chem. Chem. Phys, vol.6, pp.209-216, 2004.

E. Katz and K. Macvittie, Implanted biofuel cells operating in vivo -methods, applications and perspectives -feature article, Energy Environ. Sci, vol.6, pp.2791-2803, 2013.

M. Visbisky, R. C. Stinebring, and C. F. Holmes, An approach to the reliability of implantable lithium batteries, Journal of Power Sources, vol.26, pp.185-194, 1989.

C. F. Holmes, The Bourner lecture: Electrochemical power sources -An important contributor to modern health care, Journal of Power Sources, vol.65, pp.15-20, 1997.

C. F. Holmes, Electrochemical Power Sources andthe Treatment of Human Illness, vol.12, pp.26-29, 2003.

A. Zebda, J. Alcaraz, P. Vadgama, S. Shleev, S. D. Minteer et al., Challenges for successful implantation of biofuel cells, vol.124, pp.57-72, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875942

R. M. Allen and H. P. Bennetto, Microbial fuel-cells, Applied Biochemistry and Biotechnology, vol.39, pp.27-40, 1993.

J. Niessen, U. Schroder, and F. Scholz, Exploiting complex carbohydrates for microbial electricity generation -a bacterial fuel cell operating on starch, Electrochem. Commun, vol.6, pp.955-958, 2004.

S. Fatemi, A. A. Ghoreyshi, M. Rahimnejad, G. N. Darzi, and D. Pant, Sulfide as an alternative electron donor to glucose for power generation in mediator-less microbial fuel cell, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng, vol.52, pp.1150-1157, 2017.

B. Reuillard, A. L. Goff, C. Agnes, M. Holzinger, A. Zebda et al., High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix, Phys. Chem. Chem. Phys, vol.15, pp.4892-4896, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01652813

F. Gao, Y. M. Yan, L. Su, L. Wang, and L. Q. Mao, An enzymatic glucose/O-2 biofuel cell: Preparation, characterization and performance in serum, Electrochem. Commun, vol.9, pp.989-996, 2007.

Z. J. Han, L. J. Zhao, P. Yu, J. W. Chen, F. Wu et al., Comparative investigation of small laccase immobilized on carbon nanomaterials for direct bioelectrocatalysis of oxygen reduction, Electrochem. Commun, vol.101, pp.82-87, 2019.

D. Leech, P. Kavanagh, and W. Schuhmann, Enzymatic fuel cells: Recent progress, Electrochim. Acta, vol.84, pp.223-234, 2012.

S. Scheiblbrandner, E. Breslmayr, F. Csarman, R. Paukner, J. Fuhrer et al., Evolving stability and pHdependent activity of the high redox potential Botrytis aclada laccase for enzymatic fuel cells, Sci Rep, vol.7, pp.1-13, 2017.

S. Rengaraj, P. Kavanagh, and D. Leech, A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O-2 enzymatic fuel cells with improved power output and stability, Biosens. Bioelectron, vol.30, pp.294-299, 2011.

N. Mano, H. Kim, and A. Heller, On the Relationship between the Characteristics of Bilirubin Oxidases and O2 Cathodes Based on Their "Wiring, The Journal of Physical Chemistry B, vol.106, pp.8842-8848, 2002.

V. Soukharev, N. Mano, and A. Heller, A four-electron O-2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V, Journal of the American Chemical Society, vol.126, pp.8368-8369, 2004.

J. Kim, H. F. Jia, and P. Wang, Challenges in biocatalysis for enzyme-based biofuel cells, Biotechnol. Adv, vol.24, pp.296-308, 2006.

A. Sassolas, L. J. Blum, and B. D. Leca-bouvier, Immobilization strategies to develop enzymatic biosensors, vol.30, pp.489-511, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00631944

A. Habrioux, E. Sibert, K. Servat, W. Vogel, K. B. Kokoh et al., Activity of platinum-gold alloys for glucose electrooxidation in biofuel cells, J. Phys. Chem. B, vol.111, pp.10329-10333, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00417392

O. Santiago, E. Navarro, M. A. Raso, and T. J. Leo, Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts, Appl. Energy, vol.179, pp.497-522, 2016.

B. Song, Y. He, Y. He, D. Huang, and Y. Zhang, Experimental study on anode components optimization for direct glucose fuel cells, Energy, vol.176, pp.15-22, 2019.

L. Brunel, J. Denele, K. Servat, K. B. Kokoh, C. Jolivalt et al., Oxygen transport through laccase biocathodes for a membrane-less glucose/O-2 biofuel cell, Electrochem. Commun, vol.9, pp.331-336, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00315428

A. Habrioux, K. Servat, S. Tingry, and K. B. Kokoh, Enhancement of the performances of a single concentric glucose/O-2 biofuel cell by combination of bilirubin oxidase/Nafion cathode and Au-Pt anode, Electrochem. Commun, vol.11, pp.111-113, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00362073

F. Gao, L. Viry, M. Maugey, P. Poulin, and N. Mano, Engineering hybrid nanotube wires for high-power biofuel cells, Nat. Commun, vol.1, pp.1-7, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00472854

S. Kerzenmacher, U. Kraling, T. Metz, R. Zengerle, and F. Stetten, A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability, Journal of Power Sources, vol.196, pp.1264-1272, 2011.

S. Kerzenmacher, U. Kraling, M. Schroeder, R. Bramer, R. Zengerle et al., Raneyplatinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes, Journal of Power Sources, vol.195, pp.6524-6531, 2010.

S. Kerzenmacher, M. Schroeder, R. Bramer, R. Zengerle, and F. Stetten, Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: Nickel-free glucose oxidation anodes, Journal of Power Sources, vol.195, pp.6516-6523, 2010.

V. Oncescu and D. Erickson, A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices, Journal of Power Sources, vol.196, pp.9169-9175, 2011.

M. Tu and Y. Wu, Multiple allergies to metal alloys, Dermatologica Sinica, vol.29, pp.41-43, 2011.

B. I. Rapoport, J. T. Kedzierski, and R. Sarpeshkar, A Glucose Fuel Cell for Implantable Brain-Machine Interfaces, PLoS One, vol.7, pp.1-15, 2012.

S. Ghaffari, M. R. Mousavi, and M. Salehieh, Exploring the Effect of Circulation on the Power of Implantable Glucose Bio Fuel Cell, Fourth International Conference on Intelligent Systems, Modelling and Simulation D, pp.148-151, 2013.

F. Sales, R. M. Iost, M. V. Martins, M. C. Almeida, and F. N. Crespilho, An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes, Lab Chip, vol.13, pp.468-474, 2013.

C. Kohler, M. Frei, R. Zengerle, and S. Kerzenmacher, Performance Loss of a Pt-Based Implantable Glucose Fuel Cell in Simulated Tissue and Cerebrospinal Fluids, Chemelectrochem, vol.1, pp.1895-1900, 2014.

F. Giroud, R. D. Milton, B. X. Tan, and S. D. Minteer, Simplifying Enzymatic Biofuel Cells: Immobilized Naphthoquinone as a Biocathodic Orientational Moiety and Bioanodic Electron Mediator, ACS Catal, vol.5, pp.1240-1244, 2015.

F. Giroud, K. Sawada, M. Taya, and S. Cosnier, -nitrobenzoic acid) pyrene derivativecarbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O-2 biofuel cells, Biosens. Bioelectron, vol.5, issue.2, pp.957-963, 2017.

K. Elouarzaki, M. Holzinger, A. L. Goff, J. Thery, R. S. Marks et al., Glucose fuel cell based on carbon nanotube-supported pyrene-metalloporphyrin catalysts, J. Mater. Chem. A, vol.4, pp.10635-10640, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01644655

A. J. Gross, X. H. Chen, F. Giroud, C. Abreu, A. L. Goff et al., A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation, ACS Catal, vol.7, pp.4408-4416, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01616374

X. Wang, M. Falk, R. Ortiz, H. Matsumura, J. Bobacka et al., Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes, Biosensors and Bioelectronics, pp.219-225, 2012.

T. X. Le, M. Bechelany, A. B. Engel, M. Cretin, and S. Tingry, Gold particles growth on carbon felt for efficient micropower generation in a hybrid biofuel cell, Electrochim. Acta, vol.219, pp.121-129, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01705645

Y. Holade, A. Engel, S. Tingry, A. Cherifi, D. Cornu et al., Insights on Hybrid Glucose Biofuel Cells Based on Bilirubin Oxidase Cathode and Gold-Based Anode Nanomaterials, pp.1976-1987, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01319200

Y. Holade, N. Sahin, K. Servat, T. Napporn, and K. Kokoh, Recent Advances in Carbon Supported Metal Nanoparticles Preparation for Oxygen Reduction Reaction in Low Temperature Fuel Cells, Catalysts, vol.5, pp.310-348, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01339056

Y. Zhan, H. Zeng, F. Xie, H. Zhang, W. Zhang et al., Templated growth of Fe/N/C catalyst on hierarchically porous carbon for oxygen reduction reaction in proton exchange membrane fuel cells, Journal of Power Sources, vol.431, pp.31-39, 2019.

C. Su, C. Sun, S. Peng, J. Wu, Y. Huang et al., High performance non-enzymatic graphene-based glucose fuel cell operated under moderate temperatures and a neutral solution, Journal of the Taiwan Institute of Chemical Engineers, vol.95, pp.48-54, 2019.

C. L. Su, M. Acik, K. Takai, J. Lu, S. J. Hao et al., Probing the catalytic activity of porous graphene oxide and the origin of this behaviour, Nat. Commun, vol.3, pp.1-19, 2012.

A. Zebda, C. Gondran, A. L. Goff, M. Holzinger, P. Cinquin et al., Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes, Nat. Commun, vol.2, pp.1-6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00685244

Y. Zhao, L. Z. Fan, D. M. Gao, J. L. Ren, and B. Hong, High-power non-enzymatic glucose biofuel cells based on three-dimensional platinum nanoclusters immobilized on multiwalled carbon nanotubes, Electrochim. Acta, vol.145, pp.159-169, 2014.

X. Xiao, H. Xia, R. Wu, L. Bai, L. Yan et al., Tackling the Challenges of Enzymatic (Bio)Fuel Cells, vol.119, pp.9509-9558, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02167914

Y. Holade, K. Macvittie, T. Conlon, N. Guz, K. Servat et al., Wireless Information Transmission System Powered by an Abiotic Biofuel Cell Implanted in an Orange, Electroanalysis, pp.276-280, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01339020

N. Mano, F. Mao, and A. Heller, Characteristics of a Miniature Compartment-less Glucose?O2 Biofuel Cell and Its Operation in a Living Plant, Journal of the American Chemical Society, vol.125, pp.6588-6594, 2003.

M. Rasmussen, R. E. Ritzmann, I. Lee, A. J. Pollack, and D. Scherson, An Implantable Biofuel Cell for a Live Insect, Journal of the American Chemical Society, vol.134, pp.1458-1460, 2012.

L. Halamkova, J. Halamek, V. Bocharova, A. Szczupak, L. Alfonta et al., Implanted Biofuel Cell Operating in a Living Snail, Journal of the American Chemical Society, vol.134, pp.5040-5043, 2012.

S. E. Ichi-ribault, A. Zebda, S. Tingry, M. Petit, A. L. Suherman et al., Performance and stability of chitosan-MWCNTs-laccase biocathode: Effect of MWCNTs surface charges and ionic strength, Journal of Electroanalytical Chemistry, vol.799, pp.26-33, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01657416

W. M. Russell, L. R. Hume, and C. W. , The Principles of Humane Experimental Technique, 1959.

A. Zebda, S. Cosnier, J. P. Alcaraz, M. Holzinger, A. L. Goff et al., Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices, Sci Rep, vol.3, pp.1-5, 2013.

L. J. Demma, K. T. Carlson, E. W. Duggan, J. G. Morrow, and G. Umpierrez, Effect of basal insulin dosage on blood glucose concentration in ambulatory surgery patients with type 2 diabetes, J. Clin. Anesth, vol.36, pp.184-188, 2017.

S. A. Ozkan and B. Uslu, From mercury to nanosensors: Past, present and the future perspective of electrochemistry in pharmaceutical and biomedical analysis, Journal of Pharmaceutical and Biomedical Analysis, vol.130, pp.126-140, 2016.

Y. Holade, S. Tingry, K. Servat, T. W. Napporn, D. Cornu et al., Nanostructured Inorganic Materials at Work in Electrochemical Sensing and Biofuel Cells, vol.7, pp.1-42, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01670255

L. C. Clark and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences, vol.102, pp.29-45, 1962.

Y. Degani and A. Heller, Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme, The Journal of Physical Chemistry, vol.91, pp.1285-1289, 1987.

A. Heller, Electrical Wiring of Redox Enzymes, ACS, pp.128-134, 1990.

D. P. Hickey, Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation, pp.181-191, 2017.

M. Meredith, D. Kao, D. Hickey, D. Schmidtke, and D. T. Glatzhofer, High Current Density Ferrocene-Modified Linear Poly(ethylenimine) Bioanodes and Their Use in Biofuel Cells, J. Electrochem. Soc, vol.158, p.166, 2011.

F. Mao, N. Mano, and A. Heller, Long Tethers Binding Redox Centers to Polymer Backbones Enhance Electron Transport in Enzyme "Wiring" Hydrogels, Journal of the American Chemical Society, vol.125, pp.4951-4957, 2003.

R. D. Milton, D. P. Hickey, S. Abdellaoui, K. Lim, F. Wu et al., Rational design of quinones for high power density biofuel cells, Chemical Science, vol.6, pp.4867-4875, 2015.

R. D. Milton, K. Lim, D. P. Hickey, and S. D. Minteer, Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum, Bioelectrochemistry, vol.106, pp.56-63, 2015.

S. M. Zakeeruddin, D. M. Fraser, M. K. Nazeeruddin, and M. Graetzel, Towards mediator design: characterization of tris-(4,4'-substituted-2,2'-bipyridine) complexes of iron(II), ruthenium(II) and osmium(II) as mediators for glucose oxidase of Aspergillus niger and other redox proteins, J. Electroanal. Chem, vol.337, pp.253-283, 1992.

D. P. Hickey, R. D. Milton, M. Rasmussen, S. Abdellaoui, K. Nguyen et al., Fundamentals and applications of bioelectrocatalysis, vol.13, pp.97-132, 2016.

J. W. Gallaway and S. A. Calabrese-barton, Kinetics of Redox Polymer-Mediated Enzyme Electrodes, Journal of the American Chemical Society, vol.130, pp.8527-8536, 2008.

K. Takagi, K. Kano, and T. Ikeda, Mediated bioelectrocatalysis based on NAD-related enzymes with reversible characteristics, Journal of Electroanalytical Chemistry, vol.445, pp.211-219, 1998.

E. Lojou, Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces, Electrochim. Acta, vol.56, pp.10385-10397, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00677206

J. J. Gooding, Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing, Electrochim. Acta, vol.50, pp.3049-3060, 2005.

R. Devasenathipathy, V. Mani, S. Chen, S. Huang, T. Huang et al., Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes, Enzyme and Microbial Technology, vol.78, pp.40-45, 2015.

G. Chang, H. Shu, K. Ji, M. Oyama, X. Liu et al., Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose, Appl. Surf. Sci, vol.288, pp.524-529, 2014.

B. Singh and E. Dempsey, Pt based Nanocomposites for Direct Glucose Determination Sensitive Nonenzymatic Amperometric Glucose Detection by Carbon Supported PtAu based bimetallicNanomaterials, Fullerenes, Nanotubes, and Carbon Nanostructures -219th Ecs Meeting, pp.75-91, 2011.

B. Singh, E. Dempsey, and F. Laffir, Carbon nanochips and nanotubes decorated PtAuPd-based nanocomposites for glucose sensing: Role of support material and efficient Pt utilisation, Sens. Actuator B-Chem, vol.205, pp.401-410, 2014.

L. Zhou, T. Gan, D. Zheng, J. Yan, C. Hu et al., High-density gold nanoparticles on multi-walled carbon nanotube films: a sensitive electrochemical nonenzymatic platform of glucose, Journal of Experimental Nanoscience, vol.7, pp.263-273, 2012.

Y. G. Zhou, S. Yang, Q. Y. Qian, and X. H. Xia, Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose, Electrochem. Commun, vol.11, pp.216-219, 2009.

K. E. Toghill, L. Xiao, M. A. Phillips, and R. G. Compton, The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode, Sens. Actuator B-Chem, vol.147, pp.642-652, 2010.

X. Xuan, H. S. Yoon, and J. Y. Park, A wearable electrochemical glucose sensor based on simple and lowcost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate, Biosens. Bioelectron, vol.109, pp.75-82, 2018.

T. Kangkamano, A. Numnuam, W. Limbut, P. Kanatharana, and P. Thavarungkul, Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor, Sensors and Actuators B: Chemical, pp.854-863, 2017.

W. Lee, K. Kim, N. G. Gurudatt, K. K. Hussain, C. S. Choi et al., Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer, Biosensors and Bioelectronics, vol.130, pp.48-54, 2019.

A. D. Maynard, Dont define nanomaterials, Nature, pp.31-31, 2011.

K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park et al., Nanocrystals as stoichiometric reagents with unique surface chemistry, J. Phys. Chem, vol.100, pp.12142-12153, 1996.

T. V. Janssens, B. S. Clausen, B. Hvolbaek, H. Falsig, C. H. Christensen et al., Insights into the reactivity of supported Au nanoparticles: combining theory and experiments, vol.44, pp.15-26, 2007.

M. C. Saint-lager, I. Laoufi, A. Bailly, O. Robach, S. Garaudee et al., Catalytic properties of supported gold nanoparticles: new insights into the size-activity relationship gained from in operando measurements, Faraday Discussions, vol.152, pp.253-265, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00703326

M. B. Lahmani, C. Houdy, and P. , Les nanosciences tome 2 : nanomatériaux et nanochimie, 2e édition revue et augmentée, 2015.

S. Hebie, T. W. Napporn, C. Morais, and K. B. Kokoh, Size-Dependent Electrocatalytic Activity of Free Gold Nanoparticles for the Glucose Oxidation Reaction, ChemPhysChem, vol.17, pp.1454-1462, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01433379

E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Applied Catalysis B: Environmental, vol.88, pp.1-24, 2009.

B. Singh, L. Murad, F. Laffir, C. Dickinson, and E. Dempsey, Pt based nanocomposites (mono/bi/trimetallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media, Nanoscale, vol.3, pp.3334-3349, 2011.

X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie et al., Synthesis of "Clean" and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide, Journal of the American Chemical Society, vol.133, pp.3693-3695, 2011.

H. Yin, H. Tang, D. Wang, Y. Gao, and Z. Tang, Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction, ACS Nano, vol.6, pp.8288-8297, 2012.

W. Qin and X. Li, A Theoretical Study on the Catalytic Synergetic Effects of Pt/Graphene Nanocomposites, J. Phys. Chem. C, vol.114, pp.19009-19015, 2010.

Y. Holade, C. Morais, K. Servat, T. W. Napporn, and K. B. Kokoh, Enhancing the available specific surface area of carbon supports to boost the electroactivity of nanostructured Pt catalysts, Phys. Chem. Chem. Phys, vol.16, pp.25609-25620, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01319220

P. Ross, The Corrosion of Carbon Black Anodes in Alkaline Electrolyte, J. Electrochem. Soc, vol.135, pp.1742-1750, 1988.

J. J. Wang, G. P. Yin, Y. Y. Shao, S. Zhang, Z. B. Wang et al., Effect of carbon black support corrosion on the durability of Pt/C catalyst, Journal of Power Sources, vol.171, pp.331-339, 2007.

A. Zadick, L. Dubau, N. Sergent, G. Berthomé, and M. Chatenet, Huge Instability of Pt/C Catalysts in Alkaline Medium, ACS Catal, vol.5, pp.4819-4824, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218294

C. Lafforgue, A. Zadick, L. Dubau, F. Maillard, and M. Chatenet, Selected Review of the Degradation of Pt and Pd-based Carbon-supported Electrocatalysts for Alkaline Fuel Cells: Towards Mechanisms of Degradation, Fuel Cells, vol.18, pp.229-238, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887245

C. Lafforgue, M. Chatenet, L. Dubau, and D. R. Dekel, Accelerated Stress Test of Pt/C Nanoparticles in an Interface with an Anion-Exchange Membrane-An Identical-Location Transmission Electron Microscopy Study, ACS Catal, vol.8, pp.1278-1286, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887248

C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon et al., Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes, Nano Lett, vol.4, pp.345-348, 2004.

P. Kanninen, M. Borghei, O. Sorsa, E. Pohjalainen, E. I. Kauppinen et al., Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell, Applied Catalysis B: Environmental, pp.341-349, 2014.

A. Peigney, C. Laurent, E. Flahaut, R. Bacsa, and A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, vol.39, pp.507-514, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01003709

E. Flahaut, A. Govindaraj, A. Peigney, C. Laurent, A. Rousset et al., Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions, Chemical Physics Letters, vol.300, pp.236-242, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00948432

T. Bortolamiol, P. Lukanov, A. Galibert, B. Soula, P. Lonchambon et al., Doublewalled carbon nanotubes: Quantitative purification assessment, balance between purification and degradation and solution filling as an evidence of opening, Carbon, vol.78, pp.79-90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01445549

C. Luo, H. Xie, Q. Wang, G. Luo, and C. Liu, A Review of the Application and Performance of Carbon Nanotubes in Fuel Cells, Journal of Nanomaterials, pp.1-10, 2015.

B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning, and G. De-with, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technology, pp.351-358, 2012.

C. A. Campos-roldán, G. Ramos-sánchez, R. G. Gonzalez-huerta, J. R. Vargas-garcía, P. B. Balbuena et al., Influence of sp3-sp2 Carbon Nanodomains on Metal/Support Interaction, Catalyst Durability, and Catalytic Activity for the Oxygen Reduction Reaction, ACS Applied Materials & Interfaces, vol.8, pp.23260-23269, 2016.

J. Prabhuram, T. S. Zhao, Z. K. Tang, R. Chen, and Z. X. Liang, Multiwalled Carbon Nanotube Supported PtRu for the Anode of Direct Methanol Fuel Cells, The Journal of Physical Chemistry B, vol.110, pp.5245-5252, 2006.

T. Maiyalagan, B. Viswanathan, and U. V. Varadaraju, Nitrogen containing carbon nanotubes as supports for Pt -Alternate anodes for fuel cell applications, Electrochem. Commun, vol.7, pp.905-912, 2005.

X. Wang, W. Li, Z. Chen, M. Waje, and Y. Yan, Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell, Journal of Power Sources, vol.158, pp.154-159, 2006.

A. Kaplan, Z. Yuan, J. D. Benck, A. G. Rajan, X. S. Chu et al., Current and future directions in electron transfer chemistry of graphene, Chem. Soc. Rev, vol.46, pp.4530-4571, 2017.

F. Bonaccorso, L. Colombo, G. H. Yu, M. Stoller, V. Tozzini et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science, vol.347, pp.41-50, 2015.

W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society, vol.80, pp.1339-1339, 1958.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun et al., Improved Synthesis of Graphene Oxide, ACS Nano, vol.4, pp.4806-4814, 2010.

H. C. Schniepp, J. L. Li, M. J. Mcallister, H. Sai, M. Herrera-alonso et al., Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B, vol.110, pp.8535-8539, 2006.

M. Acik, G. Lee, C. Mattevi, A. Pirkle, R. M. Wallace et al., The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy, J. Phys. Chem. C, vol.115, pp.19761-19781, 2011.

I. Abidat, C. Morais, S. Pronier, N. Guignard, J. D. Comparot et al., Effect of gradual reduction of graphene oxide on the CO tolerance of supported platinum nanoparticles, Carbon, pp.849-858, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01656336

W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, New insights into the structure and reduction of graphite oxide, Nature Chemistry, vol.1, pp.403-409, 2009.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, pp.1558-1565, 2007.

I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, Reduced graphene oxide by chemical graphitization, Nat. Commun, vol.1, pp.1-6, 2010.

S. Navalon, A. Dhakshinamoorthy, M. Alvaro, and H. Garcia, Metal nanoparticles supported on twodimensional graphenes as heterogeneous catalysts, Coordination Chemistry Reviews, pp.99-148, 2016.

M. P. Lavin-lopez, A. Paton-carrero, L. Sanchez-silva, J. L. Valverde, and A. Romero, Influence of the reduction strategy in the synthesis of reduced graphene oxide, Advanced Powder Technology, pp.3195-3203, 2017.

M. Z. Iqbal, A. Rehman, and S. Siddique, Prospects and challenges of graphene based fuel cells, Journal of Energy Chemistry, vol.39, pp.217-234, 2019.

Y. T. Wu, S. G. Wen, K. M. Chen, J. H. Wang, G. Y. Wang et al., Enhanced corrosion resistance of waterborne polyurethane containing sulfonated graphene/zinc phosphate composites, Prog. Org. Coat, vol.132, pp.409-416, 2019.

S. Liu, L. Gu, H. C. Zhao, J. M. Chen, and H. B. Yu, Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings, Journal of Materials Science & Technology, vol.32, pp.425-431, 2016.

Y. Wu, X. Zhu, W. Zhao, Y. Wang, C. Wang et al., Corrosion mechanism of graphene coating with different defect levels, J. Alloy. Compd, vol.777, pp.135-144, 2019.

C. Wang and D. Astruc, Recent developments of metallic nanoparticle-graphene nanocatalysts, Progress in Materials Science, vol.94, pp.306-383, 2018.

P. A. Denis and F. Iribarne, Comparative Study of Defect Reactivity in Graphene, The Journal of Physical Chemistry C, vol.117, pp.19048-19055, 2013.

D. W. Boukhvalov and M. I. Katsnelson, Chemical Functionalization of Graphene with Defects, Nano Lett, vol.8, pp.4373-4379, 2008.

B. Seger and P. V. Kamat, Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells, The Journal of Physical Chemistry C, vol.113, pp.7990-7995, 2009.

R. I. Jafri, N. Rajalakshmi, and S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, J. Mater. Chem, vol.20, pp.7114-7117, 2010.

H. R. Thomas, S. Day, W. Woodruff, C. Vallés, R. J. Young et al., Deoxygenation of Graphene Oxide: Reduction or Cleaning?, Chemistry of Materials, vol.25, pp.3580-3588, 2013.

P. Song, L. L. He, A. J. Wang, L. P. Mei, S. X. Zhong et al., Surfactant-free synthesis of reduced graphene oxide supported porous PtAu alloyed nanoflowers with improved catalytic activity, J. Mater. Chem. A, vol.3, pp.5321-5327, 2015.

C. A. Campos-roldan, R. G. Gonzalez-huerta, and N. Alonso-vante, The oxophilic and electronic effects on anchored platinum nanoparticles on sp(2) carbon sites: The hydrogen evolution and oxidation reactions in alkaline medium, Electrochim. Acta, vol.283, pp.1829-1834, 2018.

J. W. Ma, A. Habrioux, Y. Luo, G. Ramos-sanchez, L. Calvillo et al., Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction, J. Mater. Chem. A, vol.3, pp.11891-11904, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01359013

L. Pak-hoe, M. Boaventura, T. Lagarteira, L. Kee-shyuan, and A. Mendes, Polyol synthesis of reduced graphene oxide supported platinum electrocatalysts for fuel cells: Effect of Pt precursor, support oxidation level and pH, International Journal of Hydrogen Energy, vol.43, pp.16998-17011, 2018.

Z. Chen, L. Jin, W. Hao, W. Ren, and H. M. Cheng, Synthesis and applications of three-dimensional graphene network structures, Materials Today Nano, vol.5, pp.100021-100036, 2019.

A. T. , Graphene-based nano composites and their applications. A review, Biosensors and Bioelectronics, vol.141, pp.111381-111317, 2019.

F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and sub-micron size metal particles, Solid State Ion, pp.198-205, 1989.

F. Bonet, C. Guery, D. Guyomard, R. H. Urbina, K. Tekaia-elhsissen et al., Electrochemical reduction of noble metal compounds in ethylene glycol, Int. J. Inorg. Mater, vol.1, pp.47-51, 1999.

C. H. Bock, H. Macdougall, and B. , Catalyst Synthesis Techniques, Fuel Cell Electrocatalysts and Catalyst Layers, pp.447-485, 2008.

N. Aoun, A. Schlange, A. R. Santos, U. Kunz, and T. Turek, Effect of the OH-/Pt Ratio During Polyol Synthesis on Metal Loading and Particle Size in DMFC Catalysts, Electrocatalysis, vol.7, pp.13-21, 2016.

S. E. Skrabalak, B. J. Wiley, M. Kim, E. V. Formo, and Y. N. Xia, On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent, Nano Lett, vol.8, pp.2077-2081, 2008.

H. Li, G. Sun, Y. Gao, Q. Jiang, Z. Jia et al., Effect of Reaction Atmosphere on the Electrocatalytic Activities of Pt/C and PtRu/C Obtained in a Polyol Process, The Journal of Physical Chemistry C, vol.111, pp.15192-15200, 2007.

B. Liu, Z. Chia, Z. Lee, C. Cheng, J. Lee et al., The importance of water in the polyol synthesis of carbon supported platinum-tin oxide catalysts for ethanol electrooxidation, Journal of Power Sources, pp.97-102, 2012.

D. González-quijano, W. J. Pech-rodríguez, J. I. Escalante-garcía, G. Vargas-gutiérrez, and F. J. Rodríguez-varela, Electrocatalysts for ethanol and ethylene glycol oxidation reactions. Part I: Effects of the polyol synthesis conditions on the characteristics and catalytic activity of Pt-Sn/C anodes, International Journal of Hydrogen Energy, vol.39, pp.16676-16685, 2014.

Y. Z. Fu, G. C. Lai, and J. R. Li, Synthesis of Different Morphologies of Mostly Mono-disperse Gold Nanoparticles in a Polyol Process, J. Dispersion Sci. Technol, vol.30, pp.514-519, 2009.

F. Fievet, S. Ammar-merah, R. Brayner, F. Chau, M. Giraud et al., The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions, Chem. Soc. Rev, vol.47, pp.5187-5233, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02000376

T. W. Napporn, A. Habrioux, J. Rousseau, K. Servat, J. Leger et al., Effect of the Cleaning Step on the Morphology of Gold Nanoparticles, vol.2, pp.24-27, 2011.

A. J. Biacchi and R. E. Schaak, The Solvent Matters: Kinetic versus Thermodynamic Shape Control in the Polyol Synthesis of Rhodium Nanoparticles, ACS Nano, vol.5, pp.8089-8099, 2011.

J. Y. Chen, B. Lim, E. P. Lee, and Y. N. Xia, Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications, Nano Today, vol.4, pp.81-95, 2009.

B. J. Hwang, L. S. Sarma, C. H. Chen, C. Bock, F. J. Lai et al., Controlled Synthesis and Characterization of Ru-core-Pt-shell Bimetallic Nanoparticles, J. Phys. Chem. C, vol.112, pp.19922-19929, 2008.

T. Tang and I. W. Hamley, Multiple morphologies of gold nano-plates by high-temperature polyol syntheses, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.336, pp.1-7, 2009.

Y. J. Xiong and Y. N. Xia, Shape-controlled synthesis of metal nanostructures: The case of palladium, Advanced Materials, vol.19, pp.3385-3391, 2007.

P. Tonda-mikiela, T. W. Napporn, C. Morais, K. Servat, A. Chen et al., Synthesis of Gold-Platinum Nanomaterials Using Bromide Anion Exchange-Synergistic Electroactivity toward CO and Glucose Oxidation, J. Electrochem. Soc, vol.159, pp.828-833, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00834968

Y. Holade, C. Morais, S. Arrii-clacens, K. Servat, T. W. Napporn et al., New Preparation of PdNi/C and PdAg/C Nanocatalysts for Glycerol Electrooxidation in Alkaline Medium, vol.4, pp.167-178, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932267

M. Simoes, S. Baranton, and C. Coutanceau, Electrooxidation of Sodium Borohydride at Pd, An, and PdxAu1-x Carbon-Supported Nanocatalysts, J. Phys. Chem. C, vol.113, pp.13369-13376, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01379376

Y. Holade, N. ?ahin, K. Servat, T. W. Napporn, and K. B. Kokoh, Recent Advances in Carbon Supported Metal Nanoparticles Preparation for Oxygen Reduction Reaction in Low Temperature Fuel Cells, Catalysts, vol.5, pp.310-348, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01339056

J. F. Rivadulla, M. C. Vergara, M. C. Blanco, M. A. Lopezquintela, and J. Rivas, Optical properties of platinum particles synthesized in microemulsions, J. Phys. Chem. B, vol.101, pp.8997-9004, 1997.

T. Teranishi, R. Kurita, and M. Miyake, Shape control of Pt nanoparticles, J. Inorg. Organomet. Polym, vol.10, pp.145-156, 2000.

J. A. Peck, C. D. Tait, B. I. Swanson, and G. E. Brown, Speciation of aqueous gold(III) chlorides from ultraviolet/visible absorption and Raman/resonance Raman spectroscopies, Geochimica et Cosmochimica Acta, vol.55, pp.671-676, 1991.

A. Usher, D. C. Mcphail, and J. Brugger, A spectrophotometric study of aqueous Au(III) halidehydroxide complexes at 25-80°C, Geochimica et Cosmochimica Acta, vol.73, pp.3359-3380, 2009.

M. Grzelczak, J. Perez-juste, P. Mulvaney, and L. M. Liz-marzan, Chem. Soc. Rev, vol.37, pp.1783-1791, 2008.

B. Lim, H. Kobayashi, P. H. Camargo, L. F. Allard, J. Y. Liu et al., New Insights into the Growth Mechanism and Surface Structure of Palladium Nanocrystals, vol.3, pp.180-188, 2010.

B. Lim, H. Kobayashi, T. Yu, J. G. Wang, M. J. Kim et al., Synthesis of Pd-Au Bimetallic Nanocrystals via Controlled Overgrowth, Journal of the American Chemical Society, vol.132, pp.2506-2507, 2010.

X. Q. Huang, Y. J. Li, Y. J. Li, H. L. Zhou, X. F. Duan et al., Synthesis of PtPd Bimetal Nanocrystals with Controllable Shape, Composition, and Their Tunable Catalytic Properties, vol.12, pp.4265-4270, 2012.

H. Zhang, M. S. Jin, Y. J. Xiong, B. Lim, and Y. N. Xia, Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications, Accounts Chem. Res, vol.46, pp.1783-1794, 2013.

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, Defining Rules for the Shape Evolution of Gold Nanoparticles, Journal of the American Chemical Society, vol.134, pp.14542-14554, 2012.

Y. Holade, K. Servat, T. W. Napporn, and K. B. Kokoh, Bromide Anion Exchange" method -Investigations of glucose and glycerol oxidation, Electrochim. Acta, vol.162, pp.205-214, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01339039

Y. Holade, C. Morais, T. W. Napporn, K. Servat, and K. B. Kokoh, Electrochemical Behavior of Organics Oxidation on Palladium-Based Nanocatalysts Synthesized from Bromide Anion Exchange, Physical and Analytical Electrochemistry, pp.25-35, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01319214

Y. Holade, K. Macvittie, T. Conlon, N. Guz, K. Servat et al., Pacemaker Activated by an Abiotic Biofuel Cell Operated in Human Serum Solution, vol.26, pp.2445-2457, 2014.

S. Ghosh, Y. Holade, H. Remita, K. Servat, P. Beaunier et al., Onepot synthesis of reduced graphene oxide supported gold-based nanomaterials as robust nanocatalysts for glucose electrooxidation, Electrochim. Acta, vol.212, pp.864-875, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01548379

S. Link and M. A. El-sayed, Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles, The Journal of Physical Chemistry B, vol.103, pp.4212-4217, 1999.

B. Pong, H. I. Elim, J. Chong, W. Ji, B. L. Trout et al., New Insights on the Nanoparticle Growth Mechanism in the Citrate Reduction of Gold(III) Salt: Formation of the Au Nanowire Intermediate and Its Nonlinear Optical Properties, The Journal of Physical Chemistry C, vol.111, pp.6281-6287, 2007.

K. Gharbi, A. Mezni, V. Collière, K. Philippot, C. Amiens et al., Controlled synthesis of anisotropic gold nanoparticles by a simple polyol process and their related optical properties, Journal of the Tunisian Chemical Society, vol.19, pp.335-342, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01940901

J. Léger, Influence de la structure de l'électrode sur ses propriétés électrocatalytiques: étude comparative de l'adsorption et de l'oxydation du méthanol et de l'acide formique, 1981.

Y. Holade, A. Lehoux, H. Remita, K. B. Kokoh, and T. W. Napporn, Au@Pt Core-Shell Mesoporous Nanoballs and Nanoparticles as Efficient Electrocatalysts toward Formic Acid and Glucose Oxidation, J. Phys. Chem. C, vol.119, pp.27529-27539, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01491215

M. Tamer, Quantitative Phase Analysis Based on Rietveld Structure Refinement for Carbonate Rocks, Journal of Modern Physics, vol.4, pp.8-9, 2013.

B. Tlili, Caractérisation de films durs multicouches élaborés par pulvérisation magnétron. Influence des conditions d'élaboration sur leurs propriétés, 2010.

R. Guinebretière, Diffraction des rayons X sur échantillons polycristallins. Instrumentation et étude de la microstructure, 2006.

N. J. Elton and P. D. Salt, Particle statistics in quantitative X-ray diffractometry, vol.11, pp.218-229, 1996.

W. H. Bragg and W. L. Bragg, The reflection of X-rays by crystals, Proc. Roy. Soc. Lond. A, vol.88, pp.428-438, 1913.

J. I. Langford, D. Louer, and P. Scardi, Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting, Journal of Applied Crystallography, vol.33, pp.964-974, 2000.

R. Aljishi and G. Dresselhaus, Lattice-dynamical model for graphite, Phys. Rev. B, vol.26, pp.4514-4522, 1982.

R. E. Shroder, R. J. Nemanich, and J. T. Glass, Analysis of the composite structures in diamond thin-films by raman-spectroscopy, Phys. Rev. B, vol.41, pp.3738-3745, 1990.

M. Veres, S. Toth, and A. Koos, New aspects of Raman scattering in carbon-based amorphous materials, Diam. Relat. Mat, vol.17, pp.1692-1696, 2008.

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio et al., Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys, vol.9, pp.1276-1291, 2007.

L. C. Nistor, J. Vanlanduyt, V. G. Ralchenko, T. V. Kononenko, E. D. Obraztsova et al., Direct observation of laser-induced crystallization of a-c-h films, Appl. Phys. A-Mater. Sci. Process, vol.58, pp.137-144, 1994.

T. Jawhari, A. Roig, J. Casado, and R. Materials, Carbon, vol.33, pp.1561-1565, 1995.

J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes, Carbon, pp.2581-2602, 2011.

L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim et al., General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Appl. Phys. Lett, vol.88, pp.163106-163103, 2006.

S. K. Chatterjee, X-ray diffraction: its theory and applications, 2010.

S. C. Tsen, P. A. Crozier, and J. Liu, Lattice measurement and alloy compositions in metal and bimetallic nanoparticles, Ultramicroscopy, vol.98, pp.63-72, 2003.

A. Habrioux, Préparation et caractérisation de nanoparticules à base d'or et de platine pour l'anode d'une biopile glucose/dioxygène, thèse de doctorat, 2009.

P. Jain, Gold Nanoparticles for Physics, p.53, 2014.

A. S. Darling, R. A. Mintern, and J. C. Chaston, The gold platinum system, Journal of the Institute of Metals, vol.81, pp.125-128, 1952.

W. Vogel, Size Contraction in Pt/C and PtRu/C Commercial E-TEK Electrocatalysts: An in Situ X-ray Diffraction Study, vol.112, pp.13475-13482, 2008.

R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, and G. Gryglewicz, Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy, Materials (Basel), vol.11, pp.1050-1065, 2018.

L. Gan, C. Cui, M. Heggen, F. Dionigi, S. Rudi et al., Element-specific anisotropic growth of shaped platinum alloy nanocrystals, Science, vol.346, pp.1502-1506, 2014.

A. Habrioux, W. Vogel, M. Guinel, L. Guetaz, K. Servat et al., Structural and electrochemical studies of Au-Pt nanoalloys, Phys. Chem. Chem. Phys, vol.11, pp.3573-3579, 2009.

A. Sánchez-iglesias, I. Pastoriza-santos, J. Pérez-juste, B. Rodríguez-gonzález, F. J. García-de-abajo et al., Synthesis and Optical Properties of Gold Nanodecahedra with Size Control, Advanced Materials, vol.18, pp.2529-2534, 2006.

A. Henglein, Preparation and Optical Aborption Spectra of AucorePtshell and PtcoreAushell Colloidal Nanoparticles in Aqueous Solution, The Journal of Physical Chemistry B, vol.104, pp.2201-2203, 2000.

Y. Zhou, H. Wang, W. Lin, L. Lin, Y. Gao et al., Quantitative nucleation and growth kinetics of gold nanoparticles via model-assisted dynamic spectroscopic approach, J. Colloid Interface Sci, vol.407, pp.8-16, 2013.

B. N. Wanjala, J. Luo, B. Fang, D. Mott, and C. Zhong, Gold-platinum nanoparticles: alloying and phase segregation, J. Mater. Chem, vol.21, pp.4012-4020, 2011.

S. Bell, M. Baker, H. Chen, P. Marthandam, V. Perumal et al., A multi-technique characterisation of electroless gold contacts on single crystal CdZnTe radiation detectors, Journal of Physics D Applied Physics, vol.46, pp.455501-455510, 2013.

M. E. Kazzi, Etude par photoemission (XPS & XPD) d'hétérostructures d'oxydes fonctionnels epitaxies sur silicium, thèse de doctorat, 2007.

A. Hamelin, M. J. Sottomayor, F. Silva, S. Chang, and M. J. Weaver, Cyclic voltammetric characterization of oriented monocrystalline gold surfaces in aqueous alkaline solution, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, pp.291-300, 1990.

D. W. Kirk, F. R. Foulkes, and W. F. Graydon, The Electrochemical Formation of Au(I) Hydroxide on Gold in Aqueous Potassium Hydroxide, J. Electrochem. Soc, vol.127, pp.1069-1076, 1980.

K. Juodkazis, J. Juodkazyt, V. Jasulaitien, A. Lukinskas, and B. ?ebeka, XPS studies on the gold oxide surface layer formation, Electrochem. Commun, vol.2, pp.503-507, 2000.

E. S. Davydova, S. Mukerjee, F. Jaouen, and D. R. Dekel, Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Electrolytes, ACS Catal, vol.8, pp.6665-6690, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807205

B. E. Conway and B. V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H, Electrochim. Acta, vol.47, pp.3571-3594, 2002.

J. Zaffran, C. Michel, F. Delbecq, and P. Sautet, Towards more accurate prediction of activation energies for polyalcohol dehydrogenation on transition metal catalysts in water, Catalysis Science & Technology, vol.6, pp.6615-6624, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01641046

A. Habrioux, D. Diabaté, J. Rousseau, T. Napporn, K. Servat et al., Electrocatalytic Activity of Supported Au-Pt Nanoparticles for CO Oxidation and O2 Reduction in Alkaline Medium, Electrocatalysis, pp.51-59, 2010.

M. W. Hsiao, R. R. Adzic, and E. B. Yeager, Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer, J. Electrochem. Soc, vol.143, pp.759-767, 1996.

R. Gregori, G. García, and M. Koper, Adsorption of phosphate species on poly-oriented Pt and Pt(1 1 1) electrodes over a wide range of pH, Electrochim. Acta, vol.55, pp.7961-7968, 2010.

L. Castanheira, W. O. Silva, F. H. Lima, A. Crisci, L. Dubau et al., Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere, vol.5, pp.2184-2194, 2015.

S. Kabir, A. Zadick, P. Atanassov, L. Dubau, and M. Chatenet, Stability of carbon-supported palladium nanoparticles in alkaline media: A case study of graphitized and more amorphous supports, Electrochem. Commun, vol.78, pp.33-37, 2017.

M. Sinnott, Chapter 1 Structures of the Open-chain Forms of Reducing Sugars, and their Carbonyl Group Reactions, Carbohydrate Chemistry and Biochemistry: Structure and Mechanism, pp.1-40, 2007.

Y. Zhu, J. Zajicek, and A. S. Serianni, Acyclic Forms of [1-13C]Aldohexoses in Aqueous Solution: Quantitation by 13C NMR and Deuterium Isotope Effects on Tautomeric Equilibria, The Journal of Organic Chemistry, vol.66, pp.6244-6251, 2001.

J. Alonso, M. Lozoya, I. Pena, J. López, C. Cabezas et al., The conformational behaviour of free D-glucose -at last, Chemical science, vol.5, pp.515-522, 2013.

M. Pasta, F. L. Mantia, and Y. Cui, Mechanism of glucose electrochemical oxidation on gold surface, Electrochim. Acta, vol.55, pp.5561-5568, 2010.

S. Karra, M. Wooten, W. Griffith, and W. Gorski, Morphology of Gold Nanoparticles and Electrocatalysis of Glucose Oxidation, Electrochim. Acta, vol.218, pp.8-14, 2016.

Y. B. Vassilyev, O. A. Khazova, and N. N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts .1. adsorption and oxidation on platinum, Journal of Electroanalytical Chemistry, vol.196, pp.105-125, 1985.

A. Abbadi and H. Vanbekkum, Effect of ph in the pt-catalyzed oxidation of d-glucose to d-gluconic acid, J. Mol. Catal. A-Chem, vol.97, pp.111-118, 1995.

L. H. Yei, B. Beden, and C. Lamy, Electrocatalytic oxidation of glucose at platinum in alkaline medium: on the role of temperature, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.246, pp.349-362, 1988.

F. Largeaud, Etude à basse température des états d'adsorption et de l'oxydation électrocatalytique du D-glucose sur des électrodes de platine, 1996.

R. Guidelli, G. Richard, M. Juan, E. Gileadi, J. Lipkowski et al., Defining the transfer coefficient in electrochemistry: An assessment, pp.245-258, 2014.

P. Parpot, K. B. Kokoh, B. Beden, and C. Lamy, Electrocatalytic oxidation of saccharose in alkaline medium, Electrochim. Acta, vol.38, pp.1679-1683, 1993.

W. Xia, A. Mahmood, Z. Liang, R. Zou, and S. Guo, Earth-Abundant Nanomaterials for Oxygen Reduction, Angewandte Chemie, p.55, 2015.

M. S. El-deab, T. Okajima, and T. Ohsaka, Electrochemical Reduction of Oxygen on Gold Nanoparticle-Electrodeposited Glassy Carbon Electrodes, J. Electrochem. Soc, vol.150, pp.851-857, 2003.