L. Leal, Particle motions in a viscous fluid, Ann. Rev. Fluid Mech, vol.12, p.435, 1980.

A. Kumar and M. D. Graham, Margination and segregation in confined flows of blood and other multicomponent suspensions, Soft Matter, vol.8, p.10536, 2012.

D. Leighton and A. Acrivos, The shear-induced migration of particles in concentrated suspensions, J. Fluid Mech, vol.181, p.415, 1987.

C. J. Koh, P. Hookham, and L. G. Leal, An experimental investigation of concentrated suspension flows in a rectangular channel, J. Fluid Mech, vol.266, p.1, 1994.

M. K. Lyon and L. G. Leal, An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. part 1. monodisperse systems, J. Fluid Mech, vol.363, p.25, 1998.

M. Zurita-gotor, J. Blawzdziewicz, and E. Wajnryb, Swapping trajectories: a new wallinduced cross-streamline particle migration mechanism in a dilute suspension of spheres, J. Fluid Mech, vol.592, p.447, 2007.

P. A. Arp and S. G. Mason, The kinetics of flowing dispersions : Ix. doublets of rigid spheres (experimental), J. Colloid Interface Sci, vol.61, p.44, 1977.

D. J. Pine, J. P. Gollub, J. F. Brady, and A. M. Leshansky, Chaos and threshold for irreversibility in sheared suspensions, Nature, vol.438, p.997, 2005.

F. R. Da-cunha and E. J. Hinch, Shear-induced dispersion in a dilute suspension of rough spheres, J. Fluid Mech, vol.309, p.211, 1996.

P. Pham, B. Metzger, and J. E. Butler, Particle dispersion in sheared suspensions: Crucial role of solid-solid contacts, Phys. Fluids, vol.27, p.51701, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01442048

G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, Noninertial lateral migration of vesicles in bounded poiseuille flow, Phys. Fluids, vol.20, p.111702, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01086715

M. Loewenberg and E. J. Hinch, Collision of two deformable drops in shear flow, J. Fluid Mech, vol.338, p.299, 1997.

A. Karnis, H. L. Goldsmith, and S. G. Mason, The flow of suspensions through tubes : V. inertial e?ects, Can. J. Chem. Eng, vol.44, p.181, 1966.

F. Gauthier, H. L. Goldsmith, and S. G. Mason, Particle motions in nonnewtonian media. ii. poiseuille flow, Transactions of the Society of Rheology, vol.15, p.297, 1971.

B. Ho and L. Leal, Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid, J. Fluid Mech, vol.76, p.783, 1976.

G. Segré and A. Silberberg, Radial particle displacements in poiseuille flow of suspensions, Nature, vol.189, p.209, 1961.

G. Segré and A. Silberberg, Behaviour of macroscopic rigid spheres in poiseuille flow part 2. experimental results and interpretation, J. Fluid Mech, vol.14, p.136, 1962.

S. I. Rubinow and J. B. Keller, The transverse force on a spinning sphere moving in a viscous fluid, J. Fluid Mech, vol.11, p.447, 1961.

P. Sa?man, The lift on a small sphere in a slow shear flow, J. Fluid Mech, vol.22, p.385, 1965.

R. G. Cox and H. Brenner, The lateral migration of solid particles in poiseuille flow -i theory, Chem. Eng. Sci, vol.23, p.147, 1968.

B. Ho and L. Leal, Inertial migration of rigid spheres in two-dimensional unidirectional flows, J. Fluid Mech, vol.65, p.365, 1974.

J. A. Schonberg and E. Hinch, Inertial migration of a sphere in poiseuille flow, J. Fluid Mech, vol.203, p.517, 1989.

J. B. Mclaughlin, Inertial migration of a small sphere in linear shear flows, J. Fluid Mech, vol.224, p.261, 1991.

E. S. Asmolov, The inertial lift on a spherical particle in a plane poiseuille flow at large channel reynolds number, J. Fluid Mech, vol.381, p.63, 1999.

J. Matas, J. F. Morris, and É. Guazzelli, Inertial migration of rigid spherical particles in poiseuille flow, J. Fluid Mech, vol.515, p.171, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00252129

D. D. Carlo, D. Irimia, R. G. Tompkins, and M. Toner, Continuous inertial focusing, ordering, and separation of particles in microchannels, Proc. Natl. Acad. Sci. USA, vol.104, p.18892, 2007.

D. D. Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, Particle segregation and dynamics in confined flows, Phys. Rev. Lett, vol.102, p.94503, 2009.

A. A. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, Inertial microfluidics for continuous particle filtration and extraction, Microfluid. Nanofluid, vol.7, p.217, 2009.

D. and D. Carlo, Inertial microfluidics, Lab Chip, vol.9, p.3038, 2009.

W. Lee, H. Amini, H. A. Stone, and D. Carlo, Dynamic self-assembly and control of microfluidic particle crystals, Proc. Natl. Acad. Sci. USA, vol.107, p.22413, 2010.

H. Amini, E. Sollier, W. M. Weaver, and D. Carlo, Intrinsic particle-induced lateral transport in microchannels, Proc. Natl. Acad. Sci. USA, vol.109, p.11593, 2012.

J. Matas, V. Glezer, É. Guazzelli, and J. F. Morris, Trains of particles in finite-reynoldsnumber pipe flow, Phys. Fluids, vol.16, p.4192, 2004.

J. F. Edd, D. D. Carlo, K. J. Humphry, S. Köster, D. Irimia et al., Controlled encapsulation of single-cells into monodisperse picolitre drops, Lab Chip, vol.8, p.1262, 2008.

U. Prusse, L. Bilancetti, M. Bucko, B. Bugarski, J. Bukowski et al., Comparison of di?erent technologies for alginate beads production, Chem. Pap, vol.62, p.364, 2008.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kiessling et al., Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro, Proc. Natl. Acad. Sci. USA, vol.110, p.14843, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01356886

H. Domejean, M. De-la-motte-saint-pierre, A. Funfak, N. Atrux-tallau, K. Alessandri et al.,

. Bremond, Controlled production of sub-millimeter liquid core hydrogel capsules for parallelized 3d cell culture, Lab Chip, vol.17, p.110, 2017.

H. Doméjean, J. Bibette, and N. Bremond, Traffic collision during the breakup of an aqueous viscous compound jet, Phys. Rev. Fluids, vol.1, p.63903, 2016.

G. I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. R. Soc. Lond. A, vol.219, p.186, 1953.

M. T. Kreutzer, F. Kapteijn, J. A. Moulijn, and J. J. Heiszwolf, Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels, Chem. Eng. Sci, vol.60, p.5895, 2005.

L. Mottet, D. L. Cornec, J. Noël, F. Kanoufi, B. Delord et al., A conductive hydrogel based on alginate and carbon nanotubes for probing microbial electroactivity, Soft matter, vol.14, p.1434, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02336985

R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Proc. R. Soc. Lond. A, vol.235, p.67, 1956.

S. A. Berger, L. Talbot, and L. S. Yao, Flow in curved pipes, Ann. Rev. Fluid Mech, vol.15, p.461, 1983.

F. P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech, vol.10, p.166, 1961.

P. R. Nott and J. F. Brady, Pressure-driven flow of suspensions: simulation and theory, J. Fluid Mech, vol.275, p.157, 1994.

Y. E. Yu, S. Khodaparast, and H. A. Stone, Armoring confined bubbles in the flow of colloidal suspensions, Soft matter, vol.13, p.2857, 2017.

, Des cellules Caco-2 polarisées formant des épithéliums Plusieurs auteurs ont montré que ces cellules sont capables de former des structures polarisées au sein d'une matrice tridimensionnelle. La plupart des travaux utilisent le Matrigel®. Elles sont caractérisées par deux domaines membranaires distincts : apicale et basolatérale et notamment par une forte adhésion intercellulaire via des jonctions serrées 154

, Lorsque les cellules sont polarisées, elles présentent une accumulation de faisceaux d

V. Figure, Mise en évidence de la présence des jonctions serrées au sein des organoïdes numéroté de 1 à 3. Marquage fluorescent des noyaux au Hoechst en bleu (A) et immunomarquage de zonula occludens-1 (ZO-1) (B). La superposition des deux marquages (C) et les clichés en lumière blanche (D), vol.15

, Des cellules sécrétrices de mucus Jusqu'à présent, nous avons démontré la formation d'un épithélium de Caco-2 polarisé

, Afin d'élargir la palette de micro-tissus se formant au sein des capsules d'hydrogels hybrides, nous avons donc procédé à une encapsulation des cellules NRC, Nous présentons alors dans cette partie du manuscrit les résultats préliminaires obtenus

, Le protocole de culture cellulaire utilisé est 'issue de l'encapsulation des NRC à deux concentrations cellulaires : 1.10 6 de cellules/mL et 5.10 5 cellules/mL dans une matrice de collagène, nous avons observé qu'à faible concentration les cellules sont peu nombreuses et distantes les unes des autres. Elles sont incapables de s'auto-assembler et restent isolées. A l'inverse, à 1.10 6 de cellules/mL, les cellules se sont organisées pour former soit une structure en forme de feuillet (Figure V. 17-2), Nous précisons que pour l'encapsulation des cellules NRC, nous avons suivi la même méthode d'encapsulation que celle établie pour les cellules intestinales

, Nous observons l'accumulation d'actine à la périphérie des structures cellulaires montrant la polymérisation de celle-ci. Ces résultats suggèrent grandement la formation d'un épithélium

, Afin de démontrer l'établissement d'un épithélium, nous nous sommes intéressés à une deuxième caractéristique spécifique des cellules formant un épithélium : la présence de jonction serrées. Nous avons alors procédé à l'immunomarquage de la PKC

, Les précédents résultats nous ont permis de confirmer la formation d'un épithélium polarisé

, Etant donné que les cholangiocytes sont les cellules formant les canaux biliaires et impliqués dans la sécrétion et l'acheminement de la bile, nous avons sondé cette propriété majeure des cholangiocytes. Pour cela, nous incubons les cellules NRC en présence d'une molécule exogène, la CFDA. L'hydrolyse de la CFDA en CF, Maintenant, nous souhaitons nous focaliser sur la fonctionnalité de ces cellules

R. G. Harrison, M. J. Greenman, F. P. Mall, and C. M. Jackson, Observations of the living developing nerve fiber, Anat. Rec, vol.1, pp.116-128, 1907.

R. G. Harrison, The outgrowth of the nerve fiber as a mode of protoplasmic movement, J. Exp. Zool, vol.9, pp.787-846, 1910.

E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, Taking Cell-Matrix Adhesion to the Third Dimension, Science, vol.294, pp.1704-1708, 2001.

R. Mcbeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, Cell shape, cytoskeletal tension, and RhoA regulate stemm cell lineage commitment, Dev. Cell, vol.6, pp.483-495, 2004.

C. H. Thomas, J. H. Collier, C. S. Sfeir, and K. E. Healy, Engineering gene expression and protein synthesis by modulation of nuclear shape, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.1972-1977, 2002.

O. W. Petersen, L. Ronnov-jessen, A. R. Howlett, and M. J. Bissell, Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells, Proc. Natl. Acad. Sci, vol.89, pp.9064-9068, 1992.

V. Mark, K. Gauss, V. Von-der-mark, H. Müller, and P. , Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture, vol.26

, Nature, vol.267, pp.531-532, 1977.

J. Debnath and J. S. Brugge, Modelling glandular epithelial cancers in three-dimensional cultures, Nat. Rev. Cancer, vol.5, pp.675-688, 2005.

C. M. Nelson, J. Phys. (main title), vol.22, pp.16-19, 2010.

R. Edmondson, J. J. Broglie, A. F. Adcock, and L. Yang, Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors, Assay Drug Dev. Technol, vol.12, pp.207-218, 2014.

F. O. Medical, the Development in Vitro of Chimeric Aggregates of, pp.184-194, 1956.

N. Akkerman and L. H. Defize, Dawn of the organoid era: 3D tissue and organ cultures revolutionize the study of development, disease, and regeneration, BioEssays, vol.39, pp.1-10, 2017.

H. Clevers, Modeling Development and Disease with Organoids, Cell, vol.165, pp.1586-1597, 2016.

M. Lancaster, Europe PMC Funders Group Cerebral organoids model human brain development and microcephaly, Nature, vol.501, pp.373-379, 2013.

A. J. Franko, M. B. Parliament, M. J. Allalunis-turner, and B. G. Wolokoff, Variable presence of hypoxia in M006 human glioma spheroids and in spheroids and xenografts of clonally derived sublines, Br. J. Cancer, vol.78, pp.1261-1268, 1998.

F. Hirschhaeuser, Multicellular tumor spheroids: An underestimated tool is catching up again, J. Biotechnol, vol.148, pp.3-15, 2010.

R. Z. Lin and H. Y. Chang, Recent advances in three-dimensional multicellular spheroid culture for biomedical research, Biotechnol. J, vol.3, pp.1172-1184, 2008.

T. Sato, Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche, Nature, vol.459, pp.262-265, 2009.

J. R. Spence, Nature, vol.470, pp.105-109, 2011.

J. J. Campbell and C. J. Watson, Three-dimensional culture models of mammary gland, Organogenesis, vol.5, pp.43-49, 2009.

T. Achilli, J. Meyer, and J. R. Morgan, Advances in the formation, use and understanding of multicellular spheroids, Expert Opin Biol Ther, vol.12, pp.1347-1360, 2012.

S. Raghavan, Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity, Oncotarget, vol.7, pp.16948-61, 2016.

J. M. Yuhas, A. P. Li, A. O. Martinez, and A. J. Ladman, A simplified method for production and growth of multicellular tumor spheroids, Cancer Res, vol.37, pp.3639-3682, 1977.

A. Ivascu and M. Kubbies, Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis, J. Biomol. Screen, vol.11, pp.922-932, 2006.

A. M. Pa?ca, Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture, Nat. Methods, vol.12, pp.671-678, 2015.

R. Foty and . Simple, Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids, J. Vis. Exp, vol.20, pp.4-7, 2011.

J. M. Kelm, N. E. Timmins, C. J. Brown, M. Fussenegger, and L. K. Nielsen, Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types, Biotechnol. Bioeng, vol.83, pp.173-180, 2003.

S. Messner, I. Agarkova, W. Moritz, and J. M. Kelm, Multi-cell type human liver microtissues for hepatotoxicity testing, Arch. Toxicol, vol.87, pp.209-213, 2013.

W. Paper, Using Perfecta3D Hanging Drop Plates to Assess Chemosensitivity, 3D Biomatrix TM Three-Dimensional Cell Cult. -White Pap, pp.1-11, 2011.

A. Kumar, Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes, Biofabrication, vol.7, p.44103, 2015.

R. S. Cherry, Animal cells in turbulent fluids: Details of the physical stimulus and the biological response, Biotechnol. Adv, vol.11, pp.279-299, 1993.

J. A. King and W. M. Miller, Bioreactor development for stem cell expansion and controlled differentiation, Curr. Opin. Chem. Biol, vol.11, pp.394-398, 2007.

D. Massai, A versatile bioreactor for dynamic suspension cell culture. Application to the culture of cancer cell spheroids, PLoS One, vol.11, pp.1-16, 2016.

L. Ying, D. C. Munson, R. Koetter, and B. J. Frey, Multibaseline insar terrain elevation estimation: A dynamic programming approach, IEEE Int. Conf. Image Process, vol.3, pp.157-160, 2003.

N. A. Peppas, E. W. Merrill, and . Poly, Vinyl Alcohol) Hydrogels: Reinforcement of Radiation-Crosslinked Networks By Crystallization, J Polym Sci Polym Chem Ed, vol.14, pp.441-457, 1976.

K. Y. Lee and D. J. , Alginate : properties and biomedical applications, Prog. Polym. Sci, vol.37, pp.106-126, 2012.

A. C. Jen, M. C. Wake, and A. G. Mikos, Review: Hydrogels for cell immobilization, Biotechnol. Bioeng, vol.50, pp.357-364, 1996.

C. Q. Lin and M. J. Bissell, Multi-faceted regulation of cell differentiation by extracellular matrix, FASEB J, vol.7, pp.737-780, 1993.

G. Hernández-carmona, D. J. Mchugh, D. L. Arvizu-higuera, and Y. E. Rodríguez-montesinos, Pilot plant scale extraction of alginate from Macrocystis pyrifera. 1. Effect of pre-extraction treatments on yield and quality of alginate, J. Appl. Phycol, vol.10, pp.507-513, 1998.

D. R. Cole, M. Waterfall, M. Mcintyre, and J. D. Baird, Microencapsulated islet grafts in the BB/E rat: a possible role for cytokines in graft failure, Diabetologia, vol.35, pp.231-237, 1992.

L. Y. Koo, D. J. Irvine, A. M. Mayes, D. Lauffenburger, and L. G. Griffith, Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus, J. Cell Sci, vol.115, pp.1423-1433, 2002.

N. O. Dhoot, C. A. Tobias, I. Fischer, and M. A. Wheatley, Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth, J. Biomed. Mater. Res. -Part A, vol.71, pp.191-200, 2004.

J. Luís, A. D. Valle, and J. P. , Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives, Gels, vol.3, p.27, 2017.

L. A. Gurski, A. K. Jha, C. Zhang, X. Jia, -. Farach et al., , vol.30, pp.6076-6085, 2010.

S. Moscato, F. Ronca, D. Campani, and S. Danti, Poly(vinyl alcohol)/gelatin Hydrogels Cultured with HepG2 Cells as a 3D Model of Hepatocellular Carcinoma: A Morphological Study, J. Funct. Biomater, vol.6, pp.16-32, 2015.

N. K. Zahari, R. B. Idrus, and S. R. Chowdhury, Laminin-coated poly(Methyl methacrylate) (PMMA) nanofiber scaffold facilitates the enrichment of skeletal muscle myoblast population, Int. J. Mol. Sci, vol.18, 2017.

M. P. Lutolf, Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics, Proc. Natl. Acad. Sci, vol.100, pp.5413-5418, 2003.

E. A. Phelps, NIH Public Access, vol.6, pp.1-12, 2013.

J. A. Hubbell, Synthetic biodegradable polymers for tissue engineering and drug delivery, Curr. Opin. Solid State Mater. Sci, vol.3, pp.246-251, 1998.

A. Metters and J. Hubbell, Network formation and degradation behavior of hydrogels formed by Michael-type addition reactions, Biomacromolecules, vol.6, pp.290-301, 2005.

B. D. Polizzotti, B. D. Fairbanks, and K. S. Anseth, Three-dimensional biochemical patterning of clickbased composite hydrogels via thiolene photopolymerization, Biomacromolecules, vol.9, pp.1084-1087, 2008.

T. J. Sanborn, P. B. Messersmith, and A. E. Barron, In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII, Biomaterials, vol.23, pp.2703-2710, 2002.

M. Ehrbar, Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions, Biomacromolecules, vol.8, pp.3000-3007, 2007.

M. P. Lutolf and J. A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat. Biotechnol, vol.23, pp.47-55, 2005.

M. W. Tibbitt and K. S. Anseth, Hydrogel as Extracellular Matrix Mimics for 3D Cell Culture, vol.103, pp.655-663, 2010.

S. F. Badylak, D. O. Freytes, and T. W. Gilbert, Reprint of: Extracellular matrix as a biological scaffold material: Structure and function, Acta Biomater, vol.23, pp.17-26, 2015.

Q. P. Pham, U. Sharma, and A. G. Mikos, Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review, Tissue Eng, vol.0, p.060509065116001, 2006.

A. J. Engler, H. L. Sweeney, D. E. Discher, and J. E. Schwarzbauer, Extracellular matrix elasticity directs stem cell differentiation, J. Musculoskelet. Neuronal Interact, vol.7, p.335, 2007.

R. A. Brown, M. Wiseman, C. B. Chuo, U. Cheema, and S. N. Nazhat, Ultrarapid engineering of biomimetic materials and tissues: Fabrication of nano-and microstructures by plastic compression, Adv. Funct. Mater, vol.15, pp.1762-1770, 2005.

J. Hendriks, J. Riesle, C. A. Blitterswijk, and . Van, Co-culture in cartilage tissue engineering, J. Tissue Eng. Regen. Med, vol.4, pp.524-531, 2010.

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.442, pp.368-373, 2006.

L. L. Bischel, W. K. Edmond, . Young, R. Brianah, and D. J. Mader, , vol.34, pp.1471-1477, 2014.

S. S. Verbridge, Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis, Tissue Eng. Part A, vol.16, pp.2133-2174, 2010.

C. Fang, I. Avis, D. Salomon, and F. Cuttitta, Novel phenotypic fluorescent three-dimensional platforms for high-throughput drug screening and personalized chemotherapy, J. Cancer, vol.4, pp.401-415, 2013.

S. Han, A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils, Lab Chip, vol.12, pp.3861-3865, 2012.

A. Günther, A microfluidic platform for probing small artery structure and function, Lab Chip, vol.10, pp.2341-2349, 2010.

I. Laurence, M. Bernard, E. Creeth, and W. J. Stead, United States Patent, vol.1, issue.12, 2001.

J. Eggers and E. Villermaux, Physics of liquid jets, Reports Prog. Phys, vol.71, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00098347

C. Clanet and J. C. , J. Fluid Mech, vol.383, pp.307-326, 1999.

H. P. Le, Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol, vol.42, pp.49-62, 1998.

H. Wijshoff, The dynamics of the piezo inkjet printhead operation, Phys. Rep, vol.491, pp.77-177, 2010.

M. H. Duby, W. Deng, K. Kim, T. Gomez, and A. Gomez, Stabilization of monodisperse electrosprays in the multi-jet mode via electric field enhancement, J. Aerosol Sci, vol.37, pp.306-322, 2006.

A. S. Utada, Dripping, jetting, drops, and wetting: The magic of microfluidics, MRS Bull, vol.32, pp.702-708, 2007.

A. S. Utada, A. Fernandez-nieves, H. A. Stone, and D. A. Weitz, Dripping to jetting transitions in coflowing liquid streams, Phys. Rev. Lett, vol.99, pp.1-4, 2007.

H. F. Chan, Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment, Sci. Rep, vol.3, pp.1-8, 2013.

M. D. Ungrin, C. Joshi, A. Nica, C. Bauwens, and P. W. Zandstra, Reproducible, ultra highthroughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates, PLoS One, vol.3, 2008.

L. Schukur, , vol.2, pp.195-205, 2014.

M. E. Dolega, F. Abeille, N. Picollet-d'hahan, and X. Gidrol, Controlled 3D culture in Matrigel microbeads to analyze clonal acinar development, Biomaterials, vol.52, pp.347-357, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02109827

H. Doméjean, Controlled production of sub-millimeter liquid core hydrogel capsules for parallelized 3D cell culture, Lab Chip, vol.17, pp.110-119, 2017.

L. R. Propri, Propri ´ et ´ es physico-chimiques de capsules d ' hydrogel ` a coeur liquide To cite this version : Propriétés physico-chimiques de capsules d ' hydrogel à coeur liquide, 2013.

K. Alessandri, Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro, Proc. Natl. Acad. Sci, vol.110, pp.14843-14848, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01356886

R. A. Condell, V. P. Hanko, E. A. Larenas, G. Wallace, and K. A. Mccullough, Analysis of native collagen monomers and oligomers by size-exclusion high-performance liquid chromatography and its application, Analytical Biochemistry, vol.212, pp.436-445, 1993.

G. A. Paredes-juã¡rez, M. Spasojevic, M. M. Faas, and P. De-vos, Immunological and Technical Considerations in Application of Alginate-Based Microencapsulation Systems. Front, Bioeng. Biotechnol, vol.2, 2014.

B. H. Mcdonagh, Optimalised Carbodiimide Chemistry for RGD-coupled Alginate, pp.1-187, 2012.

H. Dom, H. Dom, and C. Paris, Formation de capsules d ' hydrogel ` a coeur aqueux par fragmentation d ' un jet compos ´ e de fluides complexes To cite this version : Docteur de l ' Université Pierre et Marie Curie, 2015.

H. Doméjean, J. Bibette, and N. Bremond, Traffic collision during the breakup of an aqueous viscous compound jet, Phys. Rev. Fluids, vol.1, p.63903, 2016.

S. J. Leach and H. A. Scheraga, Effect of Light Scattering on Ultraviolet Difference Spectra, J. Am. Chem. Soc, vol.82, pp.4790-4792, 1960.

E. E. Antoine, P. P. Vlachos, and M. N. Rylander, Tunable collagen I hydrogels for engineered physiological tissue micro-environments, PLoS One, vol.10, pp.1-18, 2015.

S. Khan, J. R. Royer, S. R. Raghavan, and . Rheology, Tools and Methods. Aviation Fuels with Improved Fire Safety A Proceedings, pp.31-46, 1997.

R. G. Larson, The structure and rheology of complex fluids, 1999.

G. Taylor, Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.219, pp.186-203, 1953.

X. Zhang, S. Shen, and L. Fan, Uniform polystyrene particles by dispersion polymerization in different dispersion medium, Polym. Bull, vol.61, pp.19-26, 2008.

M. Mainard, D. Jacob, and . Comprendre, La mesure de taille de nanoparticules par diffusion dynamique de la lumière, vol.1827, pp.40-44, 1827.

&. Nelson and . Cox, Principles of Biochemistry, Chinese Journal of Integrative Medicine, vol.17, 2011.

J. L. Drury and D. J. Mooney, Hydrogels for tissue engineering: Scaffold design variables and applications, Biomaterials, vol.24, pp.4337-4351, 2003.

R. Parenteau-bareil, R. Gauvin, and F. Berthod, Collagen-based biomaterials for tissue engineering applications, Materials (Basel), vol.3, pp.1863-1887, 2010.

L. C. Abraham, E. Zuena, B. Perez-ramirez, and D. L. Kaplan, Guide to collagen characterization for biomaterial studies, J. Biomed. Mater. Res. -Part B Appl. Biomater, vol.87, pp.264-285, 2008.

K. L. Mccance, Collagen Structure and Stability, PLoS One, vol.78, pp.929-958, 2010.

W. Yang, V. C. Chan, A. Kirkpatrick, J. A. Ramshaw, and B. Brodsky, Gly-Pro-Arg confers stability similar to Gly-Pro-Hyp in the collagen triple-helix of host-guest peptides, J. Biol. Chem, vol.272, pp.28837-28840, 1997.

B. Qiu, Measurement of hydroxyproline in collagen with three different methods, Mol. Med. Rep, vol.10, pp.1157-1163, 2014.

C. L. Jenkins, L. E. Bretscher, I. A. Guzei, and R. T. Raines, Effect of 3-hydroxyproline residues on collagen stability, J. Am. Chem. Soc, vol.125, pp.6422-6427, 2003.

J. E. Eastoe, The amino acid composition of mammalian collagen and gelatin, Biochem. J, vol.61, pp.589-600, 1955.

S. Ananthanarayanan and A. Veis, The molecular parameters of monomeric and acid-soluble collagens. Low shear gradient viscosity and electric birefringence, Biopolymers, vol.11, pp.1365-1377, 1972.

G. N. Ramachandran, Structure of collagen, Nature, vol.14, pp.710-711, 1956.

A. Rich and F. H. Crick, The molecular structure of collagen, J. Mol. Biol, vol.3, pp.1-4, 1961.

P. M. Cowan, S. Mcgavin, and A. C. North, The polypeptide chain configuration of collagen, Nature, vol.176, pp.1062-1064, 1955.

J. Engel and H. P. Bächinger, Structure, stability and folding of the collagen triple helix, Top. Curr. Chem, vol.247, pp.7-33, 2005.

S. T. Kreger, Polymerization and matrix physical properties as important design considerations for soluble collagen formulations, Biopolymers, vol.93, pp.690-707, 2010.

K. Wolf, Collagen-based cell migration in vitro and in vivo, Semin. Cell Dev. Biol, vol.20, pp.931-941, 2009.

R. Williams, A. Gelman, C. Poppke, . R. Barbara, R. A. Williams et al., , 1978.

E. E. Antoine, P. P. Vlachos, and M. N. Rylander, Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport, Tissue Eng. Part B Rev, vol.20, pp.683-696, 2014.

V. L. Cross, , vol.31, pp.8596-8607, 2011.

Y. Li and E. P. Douglas, Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils, Colloids Surfaces B Biointerfaces, vol.112, pp.42-50, 2013.

R. W. Loo, J. B. Goh, C. C. Cheng, N. Su, and M. Goh, <em>In vitro</em> Synthesis of Native, Fibrous Long Spacing and Segmental Long Spacing Collagen, J. Vis. Exp, 2012.

E. G. Canty, Procollagen trafficking, processing and fibrillogenesis, J. Cell Sci, vol.118, pp.1341-1353, 2005.

F. H. Silver and R. L. Trelstad, Linear aggregation and the turbidimetric lag phase: Type I collagen fibrillogenesis in vitro, J. Theor. Biol, vol.81, pp.515-526, 1979.

W. D. Comper and A. Veis, The mechanism of nucleation forin vitro collagen fibril formation, Biopolymers, vol.16, pp.2113-2131, 1977.

D. L. Helseth and A. Veis, Differentiating specific telopeptidedependent interactions using selective enzyme modification and the addition of free amino telopeptide, J. Biol. Chem, vol.256, pp.7118-7128, 1981.

F. H. Silver, Type I Collagen Fibrillogenesis in Vitro, vol.256, 1981.

S. Lees, L. C. Bonar, and H. A. Mook, A study of dense mineralized tissue by neutron diffraction, Int. J. Biol. Macromol, vol.6, pp.321-326, 1984.

J. A. Petruska and A. J. Hodge, a Subunit Model for the Tropocollagen Macromolecule, Proc. Natl. Acad. Sci, vol.51, pp.871-876, 1964.

A. J. Licup, Stress controls the mechanics of collagen networks, vol.112, 2015.

S. Bancelin, C. Aimé, T. Coradin, and M. Schanne-klein, In situ three-dimensional monitoring of collagen fibrillogenesis using SHG microscopy, Biomed. Opt. Express, vol.3, p.1446, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00324324

G. C. Wood and M. K. Keech, The formation of fibrils from collagen solutions 1. The effect of experimental conditions: kinetic and electron-microscope studies, Biochem. J, vol.75, pp.588-598, 1960.

F. H. Silver and D. E. Birk, Kinetic Analysis of Collagen Fibrillogenesis: I. Use of Turbidity-Time Data, Top. Catal, vol.3, pp.393-405, 1983.

N. Aukkanit and W. Garnjanagoonchorn, Temperature effects on type I pepsin-solubilised collagen extraction from silver-line grunt skin and its in vitro fibril self-assembly, J. Sci. Food Agric, vol.90, pp.2627-2632, 2010.

Y. Li, A. Asadi, M. R. Monroe, and E. P. Douglas, pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding, Mater. Sci. Eng. C, vol.29, pp.1643-1649, 2009.

N. Kuznetsova, S. L. Chi, and S. Leikin, Sugars and polyols inhibit fibrillogenesis of type I collagen by disrupting hydrogen-bonded water bridges between the helices, Biochemistry, vol.37, pp.11888-11895, 1998.

D. Borja-cacho and J. Matthews, Nano, vol.6, pp.2166-2171, 2008.

N. E. Vrana, Engineering Functional Epithelium for Regenerative Medicine and In Vitro Organ Models: A Review, Tissue Eng. Part B Rev, vol.19, pp.529-543, 2013.

M. G. Farquhar and G. E. Palade, Junctional complexes in various epithelia, J. Cell Biol, vol.17, pp.375-412, 1963.

A. Zahraoui, Les jonctions serrées, Médecine Sci, vol.20, pp.580-585, 2004.

P. Shah, V. Jogani, T. Bagchi, and A. Misra, Role of Caco-2 cell monolayers in prediction of intestinal drug absorption, Biotechnol. Prog, vol.22, pp.186-198, 2006.

B. Sarmento, Cell-based in vitro models for predicting drug permeability, Expert Opin. Drug Metab. Toxicol, vol.8, pp.607-621, 2012.

L. C. Yu and .. , Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology, World J. Gastrointest. Pathophysiol, vol.3, p.27, 2012.

M. F. Bernet, D. Brassart, J. R. Neeser, and A. L. Servin, Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria, Gut, vol.35, pp.483-489, 1994.

Y. Yin and D. Zhou, Organoid and Enteroid Modeling of Salmonella Infection, Front. Cell. Infect. Microbiol, vol.8, 2018.

J. Fogh, J. M. Fogh, and T. Orfeo, One Hundred and Twenty-Seven Cultured Human Tumor Cell Lines Producing Tumors in Nude Mice23, JNCI J. Natl. Cancer Inst, vol.59, pp.221-226, 1977.

I. Chantret, A. Barbat, E. Dussaulx, M. G. Brattain, and A. Zweibaum, Epithelial Polarity , Villin Expression , and Enterocytic Differentiation of Cultured Human Colon Carcinoma Cells : A Survey of Twenty Cell Lines Epithelial Polarity , Villin Expression , and Enterocytic Differentiation of Cultured Human Colon Carcinoma C, Cancer Res, vol.48, pp.1936-1942, 1988.

H. Matsumoto, Biosynthesis of alkaline phosphatase during differentiation of the human colon cancer cell line Caco-2, Gastroenterology, vol.98, pp.1199-1207, 1990.

K. D. Salter, R. M. Roman, N. R. Larusso, J. G. Fitz, and R. B. Doctor, Modified culture conditions enhance expression of differentiated phenotypic properties of normal rat cholangiocytes, Lab. Investig, vol.80, pp.1775-1778, 2000.

K. Meyer, A Predictive 3D Multi-Scale Model of Biliary Fluid Dynamics in the Liver Lobule, Cell Syst, vol.4, 2017.

J. Lin, Giant Cellular Vacuoles Induced by Rare Earth Oxide Nanoparticles are Abnormally Enlarged Endo/Lysosomes and Promote mTOR-Dependent TFEB, Nucleus Translocation. Small, vol.12, pp.5759-5768, 2016.

X. Trepat, C. Zaozao, and K. Jacobson, Cell Migration. Compr. Physiol, vol.2, pp.2369-2392, 2012.

A. M. Labrousse, Cell Migration Integrating Signals from front to back, vol.302, pp.1704-1710, 2003.

A. D. Doyle, R. J. Petrie, M. L. Kutys, and K. M. , NIH Public Access. Curr. Opin. Cell Biol, vol.25, pp.642-649, 2013.

K. Duval, Modeling Physiological Events in 2D vs, 3D Cell Culture. Physiology, vol.32, pp.266-277, 2017.

P. Wu, D. M. Gilkes, and D. Wirtz, The Biophysics of 3D Cell Migration, Annu. Rev. Biophys, vol.47, pp.549-567, 2018.

J. R. Lange and B. Fabry, Cell and tissue mechanics in cell migration, Exp. Cell Res, vol.319, pp.2418-2423, 2013.

K. Wolf, Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force, J. Cell Biol, vol.201, pp.1069-1084, 2013.

B. T. Burgess, J. L. Myles, and R. B. Dickinson, Quantitative analysis of adhesion-mediated cell migration in three-dimensional gels of RGD-grafted collagen, Ann. Biomed. Eng, vol.28, pp.110-118, 2000.

K. M. Riching, 3D collagen alignment limits protrusions to enhance breast cancer cell persistence, Biophys. J, vol.107, pp.2546-2558, 2015.

M. Raab, ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science (80-. ), vol.352, pp.359-362, 2016.

W. J. Nelson, , vol.422, pp.766-774, 2012.