A. Volta and . Xvii, On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds, Philosophical Transactions of the Royal Society of London, vol.1800, pp.403-431


. Berzelius, Ein Neues Mineralisches Alkali Und Ein Neues Metall, Journal für Chemie und Physik, vol.1817, pp.44-48

W. T. Brande, A Manual of Chemistry, 1821.

G. N. Lewis and F. G. Keyes, The Potential of the Lithium Electrode, J. Am. Chem. Soc, vol.35, issue.4, pp.340-344, 1913.

F. C. Anson, Common Sources of Confusion; Electrode Sign Conventions, J. Chem. Educ, vol.36, issue.8, pp.394-395, 1959.

W. S. Harris, Univ. of C

, Electrochemical Studies in Cyclic Esters, United States, 1958.

E. Peled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-The Solid Electrolyte Interphase Model, J. Electrochem. Soc, vol.126, issue.12, pp.2047-2051, 1979.


C. Vincent, Lithium Batteries: A 50-Year Perspective, Solid State Ionics, vol.134, issue.1-2, pp.723-725, 2000.

M. S. Whittingham, Chemistry of Intercalation Compounds: Metal Guests in Chalcogenide Hosts, Progress in Solid State Chemistry, vol.12, issue.1, pp.90003-90004, 1978.

K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Li x CoO 2 (0<x<-1): A New Cathode Material for Batteries of High Energy Density, Materials Research Bulletin, vol.15, issue.6, pp.90012-90016, 1980.

K. Cheng and M. Stanleywhittingham, Lithium Incorporation in Tungsten Oxides, Solid State Ionics, vol.1980, issue.1-2, pp.90030-90032

M. B. Armand, Intercalation Electrodes, In Materials for Advanced Batteries

D. W. Murphy, J. Broadhead, and B. Steele, , pp.145-161, 1980.

M. Lazzari and B. Scrosati, A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes, J. Electrochem. Soc, vol.127, issue.3, pp.773-774, 1980.

D. Pietro, B. Patriarca, M. Scrosati, and B. , On the Use of Rocking Chair Configurations for Cyclable Lithium Organic Electrolyte Batteries, J. Power Sources, vol.8, issue.2, pp.289-299, 1982.

T. Ohzuku, A. Ueda, and M. Nagayama, Electrochemistryand Structural Chemistry of LiNi0 2 (R3m) for 4 Volt Secondary Lithium Cells, J. Electrochem. Soc, vol.140, issue.7, pp.1862-1870, 1993.

J. J. Auborn and Y. L. Barberio, Lithium Intercalation Cells Without Metallic Lithium, J. Electrochem. Soc, vol.134, issue.3, pp.638-641, 1987.


T. Ohzuku, A. Ueda, and N. Yamamoto, Zero-Strain Insertion Material of Li[Li 1?3 Ti 5?3 ]O 4 for Rechargeable Lithium Cells, J. Electrochem. Soc, vol.142, issue.5, pp.1431-1435, 1995.

R. Fong, U. Von-sacken, and J. R. Dahn, Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells, J. Electrochem. Soc, vol.137, issue.7, pp.2009-2013, 1990.

M. M. Thackeray, W. I. David, P. G. Bruce, and J. B. Goodenough, Lithium Insertion into Manganese Spinels, Materials Research Bulletin, vol.18, issue.4, pp.461-472, 1983.

A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc, vol.144, issue.4, pp.1188-1194, 1997.

J. R. Dahn, E. W. Fuller, M. Obrovac, U. Sacken, and . Von, Thermal Stability of Li x CoO 2 , Li x NiO 2 and ?-MnO 2 and Consequences for the Safety of Li-Ion Cells, Solid State Ionics, vol.69, issue.3, pp.265-270, 1994.

, , pp.90415-90419

A. R. Armstrong and P. G. Bruce, Synthesis of Layered LiMnO 2 as an Electrode for Rechargeable Lithium Batteries, Nature, vol.381, issue.6582, pp.499-500, 1996.

Z. Liu,

A. Yu,

J. Y. Lee, Synthesis and Characterization of LiNi (1-xy) Co x Mn y O 2 as the Cathode Materials of Secondary Lithium Batteries, J. Power Sources, pp.221-230, 1999.

Y. Gao, M. V. Yakovleva, and W. B. Ebner, Novel LiNi 1-x Ti x/2 Mg x/2 O 2 Compounds as Cathode Materials for Safer Lithium-Ion Batteries, Electrochemical and Solid-State Letters, vol.1, issue.3, pp.117-119, 1998.

C. Chang, J. Y. Kim, and P. N. Kumta, Divalent Cation Incorporated Li (1+x) MMg x O 2(1+x) (M = Ni 0.75 Co 0.25 ): Viable Cathode Materials for Rechargeable Lithium-Ion Batteries, J. Power Sources, vol.89, issue.1, pp.393-394, 2000.

H. Huang, G. V. Rao, and B. V. Chowdari, LiAl x Co 1?x O 2 as 4 V Cathodes for Lithium Ion Batteries, Journal of Power Sources, pp.249-258, 1999.

T. Ohzuku and Y. Makimura, Layered Lithium Insertion Material of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 for Lithium-Ion Batteries, Chem. Lett, issue.7, pp.642-643, 2001.

Z. Lu, D. D. Macneil, and J. R. Dahn, Layered Li[Ni x Co (1-2x) Mn x )O 2 Cathode Materials for Lithium-Ion Batteries, Electrochem. Solid-State Lett, vol.4, issue.12, pp.200-203, 2001.

H. Noh, S. Youn, C. S. Yoon, and Y. Sun, Comparison of the Structural and Electrochemical Properties of Layered Li, J. Power Sources, vol.233, issue.2, pp.121-130, 2013.

P. Rozier and J. Tarascon, Review-Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges, J. Electrochem. Soc, vol.162, issue.14, pp.2490-2499, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02462040

A. Rougier, P. Gravereau, and C. Delmas, Optimization of the Composition of the Li 1-x Ni 1+x O 2 Electrode Materials: Structural, Magnetic, and Electrochemical Studies, J. Electrochem. Soc, vol.143, issue.4, pp.1168-1175, 1996.


E. A. Olivetti, G. Ceder, G. G. Gaustad, and X. Fu, Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals, Joule, vol.2017, issue.2, pp.229-243

G. G. Amatucci, J. M. Tarascon, and L. C. Klein, CoO 2 , the End Member of the Li x CoO 2 Solid Solution, J. Electrochem. Soc, vol.143, issue.3, pp.1114-1123, 1996.

G. Ceder, Y. Chiang, D. R. Sadoway, M. K. Aydinol, Y. Jang et al., Identification of Cathode Materials for Lithium Batteries Guided by First-Principles Calculations, Nature, vol.392, issue.6677, pp.694-696, 1998.


M. K. Aydinol, A. F. Kohan, G. Ceder, K. Cho, and J. Joannopoulos, Ab Initio Study of Lithium Intercalation in Metal Oxides and Metal Dichalcogenides

J. M. Tarascon, G. Vaughan, Y. Chabre, L. Seguin, M. Anne et al., Situ Structural and Electrochemical Study of Ni 1?x Co x O

, Metastable Oxides Prepared by Soft Chemistry, vol.147, pp.410-420, 1999.

A. C. James and J. B. Goodenough, Structure and Bonding in Lithium Ruthenate, Li 2 RuO 3, Journal of Solid State Chemistry, vol.74, issue.2, pp.287-294, 1988.

A. C. James and J. B. Goodenough, Structure and Bonding in Li 2 MoO 3 and Li 2?x MoO 3 (0 ? x ? 1.7), vol.76, pp.90194-90200, 1988.

Z. Lu and J. R. Dahn, Understanding the Anomalous Capacity of Li/Li[Ni x Li (1/3?2x/3) Mn (2/3?x/3) ]O 2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies, J. Electrochem. Soc, issue.7, pp.815-822, 2002.

A. R. Armstrong, M. Holzapfel, P. Novák, C. S. Johnson, S. Kang et al., Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li, J. Am. Chem. Soc, vol.128, issue.26, pp.8694-8698, 2006.

J. Jiang and J. R. Dahn, Insignificant Impact of Designed Oxygen Release from High Capacity Li[(Ni 1/2 Mn 1/2 ) x Co y (Li 1/3 Mn 2/3 ) 1/3 ]O 2 (X+y = 2/3) Positive Electrodes during the Cycling of Li-Ion Cells, Electrochim. Acta, vol.51, issue.17, pp.3413-3416, 2006.

M. M. Thackeray, S. Kang, C. S. Johnson, J. T. Vaughey, and S. A. Hackney, Comments on the Structural Complexity of Lithium-Rich Li 1+x M 1?x O

N. Electrodes-(m=mn, Co) for Lithium Batteries, Electrochem. Commun, vol.8, issue.9, pp.1531-1538, 2006.

C. Deng, S. Zhang, B. L. Fu, S. Y. Yang, and L. Ma, Cathode Material Prepared by Hydroxide Coprecipitation at 273 K, Journal of Alloys and Compounds, vol.496, issue.2, pp.521-527, 2010.

G. Assat and J. Tarascon, Fundamental Understanding and Practical Challenges of Anionic Redox Activity in Li-Ion Batteries, Nat. Energy, vol.2018, issue.5, pp.373-386

M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin et al., Reversible Anionic Redox Chemistry in High-Capacity Layered-Oxide Electrodes, Nat. Mater, vol.12, issue.9, pp.827-835, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00845846

M. Sathiya, A. M. Abakumov, D. Foix, G. Rousse, K. Ramesha et al., Origin of Voltage Decay in High-Capacity Layered Oxide Electrodes, Nat. Mater, vol.14, issue.2, pp.230-238, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01091051

M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau et al., High Performance Li 2 Ru 1-y Mn y O 3 (0.2 ? y ? 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding, Chem. Mater, vol.25, issue.7, pp.1121-1131, 2013.

D. Foix, M. Sathiya, E. Mccalla, J. Tarascon, D. Gonbeau et al., Photoemission Spectroscopy Study of Cationic and Anionic Redox Processes in High-Capacity Li-Ion Battery Layered-Oxide Electrodes, J. Phys. Chem. C, vol.2016, issue.2, pp.862-874
URL : https://hal.archives-ouvertes.fr/hal-01500056

G. Assat, A. Iadecola, C. Delacourt, R. Dedryvère, and J. Tarascon, Decoupling Cationic-Anionic Redox Processes in a Model Li-Rich Cathode via Operando X-Ray Absorption Spectroscopy, Chem. Mater, vol.2017, issue.22, pp.9714-9724
URL : https://hal.archives-ouvertes.fr/hal-01679477

E. Mccalla, A. M. Abakumov, M. Saubanère, D. Foix, E. J. Berg et al., Visualization of O-O Peroxo-like Dimers in High-Capacity Layered Oxides for Li-Ion Batteries, Science, vol.350, issue.6267, pp.1516-1521, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01253767


H. Koga, L. Croguennec, M. Ménétrier, K. Douhil, S. Belin et al., Reversible Oxygen Participation to the Redox Processes Revealed for Li 1, J. Electrochem. Soc, vol.160, issue.6, pp.786-792, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00807341

G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvère et al., Fundamental Interplay between Anionic/Cationic Redox Governing the Kinetics and Thermodynamics of Lithium-Rich Cathodes, Nat. Commun, vol.2017, issue.1, p.2219
URL : https://hal.archives-ouvertes.fr/hal-01677634

M. Bettge, Y. Li, K. Gallagher, Y. Zhu, Q. Wu et al., Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density, J. Electrochem. Soc, vol.160, issue.11, pp.2046-2055, 2013.

J. R. Croy, D. Kim, M. Balasubramanian, K. Gallagher, S. Kang et al., Countering the Voltage Decay in High Capacity XLi 2 MnO 3 ?(1-x)LiMO 2 Electrodes (M = Mn, Ni, Co) for Li + -Ion Batteries, J. Electrochem. Soc, vol.2012, issue.6, pp.781-790


S. Myeong, W. Cho, W. Jin, J. Hwang, M. Yoon et al.,

A. Singer, M. Zhang, S. Hy, D. Cela, C. Fang et al., Nucleation of Dislocations and Their Dynamics in Layered Oxide Cathode Materials during Battery Charging, Nat. Energy, vol.2018, issue.8, pp.641-647

D. Seo, J. Lee, A. Urban, R. Malik, S. Kang et al., The Structural and Chemical Origin of the Oxygen Redox Activity in Layered and Cation-Disordered Li-Excess Cathode Materials, Nat. Chem, vol.8, pp.692-697, 2016.

M. Saubanère, E. Mccalla, J. Tarascon, and M. Doublet, The Intriguing Question of Anionic Redox in High-Energy Density Cathodes for Li-Ion Batteries, Energy Environ. Sci, vol.2016, issue.9, pp.984-991


M. Ben-yahia, J. Vergnet, M. Saubanère, and M. Doublet, Unified Picture of Anionic Redox in Li/Na-Ion Batteries, Nat. Mater, vol.18, pp.496-502, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02128369

C. P. Laisa, A. K. Kumar, S. Selva-chandrasekaran, P. Murugan, N. Lakshminarasimhan et al., A Comparative Study on Electrochemical Cycling Stability of Lithium Rich Layered Cathode Materials Li 1.2 Ni 0.13 M 0.13 Mn 0.54 O 2 Where M = Fe or Co, J. Power Sources, vol.324, pp.462-474, 2016.

P. K. Nayak, J. Grinblat, M. Levi, E. Levi, S. Kim et al., Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn-Rich Cathodes for Li-Ion Batteries, Adv. Energy Mater, vol.6, issue.8, p.1502398, 2016.

K. Ku, J. Hong, H. Kim, H. Park, W. M. Seong et al., Suppression of Voltage Decay through Manganese Deactivation and Nickel Redox Buffering in High-Energy Layered Lithium-Rich Electrodes, Adv. Energy Mater, vol.8, issue.21, p.1800606, 2018.

P. P. Dahiya, C. Ghanty, K. Sahoo, S. Basu, and S. B. Majumder, Suppression of Voltage Decay and Improvement in Electrochemical Performance by Zirconium Doping in Li-Rich Cathode Materials for Li-Ion Batteries, J. Electrochem. Soc, vol.165, issue.13, pp.3114-3124, 2018.

Y. Liu, D. Ning, L. Zheng, Q. Zhang, L. Gu et al., Improving the Electrochemical Performances of Li-Rich Li 1.20 Ni 0.13 Co 0.13 Mn 0.54 O 2 through a Cooperative Doping of Na + and PO 4 of Power Sources, vol.375, pp.1-10, 2018.

F. Wu, Q. Li, L. Bao, Y. Zheng, Y. Lu et al., Role of LaNiO3 in Suppressing Voltage Decay of Layered Lithium-Rich Cathode Materials, Electrochimica Acta, vol.260, pp.986-993, 2018.


B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia et al., Gas-Solid Interfacial Modification of Oxygen Activity in Layered Oxide Cathodes for Lithium-Ion Batteries, Nat Commun, vol.7, issue.1, p.12108, 2016.

H. Guo, Z. Wei, K. Jia, B. Qiu, C. Yin et al., Abundant Nanoscale Defects to Eliminate Voltage Decay in Li-Rich Cathode Materials, Energy Storage Materials, vol.16, pp.220-227, 2019.

E. Zhao, Q. Li, F. Meng, J. Liu, J. Wang et al., Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithium-Rich Cathode Oxides, Angew. Chem., Int. Ed. Engl, vol.58, issue.13, pp.4323-4327, 2019.


F. Zheng, C. Yang, X. Xiong, J. Xiong, R. Hu et al., Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade, Angew. Chem. Int. Ed, vol.54, issue.44, pp.13058-13062, 2015.

S. Chong, Y. Chen, W. Yan, S. Guo, Q. Tan et al., Suppressing Capacity Fading and Voltage Decay of Li-Rich Layered Cathode Material by a Surface Nano-Protective Layer of CoF2 for Lithium-Ion Batteries, Journal of Power Sources, vol.332, pp.230-239, 2016.


X. He, J. Wang, R. Wang, B. Qiu, H. Frielinghaus et al., A 3D Porous Li-Rich Cathode Material with an in Situ Modified Surface for High Performance Lithium Ion Batteries with Reduced Voltage Decay, J. Mater. Chem. A, vol.2016, issue.19, pp.7230-7237

X. Zhang, J. Shi, J. Liang, Y. Yin, J. Zhang et al., Suppressing Surface Lattice Oxygen Release of Li-Rich Cathode Materials via Heterostructured Spinel Li 4 Mn 5 O 12 Coating, Adv. Mater, vol.30, issue.29, p.1801751, 2018.

J. Huang, H. Liu, T. Hu, Y. S. Meng, and J. Luo, Enhancing the Electrochemical Performance of Li-Rich Layered Oxide Li 1.13 Ni 0.3 Mn 0.57 O 2 via WO 3 Doping and Accompanying Spontaneous Surface Phase Formation, Journal of Power Sources, vol.375, pp.21-28, 2018.

H. Shang, F. Ning, B. Li, Y. Zuo, S. Lu et al., Suppressing Voltage Decay of a Lithium-Rich Cathode Material by Surface Enrichment with Atomic Ruthenium, ACS Appl. Mater. Interfaces, vol.10, issue.25, pp.21349-21355, 2018.

A. J. Perez, Q. Jacquet, D. Batuk, A. Iadecola, M. Saubanère et al., Approaching the Limits of Cationic and Anionic Electrochemical Activity with the Li-Rich Layered, vol.2017, pp.954-962
URL : https://hal.archives-ouvertes.fr/hal-01660054


Q. Jacquet, A. Iadecola, M. Saubanère, L. Lemarquis, E. J. Berg et al., Competition between Metal Dissolution and Gas Release in Li-Rich Li 3 Ru y Ir 1-y O 4 Model Compounds Showing Anionic Redox, Chem. Mater, vol.30, issue.21, pp.7682-7690, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01947196

N. Yabuuchi, M. Takeuchi, M. Nakayama, H. Shiiba, M. Ogawa et al., High-Capacity Electrode Materials for Rechargeable Lithium Batteries: Li 3 NbO 4 -Based System with Cation-Disordered Rocksalt Structure, Proc. Natl. Acad. Sci, vol.112, pp.7650-7655, 2015.

J. Lee, A. Urban, X. Li, D. Su, G. Hautier et al., Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries, Science, vol.343, issue.6170, pp.519-522, 2014.

N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Research Development on Sodium-Ion Batteries, Chem. Rev, vol.114, issue.23, pp.11636-11682, 2014.

D. A. Stevens and J. R. Dahn, High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries, J. Electrochem. Soc, vol.147, issue.4, pp.1271-1273, 2000.

D. A. Stevens and J. R. Dahn, An In Situ Small-Angle X-Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell, J. Electrochem. Soc, vol.147, issue.12, pp.4428-4431, 2000.

G. Yan, S. Mariyappan, G. Rousse, Q. Jacquet, M. Deschamps et al., Higher Energy and Safer Sodium Ion Batteries via an Electrochemically Made Disordered Na, vol.3
URL : https://hal.archives-ouvertes.fr/hal-02021279

. Material, Nat. Commun, vol.10, issue.1, 2019.

J. Lee, J. K. Papp, R. J. Clément, S. Sallis, D. Kwon et al., Mitigating Oxygen Loss to Improve the Cycling Performance of High Capacity Cation-Disordered Cathode Materials, Nat. Commun, vol.8, issue.1, 2017.

A. Biffin, R. D. Johnson, S. Choi, F. Freund, S. Manni et al., Unconventional Magnetic Order on the Hyperhoneycomb Kitaev Lattice in ?-Li 2 IrO 3 : Full Solution via Magnetic Resonant x-Ray Diffraction, Phys. Rev. B, issue.20, p.205116, 2014.

K. A. Modic, T. E. Smidt, I. Kimchi, N. P. Breznay, A. Biffin et al., Realization of a Three-Dimensional Spin-Anisotropic Harmonic Honeycomb Iridate, Nat. Commun, vol.5, p.4203, 2014.

F. Freund, S. C. Williams, R. D. Johnson, R. Coldea, P. Gegenwart et al., Single Crystal Growth from Separated Educts and Its Application to Lithium Transition-Metal Oxides, Scientific Reports, vol.6, issue.35362, p.35362, 2016.

M. M. Thackeray, S. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek et al., Li 2 MnO 3 -Stabilized LiMO 2 (M = Mn, Ni, Co) Electrodes for Lithium-Ion Batteries, Journal of Materials Chemistry, vol.17, issue.30, pp.3112-3125, 2007.

J. P. Peres, C. Delmas, A. Rougier, M. Broussely, F. Perton et al., The Relationship between the Composition of Lithium Nickel Oxide and the Loss of Reversibility during the First Cycle, J. Phys. Chem. Solids, vol.57, issue.6-8, pp.395-404, 1996.

V. Briois, C. La-fontaine, S. Belin, L. Barthe, T. Moreno et al., The New Quick-EXAFS Beamline at SOLEIL. Journal of Physics: Conference Series, vol.712, p.12149, 2016.

Y. Joly and S. Grenier, Theory of X-Ray Absorption Near Edge Structure, pp.73-97, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01270524

J. A. Horsley, Relationship between the Area of L 2,3 X-ray Absorption Edge Resonances and the d Orbital Occupancy in Compounds of Platinum and Iridium, The Journal of Chemical Physics, vol.76, issue.3, pp.1451-1458, 1982.

J. Choy, D. Kim, G. Demazeau, D. Jung, and . Iii--edge, XANES Study on Unusually High Valent Iridium in a Perovskite Lattice, J. Phys. Chem, issue.25, pp.6258-6262, 1994.

F. W. Lytle and R. B. Greegor, Join"' between the near Edge and Extended X-ray Absorption Fine Structure, Applied Physics Letters, vol.56, issue.2, pp.192-194, 1990.

A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, Structural Studies of Rutile-Type Metal Dioxides, Acta Crystallogr., Sect. B: Struct. Sci, vol.53, issue.3, pp.373-380, 1997.

M. A. Laguna-marco, P. Kayser, J. A. Alonso, M. J. Martínez-lope, M. Van-veenendaal et al., Electronic Structure, Local Magnetism, and Spin-Orbit Effects of Ir(IV)-, Ir(V)-, and Ir(VI)-Based Compounds, Phys. Rev. B, p.214433, 2015.

P. Kayser, M. J. Martínez-lope, J. A. Alonso, M. Retuerto, M. Croft et al., Phase Transitions, and Magnetic Properties of Iridium Perovskites Sr 2 MIrO 6 (M = Ni, Zn), pp.11013-11022, 2013.

P. E. Pearce, A. J. Perez, G. Rousse, M. Saubanère, D. Batuk et al., Evidence for Anionic Redox Activity in a Tridimensional-Ordered Li-Rich Positive Electrode ?-Li 2 IrO 3, Nat. Mater, vol.16, issue.5, pp.580-586, 2017.

A. J. Perez, D. Batuk, M. Saubanère, G. Rousse, D. Foix et al., Strong Oxygen Participation in the Redox Governing the Structural and Electrochemical Properties of Na-Rich Layered Oxide Na 2 IrO 3, Chem. Mater, vol.28, issue.22, pp.8278-8288, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01405732

R. D. Shannon, Revised Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallographica Section A, vol.32, pp.751-767, 1976.

D. Larcher and J. Tarascon, Towards Greener and More Sustainable Batteries for Electrical Energy Storage, Nat. Chem, vol.7, issue.1, pp.19-29, 2014.

V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the Development of Advanced Li-Ion Batteries: A Review, Energy Environ. Sci, vol.2011, issue.9, pp.3243-3262

P. Rozier, M. Sathiya, A. Paulraj, D. Foix, T. Desaunay et al., Anionic Redox Chemistry in Na-Rich Na 2 Ru 1?y Sn y O 3 Positive Electrode Material for Na-Ion Batteries, Electrochem. Commun, vol.53, pp.29-32, 2015.

B. Mortemard-de-boisse, G. Liu, J. Ma, S. Nishimura, S. Chung et al., Intermediate Honeycomb Ordering to Trigger Oxygen Redox Chemistry in Layered Battery Electrode, Nat. Commun, vol.7, 2016.

J. Tarascon, Y. Page, P. Barboux, B. G. Bagley, L. H. Greene et al., Crystal Substructure and Physical Properties of the Superconducting Phase Bi 4 (Sr, Ca) 6 Cu 4 O 16+x, Phys. Rev. B, issue.16, pp.9382-9389, 1988.

W. Urland and R. Hoppe, K 2 PtO 3 " Und "Rb 2 PtO 3 ". Zeitschrift für anorganische und allgemeine Chemie, vol.392, pp.23-36, 1972.

H. W. Zandbergen, W. A. Groen, F. C. Mijlhoff, G. Van-tendeloo, and S. Amelinckx, Models for the Modulation in A 2 B 2 Ca n Cu 1+n O 6+2n , A, B = Bi, Sr or Tl, Ba and n = 0, 1, 2. Physica C: Superconductivity, vol.156, pp.325-354, 1988.

C. Koch, Determination of Core Structure Periodicity and Point Defect Density along Dislocations, 2002.

W. E. Gent, K. Lim, Y. Liang, Q. Li, T. Barnes et al., Coupling between Oxygen Redox and Cation Migration Explains Unusual Electrochemistry in Lithium-Rich Layered Oxides, Nature Communications, vol.8, issue.1, 2017.

X. Rong, J. Liu, E. Hu, Y. Liu, Y. Wang et al., Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode, vol.2, issue.1, pp.125-140, 2018.


L. Dahéron, R. Dedryvère, H. Martinez, M. Ménétrier, C. Denage et al., Electron Transfer Mechanisms upon Lithium Deintercalation from LiCoO 2 to CoO 2 Investigated by XPS, Chem. Mater, vol.20, issue.2, pp.583-590, 2008.

K. Shimoda, T. Minato, K. Nakanishi, H. Komatsu, T. Matsunaga et al., Oxidation Behaviour of Lattice Oxygen in Li-Rich Manganese-Based Layered Oxide Studied by Hard X-Ray Photoelectron Spectroscopy, J. Mater. Chem. A, vol.2016, issue.16, pp.5909-5916

J. B. Leriche, S. Hamelet, J. Shu, M. Morcrette, C. Masquelier et al., An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation, J. Electrochem. Soc, issue.5, pp.606-610, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00477327


A. Perez, Energy Storage Properties of Iridium Oxides: Model Materials for the Study of Anionic Redox, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01725130

F. Fauth, R. Boer, F. Gil-ortiz, C. Popescu, O. Vallcorba et al., The Crystallography Stations at the Alba Synchrotron. The European Physical Journal Plus, vol.130, p.160, 2015.

V. F. Sears, Neutron Scattering Lengths and Cross Sections, vol.3, pp.26-37, 1992.

A. J. Perez, R. Beer, Z. Lin, E. Salager, P. Taberna et al., Proton Ion Exchange Reaction in Li 3 IrO 4 : A Way to New H 3+ x IrO 4 Phases Electrochemically Active in Both Aqueous and Nonaqueous Electrolytes, Adv. Energy Mater, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01898357

N. S. Lewis and D. G. Nocera, Powering the Planet: Chemical Challenges in Solar Energy Utilization, Proc. Natl. Acad. Sci, vol.103, pp.15729-15735, 2006.

V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, and N. M. Markovic, Energy and Fuels from Electrochemical Interfaces, Nat. Mater, vol.2017, issue.1, pp.57-69

W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich et al., Toward the Rational Design of Non-Precious Transition Metal Oxides for Oxygen Electrocatalysis, Energy Environ. Sci, vol.2015, issue.5, pp.1404-1427

J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo et al., Materials for Solar Fuels and Chemicals, Nat. Mater, vol.2017, issue.1, pp.70-81

M. W. Kanan and D. G. Nocera, Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+, Science, vol.321, issue.5892, pp.1072-1075, 2008.

A. Grimaud, K. J. May, C. E. Carlton, Y. Lee, M. Risch et al., Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution, Nat. Commun, 2013.

J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-horn, A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles, Science, vol.334, issue.6061, pp.1383-1385, 2011.


J. T. Mefford, X. Rong, A. M. Abakumov, W. G. Hardin, S. Dai et al., Water Electrolysis on La 1?x Sr x CoO 3?? Perovskite Electrocatalysts, Nat. Commun, vol.7, 2016.

E. Fabbri, A. Habereder, K. Waltar, R. Kötz, and T. J. Schmidt, Developments and Perspectives of Oxide-Based Catalysts for the Oxygen Evolution Reaction

, Catal. Sci. Technol, vol.2014, issue.11, pp.3800-3821


E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B. Kim et al., Dynamic Surface Self-Reconstruction Is the Key of Highly Active Perovskite Nano-Electrocatalysts for Water Splitting, Nat. Mater, vol.2017, issue.9, pp.925-931


S. Cherevko, A. R. Zeradjanin, A. A. Topalov, N. Kulyk, I. Katsounaros et al., Dissolution of Noble Metals during Oxygen Evolution in Acidic Media, ChemCatChem, vol.6, issue.8, pp.2219-2223, 2014.


S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers et al., The Stability Number as a Metric for Electrocatalyst Stability Benchmarking, Nature Catalysis, vol.1, issue.7, pp.508-515, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02390894

M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions; National Association of Corrosion Engineers, 1974.

J. W. Ng, M. García-melchor, M. Bajdich, P. Chakthranont, C. Kirk et al., Gold-Supported Cerium-Doped NiOx Catalysts for Water Oxidation, Nat. Energy, vol.1, p.16053, 2016.

Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-horn, Synthesis and Activities of Rutile IrO 2 and RuO 2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions, J. Phys. Chem. Lett, vol.2012, issue.3, pp.399-404

P. Lettenmeier, L. Wang, U. Golla-schindler, P. Gazdzicki, N. A. Cañas et al., Nanosized IrO x -Ir Catalyst with Relevant Activity for Anodes of

. Angew and . Chem, , vol.128, pp.752-756, 2016.

T. Reier, H. N. Nong, D. Teschner, R. Schlögl, and P. Strasser, Electrocatalytic Oxygen Evolution Reaction in Acidic Environments -Reaction Mechanisms and Catalysts, Adv. Energy Mater, vol.2017, issue.1, p.1601275

R. R. Rao, M. J. Kolb, N. B. Halck, A. F. Pedersen, A. Mehta et al., Towards Identifying the Active Sites on RuO 2 (110) in Catalyzing Oxygen Evolution, Energy Environ. Sci, vol.2017, issue.12, pp.2626-2637

C. Spöri, J. T. Kwan, A. Bonakdarpour, D. P. Wilkinson, and P. Strasser, The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation, Angew. Chem., Int. Ed. Engl, vol.2017, issue.22, pp.5994-6021


A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp et al., Activation of Surface Oxygen Sites on an Iridium-Based Model Catalyst for the Oxygen Evolution Reaction, Nat. Energy, vol.2, p.16189, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471366

T. Li, O. Kasian, S. Cherevko, S. Zhang, S. Geiger et al., Atomic-Scale Insights into Surface Species of Electrocatalysts in Three Dimensions, Nat. Catalysis, vol.2018, issue.4, pp.300-305

O. Diaz-morales, F. Calle-vallejo, C. De-munck, and M. T. Koper, Electrochemical Water Splitting by Gold: Evidence for an Oxide Decomposition Mechanism, Chemical Science, issue.4, pp.2334-2343, 2013.


M. Wohlfahrt-mehrens and J. Heitbaum, Oxygen Evolution on Ru and RuO2 Electrodes Studied Using Isotope Labelling and On-Line Mass Spectrometry, J. Electroanal. Chem. Interfacial Electrochem, vol.237, issue.2, pp.85237-85240, 1987.

V. Pfeifer, T. E. Jones, J. J. Velasco-vélez, R. Arrigo, S. Piccinin et al., Situ Observation of Reactive Oxygen Species Forming on Oxygen-Evolving Iridium Surfaces, vol.8, pp.2143-2149, 2017.

D. F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal et al., Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS, Chem. Mater, vol.28, issue.18, pp.6591-6604, 2016.

A. Minguzzi, C. Locatelli, O. Lugaresi, E. Achilli, G. Cappelletti et al., Easy Accommodation of Different Oxidation States in Iridium Oxide Nanoparticles with Different Hydration Degree as Water Oxidation Electrocatalysts, ACS Catal, vol.5, issue.9, pp.5104-5115, 2015.

C. Costentin and D. G. Nocera, Self-Healing Catalysis in Water, Proc. Natl. Acad. Sci. 2017, vol.114, pp.13380-13384

T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones et al., Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER), J. Am. Chem. Soc, vol.137, issue.40, pp.13031-13040, 2015.

H. N. Nong, H. Oh, T. Reier, E. Willinger, M. Willinger et al., Oxide-Supported IrNiO x Core-Shell Particles as Efficient, Cost-Effective, and Stable Catalysts for Electrochemical Water Splitting, Angew. Chem., Int. Ed. Engl, vol.54, issue.10, pp.2975-2979, 2015.

H. G. Sanchez-casalongue, M. L. Ng, S. Kaya, D. Friebel, H. Ogasawara et al., Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction, Angew. Chem, vol.126, issue.28, pp.7297-7300, 2014.

L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A Highly Active and Stable IrO x /SrIrO 3 Catalyst for the Oxygen Evolution Reaction, Science, vol.353, issue.6303, pp.1011-1014, 2016.

O. Kasian, J. Grote, S. Geiger, S. Cherevko, and K. J. Mayrhofer, The Common Intermediates of Oxygen Evolution and Dissolution Reactions during Water Electrolysis on Iridium, Angew. Chem., Int. Ed. Engl, vol.57, issue.9, pp.2488-2491, 2018.

V. A. Saveleva, L. Wang, D. Teschner, T. Jones, A. S. Gago et al., Operando Evidence for a Universal Oxygen Evolution Mechanism on Thermal and Electrochemical Iridium Oxides, J. Phys. Chem. Lett, vol.2018, issue.11, pp.3154-3160
URL : https://hal.archives-ouvertes.fr/hal-02360209

E. Willinger, C. Massué, R. Schlögl, and M. G. Willinger, Identifying Key Structural Features of IrO x Water Splitting Catalysts, J. Am. Chem. Soc, vol.2017, issue.34, pp.12093-12101

Z. Feng, W. T. Hong, D. D. Fong, Y. L. Lee, Y. Yacoby et al., Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions, Accounts of Chemical Research, vol.49, issue.5, pp.966-973, 2016.

S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J. Grote et al., Oxygen and Hydrogen Evolution Reactions on Ru, RuO 2 , Ir, and IrO 2 Thin Film Electrodes in Acidic and Alkaline Electrolytes: A Comparative Study on Activity and Stability, Catal. Today, vol.262, pp.170-180, 2016.


Y. Kim, P. P. Lopes, S. Park, A. Lee, J. Lim et al., Balancing Activity, Stability and Conductivity of Nanoporous Core-Shell Iridium/Iridium Oxide Oxygen Evolution Catalysts, Nat. Commun, vol.8, issue.1, 2017.

C. Costentin, T. R. Porter, and J. Savéant, Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films, J. Am. Chem. Soc, vol.138, issue.17, pp.5615-5622, 2016.

H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan et al., The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis, ChemCatChem, vol.2010, issue.7, pp.724-761


O. Diaz-morales, S. Raaijman, R. Kortlever, P. J. Kooyman, T. Wezendonk et al., Iridium-Based Double Perovskites for Efficient Water Oxidation in Acid Media, Nat. Commun, vol.7, 2016.

A. Grimaud, O. Diaz-morales, B. Han, W. T. Hong, Y. Lee et al., Activating Lattice Oxygen Redox Reactions in Metal Oxides to Catalyse Oxygen Evolution, Nat. Chem, vol.2017, issue.5, pp.457-465

R. Zhang, N. Dubouis, M. Ben-osman, W. Yin, M. T. Sougrati et al., A Dissolution/Precipitation Equilibrium on the Surface of Iridium-Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media, Angew. Chem., Int. Ed. Engl, vol.58, issue.14, pp.4571-4575, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02388351

A. Minguzzi, O. Lugaresi, E. Achilli, C. Locatelli, A. Vertova et al., Observing the Oxidation State Turnover in Heterogeneous Iridium-Based Water Oxidation Catalysts, Chem. Sci, vol.2014, issue.9, pp.3591-3597

S. Geiger, O. Kasian, B. R. Shrestha, A. M. Mingers, K. J. Mayrhofer et al., Activity and Stability of Electrochemically and Thermally Treated Iridium for the Oxygen Evolution Reaction, J. Electrochem. Soc, vol.163, issue.11, pp.3132-3138, 2016.

V. Pfeifer, T. E. Jones, J. J. Velasco-vélez, R. Arrigo, S. Piccinin et al., Situ Observation of Reactive Oxygen Species Forming on Oxygen-Evolving Iridium Surfaces, vol.2017, pp.2143-2149

J. Wu, Q. Li, S. Sallis, Z. Zhuo, W. Gent et al., Fingerprint Oxygen Redox Reactions in Batteries through High-Efficiency Mapping of Resonant Inelastic X-Ray Scattering, Condens. Matter, vol.2019, issue.1

F. M. De-groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky et al., Oxygen 1 s x-Ray-Absorption Edges of Transition-Metal Oxides, Phys. Rev. B, issue.8, pp.5715-5723, 1989.


J. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, and P. C. Warren, Performance of Bellcore's Plastic Rechargeable Li-Ion Batteries, Solid State Ionics, pp.49-54, 1996.

G. Assat, C. Delacourt, D. A. Corte, and J. Tarascon, Choice-Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries, J. Electrochem. Soc, vol.163, issue.14, pp.2965-2976, 2016.

J. Rueff, J. M. Ablett, D. Céolin, D. Prieur, T. Moreno et al., The GALAXIES Beamline at the SOLEIL Synchrotron: Inelastic X-Ray Scattering and Photoelectron Spectroscopy in the Hard X-Ray Range, Journal of Synchrotron Radiation, vol.22, issue.1, pp.175-179, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01827967

J. Rueff, J. E. Rault, J. M. Ablett, Y. Utsumi, and D. Céolin, HAXPES for Materials Science at the GALAXIES Beamline, Synchrotron Radiation News, vol.31, issue.4, pp.4-9, 2018.

S. Adams, From Bond Valence Maps to Energy Landscapes for Mobile Ions in Ion-Conducting Solids, Solid State Ionics, vol.177, pp.1625-1630, 2006.

D. A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B, vol.1972, issue.12, pp.4709-4714

J. H. Scofield and . Hartree-slater, Subshell Photoionization Cross-Sections at 1254 and 1487 EV, Journal of Electron Spectroscopy and Related Phenomena, vol.8, issue.2, pp.80015-80016, 1976.

J. Suntivich, H. A. Gasteiger, N. Yabuuchi, and Y. Shao-horn, Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode, Journal of The Electrochemical Society, 2010.

R. J. Messinger, M. Ménétrier, E. Salager, A. Boulineau, M. Duttine et al., Revealing Defects in Crystalline Lithium-Ion Battery Electrodes by Solid-State NMR: Applications to LiVPO 4 F, Chem. Mater, vol.27, issue.15, pp.5212-5221, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01200997

D. Massiot, F. Fayon, M. Capron, I. King, S. Le-calvé et al., Modelling One-and Two-Dimensional Solid-State NMR Spectra: Modelling 1D and 2D Solid-State NMR Spectra. Magnetic Resonance in Chemistry, vol.40, pp.70-76, 2002.


C. P. Grey and N. Dupré, NMR Studies of Cathode Materials for Lithium-Ion Rechargeable Batteries, Chem. Rev, vol.104, issue.10, pp.4493-4512, 2004.