L. A. Lacey, Insect pathogens as biological control agents: Bac to the future, Journal of invertebrate pathology, vol.132, pp.1-41, 2015.

.. U. Ehlers and H. M. Ho-anen, Insect biocontrol with non-endemic entomopathogenic nematodes (Steinernema and Heterorhabditis spp): Conclusions and recommendations of a combined OECD and COST Wor shop on Scientific and egulatory Policy Issues, Biocontrol Science and Technology, vol.6, pp.295-302, 1996.

A. S. Negrisoli, M. S. Garcia, and C. Negrisoli,

C. B. Bernardi, D. Da-silva, and A. , Efficacy of entomopathogenic nematodes (Nematoda: habditida) and insecticide mixtures to control Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in corn crops, Crop Protection, vol.29, pp.677-683, 2010.

D. M. Viteri, A. M. Linares, and L. Flores, Use of the entomopathogenic nematode Steinernema carpocapsae in combination with lowtoxicity insecticides to control fall armyworm (Lepidoptera: Noctuidae) Larvae, Florida Entomologist, vol.101, pp.327-329, 2018.

A. M. Oppenhofer, P. S. Grewal, and E. M. Fuzy, Differences in penetration routes and establishment rates of four entomopathogenic nematode species into four white grub species, Journal of invertebrate pathology, vol.94, pp.184-195, 2007.

N. Balasubramanian, D. Toubarro, and N. Simoes, Biochemical study and in vitro insect immune suppression by a trypsin-li e secreted protease from the nematode Steinernema carpocapsae, Parasite Immunology, vol.32, pp.165-175, 2010.

D. Z. Chang, L. Serra, D. Lu, A. Mortazavi, and A. Dillman, A core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema, PLoS Pathogens, vol.15, 2019.

J. M. Crawford, C. Portmann, X. Zhang, M. B. Oeffaers, and J. Clardy, Small molecule perimeter defense in entomopathogenic bacteria, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.10821-10826, 2012.

A. Dillman, Comparative genomics of Steinernema reveals deeply conserved gene regulatory networ s, Genome Biology, vol.16, 2015.

B. Duvic, Cecropins as a mar er of Spodoptera frugiperda immunosuppression during entomopathogenic bacterial challenge, Journal of insect physiology, vol.58, pp.881-888, 2012.

D. Ji and Y. Im, An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua, Journal of insect physiology, vol.50, pp.489-496, 2004.

I. H. Im, e insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin, BMC genomics, vol.18, 2017.

M. D. Lavine and M. Strand, Insect hemocytes and their role in immunity, Insect biochemistry and molecular biology, vol.32, pp.1295-1309, 2002.

G. Bidla, M. Lindgren, U. Theopold, and M. S. Dushay, Hemolymph coagulation and phenoloxidase in Drosophila larvae, Developmental and Comparative Immunology, vol.29, pp.669-679, 2005.

M. Anost,

M. J. Gorman, Phenoloxidases in insect immunity, pp.69-96, 2008.

A. Lu, Insect prophenoloxidase: the view beyond immunity, Frontiers in Physiology, vol.5, pp.252-252, 2014.

L. C. Bartholomay, Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus, Infection and immunity, vol.72, pp.4114-4126, 2004.

G. Dimopoulos, Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection, Proceedings of the National Academy of Sciences USA, vol.99, pp.8814-8819, 2002.

P. Irving, New insights into Drosophila larval haemocyte functions through genome-wide analysis, Cell Microbiology, vol.7, pp.335-350, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00093694

H. Jiang, Molecular identification of a bevy of serine proteinases in Manduca sexta hemolymph, Insect biochemistry and molecular biology, vol.35, pp.931-943, 2005.

M. Anost,

H. Jiang, Clip-domain serine proteases as immune factors in insect hemolymph, Current Opinion in Insect Science, vol.11, pp.47-55, 2015.

A. Haghayeghi, A. Sarac, S. Czerniec-i, J. Grosshans, and F. Schoc, Pellino enhances innate immunity in Drosophila, Mechanisms of Development, vol.127, pp.301-307, 2010.

S. Ji, Cell-surface localization of Pellino antagonizes Toll-mediated innate immune signalling by controlling MyD88 turnover in Drosophila, Nature. Communications, vol.5, 2014.

A. N. , Characterization and transcriptional profiles of three Spodoptera frugiperda genes encoding cysteine-rich peptides. A new class of defensin-li e genes from lepidopteran insects?, Gene, vol.319, pp.43-53, 2003.

D. Destoumieux-garzon, Spodoptera frugiperda X-tox protein, an immune related defensin rosary, has lost the function of ancestral defensins, PloS one, vol.4, 2009.

T. Michel, J. M. Eichhart, J. A. Hoffmann, and J. Oyet, Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein, Nature, vol.414, pp.756-759, 2001.

S. Zhao, A novel peptidoglycan recognition protein involved in the prophenoloxidase activation system and antimicrobial peptide production in Antheraea pernyi, Developmental and Comparative Immunology, vol.86, pp.78-85, 2018.

,. Arefin, B. Eopold, and U. , Damage signals in the insect immune response, Frontiers in Plant Science, vol.5, 2014.

C. Qiao, S P gene is required for Helicoverpa armigera prophenoloxidase activation and nodulation response, Developmental and Comparative Immunology, vol.44, pp.94-99, 2014.

,. Senger, ,. Harris, and M. Levine, GATA factors participate in tissue-specific immune responses in Drosophila larvae, Proceedings of the National Academy of Sciences USA, vol.103, pp.15957-15962, 2006.

A. Vilcins-as and M. Wedde, Insect inhibitors of metalloproteinases, IUBMB life, vol.54, pp.339-343, 2002.

M. Wedde, C. Weise, P. Opace, and P. Fran-e, Vilcins as, A. Purification and characterization of an inducible metalloprotease inhibitor from the hemolymph of greater wax moth larvae, Galleria mellonella, European journal of biochemistry, vol.255, pp.535-543, 1998.

A. Clermont, Cloning and expression of an inhibitor of microbial metalloproteinases from insects contributing to innate immunity, Biochemical Journal, vol.382, pp.315-322, 2004.

C. Caldas, A. Cherqui, A. Pereira, and N. Simões, Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immunosuppression, Applied and environmental microbiology, vol.68, pp.1297-1304, 2002.

Y. J. Jing, D. Toubarro, Y. J. Hao, and N. Simoes, Cloning, characterisation and heterologous expression of an astacin metalloprotease, Sc-AST, from the entomoparasitic nematode Steinernema carpocapsae, Molecular and Biochemical Parasitology, vol.174, pp.101-108, 2010.

M. Massaoud, J. Maro-hazi, and I. Vene-ei, Enzymatic characterization of a serralysin-li e metalloprotease from the entomopathogen bacterium, Xenorhabdus. Biochimica et biophysica acta 1814, pp.1333-1339, 2011.

T. M. Schmidt, B. Blea-ley, and .. H. Nealson, Characterization of an extracellular protease from the insect pathogen Xenorhabdus luminescens, Applied and environmental microbiology, vol.54, pp.2793-2797, 1988.

H. Myllyma-i, S. Valanne, and M. Amet, e Drosophila imd signaling pathway, Journal of immunology, vol.192, pp.3455-3462, 2014.

P. .. Umani, P. Malhotra, S. Mu-herjee, and .. Bhatnagar, A draft genome assembly of the army worm, Spodoptera frugiperda, Genomics, vol.104, pp.134-143, 2014.

S. Nanda-umar, H. Ma, and A. S. Han, Whole-genome sequence of the Spodoptera frugiperda Sf9 insect cell line, Genome announcements, vol.5, 2017.

T. Cheng, Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest, Nature ecology & evolution, vol.1, pp.1747-1756, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01837307

S. L. Pearce, Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species, BMC biology, vol.15, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02629185

S. Mina-hina, J. Yang, and . Steward, Tamo selectively modulates nuclear import in Drosophila, Genes to Cells, vol.8, pp.299-310, 2003.

S. Chou, Transferred interbacterial antagonism genes augment eu aryotic innate immune function, Nature, vol.518, pp.98-101, 2015.

J. L. Aymeric, A. Givaudan, and B. Duvic, Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens, Molecular Immunology, vol.47, pp.2342-2348, 2010.

M. Mastore, V. Arizza, B. Manachini, and M. F. Brivio, Modulation of immune responses of hynchophorus ferrugineus (Insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (Nematoda: habditida), Insect Science, vol.22, pp.748-760, 2015.

J. M. Pena, M. A. Carrillo, and E. A. Hallem, Variation in the susceptibility of Drosophila to different entomopathogenic nematodes, Infection and Immunity, vol.83, pp.1130-1138, 2015.

S. Binda-ossetti, M. Mastore, M. Protasoni, and M. F. Brivio, Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response, Journal of invertebrate pathology, vol.133, pp.110-119, 2016.

, GTGCCCAACTTCAACACGTA-3' 5'-GTAGTCCTTGCGGTCCAAGA-3' 5'-GACTGTCCCAAGTCCTGAGC-3' 5'-TCCAATGGCACTGAACACAT-3' 5'-GTCAGCGCCGCGCCAGA-3' 5'-TTGGCTGCACCCAACACCT-3' 5'-ATCTGCTTCCTGGCTGTGTC-3' 5'-CCTCTTCGCTAGATCCTCCA-3' 5'-TTTTGTGTTTCGCTGCTGTC-3' 5'-GGCCAAAAAGACCAGAATCA-3' 5'-AGCAAAAGGACCTCAAGCAG-3' 5'-CACGGCGTAAATAGGCATCT-3' 5'-ATGAAGGCTTGCGTGGTTCT-3' 5'-CACCCGACTTGTAACCTCGT-3' 5'-AAGCTGTTCGGTCTCGTTGT-3' 5'-GGATGTCGCCTAGTTGTGGT-3' 5'-ACCTTTGTGCTGCTCCTCAT-3' 5'-CAGGCCTAGTTGGTGATCGT-3' 5'-GTACGCATCGCAATCAGGTA-3' 5'-CTTTGGAACGAGCACCTAGC-3' 5'-TATGGCACCAACAAAACGAA-3' 5'-CGATACCACCGAACCTGACT-3' 5'-TACGCGTGTCCACAACTCTC-3' 5'-CATGCCTTGTTCTCATCGCG-3' 5'-TTGAGGAGTTGCAGTGGTTG-3' 5'-GGGGGTGTTTGATGATGTTC-3' 5'-ATCGCCTGCATTGGTTTTAC-3' 5'-CGTAAAATGGTGCGGTTCTT-3' 5'-TCTCCTTGAAGCATTGAGCA-3' 5'-AAACGCACCCAACTCTTGAC-3' 5'-AATGGTGCAGGGAACGTAAG-3' 5'