Y. An, M. Jaasim, V. Raman, F. E. Hernandez-perez, J. Sim et al., Homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) in compression ignition engine with low octane gasoline, vol.158, pp.181-191, 2018.

J. N. Balo and P. L. Cloirec, Validating a prediction method of mean residence time spatial distributions, AIChE Journal, vol.46, pp.675-683, 2000.

M. Barrère, Modèles de combustion, vol.148, pp.295-308, 1974.

H. Bendu and S. Murugan, Homogeneous charge compression ignition (HCCI) combustion : Mixture preparation and control strategies in diesel engines, Renewable and Sustainable Energy Reviews, vol.38, pp.732-746, 2014.

M. Berglund, E. Fedina, C. Fureby, J. Tegner, and V. Sabelnikov, Finite rate chemistry Large-Eddy Simulation of self-ignition in supersonic combustion ramjet, AIAA Journal, vol.48, issue.3, pp.540-550, 2010.

G. Bernard, R. Lebas, and F. X. Demoulin, A 0D phenomenological model using detailed tabulated chemistry methods to predict diesel combustion heat release and pollutant emissions, SAE Technical Paper, pp.2011-2012, 2011.

A. Bhagatwala, J. H. Chen, and T. Lu, Direct numerical simulations of HCCI/SACI with ethanol, Combustion and Flame, pp.1826-1841, 2014.

R. W. Bilger, Turbulent jet diffusion flames, Progress in Energy and Combustion Science, vol.1, pp.87-109, 1976.

R. Borghi and D. Dutoya, On the scale of the fluctuations in turbulent combustion, th Symposium (International) on Combustion, vol.17, pp.235-244, 1978.

R. Borghi and D. Escudié, Assessment of a theoretical model of turbulent combustion by comparison with a simple experiment, Combustion and Flame, vol.56, issue.2, pp.149-164, 1984.

R. Borghi, On the structure and morphology of turbulent premixed flames, Recent Advances in Aerospace Sci, 1985.

R. Borghi and M. Gonzalez, Applications of lagrangian models to turbulent combustion, Combustion and Flame, vol.63, pp.239-250, 1986.

R. Borghi, Turbulent combustion modelling, Progress in Energy and Combustion Sciences, vol.14, pp.245-292, 1988.

R. Borghi and M. Destriau, Combustion and flames, chemical and physical principles, 1998.

R. Borghi and M. Champion, Modélisation et théorie des flammes, 2000.

Z. Bouali, C. Pera, and J. Reveillon, Numerical analysis of the influence of two-phase flow mass and heat transfer on n-heptane autoignition, Combustion and Flame, vol.159, pp.2056-2068, 2012.

L. Bouheraoua, P. Domingo, and G. Ribert, Large-Eddy Simulation of a supersonic lifted jet flame : Analysis of the turbulent flame base, Combustion and Flame, vol.179, pp.199-218, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611149

N. Bourgeois, S. S. Goldsborough, G. Vanhove, M. Duponcheel, H. Jeanmart et al., CFD simulations of Rapid Compression Machines using detailed chemistry : Impact of multi-dimensional effects on the autoignition of the iso-octane, Combustion and Flame, vol.36, issue.1, pp.383-391, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02336668

N. Bourgeois, S. S. Goldsborough, H. Jeanmart, and F. Contino, CFD simulations of Rapid Compression Machines using detailed chemistry : Evaluation of the 'crevice containment' concept, Combustion and Flame, vol.189, pp.225-239, 2018.

J. Boussinesq, Essai sur la théorie des eaux courantes, Mémoire, Académie des Siences, vol.23, pp.252-260, 1877.

D. Bradley, How fast can we burn ?, Proceedings of the Combustion Institute, vol.24, pp.247-62, 1992.

D. Bradley, M. Lawes, M. J. Scotte, C. G. Sheppard, D. A. Green-halgh et al., Measurement of temperature PDFS in turbulent flames by the CARS technique, 24 th Symposium (International) on Combustion, vol.24, pp.527-535, 1992.

K. N. Bray and J. B. Moss, A unified statistical model of the premixed turbulent flames, Acta Astronautica, vol.4, pp.291-319, 1977.

K. N. Bray, Turbulent Reactive Flows, 1995.

K. Bray, P. Domingo, and L. Vervisch, Role of the progress variable in models for partially premixed turbulent combustion, Combustion and Flame, vol.141, issue.4, pp.431-437, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01672206

K. N. Bray, M. Champion, P. A. Libby, and N. Swaminathan, Finite rate chemistry and presumed PDF models for premixed turbulent combustion, Combustion and Flame, vol.146, pp.665-673, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00148460

E. Bruce-nauman, Residence time theory, Industrial & Engineering Chemistry Research, vol.47, issue.10, pp.3752-3766, 2008.

S. P. Burke and T. E. Schumann, Diffusion flames, Industrial And Engineering Chemistry, vol.20, pp.998-1004, 1928.

V. Bykov and U. Mass, The extension of ILDM concept to reaction-diffusion manifolds, Combustion Theory and Modelling, vol.11, issue.6, pp.839-862, 2007.

R. Cabra, T. Myhrvold, J. Y. Chen, and R. W. Dibble, Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow, Proceedings of the Combustion Institute, vol.29, pp.1881-1888, 2002.

R. Cabra, J. Y. Chen, R. W. Dibble, A. N. Karpetis, and R. S. Barlow, Lifted methane air jet flames in a vitiated coflow, Combustion and Flame, vol.143, pp.491-506, 2005.

S. Candel and T. Poinsot, Flame strech and the balance equation for the flame area, Combustion, Science and Technology, vol.70, pp.1-15, 1990.

R. Cant, S. Pope, and K. Bray, Modelling of flamelet surface to volume ratio in turbulent premixed combustion, th Symposium (International) on Combustion, vol.23, pp.809-815, 1990.

G. F. Carrier, F. E. Fendell, and F. E. Marble, The effect of strain rate on diffusion flames, SIAM Journal on Applied Mathematics, vol.28, pp.463-500, 1975.

J. Y. Chen, Stochastic modeling of partially stirred reactors, Combustion Science and Technology, vol.122, pp.63-94, 1997.

W. Cheng and J. Diringer, Numerical modelling of si engine combustion with a flame sheet model, Congress and Exposition, 1991.

C. R. Choi and K. Huh, Development of a coherent flamelet model for spark ignited turbulent premixed flame in a close vessel, Combustion and Flame, vol.114, pp.336-348, 1998.

J. Chomiak, A possible propagation mechanisme of turbulent flames at high Reynolds numbers, Combustion and Flame, vol.15, pp.319-321, 1970.

, Code Saturne User Guides, 2016.

O. Colin, F. Ducros, D. Veynante, and T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Physics of Fluids, vol.12, issue.7, pp.1843-1863, 2000.

O. Colin, A. Da-cruz, and S. Jay, Detailed chemistry-based autoignition model including low temperature phenomena applied to 3-D engine calculations, Proceedings of the Combustion Institute, vol.30, pp.2649-2656, 2005.

S. M. Correa, Turbulence-chemistry interactions in the intermediate regime of premixed combustion, Combustion and Flame, vol.93, pp.41-60, 1993.

S. M. Correa and M. E. Braaten, Parallel simulations of partially stirred methane combustion, Combustion and Flame, vol.93, pp.469-486, 1993.

F. Contino, H. Jeanmart, T. Lucchini, and G. Errico, Coupling of in situ adaptive tabulation and dynamic adaptive chemistry : An effective method for solving combustion in engine simulations, Proceedings of the Combustion Institute, vol.33, pp.3057-3064, 2011.

F. Contino, T. Lucchini, G. Errico, C. Duynslaegher, V. Dias et al., Simulations of advanced combustion modes using detailed chemistry combined with tabulation and mechanism reduction techniques, SAE International Journal of Engines, vol.5, issue.2, pp.185-196, 2012.

B. B. Dally, A. N. Karpetis, and R. S. Barlow, Structure of turbulent non-premixed flames in a diluted hot coflow, Proceedings of the Combustion Institute, vol.29, pp.1147-1154, 2002.

G. ;. Damköhler and . Zh-elektrochemistry, Influence of turbulence on flame velocity in gaseous mixtures, vol.46, p.601, 1940.

G. Dixon-lewis, T. David, P. Gaskell, S. Fukutani, H. Jinno et al., Calculation of the strcture and extinction limit of a methane-air counterflow diffusion flame in the forward stagnation region of a porous cylinder, Symposium (International) on Combustion, vol.20, pp.1893-1904, 1985.

J. W. Dold, Analysis of a slowly varying triple flame, Combustion and Flame, vol.76, pp.71-88, 1989.

P. Domingo and L. Vervisch, Triple flames and partially premixed combustion in autoignition of nonpremixed mixture, Proceedings of the Combustion Institute, vol.26, pp.233-240, 1996.

P. Domingo and K. N. Bray, Laminar flamelet expressions for pressure fluctuation terms in second moment models of premixed turbulent combustion, Combustion and Flame, vol.121, pp.555-574, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02008006

P. Domingo, L. Vervisch, and K. N. Bray, Partially premixed flamelets in LES of nonpremixed turbulent combustion, Combustion Theory and Modelling, vol.6, issue.4, pp.529-551, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01672226

P. Domingo, L. Vervisch, and D. Veynante, Large-Eddy Simulation of a lifted methane jet flame in a vitiated coflow, Combustion and Flame, vol.152, issue.3, pp.415-432, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00270734

C. Dopazo and E. E. O'brien, An approach to the autoignition of a turbulent mixture, Acta Astronautica, vol.1, issue.9, pp.1239-1266, 1974.

N. Enjalbert, P. Domingo, and L. Vervisch, Mixing time-history effects in Large Eddy Simulation of non-premixed turbulent flames : Flow-Controlled Chemistry Tabulation, Combustion and Flame, vol.159, pp.336-352, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01672159

I. Ertesvag and B. Magnussen, The eddy dissipation turbulence energy cascade model, Combustion Science and Technology, vol.159, pp.213-235, 2000.

F. Ettner, K. G. Vollmer, and T. Sattelmayer, Numerical simulation of the Deflagration-to-Detonation Transition in inhomogeneous mixtures, Journal of Combustion, issue.1-6, pp.1-15, 2014.

A. Favre, L. S. Kovasznay, R. Dumas, and M. Coantic, La turbulence en mécanique des fluides, 1976.

V. Fichet, Modélisation de la combustion du gaz naturel par réseaux de réacteurs avec cinétique chimique détaillée, 2008.

V. Fichet, M. Kanniche, P. Plion, and O. Gicquel, A reactor network model for predicting NOx emissions in gas turbines, Fuel, vol.89, pp.2202-2210, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02003109

B. Fiorina, R. Baron, O. Gicquel, D. Thevenin, S. Carpentier et al., Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM, Combustion Theory and Modelling, vol.7, pp.449-470, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00256666

B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, and N. Darabiha, Approximating the chemical structure of partially premixed and diffusion counterflowflames using FPI flamelet tabulation, Combustion and Flame, vol.140, pp.147-160, 2005.

B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, and N. Darabiha, Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF, Proceedings of the Combustion Institute, vol.30, pp.867-874, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00116320

M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model, Physics of Fluids, vol.3, issue.7, pp.1760-1765, 1991.

F. Ghirelli and B. Leckner, Transport equation for the local residence time of a fluid, Chemical Engineering Science, vol.59, pp.513-523, 2004.

O. Gicquel, N. Darabiha, and D. Thevenin, Développement d'une nouvelle méthode de réduction des schémas cinétiques : Application au méthane, 1999.

O. Gicquel, N. Darabiha, and D. Thevenin, Laminar premixed hydrogen / air counterflow flame simulation using flame prolongation of ILDM with differential diffusion, Proceedings of Combustion Institute, vol.28, pp.1901-1908, 2000.

S. Ghosal and L. Vervisch, Theoretical and numerical investigation of a symmetrical triple flame using a parabolic flame tip approximation, Journal of Fluid Mechanics, vol.415, pp.227-260, 2000.

L. Gomet, V. Robin, and M. Mura, Influence of residence and scalar mixing time scales in non-premixed combustion in supersonic turbulent flows, Science and Technology, vol.184, pp.1471-1501, 2012.

D. G. Goodwin, H. K. Moffat, and R. L. Speth, Cantera : An Objectoriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, 2017.

L. J. Clifford, A. M. Milne, and B. A. Murray, Numerical modeling of chemistry and gas dynamics during shock-induced ethylene combustion, Combustion and Flame, vol.104, pp.311-327, 1996.

L. J. Clifford, A. M. Milne, T. Turányi, and D. Boulton, An Introduction Parameter Model for shock-induced hydrogen combustion simulations, Combustion and Flame, vol.113, pp.106-118, 1998.

F. C. Gouldin, K. N. Bray, and J. Y. Chen, Chemical closure model for fractal flamelets, Combustion and Flame, vol.77, pp.241-259, 1989.

M. Hallback, A. V. Johansson, and A. D. Burden, The basic of turbulence modelling, Turbulence and Transition Modelling, pp.81-154, 1996.

J. Hasslberger, L. R. Boeck, and T. Sattelmayer, Numerical simulation of deflagration-to-detonation transition in large confined volumes, Journal of Loss Prevention in the Process Industries, vol.36, pp.371-379, 2015.

H. C. Hottel and W. R. Hawthorne, Diffusion in laminar flame jets, Symposium (International) on Combustion, pp.254-266, 1949.

J. Janicka, W. Kolbe, and W. Kollmann, Closure of the transport equation for the probability density function of turbulent scalar fields, Journal of Non-Equilibrium Thermodynamics, vol.4, pp.47-66, 1979.

T. L. Jiang, W. S. Chen, M. J. Tsai, and H. H. Chiu, A numerical investigation of multiple flame configurations in convective droplet gasification, Combustion and Flame, vol.103, issue.3, pp.221-238, 1995.

M. Kanniche, Modèles de turbulence au second ordre :écoulements complexes ou stratifiés, 1990.

A. Karanam, P. K. Sharma, and S. Ganju, Numerical simulation and validation of flame acceleration and DDT in hydrogen air mixtures, International Journal of Hydrogen Energy, vol.43, pp.17492-17504, 2018.

K. Q. Kha, C. Losier, V. Robin, A. Mura, and M. Champion, Relevance of two basic turbulent premixed combustion models for the numerical simulations of V-shaped flames, Science and Technology, vol.188, pp.1878-1903, 2016.

K. Q. Kha, V. Robin, A. Mura, and M. Champion, Implications of laminar flame finite thickness on the structure of turbulent premixed flames, Journal of Fluid Mechanics, vol.787, pp.116-147, 2016.

K. Q. Kha, Rapport post-doc CAPA, 2018.

P. N. Kioni, B. Rogg, K. N. Bray, and A. Linan, Flame spread in laminar mixing layers : the triple flame, Combustion and Flame, vol.95, issue.3, pp.277-290, 1993.

P. N. Kioni, K. N. Bray, D. A. Greenhalgh, and B. Rogg, Experimental and numerical studies of a triple flame, Combustion and Flame, vol.116, pp.192-206, 1998.

F. C. Knopf, Modeling, Analysis and Optimization of Process and Energy Systems, 2011.

A. N. Kolmogorov, Dissipation of energy in a locally isotropic turbulence, Doklady Akad. Nauk SSSR, vol.32, p.141, 1941.

. Soc and . Translations, Providence R.I), vol.2, p.87, 1958.

A. L. Kuhl, J. B. Bell, and V. E. Beckner, Heterogeneous continuum model of aluminum particle combustion in explosions, Combustion, Explosion, and Shock Waves, vol.46, issue.4, pp.433-448, 2010.

K. Kuo, Principles of combustion, 1986.

V. R. Kuznetsov, Mixing up to a molecular level and the development of a chemical reaction in a turbulent flow, Fluid Dynamics, vol.12, issue.3, pp.369-377, 1977.

B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, vol.3, pp.269-289, 1974.

B. E. Launder, Advanced turbulence models for industrial applications, Turbulence and Transition Modelling, 1996.

S. K. Lelem, Compact finite difference schemes with spectral-like resolution, Journal of computational physics, vol.103, pp.16-42, 1992.

O. Levenspiel, Chemical Reactor Omnibook, 1993.

S. K. Liew, K. N. Bray, and J. B. Moss, A flamelet model of turbulent non-premixed combustion, Science and Technology, vol.27, pp.69-73, 1981.

S. K. Liew, K. N. Bray, and J. B. Moss, A stretched laminar flamelet model of turbulent non-premixed combustion, Combustion and Flame, vol.56, pp.199-213, 1984.

F. C. Lockwood and A. S. Naguib, The prediction of the fluctuations in the properties of free, round-jet, turbulent, diffusion flames, Combustion and Flame, vol.24, pp.109-124, 1975.

G. Lodato, P. Domingo, and L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, Journal of Computational Physics, vol.227, issue.10, pp.5105-5143, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01672195

U. Maas and S. Pope, Implementation of simplified chemical kinetics based on low-dimensional manifolds, Proceedings of the Combustion Institute, vol.24, pp.719-729, 1992.

U. Maas and S. Pope, Simplifying chemical kinetics : Intrisic lowdimensional manifolds in composition space, Combustion and Flame, vol.88, pp.239-264, 1992.

B. Magnussen and B. Hjertager, On the mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, th Symposium (International) on Combustion, vol.16, pp.719-729, 1976.

B. Magnussen, On the structure of turbulence and a generalised eddy dissipation concept for chemical reactions in turbulent flow, 19 th AIAA Aerospace Sciences Meeting, 1981.

B. Magnussen, The eddy dissipation concept, ECCOMAS Thematic Conference on Computational Combustion, 2005.

I. M. Mándity, S. B. Ötvösötvös, and F. Fülöp, Strategic application of residence-time control in continuous-flow reactors, vol.4, pp.2191-1363, 2015.

T. Mantel and R. Borghi, A new model of premixed wrinkled flame based on a scalar dissipation equation, Combustion and Flame, vol.96, pp.443-457, 1994.

C. N. Markides and E. Mastorakos, An experimental study of hydrogen autoignition in a turbulent co-flow of heated air, Proceedings of the Combustion Institute, vol.30, pp.883-891, 2005.

E. Mastorakos, Numerical simulations of autoignition in turbulent mixing flows, Combustion and Flame, vol.109, pp.198-223, 1997.

E. Mastorakos, Ignition of turbulent non-premixed flames, Progress in Energy and Combustion Science, vol.35, pp.57-97, 2009.

G. Mauviot, Développement d'une modélisation phénoménologique des chambres de combustionà moteur piston, réduction de modèle physique 3d dans la perspective d(une intégration dans un outil de simulation système, IFP Rueil Malmaison, issue.92, 2007.

C. Meneveau and T. Poinsot, Stretching and quenching of flamelets in premixed turbulent combustion, Combustion and Flame, vol.86, pp.311-332, 1991.

S. Menon and C. Fureby, Computational combustion, 2010.

R. Mercier, T. Schmitt, D. Veynante, and B. Fiorina, The influence of combustion SGS sub-models on the resolved flame propagation. Application to the LES of the Cambridge stratified flames, Proceedings of the Combustion Institute, vol.35, pp.1259-1267, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219284

Q. Michalski, K. Q. Kha, B. Boust, V. Robin, M. Bellenoue et al., Joint numerical and experimental characterization of the turbulent reactive flow within a constant volume vessel, 54th AIAA/SAE/ASEE Joint Propulsion Conference, 2018.

Q. Michalski, B. Boust, and M. Bellenoue, Toward a cyclic selfignited Constant-Volume Combustion for airbreathing propulsion applications, 54th AIAA/SAE/ASEE Joint Propulsion Conference, 2018.

Q. Michalski, B. Boust, and M. Bellenoue, Experimental investigation of ignition stability in a cyclic constant-volume combustion chamber featuring relevant conditions for air-breathing propulsion, Flow, Turbulent and Combustion, vol.102, pp.279-298, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02284854

Q. Michalski, Étude expérimentale de la combustionà volume constant pour la propulsion aérobie : influence de l'aérodynamique et de la dilution sur l'allumage et de combustion, 2019.

J. B. Michel, O. Colin, and C. Angelberger, On the formulation of species reaction rates in the context of multi-species CFD codes using complex chemistry tabulation techniques, Combustion and Flame, vol.157, pp.701-714, 2010.

Y. Mizobuchi, S. Tachibana, J. Shinio, S. Ogawa, and T. Takeno, A numerical analysis of the structure of a turbulent hydrogen jet lifted flame, Proceedings of the Combustion Institute, vol.29, pp.2009-2015, 2002.

P. Moin, K. Squires, W. Cabot, and S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Physics of Fluids, vol.3, issue.11, pp.2746-2757, 1991.

R. Mouangue, M. Obounou, L. Gomet, and A. Mura, Lagrangian intermittent modelling of a turbulent lifted methane-air jet flame stabilized in a vitiated air co-flow, Flow, Turbulence and Combustion, vol.92, pp.731-765, 2014.

Y. Moule, V. Sabelnikov, and A. Mura, Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets, Combustion and Flame, vol.161, pp.2647-2668, 2014.

L. Muniz and M. G. Mungal, Instantaneous flame-stabilization velocities in lifted-jet diffusion flames, Combustion and Flame, vol.111, pp.16-31, 1997.

A. Mura and R. Borghi, Towards an extended scalar dissipation equation for turbulent premixed combustion, Combustion and Flame, vol.133, pp.193-196, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00014835

A. Mura and R. Borghi, Introducing a new partial pdf approche for turbulent combustion modeling, Combustion and Flame, vol.136, issue.3, pp.377-382, 2004.

A. Mura, V. Robin, and M. Champion, Modeling of scalar dissipation in partially premixed turbulent flames, Combustion and Flame, vol.149, issue.1, pp.217-224, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00246547

A. Mura and F. X. Demoulin, Lagrangian intermittent modelling of turbulent lifted flames, Combustion Theory and Modelling, vol.11, issue.2, pp.227-257, 2007.

A. Mura, K. Tsuboi, and T. Hasegawa, Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data, Combustion Theory and Modelling, vol.12, issue.4, pp.671-698, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00414161

A. Mura, V. Robin, K. Q. Kha, and M. Champion, A layered description of a premixed flame stabilized in stagnating turbulence, Combustion Science and Technology, vol.188, issue.9, pp.1592-1618, 2016.

F. Nicoud and F. Ducros, Subgrid-scale modelling based on the square of the velocity gradient tensor, Combustion and Flame, vol.157, pp.465-475, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00910373

F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, Using singular values to build a subgrid-scale model for large eddy simulations, Physics of Fluids, vol.23, issue.8, pp.85-106, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00802472

M. Obounou, M. Gonzalez, and R. Borghi, A Lagrangian model for predicting turbulent diffusion flames with chemical kinetic effects, th Symposium (International) on Combustion, vol.25, pp.1107-1113, 1994.

J. Oijen, F. Lammers, L. De, and . Goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combustion and Flame, vol.127, issue.3, pp.2124-2134, 2000.

Ó. Conaire, M. , H. J. Curran, J. M. Simmie, W. J. Pitz et al., A comprehensive modeling study of hydrogen oxidation, International Journal of Chemical Kinetics, vol.36, issue.11, pp.603-622, 2004.

E. S. Oran, J. P. Boris, T. R. Young, J. R. , M. Flanigan et al., Simulations of gas phase detonations : introduction of an induction parameter model, NRL Memorandum Report, p.4255, 1980.

N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Progress in Energy and Combustion Science, vol.10, pp.319-339, 1984.

N. Peters, Laminar flamelet concepts in turbulent combsution, 21 st Symposium (International) on Combustion, pp.1231-1250, 1986.

N. Peters and R. Kee, The computation of stretched laminar methaneair diffusion flames using a reduced four-step mechanism, Combustion and Flame, vol.68, issue.1, pp.17-29, 1987.

N. Peters, The turbulent burning velocity for large-scale and small-scale turbulence, Journal of Fluid Mechanics, vol.384, pp.107-132, 1999.

N. Peters, Turbulent combustion, 2000.

C. Pires-da and A. , Three-dimensional modeling of self-ignition in HCCI and conventional diesel engines, Combustion Science and Technology, vol.176, pp.867-887, 2004.

N. Peters, A consistent level set formulation for large-eddy simulation of premixed turbulent combustion, Combustion and Flame, vol.143, issue.4, pp.587-598, 2005.

T. Poinsot, T. Echekki, and M. G. Mungal, A study of the laminar flame tip and implications for premixed turbulent combustion, Combustion, Science and Technology, vol.81, issue.1-3, pp.45-73, 1992.

E. Pomraning, Development of Large Eddy Simulation turbulence models, 2000.

E. Pomraning and C. J. Rutland, Dynamic one-equation non viscosity large-eddy simulation model, AIAA Journal, vol.40, issue.4, pp.689-701, 2002.

S. Pope, The evolution of surface in turbulence, International Journal of Engineering Sciences, vol.26, issue.5, pp.445-469, 1988.

L. Prandtl, Investigations on turbulent flow, Zeitschrift fur angewandte Mathematik und Mechanik, vol.5, p.136, 1925.

Z. Ren and S. B. Pope, An investigation of the performance of turbulent mixing models, Combustion and Flame, vol.136, pp.208-216, 2004.

Z. Ren and S. B. Pope, The use of slow manifolds in reactive flows, Combustion and Flame, vol.147, pp.243-261, 2006.

G. Ribert, K. Wang, and L. Vervisch, A multi-zone self similar chemistry tabulation with application to auto-ignition including cool-flames effects, Fuel, vol.91, pp.87-92, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01672161

J. P. Rivere and M. Mechkor, Modélisation deséchanges thermiques sur la paroi de la chambre de combustion, 2005.

V. Robin, Contributionà la modélisation desécoulements turbulents réactifs partiellement prémélangés, 2007.

V. Robin, A. Mura, and M. Champion, Direct and indirect thermal expansion effects in turbulent premixed flames, Journal of Fluid Mechanics, vol.689, pp.149-182, 2011.

V. Robin, A. Mura, and M. Champion, Algebraic models for turbulent transports in premixed flames, Combustion Science and Technology, vol.184, pp.1718-1742, 2012.

C. J. Rutland, Large-eddy simulations for internal combustion engines -a review, International Journal of Engine Research, vol.12, issue.5, pp.421-451, 2011.

V. A. Sabelnikov, C. Corvellec, and P. Bruel, Analysis of the influence of cold front quenching on the turbulent burning velocity associated with an Eddy-Break-Up model, Combustion and Flame, vol.113, pp.492-497, 1998.

V. A. Sabelnikov and C. Fureby, LES combustion modeling for high Re flames using a multi-phase analogy, Combustion and Flame, vol.160, issue.1, pp.83-96, 2013.

M. Sandberg, What is ventilation efficiency ?, Building and Environment, vol.16, pp.123-135, 1981.

M. Sandberg and M. Sjoberg, The use of moments for assessing air quality in ventilated rooms, Building and Environment, vol.18, pp.181-197, 1983.

P. Sagaut, Large Eddy Simulation for incompressibe flows : an introduction, 2000.

O. Schulz, T. Jaravel, T. Poinsot, B. Cuenot, and N. Noiray, A criterion to distinguish autoignition and propagation applied to a lifed methane-air jet flame, Proceedings of the Combustion Institute, vol.36, pp.1637-1644, 2017.

D. A. Schwer, Multi-dimensional simulations of liquide-fueled JP-10/oxygen detonations, 2019.

S. Serra, V. Robin, M. Mura, and M. Champion, Density variations effects in turbulent diffusion flames : modeling of unresolved fluxes, Science and Technology, vol.186, pp.1370-1391, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02102426

D. Shin, R. D. Sandberg, and E. S. Richardson, Self-similarity of fluid residence time statistics in a turbulent round jet, Proceedings of the Combustion Institute, vol.37, pp.2215-2222, 2017.

J. Smagorinsky, General circulation experiments with the primitive equations, Monthly Weather Review, vol.91, issue.3, pp.99-164, 1963.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eite-neer et al.,

V. V. Gardiner, Z. Lissianski, and . Qin,

S. Som, P. K. Senecal, and E. Pomraning, Comparison of RANS and LES turbulence models against constant volume diesel Experiments, AIAA Journal, vol.40, issue.4, pp.689-701, 2002.

D. B. Spalding, Mixing and chemical reaction in steady confined turbulent flames, 13 th Symposium (International) on Combustion, pp.649-657, 1971.

I. Stankovic and B. Merci, Analysis of auto-ignition of heated hydrogenair mixtures with different detailed reaction mechanisms, Combustion Theory and Modelling, vol.15, issue.3, pp.409-436, 2011.

C. Strozzi, J. Sotton, A. Mura, and M. Bellenoue, Experimental and numerical study of the influence of temperature heterogeneities on self-ignition process of methane-air mixtures in a rapid compression machine, Science and Technology, vol.180, pp.1829-1857, 2008.

C. Strozzi, A. Mura, J. Sotton, and M. Bellenoue, Experimental analysis of propagation regimes during the autoignition of a fully premixed methane-air mixture in the presence of temperature inhomogeneities, Combustion and Flame, vol.159, pp.3323-3341, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00772646

R. H. Thring, Homogeneous-Charge Compression-Ignition (HCCI) engines, 1989.

J. A. Van-oijen, L. De, and . Geoy, Modelling of premixed laminar flames using flamelet-generated manifolds, Combustion Science and Technology, vol.161, pp.113-137, 2000.

L. Vervisch, Modélisation de flammes de diffusion turbulente avec prise en compte de l'interaction entre les effets thermochimiques et turbulentes, 1991.

L. Vervisch, E. Bidaux, K. Bray, and W. Kollmann, Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches, Physics of Fluids, vol.7, issue.10, pp.2496-2503, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01655415

D. Veynante and T. Poinsot, Effects of pressure gradients on turbulent premixed flame, Journal of Fluid Mechanics, vol.353, pp.83-114, 1997.

D. Veynante, A. Trouvé, K. N. Bray, and T. Mantel, Gradient and counter-gradient scalar transport in turbulent premixed flames, Journal of Fluid Mechanics, vol.332, pp.263-293, 1997.

D. Veynante and L. Vervisch, Turbulent combustion modeling, Progress in Energy and Combustion Science, vol.28, pp.193-266, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01672225

R. Vicquelin, Tabulation de la cinétique chimique pour la modélisation et la simulation de la combustion turbulente, 2010.

J. Villermaux and J. Devillon, Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d'intéraction phénoménologique, Proceedings of the 2nd International Symposium on Chemical Reaction Engineering, pp.1-13, 1972.

L. Vulis, Thermal Regimes of Combustion, 1961.

X. Wang, C. Losier, V. Robin, and A. Mura, Interactions between mixing, flame propagation, and ignition in non-premixed turbulent flames, Proceedings of the 26th International Colloquium on Detonations, Explosions and Reactive Systems, p.6, 2017.

X. Wang, V. Robin, and A. Mura, Interactions between mixing, flame propagation, and ignition in non-premixed turbulent flames, Proceedings of the 10th Mediterranean Combustion Symposium, 2017.

X. Wang, V. Robin, and A. Mura, A normalised residence time transport equation for the numerical simulation of combustion with high-temperature air, Combustion Theory and Modelling, vol.23, pp.821-853, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02166808

F. A. Williams, Recent advances in theoretical descriptions of turbulent diffusion flames, Turbulent Mixing in Nonreactive and Reactive Flows, pp.189-208, 1975.

F. A. Williams, Combustion Theory, 1985.
URL : https://hal.archives-ouvertes.fr/hal-00014918

J. Xiao, W. Breitung, M. Kuznetsov, H. Zhang, J. R. Travis et al., GASFLOW-MPI : A new 3-D parallel all-speed CFD code for turbulent dispersion and combustion simulations Part I : Models, verification and validation, International Journal of Hydrogen Energy, vol.42, pp.8346-8368, 2017.

H. Yamashita, M. Shimada, and T. Takeno, A numerical study on flame stability at the transition point of jet diffusion flames, 26 th Symposium (International) on Combustion, pp.27-34, 1996.

A. Yoshizawa, Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, Physics of Fluids, p.29, 1986.

Y. Zeldovich, Regime classification of an exothermic reaction with nonuniform initial conditions, Combustion and Flame, vol.39, pp.211-214, 1980.

Y. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhvi-ladze, Mathematical theory of combustion ans explosions, 1985.

, et de différents outils, sous forme de bibliothèques et applications, permettant d'effectuer des résolutions. Il est livré avec de nombreux solveurs couvrant une large gamme de domaines tels que la combustion, lesécoulements compressibles, incompressibles, multiphasiques, avec réactions chimiques, les transferts thermiques, etc

, OpenFOAM est distribué avec ParaView, un logiciel de post-traitement open-source

, Modélisation et simulation numérique de la combustion en présence d'interactions flammes/auto-inflammation

, Cette thèse de doctorat est consacréeà la modélisation desécoulements turbulents réactifs dans des cas où les niveaux de température peuvent conduireà l'auto-allumage du mélange

, Comme la comparaison directe du temps de résidence au délai d'auto-allumage n'a plus de signification physique dès lors que la composition et la températureévoluent avant l'auto-inflammation, un temps de résidence normalisé est introduit. Cette quantité peut aussiêtre présentée comme l'âge relatif des particules qui vieillissent différemment selon les caractéristiques du mélange local. L'utilisation de ce temps normalisé permet aussi de traiter la difficulté liée aux conditions limites de temps de résidence. Le modèle proposé est d'abord utilisé pour simuler une flamme turbulente non-prémélangée de type JHC (Jet-in-Hot-Coflow) en RANS avec le logiciel de calcul numérique Code-Saturne (Bas Mach). Le modèle est ensuite validé par des calculs DNS de couche de mélange 1D soumiseà l'auto-inflammation. Enfin, des simulations numériques préliminaires d'une configuration expérimentale récente disponible au laboratoire (Constant Volume Vessel) sont réalisées pou? evaluer la faisabilité de l, La stratégie de modélisation proposée consisteà traiter séparément les différents mécanismes physiques les plus importants : mélange des espèces chimiques, propagation de fronts de flammes et auto-inflammation. Ainsi, des méthodes simples, dérivées de modèles connus en combustion turbulente non-prémélangée et prémélangée (méthodes de tabulation