, Gnu linear programming kit

E. Aarts and J. K. Lenstra, Local Search Algorithms, The Atrium, 1997.

P. Agius, P. Kristin, M. Bennett, and . Zuker, Comparing RNA secondary structures using a relaxed base-pair score, RNA, vol.16, issue.5, pp.865-878, 2010.

C. Aksay, R. Salari, E. Karakoc, C. Alkan, and S. Sahinalp, taveRNA : a web suite for RNA algorithms and applications, Nucleic Acids Research, vol.35, issue.suppl_2, pp.325-329, 2007.

T. Akutsu, Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots, Discrete Applied Mathematics, vol.104, issue.1, pp.45-62, 2000.

E. Can-alkan, . Karakoc, H. Joseph, C. Nadeau, K. Sahinalp et al., RNA-RNA interaction prediction and antisense RNA target search, Journal of Computational Biology, vol.13, issue.2, pp.267-282, 2006.

J. Allali and M. Sagot, A multiple layer model to compare RNA secondary structures. Software : Practice and Experience, vol.38, pp.775-792, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00306662

G. Rafael, R. T. Amado, J. D. Mitsuyasu, F. K. Rosenblatt, A. Ngok et al., Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase i study : Myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients, Human gene therapy, vol.15, issue.3, pp.251-262, 2004.

F. Amman, H. Stephan, G. Bernhart, . Doose, L. Ivo et al., The trouble with long-range base pairs in RNA folding, Brazilian Symposium on Bioinformatics, pp.1-11, 2013.

M. Andronescu, A. Zhi-chuan-zhang, and . Condon, Secondary structure prediction of interacting RNA molecules, Journal of Molecular Biology, vol.345, issue.5, pp.987-1001, 2005.

M. Andronescu, V. Bereg, H. Holger, A. Hoos, and . Condon, RNA STRAND : the RNA secondary structure and statistical analysis database, BMC Bioinformatics, vol.9, issue.1, p.340, 2008.

C. Mirela-s-andronescu, A. E. Pop, and . Condon, Improved free energy parameters for RNA pseudoknotted secondary structure prediction, RNA, vol.16, issue.1, pp.26-42, 2010.

. Gayatri-arun, D. Sarah, D. L. Diermeier, and . Spector, Therapeutic targeting of long noncoding RNAs in cancer, Trends in molecular medicine, vol.24, issue.3, pp.257-277, 2018.

E. Balas and R. Jeroslow, Canonical cuts on the unit hypercube, SIAM Journal on Applied Mathematics, vol.23, issue.1, pp.61-69, 1972.

E. John and . Beasley, Lagrangian relaxation, Modern heuristic techniques for combinatorial problems, pp.243-303, 1993.

S. Bellaousov, H. David, and . Mathews, ProbKnot : fast prediction of RNA secondary structure including pseudoknots, RNA, vol.16, issue.10, pp.1870-1880, 2010.

U. Benlic and J. Hao, Breakout local search for maximum clique problems, Computers & Operations Research, vol.40, issue.1, pp.192-206, 2013.

M. Helen, W. K. Berman, D. L. Olson, J. Beveridge, A. Westbrook et al., The nucleic acid database. a comprehensive relational database of three-dimensional structures of nucleic acids, Biophysical journal, vol.63, issue.3, p.751, 1992.

M. Helen, P. E. Berman, J. Bourne, C. Westbrook, and . Zardecki, The protein data bank, Protein Structure, pp.394-410, 2003.

K. Bertram, E. Dmitry, O. Agafonov, D. Dybkov, . Haselbach et al., Cryo-EM structure of a pre-catalytic human spliceosome primed for activation, Cell, vol.170, issue.4, pp.701-713, 2017.

J. Bérubé, M. Gendreau, and J. Potvin, An exact -constraint method for bi-objective combinatorial optimization problems : Application to the Traveling Salesman Problem with Profits, European Journal of Operational Research, vol.194, issue.1, pp.39-50, 2009.

E. Bindewald, T. Kluth, and B. Shapiro, Cylofold : secondary structure prediction including pseudoknots, Nucleic Acids Research, vol.38, issue.2, pp.368-372, 2010.

E. Bindewald, K. Afonin, L. Jaeger, and B. Shapiro, Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots, ACS nano, vol.5, issue.12, pp.9542-9551, 2011.

E. Bindewald, M. Wendeler, M. Legiewicz, K. Marion, Y. Bona et al., Correlating SHAPE signatures with threedimensional RNA structures, RNA, 2011.

E. Bindewald, A. Kirill, M. Afonin, P. Viard, T. Zakrevsky et al., Multistrand structure prediction of nucleic acid assemblies and design of RNA switches, Nano Letters, vol.16, issue.3, pp.1726-1735, 2016.

K. Ashis, J. X. Biswas, and . Gao, PR2S2Clust : patched RNA-seq read segments' structureoriented clustering, Journal of bioinformatics and computational biology, vol.14, issue.05, p.1650027, 2016.

G. Blin, A. Denise, S. Dulucq, C. Herrbach, and H. Touzet, Alignments of RNA structures, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.7, issue.2, pp.309-322, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00506348

M. Immanuel, M. Bomze, . Budinich, M. Panos, M. Pardalos et al., The maximum clique problem, Handbook of combinatorial optimization, pp.1-74, 1999.

M. Bon and H. Orland, TT2NE : a novel algorithm to predict RNA secondary structures with pseudoknots, Nucleic Acids Research, vol.39, issue.14, pp.93-93, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00666032

M. Bon, C. Micheletti, and H. Orland, McGenus : a Monte Carlo algorithm to predict RNA secondary structures with pseudoknots, Nucleic Acids Research, vol.41, issue.3, pp.1895-1900, 2012.

A. Busch, A. S. Richter, and R. Backofen, IntaRNA : efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions, Bioinformatics, vol.24, issue.24, pp.2849-2856, 2008.

L. Cai, L. Russell, Y. Malmberg, and . Wu, Stochastic modeling of RNA pseudoknotted structures : a grammatical approach, Bioinformatics, vol.19, issue.suppl_1, pp.66-73, 2003.

S. Cao and S. Chen, Predicting RNA pseudoknot folding thermodynamics, Nucleic Acids Research, vol.34, issue.9, pp.2634-2652, 2006.

S. Cao and S. Chen, Predicting structures and stabilities for H-type pseudoknots with interhelix loops, RNA, vol.15, issue.4, pp.696-706, 2009.

C. Martin, E. L. Carlisle, and . Lloyd, On the k-coloring of intervals, Discrete Applied Mathematics, vol.59, issue.3, pp.225-235, 1995.

R. Cedergren, D. Gautheret, G. Lapalme, and F. Major, A secondary and tertiary structure editor for nucleic acids, Bioinformatics, vol.4, issue.1, pp.143-146, 1988.

A. Cerqueus and X. Delorme, A branch-and-bound method for the bi-objective simple line assembly balancing problem, International Journal of Production Research, pp.1-20, 2018.
URL : https://hal.archives-ouvertes.fr/emse-01961748

A. Ho-lin-chen, H. Condon, and . Jabbari, An O (n 5 ) algorithm for MFE prediction of kissing hairpins and 4-chains in nucleic acids, Journal of Computational Biology, vol.16, issue.6, pp.803-815, 2009.

X. Chen, S. He, D. Bu, F. Zhang, Z. Wang et al., FlexStem : improving predictions of RNA secondary structures with pseudoknots by reducing the search space, Bioinformatics, vol.24, issue.18, 1994.

S. Cheng, Y. Shi, and Q. Qin, On the performance metrics of multiobjective optimization, Advances in Swarm Intelligence, pp.504-512, 2012.

T. Louise, . Chow, M. James, J. B. Roberts, T. R. Lewis et al., A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA : DNA hybrids, Cell, vol.11, issue.4, pp.819-836, 1977.

P. Clote, S. Dobrev, I. Dotu, E. Kranakis, D. Krizanc et al., On the page number of RNA secondary structures with pseudoknots, Journal of Mathematical Biology, vol.65, issue.6-7, pp.1337-1357, 2012.

P. Cordero, W. Kladwang, C. Christopher, R. Vanlang, and . Das, Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference, Biochemistry, vol.51, issue.36, pp.7037-7039, 2012.

F. Costa and K. De-grave, Fast neighborhood subgraph pairwise distance kernel, Proceedings of the 26th International Conference on Machine Learning, pp.255-262, 2010.

M. Costa and D. Monachello, Probing RNA folding by hydroxyl radical footprinting, RNA Folding, pp.119-142, 2014.

P. Dallaire and F. Major, Exploring alternative RNA structure sets using MC-flashfold and db2cm, RNA Structure Determination, pp.237-251, 2016.

B. George, S. Dantzig, and . Nash, A history of scientific computing. Reading, Ma, USA, chapter Origins of the simplex method, pp.141-151, 1990.

K. Darty, A. Denise, and Y. Ponty, VARNA : Interactive drawing and editing of the RNA secondary structure, Bioinformatics, vol.25, issue.15, 1974.
URL : https://hal.archives-ouvertes.fr/hal-00432548

W. Dawson and G. Kawai, A new entropy model for RNA : part IV, The Minimum Free Energy (MFE) and the thermodynamically most-probable folding pathway (TMPFP), Journal of Nucleic Acids Investigation, vol.5, issue.1, 2014.

W. Dawson, K. Fujiwara, G. Kawai, Y. Futamura, and K. Yamamoto, A method for finding optimal RNA secondary structures using a new entropy model (VSfold)

, Nucleosides, Nucleotides, and Nucleic Acids, vol.25, issue.2, pp.171-189, 2006.

W. Dawson, K. Yamamoto, K. Shimizu, and G. Kawai, A new entropy model for RNA : part II. Persistence-related entropic contributions to RNA secondary structure free energy calculations, Journal of Nucleic Acids Investigation, vol.4, issue.1, pp.2-2, 2013.

W. Dawson, T. Takai, N. Ito, K. Shimizu, and G. Kawai, A new entropy model for RNA : part III. Is the folding free energy landscape of RNA funnel shaped, Journal of Nucleic Acids Investigation, vol.5, issue.1, 2014.

N. Garreau-de-loubresse, I. Prokhorova, W. Holtkamp, V. Marina, G. Rodnina et al., Structural basis for the inhibition of the eukaryotic ribosome, Nature, vol.513, issue.7519, p.517, 2014.

. Katherine-e-deigan, W. Tian, . Li, H. David, K. M. Mathews et al., Accurate SHAPEdirected RNA structure prediction, vol.23, 2009.

C. Delisi, M. Donald, and . Crothers, Prediction of RNA secondary structure, Proceedings of the National Academy of Sciences, vol.68, pp.2682-2685, 1971.

C. Dhaenens, J. Lemesre, and .. El-ghazali-talbi, A new exact method to solve multi-objective combinatorial optimization problems, European Journal of Operational Research, vol.200, issue.1, pp.45-53, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00522771

M. Sergey, J. Dibrov, J. Mclean, T. Parsons, and . Hermann, Self-assembling RNA square, Proceedings of the National Academy of Sciences, vol.108, issue.16, pp.6405-6408, 2011.

Y. Ding and C. E. Lawrence, A statistical sampling algorithm for RNA secondary structure prediction, Nucleic Acids Research, vol.31, issue.24, pp.7280-7301, 2003.

Y. Ding, C. Y. Chan, and C. E. Lawrence, Sfold web server for statistical folding and rational design of nucleic acids, Nucleic Acids Research, vol.32, issue.suppl_2, pp.135-141, 2004.

Y. Ding, C. Y. Chan, and C. E. Lawrence, RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble, RNA, vol.11, issue.8, pp.1157-1166, 2005.

Y. Ding, Y. Tang, C. K. Kwok, Y. Zhang, C. Philip et al., In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features, Nature, vol.505, issue.7485, p.696, 2014.

M. Robert, N. Dirks, and . Pierce, A partition function algorithm for nucleic acid secondary structure including pseudoknots, Journal of computational chemistry, vol.24, issue.13, pp.1664-1677, 2003.

J. S. Robert-m-dirks, J. M. Bois, E. Schaeffer, N. Winfree, and . Pierce, Thermodynamic analysis of interacting nucleic acid strands, SIAM review, vol.49, issue.1, pp.65-88, 2007.

M. Djelloul, Algorithmes de graphes pour la recherche de motifs récurrents dans les structures tertiaires d'ARN, 2009.

B. Chuong, . Do, A. Daniel, S. Woods, and . Batzoglou, CONTRAfold : RNA secondary structure prediction without physics-based models, Bioinformatics, vol.22, issue.14, pp.90-98, 2006.

P. Doty, . Boedtker, . Fresco, M. Haselkorn, and . Litt, Secondary structure in ribonucleic acids, Proceedings of the National Academy of Sciences of the United States of America, vol.45, p.482, 1959.

D. Dubois and P. Perny, A review of fuzzy sets in decision sciences : Achievements, limitations and perspectives, Multiple Criteria Decision Analysis, pp.637-691, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01345443

R. Sean, R. Eddy, and . Durbin, RNA sequence analysis using covariance models, Nucleic Acids Research, vol.22, issue.11, pp.2079-2088, 1994.

C. Ehresmann, F. Baudin, M. Mougel, P. Romby, J. Ebel et al., Probing the structure of RNAs in solution, Nucleic Acids Research, vol.15, issue.22, pp.9109-9128, 1987.

M. Ehrgott, Multicriteria optimization, vol.491, 2005.

M. Ehrgott, T. Stephan, and D. Tenfelde-podehl, A level set method for multiobjective combinatorial optimization : Application to the quadratic assignment problem, vol.84, 2002.

S. Engelen and F. Tahi, Tfold : efficient in silico prediction of non-coding RNA secondary structures, Nucleic Acids Research, vol.38, issue.7, pp.2453-2466, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00647876

. Jacques-r-fresco, M. Bruce, P. Alberts, and . Doty, Some molecular details of the secondary structure of ribonucleic acid, Nature, vol.188, pp.98-101, 1960.

E. Freyhult, V. Moulton, and P. Clote, Boltzmann probability of RNA structural neighbors and riboswitch detection, Bioinformatics, vol.23, issue.16, pp.2054-2062, 2007.

E. Freyhult, V. Moulton, and P. Clote, RNAbor : a web server for RNA structural neighbors, Nucleic Acids Research, vol.35, issue.suppl_2, pp.305-309, 2007.

T. Fukunaga and M. Hamada, RIblast : An ultrafast RNA-RNA interaction prediction system for comprehensive lncRNA interaction analysis, BioRxiv, p.77271, 2016.

. Elspeth-f-garman, Developments in x-ray crystallographic structure determination of biological macromolecules, Science, vol.343, issue.6175, pp.1102-1108, 2014.

C. Gaspin and E. Westhof, An interactive framework for RNA secondary structure prediction with a dynamical treatment of constraints, Journal of molecular biology, vol.254, issue.2, pp.163-174, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02705265

C. A. David-p-giedroc, P. Theimer, and . Nixon, Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting, Journal of molecular biology, vol.298, issue.2, pp.167-185, 2000.

R. Giegerich, B. Voß, and M. Rehmsmeier, Abstract shapes of RNA, Nucleic Acids Research, vol.32, issue.16, pp.4843-4851, 2004.

P. Godfrey, R. Shipley, and J. Gryz, Algorithms and analyses for maximal vector computation. The VLDB Journal-The International Journal on Very Large Data Bases, vol.16, pp.5-28, 2007.

S. Griffiths-jones, S. Moxon, M. Marshall, A. Khanna, R. Sean et al., Rfam : annotating non-coding RNAs in complete genomes, Nucleic Acids Research, vol.33, issue.suppl_1, pp.121-124, 2005.

S. Guerrero, J. Batisse, C. Libre, S. Bernacchi, R. Marquet et al., HIV-1 replication and the cellular eukaryotic translation apparatus, Viruses, vol.7, issue.1, pp.199-218, 2015.

V. Guignon, C. Chauve, and S. Hamel, RNA StrAT : RNA Structure Analysis Toolkit, 16th Annual International Conference on Intelligent Systems for Molecular Biology, p.31, 2008.

. Inc and . Gurobi, Optimization. Gurobi optimizer reference manual, 2015.

S. Christine-e-hajdin, W. Bellaousov, . Huggins, W. Christopher, . Leonard et al., Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots, Proceedings of the National Academy of Sciences, vol.110, issue.14, pp.5498-5503, 2013.

W. Horst, M. Hamacher, and . Queyranne, K best solutions to combinatorial optimization problems, Annals of Operations Research, vol.4, issue.1, pp.123-143, 1985.

M. Hamada, H. Kiryu, K. Sato, T. Mituyama, and K. Asai, Prediction of RNA secondary structure using generalized centroid estimators, Bioinformatics, vol.25, issue.4, pp.465-473, 2008.

J. Hastad, Clique is hard to approximate within n 1?, Proceedings of 37th Conference on Foundations of Computer Science, pp.627-636, 1996.

C. Herrbach, Etude algorithmique et statistique de la comparaison des structures secondaires d'ARN, vol.1, 2007.

S. Heyne, F. Costa, D. Rose, and R. Backofen, GraphClust : alignment-free structural clustering of local RNA secondary structures, Bioinformatics, vol.28, issue.12, pp.224-232, 2012.

M. Hochsmann, T. Toller, R. Giegerich, and S. Kurtz, Local similarity in RNA secondary structures, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003, pp.159-168, 2003.

L. Ivo and . Hofacker, Vienna RNA secondary structure server, Nucleic Acids Research, vol.31, issue.13, pp.3429-3431, 2003.

J. Huang, R. Backofen, and B. Voß, Abstract folding space analysis based on helices, RNA, vol.18, issue.12, pp.2135-2147, 2012.

X. Huang and H. Ali, High sensitivity RNA pseudoknot prediction, Nucleic Acids Research, vol.35, issue.2, pp.656-663, 2006.

. Ibm and . Optimizer, , pp.2018-2021

J. Ishikawa, H. Furuta, and Y. Ikawa, RNA tectonics (tectoRNA) for RNA nanostructure design and its application in synthetic biology, Wiley Interdisciplinary Reviews : RNA, vol.4, issue.6, pp.651-664, 2013.

H. Jabbari, I. Wark, C. Montemagno, and S. Will, Knotty : efficient and accurate prediction of complex RNA pseudoknot structures, Bioinformatics, vol.34, issue.22, pp.3849-3856, 2018.

T. Jacks, D. Michael, . Power, R. Frank, . Masiarz et al., Characterization of ribosomal frameshifting in HIV-1 gag-pol expression, Nature, vol.331, issue.6153, p.280, 1988.

A. John, . Jaeger, H. Douglas, M. Turner, and . Zuker, Improved predictions of secondary structures for RNA, Proceedings of the National Academy of Sciences, vol.86, pp.7706-7710, 1989.

S. Janssen and R. Giegerich, The RNA shapes studio, Bioinformatics, vol.31, issue.3, pp.423-425, 2014.

R. Tommy, B. Jensen, and . Toft, Graph coloring problems, vol.39, 2011.

G. Jiang, K. Chen, and J. Sun, Accurate prediction of secondary structure of tRNAs, Biochemical and biophysical research communications, vol.509, issue.1, pp.64-68, 2019.

T. Jiang, L. Wang, and K. Zhang, Alignment of trees-an alternative to tree edit, Theoretical Computer Science, vol.143, issue.1, pp.137-148, 1995.

T. Jiang, G. Lin, B. Ma, and K. Zhang, A general edit distance between RNA structures, Journal of computational biology, vol.9, issue.2, pp.371-388, 2002.

F. Dylan, . Jones, M. S-keyvan-mirrazavi, and . Tamiz, Multi-objective meta-heuristics : An overview of the current state-of-the-art, European journal of operational research, vol.137, issue.1, pp.1-9, 2002.

M. Richard and . Karp, Reducibility among combinatorial problems, In Complexity of computer computations, pp.85-103, 1972.

Y. Kato, T. Mori, K. Sato, S. Maegawa, H. Hosokawa et al., An accessibility-incorporated method for accurate prediction of RNA-RNA interactions from sequence data, Bioinformatics, vol.33, issue.2, pp.202-209, 2017.

P. Kerpedjiev, S. Hammer, and . Hofacker, Forna (force-directed RNA) : simple and effective online RNA secondary structure diagrams, Bioinformatics, vol.31, issue.20, pp.3377-3379, 2015.

M. Kertesz, Y. Wan, E. Mazor, . John-l-rinn, C. Robert et al., Genome-wide measurement of RNA secondary structure in yeast, Nature, vol.467, issue.7311, p.103, 2010.

G. Kirlik and S. Say?n, A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems, European Journal of Operational Research, vol.232, issue.3, pp.479-488, 2014.

H. Kiryu, T. Kin, and K. Asai, Rfold : an exact algorithm for computing local base pairing probabilities, Bioinformatics, vol.24, issue.3, pp.367-373, 2007.

H. Kiryu, G. Terai, O. Imamura, H. Yoneyama, K. Suzuki et al., A detailed investigation of accessibilities around target sites of siRNAs and miRNAs, Bioinformatics, vol.27, issue.13, pp.1788-1797, 2011.

D. Klein and E. Hannan, An algorithm for the multiple objective integer linear programming problem, European Journal of Operational Research, vol.9, issue.4, pp.378-385, 1982.

G. Knapp, Enzymatic approaches to probing of RNA secondary and tertiary structure, In Methods in enzymology, vol.180, pp.192-212, 1989.

A. Konak, W. David, A. E. Coit, and . Smith, Multi-objective optimization using genetic algorithms : A tutorial, Reliability Engineering & System Safety, vol.91, issue.9, pp.992-1007, 2006.

J. Krüger and M. Rehmsmeier, RNAhybrid : microRNA target prediction easy, fast and flexible, Nucleic Acids Research, vol.34, issue.suppl_2, pp.451-454, 2006.

D. Kumlander, Problems of optimization : an exact algorithm for finding a maximum clique optimized for dense graphs, Proceedings-Estonian Academy of Sciences Physics Mathematics, vol.54, p.79, 2005.

. Hsiang-tsung, F. Kung, . Luccio, P. Franco, and . Preparata, On finding the maxima of a set of vectors, Journal of the ACM (JACM), vol.22, issue.4, pp.469-476, 1975.

D. Lai, M. Irmtraud, and . Meyer, A comprehensive comparison of general RNA-RNA interaction prediction methods, Nucleic Acids Research, vol.44, issue.7, pp.61-61, 2015.

L. Eugene and . Lawler, A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem. Management science, vol.18, pp.401-405, 1972.

A. Legendre, E. Angel, and F. Tahi, Bi-objective integer programming for RNA secondary structure prediction with pseudoknots, BMC bioinformatics, vol.19, issue.1, p.13, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01696144

A. Legendre, E. Angel, and F. Tahi, RCPred : RNA complex prediction as a constrained maximum weight clique problem, BMC bioinformatics, vol.20, issue.3, p.128, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02105691

J. Lemesre, C. Dhaenens, and E. Talbi, Parallel partitioning method (PPM) : A new exact method to solve bi-objective problems, Computers & operations research, vol.34, issue.8, pp.2450-2462, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00269956

B. Neocles, E. Leontis, and . Westhof, Geometric nomenclature and classification of RNA base pairs, RNA, vol.7, issue.4, pp.499-512, 2001.

L. Lin, H. Wilson, B. Mckerrow, C. Richards, C. E. Phonsom et al., Characterization and visualization of RNA secondary structure Boltzmann ensemble via information theory, BMC bioinformatics, vol.19, issue.1, p.82, 2018.

Q. Liu, V. Olman, H. Liu, X. Ye, S. Qiu et al., RNACluster : An integrated tool for RNA secondary structure comparison and clustering, Journal of computational chemistry, vol.29, issue.9, pp.1517-1526, 2008.

Q. Liu, Y. Zhang, Y. Xu, and X. Ye, Fuzzy kernel clustering of RNA secondary structure ensemble using a novel similarity metric, Journal of Biomolecular Structure and Dynamics, vol.25, issue.6, pp.685-696, 2008.

B. Lokman and M. Köksalan, Finding all nondominated points of multi-objective integer programs, Journal of Global Optimization, vol.57, issue.2, pp.347-365, 2013.

R. Lorenz, H. Stephan, C. Bernhart, H. Hoener-zu-siederdissen, C. Tafer et al., ViennaRNA package 2.0, Algorithms for Molecular Biology, vol.6, issue.1, p.26, 2011.

D. Loughrey, E. Kyle, A. H. Watters, J. B. Settle, and . Lucks, SHAPE-Seq 2.0 : systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing, Nucleic Acids Research, vol.42, issue.21, pp.165-165, 2014.

T. Justin, K. M. Low, and . Weeks, SHAPE-directed RNA secondary structure prediction, Methods, vol.52, issue.2, pp.150-158, 2010.

S. Jacob, E. Lu, W. K. Bindewald, B. Kasprzak, and . Shapiro, RiboSketch : versatile visualization of multi-stranded RNA and DNA secondary structure, Bioinformatics, vol.34, issue.24, pp.4297-4299, 2018.

Z. Lu, J. W. Gloor, and D. Mathews, Improved RNA secondary structure prediction by maximizing expected pair accuracy, RNA, vol.15, pp.1805-1813, 2009.

B. Rune, . Lyngsø, N. S. Christian, and . Pedersen, RNA pseudoknot prediction in energy-based models, Journal of computational biology, vol.7, issue.3-4, pp.409-427, 2000.

R. Nicholas, M. Markham, and . Zuker, UNAFold. In Bioinformatics, pp.3-31, 2008.

A. Massaro, M. Pelillo, and . Bomze, A complementary pivoting approach to the maximum weight clique problem, SIAM Journal on Optimization, vol.12, issue.4, pp.928-948, 2002.

H. David, M. E. Mathews, S. M. Burkard, J. R. Freier, D. Wyatt et al., Predicting oligonucleotide affinity to nucleic acid targets, RNA, vol.5, issue.11, pp.1458-1469, 1999.

H. David, J. Mathews, M. Sabina, D. Zuker, and . Turner, Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure, Journal of molecular biology, vol.288, issue.5, pp.911-940, 1999.

H. David, . Mathews, D. Matthew, J. L. Disney, S. J. Childs et al., Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure, Proceedings of the National Academy of Sciences, vol.101, issue.19, pp.7287-7292, 2004.

M. David, M. Mauger, D. Golden, S. Yamane, . Williford et al., Functionally conserved architecture of hepatitis C virus RNA genomes, Proceedings of the National Academy of Sciences, vol.112, issue.12, pp.3692-3697, 2015.

G. Mavrotas, Effective implementation of the ?-constraint method in multi-objective mathematical programming problems, Applied mathematics and computation, vol.213, issue.2, pp.455-465, 2009.

G. Mavrotas and K. Florios, An improved version of the augmented ?-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems, Applied Mathematics and Computation, vol.219, issue.18, pp.9652-9669, 2013.

S. John and . Mccaskill, The equilibrium partition function and base pair binding probabilities for RNA secondary structure, Biopolymers : Original Research on Biomolecules, vol.29, issue.6-7, pp.1105-1119, 1990.

S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journal on optimization, vol.2, issue.4, pp.575-601, 1992.

D. Metzler and M. E. Nebel, Predicting RNA secondary structures with pseudoknots by MCMC sampling, Journal of mathematical biology, vol.56, issue.1-2, pp.161-181, 2008.

M. Miladi, A. Junge, F. Costa, S. E. Seemann, J. H. Havgaard et al., RNAscClust : clustering RNA sequences using structure conservation and graph based motifs, Bioinformatics, vol.33, issue.14, pp.2089-2096, 2017.

M. Miladi, S. Montaseri, R. Backofen, and M. Raden, Integration of accessibility data from structure probing into RNA-RNA interaction prediction. bioRxiv, p.359323, 2018.

F. Miyamoto, N. Eiichi, and . Kodama, Novel HIV-1 fusion inhibition peptides : designing the next generation of drugs, Antiviral Chemistry and Chemotherapy, vol.22, issue.4, pp.151-158, 2012.

S. Mneimneh and A. Syed-ali, Gibbs/MCMC sampling for multiple RNA interaction with sub-optimal solutions, International Conference on Algorithms for Computational Biology, pp.78-90, 2016.

S. Montaseri, F. Zare-mirakabad, and N. Moghadam-charkari, RNA-RNA interaction prediction using genetic algorithm, Algorithms for Molecular Biology, vol.9, issue.1, p.17, 2014.

R. Steven, P. Morgan, and . Higgs, Barrier heights between ground states in a model of RNA secondary structure, Journal of Physics A : Mathematical and General, vol.31, issue.14, p.3153, 1998.

E. Markus, F. Nebel, and . Weinberg, Algebraic and combinatorial properties of common RNA pseudoknot classes with applications, Journal of Computational Biology, vol.19, issue.10, pp.1134-1150, 2012.

Y. Andrew, M. I. Ng, Y. Jordan, and . Weiss, On spectral clustering : Analysis and an algorithm, Advances in neural information processing systems, pp.849-856, 2002.

W. M. Eugene, D. T. Ng, P. Shima, E. T. Calias, D. R. Cunningham et al., Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease, Nature reviews drug discovery, vol.5, issue.2, 2006.

R. Nussinov and A. B. Jacobson, Fast algorithm for predicting the secondary structure of single-stranded RNA, Proceedings of the National Academy of Sciences, vol.77, issue.11, pp.6309-6313, 1980.

R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman, Algorithms for loop matchings, SIAM Journal on Applied mathematics, vol.35, issue.1, pp.68-82, 1978.

R. J. Patric and . Östergård, A new algorithm for the maximum-weight clique problem, Electronic Notes in Discrete Mathematics, vol.3, pp.153-156, 1999.

A. Ouangraoua, P. Ferraro, L. Tichit, and S. Dulucq, Local similarity between quotiented ordered trees, Journal of Discrete Algorithms, vol.5, issue.1, pp.23-35, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00307119

Z. Ouyang, P. Michael, H. Snyder, and . Chang, SeqFold : genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data, Genome Research, vol.23, issue.2, pp.377-387, 2013.

M. Özlen and M. Azizoglu, Multi-objective integer programming : a general approach for generating all non-dominated solutions, European Journal of Operational Research, vol.199, issue.1, pp.25-35, 2009.

M. Ozlen, A. Benjamin, . Burton, A. G. Cameron, and . Macrae, Multi-objective integer programming : An improved recursive algorithm, Journal of Optimization Theory and Applications, vol.160, issue.2, pp.470-482, 2014.

H. Christos, M. Papadimitriou, and . Yannakakis, On the approximability of trade-offs and optimal access of web sources, Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.86-92, 2000.

M. Parisien and F. Major, The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data, Nature, vol.452, issue.7183, p.51, 2008.

A. I. Petrov, C. L. Zirbel, and N. Leontis, Automated classification of RNA 3D motifs and the RNA 3D motif atlas, Rna, vol.19, issue.10, pp.1327-1340, 2013.

C. Plaschka, P. Lin, C. Charenton, and K. Nagai, Prespliceosome structure provides insights into spliceosome assembly and regulation, Nature, vol.559, issue.7714, p.419, 2018.

U. Poolsap, Y. Kato, and T. Akutsu, Prediction of RNA secondary structure with pseudoknots using integer programming, BMC bioinformatics, vol.10, issue.1, p.38, 2009.

U. Poolsap, Y. Kato, and T. Akutsu, Dynamic programming algorithms for RNA structure prediction with binding sites, Biocomputing 2010, pp.98-107, 2010.

J. Proctor, CoFold : an RNA structure prediction method that takes co-transcriptional folding into account, 2012.

A. Przybylski, X. Gandibleux, and M. Ehrgott, A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives, Discrete Optimization, vol.7, issue.3, pp.149-165, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00485936

R. Joseph-d-puglisi, . Tan, J. Barbara, A. D. Calnan, and . Frankel, Conformation of the TAR RNA-arginine complex by NMR spectroscopy, Science, vol.257, issue.5066, pp.76-80, 1992.

W. Pullan, Approximating the maximum vertex/edge weighted clique using local search, Journal of Heuristics, vol.14, issue.2, pp.117-134, 2008.

S. Quarrier, J. S. Martin, L. Davis-neulander, A. Beauregard, and A. Laederach, Evaluation of the information content of RNA structure mapping data for secondary structure prediction, RNA, 2010.

M. Ravber, M. Mernik, and M. , The impact of quality indicators on the rating of multi-objective evolutionary algorithms, Applied Soft Computing, vol.55, pp.265-275, 2017.

J. Reeder, J. Reeder, and R. Giegerich, Locomotif : from graphical motif description to RNA motif search, Bioinformatics, vol.23, issue.13, pp.392-400, 2007.

J. Reeder and R. Giegerich, Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics, BMC bioinformatics, vol.5, issue.1, p.104, 2004.

J. Reeder and R. Giegerich, RNA secondary structure analysis using the RNAshapes package, Current protocols in bioinformatics, vol.26, issue.1, pp.12-20, 2009.

E. Elizabeth, R. R. Regulski, and . Breaker, In-line probing analysis of riboswitches, post-transcriptional gene regulation, pp.53-67, 2008.

. Christian-m-reidys, W. D. Fenix, . Huang, E. Jørgen, . Andersen et al., Topology and prediction of RNA pseudoknots, Bioinformatics, vol.27, issue.8, pp.1076-1085, 2011.

V. Reinharz, F. Major, and J. Waldispühl, Towards 3D structure prediction of large RNA molecules : an integer programming framework to insert local 3D motifs in RNA secondary structure, Bioinformatics, vol.28, issue.12, pp.207-214, 2012.

V. Reinharz, A. Soulé, E. Westhof, J. Waldispühl, and A. Denise, Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families, Nucleic Acids Research, vol.46, issue.8, pp.3841-3851, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01745345

J. Ren, B. Rastegari, A. Condon, H. Holger, and . Hoos, HotKnots : heuristic prediction of RNA secondary structures including pseudoknots, RNA, vol.11, issue.10, pp.1494-1504, 2005.

S. Jessica, D. Reuter, and . Mathews, RNAstructure : software for RNA secondary structure prediction and analysis, BMC bioinformatics, vol.11, issue.1, p.129, 2010.

E. Rivas and S. R. Eddy, A dynamic programming algorithm for RNA structure prediction including pseudoknots, Journal of Molecular Biology, vol.285, issue.5, pp.2053-2068, 1999.

E. Rogers and C. E. Heitsch, Profiling small RNA reveals multimodal substructural signals in a boltzmann ensemble, Nucleic Acids Research, vol.42, issue.22, pp.171-171, 2014.

J. Ruan, D. Gary, W. Stormo, and . Zhang, An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots, Bioinformatics, vol.20, issue.1, pp.58-66, 2004.

R. Rupaimoole, J. Frank, and . Slack, MicroRNA therapeutics : towards a new era for the management of cancer and other diseases, Nature reviews Drug discovery, vol.16, issue.3, p.203, 2017.

S. Jong-hyun-ryu, H. Kim, and . Wan, Pareto front approximation with adaptive weighted sum method in multiobjective simulation optimization, Winter Simulation Conference, pp.623-633, 2009.

A. Saaidi, Y. Ponty, and B. Sargueil, An integrative approach for predicting the RNA secondary structure for the HIV-1 Gag UTR using probing data, JOBIM -Journées Ouvertes en Biologie, Informatique et Mathématiques -2017, vol.102, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01534587

Y. Sakakibara, M. Brown, R. Hughey, K. Saira-mian, R. C. Sjölander et al., Stochastic context-free grammars for tRNA modeling, Nucleic Acids Research, vol.22, issue.23, pp.5112-5120, 1994.

R. Salari, R. Backofen, and S. Sahinalp, Fast prediction of RNA-RNA interaction, Algorithms for Molecular Biology, vol.5, issue.1, 2010.

W. Salser, Globin mRNA sequences : analysis of base pairing and evolutionary implications, Cold Spring Harbor symposia on quantitative biology, vol.42, pp.985-1002, 1978.

A. Sánchez-arroyo, Determining the total colouring number is NP-hard, Discrete Mathematics, vol.78, issue.3, pp.315-319, 1989.

K. Sato, Y. Kato, M. Hamada, T. Akutsu, and K. Asai, IPknot : fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming, Bioinformatics, vol.27, issue.13, pp.85-93, 2011.

C. Saule and R. Giegerich, Pareto optimization in algebraic dynamic programming, Algorithms for Molecular Biology, vol.10, issue.1, p.22, 2015.

W. Matthew-g-seetin, . Kladwang, P. John, R. Bida, and . Das, Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol, RNA Folding, pp.95-117

. Springer, , 2014.

L. S. Selvakumar and . Thakur, Nano RNA aptamer wire for analysis of vitamin B12, Analytical biochemistry, vol.427, issue.2, pp.151-157, 2012.

J. Martin, . Serra, H. Douglas, and . Turner, Predicting thermodynamic properties of RNA, Methods in enzymology, vol.259, pp.242-261, 1995.

A. Bruce, K. Shapiro, and . Zhang, Comparing multiple RNA secondary structures using tree comparisons, Bioinformatics, vol.6, issue.4, pp.309-318, 1990.

S. Sheikh, R. Backofen, and Y. Ponty, Impact of the energy model on the complexity of RNA folding with pseudoknots, Annual Symposium on Combinatorial Pattern Matching, pp.321-333, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00670232

K. Sindhya, A. Sinha, K. Deb, and K. Miettinen, Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems, IEEE Congress on Evolutionary Computation, pp.2919-2926, 2009.

A. Singh and A. Gupta, A hybrid heuristic for the maximum clique problem, Journal of Heuristics, vol.12, issue.1-2, pp.5-22, 2006.

F. Michael, . Sloma, H. David, and . Mathews, Improving RNA secondary structure prediction with structure mapping data, Methods in enzymology, vol.553, pp.91-114, 2015.

A. Spasic, M. Sarah, . Assmann, C. Philip, D. Bevilacqua et al., Modeling RNA secondary structure folding ensembles using SHAPE mapping data, Nucleic Acids Research, vol.46, issue.1, pp.314-323, 2017.

. Narasimhan-sudarsan, C. Ming, K. F. Hammond, R. Block, J. E. Welz et al., Tandem riboswitch architectures exhibit complex gene control functions, Science, vol.314, issue.5797, pp.300-304, 2006.

Y. Sugita, H. Matsunami, Y. Kawaoka, T. Noda, and M. Wolf, Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 å resolution, Nature, vol.563, issue.7729, p.137, 2018.

J. Sylva and A. Crema, A method for finding the set of non-dominated vectors for multiple objective integer linear programs, European Journal of Operational Research, vol.158, issue.1, pp.46-55, 2004.

J. Sylva and A. Crema, A method for finding well-dispersed subsets of nondominated vectors for multiple objective mixed integer linear programs, European Journal of Operational Research, vol.180, issue.3, pp.1011-1027, 2007.

H. Tafer, L. Ivo, and . Hofacker, RNAplex : a fast tool for RNA-RNA interaction search, Bioinformatics, vol.24, issue.22, pp.2657-2663, 2008.

H. Tafer, F. Amman, F. Eggenhofer, F. Peter, . Stadler et al., Fast accessibility-based prediction of RNA-RNA interactions, Bioinformatics, vol.27, issue.14, pp.1934-1940, 2011.

Y. Tang, E. Bouvier, C. K. Kwok, Y. Ding, A. Nekrutenko et al., StructureFold : genome-wide RNA secondary structure mapping and reconstruction in vivo, Bioinformatics, vol.31, issue.16, pp.2668-2675, 2015.

M. Taufer, A. Licon, R. Araiza, D. Mireles, A. P. Van-batenburg et al., Pseudobase++ : an extension of pseudobase for easy searching, formatting and visualization of pseudoknots, Nucleic Acids Research, vol.37, issue.1, pp.127-135, 2009.

I. Tinoco, C. Olke, M. D. Uhlenbeck, and . Levine, Estimation of secondary structure in ribonucleic acids, Nature, vol.230, issue.5293, p.362, 1971.

I. Tinoco, N. Philip, B. Borer, . Dengler, D. Mark et al., Improved estimation of secondary structure in ribonucleic acids, Nature New Biology, vol.246, issue.150, p.40, 1973.

B. Tjaden, TargetRNA : a tool for predicting targets of small RNA action in bacteria, Nucleic Acids Research, vol.36, issue.suppl_2, pp.109-113, 2008.

W. Tong, R. Goebel, T. Liu, and G. Lin, Approximating the maximum multiple RNA interaction problem, Theoretical Computer Science, vol.556, pp.63-70, 2014.

J. Tsai, M. Lin, and Y. Hu, Finding multiple solutions to general integer linear programs, European Journal of Operational Research, vol.184, issue.2, pp.802-809, 2008.

H. Douglas, D. Turner, and . Mathews, NNDB : the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure, Nucleic Acids Research, vol.38, issue.suppl_1, pp.280-282, 2009.

H. Douglas, N. Turner, S. M. Sugimoto, and . Freier, RNA structure prediction. Annual review of biophysics and biophysical chemistry, vol.17, issue.1, pp.167-192, 1988.

Y. Uemura, A. Hasegawa, S. Kobayashi, and T. Yokomori, Tree adjoining grammars for RNA structure prediction, Theoretical computer science, vol.210, issue.2, pp.277-303, 1999.

L. Ekunda, J. Ulungu, and . Teghem, The two phases method : An efficient procedure to solve bi-objective combinatorial optimization problems, Foundations of Computing and Decision Sciences, vol.20, issue.2, pp.149-165, 1995.

G. Jason, A. V. Underwood, S. Uzilov, . Katzman, S. Courtney et al., FragSeq : transcriptomewide RNA structure probing using high-throughput sequencing, Nature methods, vol.7, issue.12, p.995, 2010.

I. Vasilopoulos, G. Varvara, . Asouti, C. Kyriakos, M. Giannakoglou et al., Gradientbased pareto front approximation applied to turbomachinery shape optimization. Engineering with Computers, pp.1-11, 2019.

U. Von and L. , A tutorial on spectral clustering, Statistics and computing, vol.17, issue.4, pp.395-416, 2007.

A. E. Walter, H. Douglas, J. Turner, . Kim, H. Matthew et al., Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding, Proceedings of the National Academy of Sciences, vol.91, issue.20, pp.9218-9222, 1994.

Y. Wan, K. Qu, Z. Ouyang, and H. Chang, Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing, Nature protocols, vol.8, issue.5, p.849, 2013.

Y. Wan, K. Qu, Q. C. Zhang, R. A. Flynn, O. Manor et al., Landscape and variation of RNA secondary structure across the human transcriptome, Nature, vol.505, issue.7485, p.706, 2014.

L. Wang, Y. Liu, X. Zhong, H. Liu, C. Lu et al., DMfold : A novel method to predict RNA secondary structure with pseudoknots based on deep learning and improved base pair maximization principle, Frontiers in genetics, vol.10, p.143, 2019.

S. Jeffrey, . Warren, V. Illya, and . Hicks, Combinatorial branch-and-bound for the maximum weight independent set problem. Relatório técnico, 2006.

S. Washietl, L. Ivo, . Hofacker, F. Peter, M. Stadler et al., RNA folding with soft constraints : reconciliation of probing data and thermodynamic secondary structure prediction, Nucleic Acids Research, vol.40, issue.10, pp.4261-4272, 2012.

. Michael-s-waterman, Secondary structure of single-stranded nucleic acids, Adv. math. suppl. studies, vol.1, pp.167-212, 1978.

M. Joseph, K. K. Watts, R. J. Dang, . Gorelick, W. Christopher et al., Architecture and secondary structure of an entire HIV-1 RNA genome, Nature, vol.460, issue.7256, p.711, 2009.

A. Kevin, R. J. Wilkinson, S. M. Gorelick, N. Vasa, A. Guex et al., High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states, PLoS biology, vol.6, issue.4, p.96, 2008.

L. Cindy, R. Will, and . Lührmann, Spliceosome structure and function. Cold Spring Harbor perspectives in biology, vol.3, p.3707, 2011.

W. H-paul, Model building in mathematical programming, The Atrium, 1999.

D. Kelly-p-williams and . Bartel, Phylogenetic analysis of tmRNA secondary structure, Rna, vol.2, issue.12, pp.1306-1310, 1996.

W. Arthur and I. Tinoco, A dynamic programming algorithm for finding alternative RNA secondary structure, Nucleic Acids Research, vol.14, issue.1, pp.299-315, 1986.

L. John, S. J. Woolford, and . Baserga, Ribosome biogenesis in the yeast saccharomyces cerevisiae, Genetics, vol.195, issue.3, pp.643-681, 2013.

Q. Wu, J. Hao, and F. Glover, Multi-neighborhood tabu search for the maximum weight clique problem, Annals of Operations Research, vol.196, issue.1, pp.611-634, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01389283

Y. Wu, B. Shi, X. Ding, T. Liu, X. Hu et al., Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data, Nucleic Acids Research, vol.43, issue.15, pp.7247-7259, 2015.

Y. Wu, R. Qu, Y. Huang, B. Shi, M. Liu et al., RNAex : an RNA secondary structure prediction server enhanced by high-throughput structure-probing data, Nucleic Acids Research, vol.44, issue.W1, pp.294-301, 2016.

S. Wuchty, W. Fontana, L. Ivo, P. Hofacker, and . Schuster, Complete suboptimal folding of RNA and the stability of secondary structures, Biopolymers : Original Research on Biomolecules, vol.49, issue.2, pp.145-165, 1999.

T. Xia, J. Santalucia, M. E. Burkard, R. Kierzek, J. Susan et al., Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs, Biochemistry, vol.37, issue.42, pp.14719-14735, 1998.

D. Xu and Y. Tian, A comprehensive survey of clustering algorithms, Annals of Data Science, vol.2, issue.2, pp.165-193, 2015.

X. Xu and S. Chen, VfoldCPX server : Predicting RNA-RNA complex structure and stability, PloS One, vol.11, issue.9, p.163454, 2016.

K. Yamamoto and H. Yoshikura, An improved algorithm for the prediction of optimum and suboptimum folding structures of long single-stranded RNA, Bioinformatics, vol.3, issue.1, pp.31-35, 1987.

H. Yang, F. Jossinet, N. Leontis, L. Chen, J. Westbrook et al., Tools for the automatic identification and classification of RNA base pairs, Nucleic Acids Research, vol.31, issue.13, pp.3450-3460, 2003.

N. Joseph, C. D. Zadeh, J. S. Steenberg, B. R. Bois, . Wolfe et al., NUPACK : analysis and design of nucleic acid systems, Journal of computational chemistry, vol.32, issue.1, pp.170-173, 2011.

K. Zarringhalam, M. M. Meyer, I. Dotu, H. Jeffrey, P. Chuang et al., Integrating chemical footprinting data into RNA secondary structure prediction, PLoS One, vol.7, issue.10, p.45160, 2012.

F. Zhang, S. Lemieux, X. Wu, D. St-arnaud, C. T. Mcmurray et al., Function of hexameric RNA in packaging of bacteriophage ?29 DNA in vitro, Molecular cell, vol.2, issue.1, pp.141-147, 1998.

K. Zhang and D. Shasha, Simple fast algorithms for the editing distance between trees and related problems, SIAM journal on computing, vol.18, issue.6, pp.1245-1262, 1989.

W. Zhang and M. Reimann, A simple augmented -constraint method for multiobjective mathematical integer programming problems, European Journal of Operational Research, vol.234, issue.1, pp.15-24, 2014.

X. Zhang, C. Yan, J. Hang, I. Lorenzo, J. Finci et al., An atomic structure of the human spliceosome, Cell, vol.169, issue.5, pp.918-929, 2017.

Y. Zhao, H. Li, S. Fang, Y. Kang, W. Wu et al., NONCODE 2016 : an informative and valuable data source of long non-coding RNAs, Nucleic Acids Research, vol.44, issue.D1, pp.203-208, 2015.

M. Zuker, Computer prediction of RNA structure, In Methods in enzymology, vol.180, pp.262-288, 1989.

M. Zuker, On finding all suboptimal foldings of an RNA molecule, Science, vol.244, issue.4900, pp.48-52, 1989.

M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Research, vol.31, issue.13, pp.3406-3415, 2003.

M. Zuker and D. Sankoff, RNA secondary structures and their prediction, Bulletin of mathematical biology, vol.46, issue.4, pp.591-621, 1984.

M. Zuker and P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Research, vol.9, issue.1, pp.133-148, 1981.