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Preamble

Our study concerns the black poplar (Populus nigra L. ), belonging to the polar genus,

perennial Eucotyledonous Angiosperms from the Salicaceae family. Natural populations

of poplar covered almost 54 millions of hectares (FAO, 2016). Poplar wood production

implies interspecific hybrid plantations, which occur naturally when the species’ ranges

overlap. These natural hybrids were first cloned and marketed before being deliberately

created to increase wood production. They are used all around the globe and can allow

by their hybrid vigor an increase of +17 to +300% in volume in some cases (Marron

et al., 2006; Dillen et al., 2009; Stettler et al., 1988). The most commonly used of them

is P. × canadensis. obtained by cross a male P. nigra with a female P. deltoides. The

breeding program is based on a reciprocal recurrent selection of the two parental species

(P. nigra and P. deltoides) followed by an interspecific hybridization (P × canadensis).

France produces in average 1.3 million of m3 of wood (25% of the hardwood harvest),

and have a dedicated breeding program. The black poplar is a dominant and emblematic

species of French rivers. It is also of central importance in improvement programmes. It

is indeed the male parent of the Euramerican hybrids used for wood production. Black

poplar is also known for its purifying role. It improves water quality through a highly

developed root system. The root system of black poplar is also an essential factor in

maintaining the riverbanks against erosion. The poplar wood is used for many multi-

purposes, light packaging (crates, fish basket, cheese boxes, small fruit baskets, cooking

packaging, etc.) and the interior design of vehicles. Poplar wood is increasingly used in

modern architecture as a framework or as interior design, outdoors, mainly for cladding.

In the context of a protective environment policies with the objective of reducing plastic,

poplar wood has a bright future as a biodegradable packaging material. This implies a

need to produce a sufficient quantity of wood more quickly, an improvement in the quality
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PREAMBLE

of the wood and being able to respond quickly to new demands made by the sector.

Genomic selection (GS) (Meuwissen et al., 2001) is based on genotyping all along the

genome and the construction of predictive models using statistical methods. These models

used the information provided by all markers to estimate the value of individuals that

are candidates for selection. GS started with and revolutionized dairy cattle breeding

in many ways. First by increasing the selection accuracy, combined with an early

selection and increased the selection intensity. All ingredients were mixed to increase

and faster substantially the genetic gain (Schefers and Weigel, 2012). Following the

success of GS in dairy cattle, other animal species and plants (Dekkers and Hospital,

2002; Bernardo and Yu, 2007; Goddard and Hayes, 2009; Heffner et al., 2009; Crossa et al.,

2011; Heffner et al., 2011; Heslot et al., 2012; Hickey et al., 2014) have implemented GS

their improvement programs (Desta and Ortiz, 2014). Forest trees have high expectations

of the GS implementation. Currently, the breeding program is operationally optimized

but present a lack of precision and efficiency. The transition to genomic selection would

allow improving the precision and the efficiency of this program and integrate the genetic

diversity management based on the knowledge of markers. The present proof-of-concept

study was a first attempt to quantify the feasibility of genomic evaluation under different

scenarios of operational interest through three main questions: (i) The first question

concerns the extent to which genomic evaluation could be a guarantee of the genetic

diversity that is readily available in the breeding program, and for which is known also

the species; (ii) A second question concerns the integration of available information to

improve the access to quality genotyping, which is ultimately at the basis of quality

predictions. (iii) A third question concerns the feasibility of genomic evaluation compared

to the pedigree-based counterpart.
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Introduction générale

Notre étude porte sur le peuplier noir (Populus nigra L.). Cet arbre appartient

au genre populus, et est une angiosperme dicotylédone pérenne de la famille des

Salicaceae. Les populations naturelles de peupliers couvrent près de 54 millions d’hectares

(FAO, 2016). La production de bois de peuplier implique la plantation d’hybrides

interspécifiques, ces hybrides apparaissent naturellement lorsque les aires de répartition

des espèces se chevauchent. Après leur découverte, ces hybrides naturels ont été clonés

puis commercialisés. Par la suite, des hybrides interspécifiques ont été délibérément créés

et sélectionnés pour augmenter la production de bois. Plantés dans le monde entier, ils

peuvent permettre de par leur vigueur hybride d’augmenter de +17 à +300% la production

en volume (Marron et al., 2006; Dillen et al., 2009; Stettler et al., 1988). L’hybride le plus

communément utilisé est P. × canadensis, il est obtenu par croisement d’un P. nigra

mâle avec un P. deltoides femelle. Le programme de sélection des hybrides est basé sur

une sélection récurrente réciproque des deux espèces parentales (P. nigra et P. deltoides)

suivie d’une hybridation interspécifique (P × canadensis).

Le bois de peuplier est une production importante pour la France, elle produit en

moyenne 1,3 million de m3 de bois (soit 25% de la récolte de feuillus), et dispose d’un

programme d’amélioration dédié. Le bois de peuplier est utilisé pour de nombreux usages

allant de l’emballage léger (caisses, paniers à poisson, boîtes à fromage, paniers à petits

fruits, emballages de cuisson, etc...) à la décoration intérieure des véhicules. L’architecture

moderne affectionne de plus en plus le bois de peuplier comme cadre, comme décoration

intérieure ou à l’extérieur, principalement pour le bardage. Dans le cadre d’une politique

de protection de l’environnement visant à réduire les plastiques, le bois de peuplier a un

bel avenir en tant que matériau d’emballage biodégradable. Cela implique la nécessité de

produire plus rapidement une quantité suffisante de bois, d’améliorer la qualité du bois
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et de pouvoir répondre rapidement aux nouvelles demandes du secteur.

Dans ce contexte, nous nous intéressons à l’amélioration variétale du peuplier noir

et à l’implémentation de la sélection génomique au sein du programme d’amélioration.

Le peuplier noir est une espèce dominante et emblématique des rivières françaises. Il

est également d’une importance capitale dans les programmes d’amélioration. Il est le

parent mâle des hybrides eur-américains les plus utilisés pour la production de bois. Le

peuplier noir est également connu pour son rôle purificateur. Il améliore la qualité de

l’eau grâce à un système racinaire très développé qui est également un facteur essentiel

dans le maintien des rives contre l’érosion. Cependant comme pour la plupart des arbres

forestiers, l’amélioration variétale est longue et coûteuse en ressource. C’est une espèce

idéale pour l’implémentation de la sélection génomique.

La sélection génomique (SG) (Meuwissen et al., 2001) utilise l’information génomique

contenu tout le long du génome couplé à la construction de modèles prédictifs basés sur des

méthodes statistiques pour estimer la valeur des candidats à la sélection. La SG a d’abord

été utilisée au sein des programmes d’amélioration des bovins laitiers et s’est avéré être

une véritable révolution de bien des façons. D’abord en augmentant la précision de la

sélection, combinée à une sélection précoce et en augmentant l’intensité de la sélection.

Tous les ingrédients ont été assemblés pour augmenter et accélérer sensiblement le gain

génétique (Schefers and Weigel, 2012). Suite au succès de la SG chez les bovins laitiers,

d’autres espèces animales et végétales (Dekkers and Hospital, 2002; Bernardo and Yu,

2007; Goddard and Hayes, 2009; Heffner et al., 2009; Crossa et al., 2011; Heffner et al.,

2011; Heslot et al., 2012; Hickey et al., 2014) ont cherché à mettre en œuvre la SG au sein

de leurs programmes d’amélioration (Desta and Ortiz, 2014). Les différentes études sur

le sujet ont montrés que plusieurs paramètres impact la qualité de la prédiction. Les plus

cités sont : le déséquilibre de liaison et l’effectif efficace de la population d’entraînement

(Solberg et al., 2008; Grattapaglia and Resende, 2011; Nishio and Satoh, 2014). La densité

de marqueurs le long du génome impact la qualité de la prédiction génomique (Romero

Navarro et al., 2017; Norman et al., 2018; Kainer et al., 2018). Plusieurs études ont

montré que la précision de la SG augmente avec la taille de la population d’entraînement

(Jannink et al., 2010; Lorenz et al., 2011; Grattapaglia, 2014). De plus, la relation entre la

population d’entraînement et la population de validation est cruciale pour des prédictions
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précises. Plus les deux populations sont étroitement liées, plus la prévision sera précise

(Pszczola et al., 2012; Ly et al., 2013; Daetwyler et al., 2013; Gowda et al., 2014).

Les arbres forestiers ne font pas exceptions et ont de grandes attentes à l’égard de

la mise en œuvre du SG. Le programme d’amélioration actuel a été optimisé sur le

plan opérationnel mais présente tout de même un manque de précision et d’efficacité. Le

passage à la sélection génomique permettrait d’améliorer la précision et l’efficacité de ce

programme et d’intégrer la gestion de la diversité génétique à partir des connaissances des

marqueurs. La présente étude représente la première tentative de quantifier la faisabilité

de l’évaluation génomique chez le peuplier selon différents scénarios d’intérêt opérationnel

au moyen de trois questions principales : (i) La première question concerne l’apport de

l’évaluation génomique dans la garantie de la conservation de la diversité génétique ;

(ii) Une deuxième question concerne l’intégration des informations disponibles pour

rationaliser le coût du génotypage tout en garantissant des données de qualité, base d’une

évaluation génomique performante. (iii) Une troisième question concerne la faisabilité de

l’évaluation génomique par comparaison avec l’évaluation phénotypique de référence.
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Chapitre 1

Bibliographic Review

1.1 The Poplar and its breeding

1.1.1 Poplars

Poplars are perennial Eucotyledonous Angiosperms belonging to the Salicaceae family. The

genus Populus includes about thirty species of poplars divided into six botanical sections

(Abaso, Aigeiros, Leucoides, Populus, Tacamahaca, and Turanga) by morphological

and ecological criteria (Dickman and Kuzovkina, 2014). The area covered by natural

poplar populations was estimated at 54 million hectares by IPC (International Poplar

Commission) in 2016 (FAO, 2016). Poplars usually have a short lifespan compared to

other tree species. However, some individuals can reach ages of 200 to 300 years. The

root system of some poplars can persist for thousands of years and by suckering have

successively several generations of trunk. Among the genus, some species can become

enormous trees, exceeding 3 m in circumference and 45 m in height (Kemperman and

Barnes, 1976).

Their foliage is deciduous, simple and with opposite phyllotaxis. The leaves can be

serrated or lobed (Dickman and Kuzovkina, 2014) (Figure 1.1A). The poplars are mostly

diploid ; they contain two sets of 19 (2n = 38) chromosomes. Natural triploids (2n =

57) and tetraploids (2n = 76) have also been identified (Johnsson, 1942; Einspahr et al.,

1963; Every and Wiens, 1971). Poplars are mostly pioneers (Rameau et al., 1989) in a

variety of ecological habitats both in monospecific stands or in association with other trees
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A BA

C

D F

E

Figure 1.1: Flowers, fruits and leaves of Populus nigra. A : P. nigra leaves ; B : Female
catkins in a tree ; C : Macro photography of female catkins and flowers ; D : Male catkins
in a tree ; E : Macro photography of male catkins and flowers ; F : Ripe P. nigra fruit
dropping cotton and seeds (white arrow show a seed). Credits : Marie PEGARD, the
photographs were taken in nurseries and greenhouses of INRA Val de Loire.
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A

B

C D

Figure 1.2: Poplars in the landscape. A : Populus nigra natural stands on the Loire
river at Orléans, France ; B : Cultivated hybrid plantation in the region of Savigliano,
Italy ; C : Cut-windrower for two-year old SRC poplar ; D : Pick-up and disk chipper used
for the comminution of windrowed poplar. Credits : A and B : Marie Pégard, C and D :
Santangelo et al. (2015).
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species (Dickman and Kuzovkina, 2014). They are preferably found in wet ecosystems and

particularly in riparian ecosystems (Figure 1.2A). They have a wide natural distribution

from northern latitudes to the tropics to the latitudinal and altitudinal limits of tree

growth. They have been widely introduced in the Southern Hemisphere. Poplars are

dioecious with petal-free flowers (Figure 1.1B-E). The flowers, 30-200 in number, are

displayed on catkins, they usually appear before the leaves in early spring. Pollination is

anemophilous, and the fruit is carried by an elongated bunch of capsules that ripens in a

few weeks to a month (Figure 1.1F). Seeds wrapped in cotton are mostly spread by the

wind over long distances (10 km or more ; Wyckoff and Zasada (2002); Rathmacher et al.

(2010)) and secondary by moving water. Poplar seeds are very small, varying from 300 to

16 000 g-1 depending on the species. Old trees can produce between 30 to 50 million seeds

in a single season (Wyckoff and Zasada, 2002). Poplar stands can generate a significant

amount of cotton, often considered a nuisance in urban areas. Therefore, male trees are

preferred as ornamental trees.

Poplar interspecific hybrids

Throughout Populus species, many natural hybrids are common when the species are

sympatric, i.e., when their natural or planted distribution intersects. In the Populus genus,

spontaneous interspecific hybridizations were described. They appeared in the same or

between different botanical sections. They are most frequently observed between and

inside the Aigeiros, Tacamahaca and Leucoides sections (Cagelli et al., 1995). Nevertheless,

some crosses are impossible such as Populus alba L. × Populus nigra L., and others are

unidirectional, i.e. Populus deltoides Bart. ex Marsh. (♀) × P. nigra (♂). Historically,

natural hybrids have been cloned and commercially grown for hundreds of years. Since

several decades, tree breeders bred hybrids and deploy them in poplar wood production,

motivated by their rapid growth. Some of them, have been used around the world. The

most common ones for commercial purpose is P. × canadensis obtained by crossing a

female P. deltoides with a male P. nigra (Dickman and Kuzovkina, 2014).

In the breeding of poplars, there are several reasons for the use of interspecific

hybridization. In poplars, hybrid vigour has been observed more often from intersectional

hybridization but not necessarily from intrasectional hybridization (Rood et al., 2017).
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Hybrids combine the favourable traits found in both parental species. The hybrid may

expressed genetic dominance when the phenotype is similar to that of one parent. The

presence of hybrid vigour, which can be defined as the superiority of hybrids over the best

of both parents, is also an asset. Finally, hybrids often exhibit more stable behaviour in

changing environments (homeostasis) (Stebbins, 1959, 1985; Stettler et al., 1996). Thus the

hybrid P. × canadensis combines a good rooting, a good level of resistance to European

leaf rust (Melampsora larici-populina) of its parent P. nigra with a high juvenile vigour

of the parent P. deltoides. The productivity gain through the use of hybrid vigor has

been investigated in several studies. Different combinations of parent species in different

environments agree on growth gains between +17% and +50% and between 44%-176%

for volume (Marron et al., 2006; Dillen et al., 2009). Some P. × generosa (P. deltoides ×

P. trichocarpa) hybrids have even shown an individual heterosis effect of +300% (Stettler

et al., 1988). Interspecific hybridization is all the more interesting as genetic progress and

dominance and epistatic effects are disseminated by clones.

Poplar wood production and valorization

During the 25th Session of the International Poplar Commission, in Berlin in 2016, 31.4

million ha of planted poplars have been reported, of which 58% are managed for multi-

purposes, 30% are planted primarily for wood production, 9% for environmental protection

and 3% is managed for biomass production for fuelwood. Canada reported the largest

area of poplar planted (21.8 million hectares ; 69% of the global area) ahead of China (8.5

million ; 27% of the global area planted with poplars), followed by France (0.2 million

hectares), Turkey, Iran, Spain and the United States (0.1 million hectares each).

In France, poplar plantations cover 193,000 ha (Figure 1.3), representing a standing

timber (Figure 1.2B) volume of 30 million m3, an annual increase of 2.6 million m3 and an

average annual harvest of about 1.3 million m3 of wood (25% of the hardwood harvest).

Factually, it is an intensive cultivation of trees planted at a final density and wide spacing

(densities mainly vary from 155 to 204 stem/ha, i.e., spacing from 8m × 8m to 7m × 7m).

Coppice with short or very short rotation (Figure 1.2C and D) is also used for biomass

production. Poplar cultivation generally does not require irrigation and very few inputs

but needs weeding between rows in early growing stages. Pruning is done between 6m and

11
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Figure 1.3: Map of the volume of poplar trees grown in France, in m3/ha (IGN 2009-2013)

8m, for an harvesting between 15 and 22 years, depending on the region (Min, 2017).

Poplar wood has particular characteristics combining lightness and mechanical

resistance, and its sharp point remains its ability to peel. Annually, approximately 800,000

m3 of poplars are used for peeling (Figure 1.4B-D) and 500,000 m3 for sawing in France

(Ricodeau et al., 2018). Poplar wood is mainly used for light packaging (crates, fish basket,

cheese boxes, small fruit baskets, cooking packaging, etc. Figure 1.4A) and the interior

design of vehicles. It is also found in plywood panels and the manufacture of pallets.

Poplar wood is increasingly used in modern architecture as a framework or as interior

design (Figure 1.4E). In some areas, however, it requires an anti-termite treatment to

which it is sensitive. Using preservation processes such as High-Temperature Treatment

(HTT), poplar wood can be used outdoors, mainly for cladding (Figure 1.4F). Its by-

products are used for mulching, pulp, and paper or biofuel (tec, 2016).

1.1.2 Cultivated genetic resources

The International Poplar Commission manages the international register of poplar

cultivars marketed throughout the world. In August 2018, there were 357 accessions (Reg,

2016). Most of them are hybrids (223), the majority (160) are P. × canadensis cultivars,

followed by P. × canescens (18 : P. tremula × P. alba), P. × generosa Henry (13 : P.

deltoides × P. trichocarpa), the rest (30) are more complex hybrids including cultivars

12
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|
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F

B

D

Cutting 
blade

Veneer

Timber

Fruits & vegetables

Cheese & creamseafood

Other products Beverage

horticulture Gifts

A

Figure 1.4: Poplar wood usages. A : light packaging ; B to D : Veneer production ; E-F :
Modern architecture (E : Coopérative Triangle 37, Sublaines / Indre-et-Loire - France and
F : New released tennis court Grenoble - France ). Credits : A : AR COM ; B : Christophe
Février ; C : blb-bois ; D : Philippe Schilde Agence Info ; E : R2K Architectes and F :
Sébastien ANDREI.
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from three-way hybridization (P. x canadensis Mönch × P. yunnanensis Dode) and a four-

way hybrid (P. × canadensis Mönch × P. × generosa Henry). Just over a third (134) of

cultivated cultivars are pure species, with P. deltoides (57) and P. nigra (40) at the top,

followed by P. trichocarpa (16), P. alba (12), P. tomentosa (6). Other species (P. tremula,

P. tremuloides, P. laurifolia Ledeb, P. balsamifera L., and P. yunnanensis Dode) appear

as minorities within cultivars, they are represented by one or two individuals. Despite

the choice of cultivars proposed by the International Register, resources are currently

under-exploited. In France, for example, the top 10 clones sold between 2016 and 2017

represented 76.3% of plants sold. They were in decreasing order of popularity : "Koster"

(P. × canadensis), "I45/51" (P. × canadensis), "Polargo" (P. × canadensis), "Trichobel"

(P. trichocarpa), "I-214" (P. × canadensis), "Soligo" (P. × canadensis), "Albelo" (P. ×

canadensis), "Raspalje" (P. × generosa), "Vesten" (P. × canadensis) and the poplar clone

"Blanc du Poitou" (P. × canadensis) (Min, 2017). The French Ministry of Agriculture,

in collaboration with the National Poplar Commission (NPC), updates every two years

the regionalized lists of poplar clones, defining eligible lists of forest reproductive material

according to areas of use. Currently, clones susceptible to leaf rust (Melampsora spp.) and

woolly poplar aphid (Phloemyzus passerinii) are not recommended and are not eligible

for state support. Cultivar diversification aims to reduce the threat of biotic and abiotic

risks.

European poplar breeding program

European poplar breeding program started during the fifties, and are mostly performed

by public research institutions (Table 1.1). Selection criterias are mostly shared by

all the european breeding program and concerned yield, disease and pest resistance,

phenology. Other traits are selected in others country as phytorémmédiation in serbia

or the ability to droughtly and saline soils (Stanton et al., 2014). Each country has its

own cultivar catalogues, belgium, dutch and italian breeding programs have selected the

most cultivated poplars.
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Table 1.1: Characteristics of European poplar breeding programmes (except French
breeding program) summarized from (Stanton et al., 2014, 152-170)
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Table 1.1: Characteristics of European poplar breeding programmes (except French
breeding program) summarized from (Stanton et al., 2014, 152-170)
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1.1. THE POPLAR AND ITS BREEDING

French Poplar breeding program

Historically, French poplar breeding is manage by three research organizations (INRA,

IRSTEA, FCBA). After a very strong attack of foliar rust revealing the high susceptibility

of most clones, the implementation of a common program was established (Berthelot et al.,

2001). Since 2001, the French breeding program has been managed by a “Groupement

d’Intérêt Scientifique” (GIS). It is entitled "GIS Poplar Genetic, Breeding and Protection".

It is a cooperation agreement signed and renewed approximately every 7 years by three

partner organizations : FCBA, IRSTEA, INRA. Several strategic axes have been defined

(BERTHELOT et al., 2005) :

• to design and propose efficient and stable clones in the short, medium and long term

• to develop the selection methodology

• to determine and propose criteria for the evaluation of foreign varieties and selection

of future French varieties

• to test progenitors and their progeny and evaluate new French clones and foreign

cultivars, in multi-site field tests, in nurseries and laboratories

• to develop and disseminate to operators in the sector the main agronomic and health

characteristics of the genotypes tested (French and foreign).

Diverse species and types of hybrids are being selected within the Poplar GIS, including

P. deltoides and P. trichocarpa as parents of hybrids but also for their own value in wood

production. Several backcrossing series between American hybrids and parental species

are also tested. P. nigra is improved mainly as a parent of the hybrid P. × canadensis.

New hybrids have also been tested by the GIS, namely the cross P. trichocarpa × P.

maximowiczii Henry (Asian origin).

Recurrent semi-reciprocal selection

The breeding scheme for the P. × canadensis hybrid is based on a semi-reciprocal

recurrent selection (Figure 1.5). Classical reciprocal recurrent selection (Comstock et al.,

1949) is used to improve two populations with complementary characteristics. Individuals
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1.1. THE POPLAR AND ITS BREEDING

in population A are randomly crossed with those in population B or with a test individual

in the population B. Their progenies are then evaluated phenotypically to determine the

cross value of the parents, estimating the additive genetic value of the parents and the

dominance value of the evaluated crosses (namely testcross). This makes possible to select

the best parents who will be used to produce the most valuable commercial crosses. In

the case of poplar, the testcross step is difficult to imagine given the generation time.

The individual’s own value is indeed strongly correlated to his value at crossbreeding for

hybrid production, this is the reason why we speak of recurrent semi-reciprocal selection :

the selected individuals serve both as a starting point for further improvement through

a new intraspecific cycle and for the production of commercial hybrid material. Semi-

reciprocal recurrent selection allows genetic gain by combining additive and dominance

effects. Indeed, it improves the additive value of parental populations by concentrating

favourable alleles and makes it possible to exploit the heterosis effect within hybrids. The

heterosis effect is often related to the genetic distance between the two parental species

(Stelkens and Seehausen, 2009).

1.1.3 Selection criterias

The breeding programs in poplars are based on multi-character clonal selection, and

estimation of genotype × environment interaction. Among the selection criteria for

European improvement programmes, the potential growth of trees is assessed by

measuring height, circumference for conventional valorization, biomass produced and

number of sprouts after coppice when considering a coppice valorization with (very) short

rotation (SRC or VSRC). Characteristics such as rooting of cuttings and coppice abilities

are selected as important factors for clonal diffusion. Vegetative phenology with budburst

and budset are also selected traits. Indeed, it determines the duration of seasonal tree

growth. Too early vegetative budburst exposes the terminal bud to late frosts damages

(Howe et al., 2000) and threatens the individual’s recovery or architecture. Budburst is

also an important parameter in recommending the variety in production according to

the region of plantation. Similarly, early growth cessation will reduce the growth period.

Disease resistance is one of the determining criteria in the varietal improvement process,

especially when the variety is clonal. Leaf rust disease at Melampsora larici-populina
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1.1. THE POPLAR AND ITS BREEDING

Figure 1.5: Recurrent reciprocal selection scheme of P. × canadensis. In pink and blue
the intra-specific part of the program of respectively P. deltoides and P. nigra. In yellow,
the hybrid part.

is currently the first significant biotic stress and it is almost annually affecting poplar

plantations in Europe. Its development is favoured in environments that maintain high

humidity on the lower surface of the foliage. In wide-spaced poplar plantations, biomass

production losses due to leaf rust attacks can reach 60% in some years for relatively

susceptible cultivars (Gastine et al., 2003). The existing resistance sources present in P.

deltoides and P. trichocarpa are easily and quickly overcome by the patogen (Villar et al.,

1996; Cervera et al., 1996; Dowkiw and Bastien, 2004; Jorge et al., 2005; Dowkiw and

Bastien, 2007; Dowkiw et al., 2010). Research is currently focused on partial resistance in

P. nigra, which is a reservoir of genetic variability for potential resistance to this pathogen

with which it co-evolves. Other resistances are also studied, such as resistance to leaf spot

(Marssonina brunnea f.sp. brunnea) and to bacterial canker (Xanthomonas populi). Since

the 1990s, a new pest, the woolly aphid (Phloeomyzus passerinii), has appeared in poplar

stands in Southern France and has been present throughout France since 2011. This pest

can cause extremely high losses in some cultivars (80% in cultivar "I-214" (FAO, 2016)).

The tree’s architecture is also a selection criteria. Individuals with fastigiate
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1.1. THE POPLAR AND ITS BREEDING

architecture are prohibited for wood production because their deep knots make them

poor quality wood for peeling. Individuals with an open port are favourably selected as

well as those with high straightness of their trunk. Individuals efficient for water use

are sought. Finally, the quality of the wood is a determining factor in the selection of

individuals : physical properties (bark rate, humidity, infradensity, mechanical resistance,

percentage of false heart, percentage of tension wood, wood colour, wood shrinkage) and

paper/chemical properties (pulp yield, fibre shape, cellulose/lignin ratio, elementary

chemical composition) are selection criteria. Other parameters are monitored : sex

for cotton production or for genetic effect transmission to the hybrid, in the context

of unilateral crosses, resistance to Melampsora allii-populina, wind sensitivity and

phototropism.

1.1.4 Different steps of selection

Poplar is a tree with abundant fruiting and controlled greenhouse crosses are well managed.

However, due to the number of traits that are evaluated and the age at which the different

traits are assessed, not all individuals can be evaluated in the same time and for all traits.

The selection of individuals is done in several steps as shown in (Figure 1.6).

The first steps are common for parental species and fr hybrids. After an evaluation

in nursery, only hybrids and P. deltoides are selected to propose new cultivars. Similarly,

characteristics will be assessed at different scales and with different precisions. Plants from

controlled crosses are raised in greenhouses, then pruned and gauged to provide cuttings.

A first selection is made at this stage on regrowth, cuttings and coppice abilities, with a

selection rate of about 50%. In each family, the most promising individuals based on their

vigor are also selected to keep a few hundred individuals evaluated in the nursery. The

selection rate is again 50%. Characteristics that can be evaluated at a juvenile stage, before

5 years of age, will be evaluated in the nursery. This concerns growth, recovery, shape,

phenology, biotic resistance, wood quality (infradensity) for hybrids and P. deltoides. This

step has the highest selection rate, about 6%, and the phenotypes are well evaluate in

a complete random block design in a growing environment. Indeed, a lot of juvenile

characters in poplar are very good proxy for the quality of the individual in the adult stage

(growth, phenology, resistance). The individuals selected during this stage will be further
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1.1. THE POPLAR AND ITS BREEDING

Figure 1.6: Representation of the number of individuals variation produced from 25 or
30 controlled crosses at the different steps of selection depending on the timeline. The
selection rate indicated in left part for 1 cycle of selection. The selection criteria applied
depending on the age are in the right part.
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1.2. THE BLACK POPLAR : POPULUS NIGRA LINNAEUS

tested. At the laboratory level, further studies on a small number of promising individuals,

resistance tests to different strains of pathogens such as leaf rust on leaf discs and M.

brunnea and on the woolly aphid on potted plants. Finally, the final selection steps are

carried out at the plantation level, on a limited number of individuals, varying according

to the evaluation system chosen. The planting stages concern species and hybrids used

directly as commercial cultivars (not P. nigra). Late traits are evaluated on trees more

than 10 years old (growth, sex, adaptation to soil or climate and wood quality) and

phytosanitary monitoring is being continued. Two types of plantations are used : a single-

tree plot (Figure 1.7) system with 10 clonal replicates to evaluate 50 to 60 genotypes

and to effectively control environmental effects over a small area. However, this induces a

strong competitive effect and does not allow differences to be easily visualized. Multi-tree

plots (Figure 1.7) with 9 clones per plot and 3 replicates allow to evaluate the behaviour

of individuals in stands with good visibility. However, this type of device is expensive in

terms of trial area and only allows to evaluate 12 to 15 clones using reference genotypes

(as control) between the different trials. In the end, only 2 to 5 individuals will be selected

and may be proposed for registration. The overall selection rate between the controlled

crosses and the registered individual is close to 1%. The duration of this selection will be

17 years for pure species (excluding P. nigra) and 20-25 years for hybrids.

The strong European and even global interest in P. × canadensis hybrids resulting

from the crossing of a P. deltoides female and a P. nigra male leads breeders to invest in

the genetic resources available within the native P. nigra species.

1.2 The black poplar : Populus nigra Linnaeus

1.2.1 Species characteristics

In France, poplars are an integral part of the landscape due to its natural or wild stands.

There are three pure native species present in the natural state : white poplar (Populus

alba), aspen (Populus tremula L.) and black poplar (Populus nigra). White poplar is

mainly found along rivers, in the Mediterranean valleys, in the Rhône corridor, and along

the Rhine. Aspen is a forest type poplar and is located in all the French forests. The

black poplar is a dominant and emblematic species of French rivers. It is also of central
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Block 1 ...

Block 10

Single tree plot

Block 8

Block 4

Block 1 Block 2 Block 3

Multi tree plot

Figure 1.7: Example of Single-tree plot plantation (36 clones 10 blocks) and Multiple-tree
plot ( 4 clones in 3 blocks).

importance in improvement programmes. It is indeed the male parent of the Euramerican

hybrids used for wood production. The potential natural range of black poplar extends

from southern Ireland to the western tip of China through a narrow North African margin

(Figure 1.8). It is a pioneering species, with high demands for water and light. Black poplar

is the dominant species of riparian forests, and its regeneration depends strictly on the

functioning of the river or stream : the seeds produced can only germinate on recent

sediments, mobilized by river dynamics and appearing by lowering the groundwater level

in spring. The species also has a vegetative reproduction pattern through cuttings (which

can be carried by water) or by injured root suckers (natural cloning).

Black poplar is also known for its purifying role. It improves water quality through a

highly developed root system. It acts as a natural filter by capturing certain pollutants

such as phosphates and nitrates from agricultural or urban sources (Ruffinoni et al., 2003).

The root system of black poplar is also an essential factor in maintaining the riverbanks

against erosion (Foussadier, 2003; Rodrigues et al., 2007). The high longevity of black

poplar is substantial, trees aged 220 years have been found in the Gave d’Oloron. In its

final stage, the tree can host a multitude of insects, birds, and bats thanks to its abundance

of caches and natural cavities, thus promoting the biodiversity of its natural environment

(Villar and Forestier, 2009).
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Figure 1.8: Distribution map of Black poplar (Populus nigra ) EUFORGEN 2015,
www.euforgen.org.

In the past, black poplar was a vital source of wood for riverside populations. The

straightest black poplars were used as a framework, the rest as firewood. Black poplar

foliage could be used as a supplement to feed livestock. Used to mark parcel boundaries

or to provide faggots when pruned into pollards, black poplar was widely used by farmers.

However, the Euramerican hybrids created in France in 1755 (Dickman and Kuzovkina,

2014), quickly replaced the black poplar crops, because of their high growth rate (Cain

and Ormrod, 1984). From then, black poplar was mainly used as a resource for genetic

improvement through crossbreeding for its hardiness, its ability to root in soils of variable

texture and structure and its resistance to diseases (Cagelli et al., 1995), all these qualities

are expressed in the hybrids. Black poplar is, therefore, a crucial genetic resource in forest

plantations.

Nowadays, to deal with the various threats to its habitats such as the anthropisation of

rivers (development : transport road, irrigation, extraction of aggregates, dams), genetic

pollution of natural stands by clones of cultivated poplars can reach 13% (Pospíšková and

Šálková, 2006; Ziegenhagen et al., 2008; Rathmacher et al., 2010; Smulders et al., 2008;

Bastien et al., 2009; Dowkiw et al., 2014; Paffetti et al., 2018). A national programme

for the conservation of genetic resources was implemented by the “Commission des

ressources génétiques forestières” (CRGF) in 1992 under the aegis of the French Ministry of
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Figure 1.9: Black poplar distribution in France (Villar and Forestier, 2017)

Agriculture. The primary objective is to preserve the founding genes of current variability

and to preserve local adaptations as well as the natural mechanisms that underlie it. The

program build a map of distribution for P. nigra in France (Figure 1.9). The programme

also seeks to enhance the existing genetic diversity of black poplar for new uses as

restoration actions in riparian areas for landscape aspects or bank stabilization (Villar

and Forestier, 2017). In recent years, six mixed varieties of black poplar clones (VMC :

“Variétés Multi Clonales”) structured by watershed have been registered in the national

registry of essential materials for forest species (Villar and Forestier, 2017).

Black poplar grows in metapopulations, as demonstrated by the distribution of existing

genetic diversity that have been studied in recent years on a French or European scale.

Budset (Rohde et al., 2011), leaf area and water use efficiency (Chamaillard et al., 2011;

Guet et al., 2015) have shown low inter-basin differentiation and high intra-basin diversity.

A more extensive study using SNP markers, involving 12 populations in Western Europe

revealed a geographical structure according to the watersheds. This study also shows the

presence of an alpine barrier that has isolated populations in southern Europe (Faivre-
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Rampant et al., 2016).

1.2.2 Genetic variability for adaptive and production traits

Several authors studied the genetic variability for adaptive and wood production traits.

They concerne unrelated individuals, intraspecific crosses and parent-progeny comparisons

in P. nigra. They allowed to estimate broad sense and narrow sense heritabilities

(Table 1.2). They varied from low to high values depending on the trait and on the

genetic background. Growth traits and pest resistance traits tended to be less heritable

than bud phenology or branch angle (TEISSIER du CROS, 1977; Pichot and Tessier Du

Cros, 1988; Rohde et al., 2011; Fabbrini et al., 2012; Guet et al., 2015; Nepveu et al.,

1978; Isik and Toplu, 2004; Guet and Bastien, 2011; Legionnet et al., 1999). Components

of wood quality appear to have moderate and less variable heritability (Nepveu et al.,

1978; Gebreselassie et al., 2017). All these studies revealed a high genetic variability

at an individual level. The high genetic variability identified for several target traits of

traditional poplar breeding program, and in particular for rust resistance (Legionnet et al.,

1999), explains the increasing interest of these genetic resources in these programs.

1.2.3 Populus genomic resources

To study tree biology, it is necessary to adopt a species as model, as their fundamental

biological processes can not be studied with herbaceous models such as Arabidopsis. In

facts, perennial habit and long life span, secondary growth from a vascular cambium,

wood formation, phenology including winter dormancy and reactivation of growth in

spring, and mechanisms of adaptation to local environment over large geo-climatic ranges

that are typical of many trees. In early 2000s, poplar was proposed as such a model

because of several attributes as ease vegetative and clonal propagation, ease genetic

manipulation, rapid growth and a history of breeding and genetics, and use in plantation

forestry (Douglas, 2015). Poplar was the third plant genome and the first tree which

complete genome sequence to be published (Tuskan et al., 2006). A P. trichocarpa female

("Nisqually-1") was selected for the assembly, annotation and interpretation of the poplar

genome (Tuskan et al., 2006).
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Table 1.2: Heritabilities for adaptive and production traits in Populus nigra

Trait Heritabilities ReferencesNarrow sense h2 Broad sense H2

Height growth 0,32 - 0,6 0,31 - 0,67 [1]
Circumference 0,15 - 0,55 0,34 - 0,82 [2]

Budburst 0,61 - 0,70 0,72 - 0,94 [3]
Budset 0,32 - 0,49 0,20 - 0,76 [4]

Foliar rust resistance 0,22 - 0,59 [5]
Branch angle 0.27 - 0.73 0.58 - 0.78 [6]

Wood infradensity 0,61 - 0,69 [7]
Wood chemistry 0,6 - 0,8 [8]

[1](TEISSIER du CROS, 1977; Nepveu et al., 1978; Pichot and Tessier Du Cros, 1988; Isik
and Toplu, 2004; Sow et al., 2018) ; [2](TEISSIER du CROS, 1977; Nepveu et al., 1978) ;
[3](TEISSIER du CROS, 1977; Pichot and Tessier Du Cros, 1988; Guet et al., 2015) ;
[4](TEISSIER du CROS, 1977; Rohde et al., 2011; Guet et al., 2015) ; [5](TEISSIER du
CROS, 1977; Pichot and Tessier Du Cros, 1988; Legionnet et al., 1999) ; [6](TEISSIER du
CROS, 1977; Pichot and Tessier Du Cros, 1988) ; [7](Nepveu et al., 1978) ; [8](Gebreselassie
et al., 2017)

However, even if a considerable effort was put into this reference genome, it is still

an approximation of the true genome. The poplar genome assembly and annotation was

twice revised and the current v3.0 contains 422.9 Mb of assembled sequence (out of a

total genome size estimated at 485 Mb), with 41,335 annotated loci with protein-coding

transcripts (see Populus trichocarpa v3.0 at the JGI plant genome portal Phytozome 11,

https://phytozome.jgi.doe.gov/pz/portal.html for details). The assembled genome

is a mosaic of haplotypes because of the individual chosen as reference is highly

heterozygous. The poplar genome is considered the smallest among all tree genomes and

allowed to re-sequence many individuals, including mapping of short next generation

sequencing reads to the reference (Douglas, 2015).

Whole genome resequencing in P. trichocarpa and P. nigra were the supports of

the development of genome-wide single nucleotide polymorphism (SNP) studies on

evolutionary genetics, population genomics and phenotype-genotype correlation (Slavov

et al., 2012; Pinosio et al., 2016).

A 34K Illumina Infinium SNP genotyping array for P. trichocarpa was designed for

evolutionary studies such as intraspecific genetic differentiation, species assignment and

27

https://phytozome.jgi. doe.gov/pz/portal.html


1.3. GENOMIC SELECTION

hybrids detection (Geraldes et al., 2013). After resequencing 51 Populus nigra individuals

through Western Europe, a 12K Infinium Bead-Chip array was design and 888 individuals

were genotypes. The chip was used to study and characterized the genetic structure of P.

nigra. The SNP repartition follows the genomic genome of known QTLs (Jorge et al., 2005;

Fabbrini et al., 2012; Rohde et al., 2011; Rae et al., 2009; Novaes et al., 2009; El Malki,

2013) and was developed to refine QTL location (Faivre-Rampant et al., 2016). This chip

is a good candidate for a genomic selection test.

1.3 Genomic selection

1.3.1 Purpose and concept of genomic selection

Genomic selection (GS) is the direct descendant of marker-assisted selection (SAM)

applied to quantitative traits (Meuwissen et al., 2001). Its application is based on dense

genotyping all along the genome and the construction of predictive models using statistical

methods, usually a derivative of a mixed model BLUP or a Bayesian method. These models

simultaneously rely on the information provided by all markers to estimate the value of

individuals that are candidates for selection. With adapted models, GS is able to predict

the total genotypic value by estimating the additive (GEBV : genomic breeding value),

dominance and epistatic part present in the phenotype of an individual. Markers are

generally distributed over the entire genome and for the majority of them there is no a

priori information indicating whether or not they are related to a QTL. The predictive

model is calibrated with a set of individuals that have been phenotyped (or with known

estimated additive value) and genotyped. These individuals constitute the calibration

(training) population. Candidates for selection are evaluated and selected according to

their genotyping information using previously constructed predictive models. Candidates

may be progenies of the training population or individuals from other somehow related

populations (Figure 1.10).
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Figure 1.10: Concept of genomic selection adapted from Grattapaglia (2014) to the
Poplar context.

1.3.2 Advent of the GS

The practical implementation of GS began with Holstein dairy cattle, which benefits

from highly efficient data collection, large training populations, and consequently the

potential for high prediction accuracies (Guillaume et al., 2008). The first official results

of genomic evaluation (GS) in production species were published in 2009 for dairy cattle

populations (Hayes et al., 2009a). The use of GS was then extended to other dairy

breeds and beef cattle. Today, more than 15 countries use GEBVs in their national

improvement programmes and their use has been approved at the international level

(Eggen, 2012; Bouquet and Juga, 2013), leading to a globalisation of Holstein genetic

progress (Lund et al., 2011). GS has revolutionized dairy cattle breeding by increasing

the young animals selection accuracy, making early selection possible and thus shortening

the generation interval. Finally, it increased the panel of selected candidates with respect

to the traditional selection based on progeny tests. These factors contributes to faster

genetic gain (Schefers and Weigel, 2012). Following the success of GS in dairy cattle,
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other animal species and plants have launched the implementation of GS in an effort to

revolutionize their improvement programs (Dekkers and Hospital, 2002; Bernardo and Yu,

2007; Goddard and Hayes, 2009; Heffner et al., 2009; Crossa et al., 2011; Heffner et al.,

2011; Heslot et al., 2012; Hickey et al., 2014; Desta and Ortiz, 2014).

1.3.3 Accuracy of genomic selection

As with conventional selection, the accuracy of genomic prediction is estimated with the

correlation between the true breeding value (TBV) and its estimate (GEBV : Genomic

Estimated Breeding Value). When using empirical data, the TBV of an individual is not

known, and accuracy must be estimated by cross-validation. This consists in splitting

the training population into several subsamples. Each subsample is successively used

as a validation population, and its GEBVs predicted by a model that is calibrated

with the other subsamples. All subsamples participate one single time as validation.

The correlation between GEBVs and individual phenotypes is then calculated for each

validation population. It is expected that residuals in the phenotypes are uncorrelated

to breeding values, thus the correlation of GEBV and phenotypes can be considered as

a good proxy of the correlation between TBV and GEBV. The calculated correlation is

called predictive ability or prediction accuracy depending on the authors. It measures

the ability of genomic selection to predict observed values, rather than the true additive

value. If the observed values are phenotypes, the accuracy of prediction can be inferred

by dividing the predictive ability with the square root of the heritability of the trait in

question. (rGEBV,T BV = rGEBV,P henotypes/h
2) (Falconer, 1981). This assumes that the errors

associated with GEBV and phenotype are independent (Lorenz et al., 2011, page=94).

The accuracy of genomic prediction is affected by several factors : the relatedness

between training and test populations, the number of individuals in the training

population, the linkage disequilibrium between markers and QTLs, the statistical method

used to estimate GEBVs, the heritability of the trait, the molecular marker density, the

type of markers and the genetic architecture of the trait (number of genes and distribution

of their effects) (Hayes et al., 2009a; Jannink et al., 2010; Lorenz et al., 2011; Grattapaglia,

2014).

The predicting ability (or accuracy) is the most common criteria to estimate the
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genomic prediction performance (Daetwyler et al., 2013). Other complementary criteria

for prediction quality are also proposed, like the slope and intercept of the regression

of phenotypes on predictions. This slope should be close to 1 and the intercept close

to zero. There are many reasons for deviations in slope and intercept, like model‘s

deficiencies as wrong variance partition or incomplete model, this induced systematic

biases or nonrandom choice of individuals for training and validation population (Patry

and Ducrocq, 2011a,b; Mäntysaari et al., 2010).

1.3.4 Factor influencing prediction accuracy

Effect of linkage disequilibrium (LD) and effective population size (Ne)

The choice of the population for genomic selection has a strong impact on the prediction

accuracy. The two main population parameters important for accuracy are the effective

population size (Ne) and the linkage disequilibrium (LD). LD is the non-random

association between the alleles of different loci within a population. Several methods

can be used to measure LD (Weir, 1979, 1996; Slatkin, 2008; Russell and Fewster, 2009).

The rate of decrease in LD depends in particular on the effective population size (Ne). It

corresponds to the size of an ideal population that would have resulted in the same random

genetic drift (or genetic diversity) as the actual population. A high Ne often implies a

reduced LD and conversely, a low Ne can lead to high LD. Several studies have shown

that these two parameters are strongly linked with the prediction accuracy (Figure 1.11)

and associated with marker density along the genome influence the quality of genomic

prediction (Solberg et al., 2008; Grattapaglia and Resende, 2011; Nishio and Satoh, 2014).

It is important to have a certain LD in the population to capture the effects of QTLs via

nearby markers. The density of molecular markers can represent an adjustment variable

to compensate for the constitutive parameters of the population (Ne and LD).

1.3.5 Molecular marker density

Several studies have investigated the impact of molecular marker density on the accuracy

of genomic selection (Romero Navarro et al., 2017; Norman et al., 2018; Kainer et al.,

2018). They show that accuracy increases with the number of markers before reaching a
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Figure 1.11: Accuracy of genomic selection (GS) as a function of marker density
(markers/cM) for different combinations of narrow sense heritability (h2) and the total
number of QTL controlling the trait(s) with a training set N = 1,000. The plotted curves
correspond to effective population sizes Ne = 10 (filled diamond), Ne = 15 (filled square),
Ne = 30 (filled triangle), Ne = 60 (filled circle), Ne = 100 (multiplication symbol) (extracted
without modification from Grattapaglia and Resende (2011)).
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Figure 1.12: Genomic selection predictive abilities relative to the number of markers used
to estimate each additive relationship matrix (proportion, proportion square root, count,
count square root). in Cocoa (Romero Navarro 2017)

plateau (Figure 1.12). This plateau depends typically on traits and population constitutive

properties. With increasing access to affordable genomic sequence data, the ability to use

the complete genome sequence for prediction is becoming a reality. Several studies have

shown that the benefit of densifying genotyping may vary depending on the trait under

consideration (Kainer et al., 2018; Zhang et al., 2018). These studies also show that the

use of too many markers could eventually reduce the quality of prediction. The relatedness

between the training and the validation population is a factor that interacts with marker

density to determine the minimum number of markers that are required. Typically, for

selection candidates related to the training population, for example descendants of the

training population, the minimum marker density will be lower than that required for

unrelated individuals (Meuwissen et al., 2009). In addition, sequences and low density

genotyping can be combined with the use of imputation to increase the molecular density

information in the general population. Some authors, after successfully imputing low and

medium densities to high densities, have used the results to improve genomic prediction

(Badke et al., 2014; Frischknecht et al., 2014).
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Genotypic imputation : Principle and factors influencing the results

The idea of genotypic imputation as additional genotyping data has been described by

Burdick et al. (2006), who used the term "in silico genotyping". In this context, imputation

refers to the process of predicting genotypic data that is not directly available for an

individual. Imputation uses a reference panel composed of individuals with a high marker

density genotyping to predict all missing markers affecting another genotyped panel with

lower density coverage (Marchini and Howie, 2010). Imputation can be used to correct

missing data due to technical or genotyping errors, and to predict unobserved SNPs

(Roshyara et al., 2014), or even non genotyped individuals (Berry et al., 2018).

Two basic strategies are used for imputation : either the use of genealogical and

Mendelian segregation (Browning and Browning, 2011; Howie et al., 2009; Scheet and

Stephens, 2006), or the use of linkage disequilibrium (Daetwyler et al., 2011; Meuwissen

and Goddard, 2010). Both strategies can also be combined sequentially (Sargolzaei et al.,

2014). The accuracy of imputation depends on similar factors to those relevant to genomic

prediction, basically : quality of genotyping, levels of linkage disequilibrium (LD), marker

density, and the relationship between the reference population and the imputed population

(Hickey and Gorjanc, 2012; Browning and Browning, 2011; Hickey and Gorjanc, 2012;

Hayes et al., 2010). Imputation presents several advantages, like reduction of genotyping

costs (Huang et al., 2012) and, through the gain in density, improvement of QTL detection

and model prediction accuracy (Marchini and Howie, 2010).

1.3.6 Composition of the training population

When implementing genomic selection in a real improvement program, the choice of

the training population is essential. The training population usually corresponds to an

operational phase of the program, like a parental generation, while the validation set

typically corresponds to progenies or collaterals of the training population. Several studies

have shown that the accuracy of GS increases with the size of the training population

(Jannink et al., 2010; Lorenz et al., 2011; Grattapaglia, 2014). In addition, the relatedness

between the training and the validation population is crucial for precise predictions. The

more closely the two populations are related, the more accurate the prediction will be
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(Pszczola et al., 2012; Ly et al., 2013; Daetwyler et al., 2013; Gowda et al., 2014). The

accumulation of several generations into the training has also been shown to be beneficial

(Muir, 2007). Many recent studies investigated the way to optimize the construction of

the calibration population. These optimization methods are based typically on the choice

of individuals that maximize accuracy (Rincent et al., 2012; Isidro et al., 2015; Akdemir

et al., 2015; Rincent et al., 2017) or on the use of genetic contributions to design or update

the training population Eynard et al. (2017).

1.3.7 The different statistical methods and models

Among the different statistical methods to obtain GEBVs, two main groups can be

distinguished : approaches that estimate an additive effect associated with each marker

and approaches that directly give the additive value of individuals. More complex models

integrating dominance and epistatic effects will be discussed in a separate paragraph.

Since the number of markers (p) is often greater than the number of individuals (n)

in the calibration model, the known p>>n problem, estimating the effect of markers

by multiple regression using ordinary least squares is not possible. Some kind of variable

selection or shrinkage estimation procedure is then required to make such problem solvable

(De Los Campos et al., 2009). In recent years, several methods have been developed :

derivatives of BLUP methods (Henderson, 1975), Bayesian methods and non-parametric

methods (Gianola and van Kaam, 2008; Neves et al., 2012; González-Camacho et al., 2012;

Ornella et al., 2014; Howard et al., 2014). One of the simplest formulas for the estimation

of GEBV is the following :

y = µ+ Za+ ε

where y is the vector of observations (n× 1), µ the mean of the observations, a the vector

of markers’ effects (p× 1), Z an incidence matrix (n× p) containing the copy number (0,

1 or 2) of the most frequent allele and ε the vector of residuals (n× 1), with n individuals

(observations) and p markers (unknowns or parameters). GEBV of individuals can then

be obtained as a result of summing up across all markers their respective additive effects

in a.

For approaches giving GEBV directly (GBLUP), a basic formula is :
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y = µ+Xg + ε

where g is a vector (p × 1) of GEBV, and X a design matrix linking observations

to individuals. GEBVs follow a normal distribution, with a covariance between effects

modelled through an additive relationship matrix that is derived from markers for GEBV

or from pedigree in classical pedigree-based BLUPs.

A wide variety of statistical methods have been developed to handle the problem of

greater number of parameters than observations by following different strategies. Roughly,

the different strategies are thought to accommodate implicitly different underlying genetic

architectures of quantitative traits, from simpler infinitesimal-like architectures to those

more complex with a variety of heterogeneous effects across genes. Thus, some statistical

methods for GS are based on a constraint that imposses the same variance for all

markers (RR-BLUP, GBLUP, etc.), and that corresponds to pseudo-infinitesimal genetic

architectures (very large number of genes with very small effects). Other methods impose

variable selection and/or shrinkage strategies to reduce the number of relevant parameters

to be estimated, and this can be done for instance by using a priori information in a

Bayesian framework that forces most effects to be close to zero with just a few with larger

values. With the Bayes family of methods (A, B, etc) there is the possibility to assume

variances that are specific for each marker. This allows greater emphasis to be placed on

certain markers with respect to others that will end up with negligible effects. Another

somehow simpler alternative is to use an iterative weighted GBLUP (Legarra et al., 2009).

Each marker is weighted depending on its own estimated effect, obtained in a previous

iteration of GBLUP and the process can be repeated several cycles to narrow the set

of selected markers. Some implementations showed similar results to Bayesian methods,

with the advantage of being much faster and easier (WANG et al., 2012).

The different statistical methods used in this thesis are described in the material

and methods in Chapter 2. Several review studies compared and discussed some of the

most common statistical methods used in GE (Jannink et al., 2010; Lorenz et al., 2011;

Heslot et al., 2012; de los Campos et al., 2013). Often, the ranking amongst methods

depend on the genetic architecture of the trait (e.g.,Hayes et al. (2009b); VanRaden et al.

(2009); Daetwyler et al. (2010); Clark et al. (2012). Due to this dependency, no single

method emerges as a global solution. Therefore, it is necessary to try at least two methods.
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Commonly, authors use one where loci are equally weighted versus another one where

markers can have larger differences in effects.

1.3.8 Towards more complex models

Non-additive genetic effects

Non-additive effects in quantitative genetics are well known by breeders and geneticists

since the beginning of the 20th century. The infinitesimal model for quantitative traits

based on relatives’ similarities was first described as an additive model (Fisher, 1919),

and then extended to the case with dominance (Fisher, 1919; Wright, 1921). Finally, the

model was extended to accommodate epistatic effects (Cockerham, 1954; Kempthorne,

1954). In the context of GS, the interest in non-additive models, according to the number of

publications treating the subject (see Figure 1.13), raised significantly from 2016 onwards.

First authors proposed to include dominance in GS models by extending the basic model

to estimate a dominance effect associated to each SNP marker (Toro and Varona, 2010;

Su et al., 2012). However, this method used “observed” heterozygotes, and predicted

the “biological” additive genotypic effect instead of predicting individual breeding values

(Varona et al., 2018). Huang and Mackay (2016) pointed out that the estimated proportion

of variance due to additivity, dominance, and epistasis does not reflect necessarily the

"biological" (or "functional") effect of the genes, even if the exercise can be useful for

prediction and selection purposes. Vitezica et al. (2013) proposed a reformulation of the

model to estimate breeding values and dominance deviations. Methods to take into account

epistatic effects were proposed and shown to produce promising results (Vitezica et al.,

2017; Martini et al., 2017).

Several studies integrated dominance or epistatic effects in the GS. The results on

real datasets showed either no improvement in terms of accuracy (Jiang et al., 2017;

Heidaritabar et al., 2014; Gamal El-Dien et al., 2016) even if a non-additive proportion

of variance was observed for the traits, or a small improvement in prediction accuracy

(Moghaddar and van der Werf, 2017; Aliloo et al., 2016; Tan et al., 2018). This so far

limited success may be due to the fact that the populations under study were not big

enough nor with an optimal design to reveal the benefits of adding non-additive effects in
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Figure 1.13: Number of publications per year referring to non-additive effects in genomic
selection. This report reflects citations to source items indexed within Web of Science Core
Collection in October 2018.

genomic prediction.

Multi-trait

The majority of genomic selection studies involve a single-trait analysis, while operational

selection in a majority of cases comprises several traits. Few have so far highligted the

potential of genomic selection with a multi-trait method. This idea has been first addressed

by simulation (Calus and Veerkamp, 2011; Guo et al., 2014) and with real data (Jia and

Jannink, 2012). Considering several traits jointly with a multivariate analysis using the

mixed model framework is expected to benefit from existing genetic correlations between

traits to increase prediction accuracy (Gilmour et al., 2008). In other words, the prediction

accuracy of a trait with low heritability can beneficiate from the information of a correlated

trait with high heritability and a good accuracy. The stronger is the genetic correlation,

the greater will be the benefit of using multi-trait approaches (Calus and Veerkamp, 2011;

Jia and Jannink, 2012).

However, empirical studies showed contrasting results, with some showing a benefit
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of this approach (Marchal et al., 2016; Schulthess et al., 2016), while others resulted in

no apparent advantage over a single-trait method (Jia and Jannink, 2012; Dos Santos

et al., 2016; Rambolarimanana et al., 2018). These studies were focused on the eventual

advantages in terms of prediction accuracy and did not addressed explicitly the operational

implications when traits were antagonist. Despite this fact, the multi-trait GS approach

may help to shorten selection cycles or combine several selection steps whenever they are

done at independent steps.

1.4 Objectives, Opportunities and Challenges of the

genomic selection for forest trees

Forest trees are usually known to have high levels of natural heterozygosity, which

represents important reservoirs for adaptation and breeding. Trees, compared to other

domesticated species, are able to do asexual propagation which is operationally interesting

for breeding and evaluation (Bisognin, 2011). On the other hand, trees present typically

long juvenile phases (Miller and Gross, 2011), and field evaluations that are costly and

time consuming. Two aspects of trees in general and poplars in particular make the advent

of genomic selection especially desirable. The first is the fact that, as many other large

perennials, poplar breeding relies in lengthy, costly and complex phenotypic evaluation

before selection and mating can take place. One example comes from resistance to rust

that usually needs to be evaluated in two phases. In a growth chamber phase, resistance is

evaluated against different races of the pathogen to identify specific and general resistance

factors ; and in a field phase, rust tolerance as the impact of rust attacks on growth

is evaluated in specific costly experiments. Another example of a difficult-to-evaluate

trait, common to several forest species, is wood quality. This undermines the screening

capacity and the possibility of high selection intensities to take benefit of the large

diversity that is available. The second is the fact that improved poplar varieties take the

form of cloned genotypes, whose selection relies on lengthy crosses and large segregation

families in order to benefit from non-additive genetic effects at the extreme genotypes.

This again undermines the capacity to evaluate a large panel of breeding stock. Genome-

based selection is expected to bring higher precision at earlier stages, thus to allow for
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shortenings in selection cycles. Breeding programs like that of poplar are based on multiple-

trait selection, where genomic selection could allow for selection at the seedling stage of

quality traits at once, which are otherwise evaluated at 10 years or more at different steps.

Recent studies of GS in forest trees were conducted on several species, like eucalypts,

spruces and pines (Resende et al., 2017; Tan et al., 2017, 2018; Gamal El-Dien et al., 2016;

Lenz et al., 2017; de Almeida Filho et al., 2016). The results synthesized and discussed

by Grattapaglia (2017), reflect a large range of prediction accuracies (Table 1.3). Even

if the numerous proof-of-concepts so far of genomic selection in forest trees pinpoint

to promising perspectives, some caveats remain. First, most of the proposed models in

GS for trees assume additive effects, with still few attempts with clear-cut results of non-

additive models. The implementation of non-additive models have seen so far rather small

benefits (Muñoz et al., 2014; Gamal El-Dien et al., 2016; Tan et al., 2018). However, for

clonally propagated crops as poplar, dominance and epistatic effects are to be considered

as potentially relevant for selecting elite genotypes. It is important, therefore, to gain

understanding on the factors behind the limiting benefits of non-additive approaches so far,

whether constitutive to the underlying architecture, linked to the modelling approaches

or even due to design and size issues in the experiments. Secondly, we have seen that

linkage disequilibrium is important to ensure a good prediction accuracy. In most cases,

forest trees are highly heterozygous, with LD patterns that break down at really short

distances, i.e. between 50 and 300 base pairs for P. nigra (Chu et al., 2009; Marroni

et al., 2011). This means that, to compensate for the short LD patterns in our species,

more markers those usually at hand are needed in order to increase the likelihood of

genomic prediction performances. Thirdly, as for all species, the genetic architecture of

the trait of interest affects prediction accuracy (Nakaya and Isobe, 2012). For complex

highly polygenic traits, typically large training populations are required to cover well all

genotypic combinations, with a proper design to be able to capture interactive effects

(Jannink et al., 2010). However, most of the training populations in use so far could well

be rather limited by operational constraints, undermining the generality and power of the

genomic selection experiments that are available.

This thesis was developed in the framework of a project aiming at studying the

feasibility of genomic selection within the black poplar improvement program taking into
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consideration the simultaneous management of the genetic diversity. This thesis more

particularly focused on some issues for which GS could a priori bring an efficient solution,

notably for optimizing the selection of best individuals from crosses, for integrating

more efficiently multiple-trait selection into a more simple step, and for gaining in

cost-benefit efficiency while incorporating new schemes of phenotypic evaluation and

genotyping. Black poplar is one of the parents of P. × canadensis which is one of the

most economically important hybrids for plantations worldwide. Moreover, phenotypic

and genomic resources together with knowledge have been accumulated in the last decades

as basis for fundamental science and praxis for support of the breeding program. The

expectations for genomic selection are first and foremost a significant reduction in the

evaluation cycle. Currently, between 15 and 20 years are required for a cultivar to be

available for production. Genomic selection appears as an appropriate tool to shorten our

selection cycle by several years or even by halving the evaluation cycle. Time savings could

be achieved in several ways : (i) by combining genomic and phenotypic selection cycles

without creating varieties to accelerate intraspecific recombination and prospects of gain ;

(ii) by centralizing evaluation efforts on a single easily managed training population in

order to mobilize promptly ressources with each new demand, either economic or adaptive.

One of the main weaknesses of the current breeding program is the lack of precision

and efficiency in the selection of individuals at the very early stage of sprouted plants.

It is also at this stage where most of the genetic variation is available. Selecting with

low efficiency at such early stages can easily weed out useful variation. The possibility to

select on several traits at once at early stages would limit the losses in selection intensity

that are expected from selections conducted subsequently and at independent levels. The

transition to genomic selection would also allow better prediction of low heritability

traits by integrating non-additive effects and multiple-trait approaches. Ultimately,

the improvement program could integrate genetic diversity management based on the

knowledge of markers. Although some of these forecited prospects would require a specific

experimental approach for careful assessments, the present proof-of-concept study was

a first attempt to quantify the feasibility of GS under different scenarios of operational

interest. This multifaceted aim can be further developed into three basic questions :

The first question concerns the extent to which GS could be a guarantee of the genetic
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diversity that is readily available in the breeding program, and for which is known also

the species. Assuming that the genotyping that is required for GS could also serve to

monitor explicitly the genetic diversity, the implementation of GS would readily facilitate

the incorporation of genetic diversity management schemes. Moreover, if the prospect of

speeding up genetic progress with GS is a reality for our species, such a rapid turnover

of generations could easily accelerate the erosion of diversity per unit of time. The need

to take into account short and long term gains is then essential. Despite of the interest,

this point could not be fully developed for the thesis due to lack of time. It was taken

as an important point for the discussion and perspectives at the end of the thesis, in the

Discussion chapter. A second question concerns the integration of available information

to improve the access to quality genotyping, which is ultimately at the basis of quality

predictions. We studied the benefits of imputation from low density to sequences, and

in order to increase the number of available markers and improve also the homogeneity

of the coverage across genomes. Such a system would allow to increase the efficiency of

genotyping at low costs, making GS eventually more competitive with respect to pedigree-

based evaluation. The first article of this thesis (Chapter 3) presents the feasibility of

imputation under the extreme demand of reconstructing sequences from low density

genotyping, assesses the different factors affecting imputation quality and the eventual

consequences in the imputed genotypes in terms of linkage disequilibrium and annotation

profiles.

A third question concerns the feasibility of GS compared to the pedigree-based

counterpart. Such feasibility was studied under different aspects, in order to identify

the conditions for which the new methodology could be competitive, whether with the

help of multiple-trait approaches, with non-additive modelling, assuming different genetic

architectures across different traits, through marker densification, or using phenotypes

with varying repeatabilities. We devised different scenarios to challenge genomic selection

that mimicked operational situations, and used different criteria to scrutinize the

advantages of GS. A second paper (Chapter 4) compiles most of these aspects, taking

advantage of the available data from the black poplar population. Some aspects like the

feasibility of genomic selection for early stages were not covered explicitly, although some

of the tested scenarios could shed some light on the issue. In light of the results presented
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in Chapters 3 and 4, Chapter 5 will discuss how and where to implement GS in the French

black poplar breeding program in order to increase efficiency. Also at this chapter, the

management of genetic diversity will be addressed. More generally, the prospects of GS

in poplar will be discussed, giving also a few elements of cost-benefits.

Table 1.3: Genomic evaluations (GS) in forest trees.

Species or Genus Population size Number and type
of markers used

Trait
Heritability
variations

Predictive
ability References

Eucalypts (E. grandis,
E. urophylla, E. globulus,

Hybrids)
738 - 1126

3K DArT fixed array
40K SNP from

EuCHIP60K fixed array
0.22-0.93 0.05-0.72 [1]

Loblolly pine
(Pinus taeda) 165-951 3K-5K SNP

Infinium chip 0.11-0.95 0.17-0.86 [2]

White spruce
(Picea glauca) 1694 - 1748 6K SNPs

Infinium chip 0.04-0.57 0.33-0.79 [3]

Intereior spruce
(Picea glauca ×

Picea engelmannii)
769-1126 50K-60K SNPs by GBS

after imputation 0.29-0.98 0.47-0.77 [4]

Maritime pine
(Pinus pinaster) 661-818 2.5K - 4K SNPs

Infinium chip 0.17-0.30 0.38-0.82

[1] (Resende et al., 2012a; Lima, 2014; Tan et al., 2017, 2018) ; [2] (Resende et al., 2012b;
Resende, 2012; Zapata-Valenzuela et al., 2012, 2013; Muñoz et al., 2014) ; [3] (Beaulieu
et al., 2014a,b) ; [4] (Gamal El-Dien et al., 2015; Ratcliffe et al., 2015) ; [5] (Isik et al.,
2015; Bartholomé et al., 2016)
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Chapitre 2

Materials and Methods

2.1 Résumé du Chapitre

Cette thèse concerne le matériel du programme d’amélioration du peuplier noir français.

La population utilisée se compose de vingt-trois parents comprenant onze mâles et douze

femelles avec 1000 descendants répartis en trente-cinq familles. L’étude de la faisabilité

de la densification du génotypage puis de la sélection génomique chez le peuplier noir a

d’abord été réalisée sur une partie du jeux de données pour permettre de mettre en place

des pipelines d’analyse de données, de l’imputation à la sélection génomique. Au fur et à

mesure que les données de génotypage et de séquençage sont devenues disponibles, d’abord

en novembre 2016 (deuxième essai), puis en septembre 2017 (jeu de données complet), les

modèles ont été de nouveau testés pour affiner notre choix de méthodes et logiciels.

Dans un premier temps, une étape d’imputation a été menée afin de densifier le

génotypage tout le long du génome. L’ensemble des individus ont été génotypés avec une

puce 12K d’Illumina (Faivre-Rampant et al., 2016). Quarante-trois des individus nodaux

ont été entièrement séquencés (référence), tandis que la majorité restante (cible) a été

imputée de 8K à 1,4 million de SNPs en utilisant le logiciel FImpute (Sargolzaei et al.,

2014). Chaque SNP et chaque individu ont été évalués pour les erreurs d’imputation au

moyen d’une validation croisée. Certaines statistiques telles que la “p-value” exacte du

test d’équilibre de Hardy Weinberg (Wigginton et al., 2005), la qualité du séquençage,

la profondeur du séquençage par site et par individu, la fréquence des allèles mineurs, le

rapport de densité des marqueurs ou la redondance des informations SNP (Speed et al.,

45



2.2. PLANT MATERIAL, PHENOTYPIC AND GENOTYPIC DATA

2017) ont été calculés. Des analyses en composantes principales et des analyses Boruta

ont été utilisées sur tous ces paramètres pour classer les facteurs affectant la qualité de

l’imputation. De plus, nous caractérisons l’impact de la relation entre la population de

référence et la population cible.

Suite à cette densification, un test de sélection génomique a été mis en place. Dans cette

étude, nous avons tenté de comparer l’évaluation génomique à l’évaluation traditionnelle

fondée sur le pedigree et d’évaluer dans quelles conditions l’évaluation génomique surpasse

le pedigree classique. Plusieurs conditions ont été testées comme la constitution de la

population formatrice par validation croisée, la mise en œuvre de modèles multi-traits,

mono-caractères, additifs et non-additifs avec différentes méthodes d’estimation (G-BLUP,

G-BLUP pondéré ou BayesCπ), enfin l’impact de la densification par imputation a été

testé à travers quatre jeux de données avec différentes densité de marqueur (7K, 50K,

100K et 250K SNP).

Nous avons utilisé sept caractères évalués au sein de quatres séries d’évaluations à la

même localisation sur différentes années. La qualité de la prédiction est évaluée avec le

calcul de la précision, de la corrélation de rang du Spearman et du biais de prédiction.

Ces valeurs sont évalués à travers une stratégie de validation croisée et testée avec une

partie du jeux de données, un jeu de données indépendants à également été utilisé.

2.2 Plant material, Phenotypic and Genotypic Data

2.2.1 Breeding designs and families selection

This thesis involved French black poplar breeding program material. It started with a

four by four factorial mating design, created between 1990 and 1995 by Marc Villar (UMR

BioForA), representing fourteen families for a total of 468 progenies. Twenty additional

families from a double pair mating design from the GIS Peuplier (Groupement d’Intérêt

Scientifique) were available. Ten additional families were obtained in spring 2015 to

reinforce the connection between both mating designs. A total of thirty-one parents

involving fifteen males and sixteen females with 1700 progenies were at our disposal for

this thesis (Table 2.1). The aim here was firstly to increase the population at our disposal,

secondly to be the closests to the breeding population by including new relevant crosses,
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SRZ BDG 71077-308 92510-1 72145-007 72131-017 73182-009 73193-056 72131-036 3824-3 71034-2-406 72146-11 H487 72144-009 72159-004 72156-003
VGN-CZB25 (10-11)10B 55 (10-11)11B 57 (10-11)12B 54 (10-11)13B 34+36 1014E 65 1015E 98 1016E 66 1017E 65
71041-3-402 1211B 28 1212B 11 1213B 21 1214E 40 1216E 36
71072-501 1310B 25 1311B 28 + Famille carto 1312B 29

SSC 1410B 15 1411B 20 1412B 20 1413B 34
71040 GIS88 24 GIS87 20

662200037 GIS86 25 1515E 116 1516E 138 1517E 86
73193-089 GIS96 25 GIS79 32 GIS89 20
662200216 GIS84 110 GIS85 20
71069-914 GIS70 22
73193-091 GIS90 62 GIS69 21 GIS68 30

H480 GIS61 13 GIS60 20
71036-2-401 GIS67 16 GIS63 84
72131-001 GIS66 20

72143 GIS62 44
72160 GIS65 40

72149-029 GIS82 20

Table 2.1: Mating design P. nigra × P. nigra : factorial design tested in 1999 in Guemene-
Penfao in green, GIS double pair matings tests in blue, and new families created in of
2015 in orange. Underlined families are phenotypically unevaluated families. The color
gradient represents the priorities in the selection of individuals for genotyping, knowing
that green and orange are essential and that blue is extra, dark blue a priority over light
blue, and families in white are optional families.

and thirdly the have a good balance between a sufficient number of families and families

of relatively large size.

The priorities of genotypic information acquisition were represented by a color gradient

in table 2.1. 15 families have been considered as essential whereas 14 families were extra

(light blue and white) , dark blue being the highest priority and white the lowest priority

due to the fact that one or both parents were already well represented or because they

were less connected with the others families. Among families with a large number of

progenies, one was chosen to predict mendelian segregation within families from relatives

information (family 1516E).

Not all families provided phenotypic and genotypic information. In table 2.1, available

genotypic and phenotypic data concerned reduced factorial mating design (8 families and

294 individuals), genotyping data remains to be acquired concerning all the other families

( 27 families and 740 individuals). Phenotypic data were available for most families except

for 12 families and 907 individuals (underlined ones). Given that families had in general

more members than those finally used in the study, a sample was done to represent the

intrafamilial variability at phenotypic level (see next section).
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Individual sampling for the study

Individuals were primarily chosen to valorize existing genotyping and phenotyping data

on P. nigra × P. nigra factorial mating design. A limited part of the factorial mating

design (dark green Table 2.1) had already a large set of phenotypic and genotypic data

available and were selected by default. This subsample comprised 268 individuals who

were insufficient to evaluate GS feasibility. To improve the reliability of our results, the

number of individuals in our study was increased. Additionally, new crosses within the

factorial mating design were selected, which were not genotyped initially, because of

their high rust sensibility. Their inclusion was assumed to be interesting to increase

discrimination for the trait of rust sensibility.

Some extra families were chosen from outside the factorial depending on their

availability of phenotypes and their relatedness with already selected families, and in

order to have a minimum of 2 Full-Sibs (FS) families per parent. Twenty individuals

were sampled within each family. For each family with more than twenty individuals,

10 000 random samplings were performed among all available individuals in the cohorts

and based on phenotypic data. For each sample, the difference between the variance for

the sample and the variance within the whole family was calculated by trait. The same

was calculated for covariances between traits. All components were summed up to get a

criterion for the choice of representative sampling, as shown by the equation 2.2.1 :

criteria = (varsi − varpi)2 + (covarsij − covarpij)2 (2.1)

where varsi is the variance within subsample for the trait i,varpi the variance within

the family for the trait i, covarsij the covariance between the trait i and the trait j within

the subsample, and covarpij the covariance between the trait i and the trait j within the

family.

The samplings were ranked in ascending order, and the first ten were selected. Finally,

a graphical visualization of the dispersions (figure 2.1) was used to choose which sample

best represented the dispersion within the families.

In summary, the designed population used in this thesis corresponded to a pedigree
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Figure 2.1: Four of the best sampling graphical visualization of the individual dispersions
used to choose the best sample within the family GIS68.
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SRZ BDG 71077-308 92510-1 72145-007 72131-017 73182-009 73193-056 72131-036 3824-3 71034-2-406 72146-11
VGN-CZB25 (10-11)10B 55 (10-11)11B 57 (10-11)12B 54 (10-11)13B 32 1015E 34 1016E 14 1017E 30
71041-3-402 1211B 28 1212B 11 1213B 17 1214E 30 1216E 25
71072-501 1310B 25 1311B 28 1312B 29

SSC 1410B 15 1411B 20 1412B 20 1413B 22
71040 GIS88 24 GIS87 20

662200037 GIS86 25 1515E 32 1516E 118 1517E 31
73193-089 GIS96 22 GIS79 20 GIS89 18
662200216 GIS84 31 GIS85 19
71069-914 GIS70 22
73193-091 GIS69 21 GIS68 30

H480 GIS61 13 GIS60 19

Table 2.2: Selected individuals among crossing design P. nigra x P. nigra : compound
factorial design tested in 1999 in Guemene-Penfao in green, GIS2012 tests in pink and
GIS2014 in blue and crossovers of 2015 in orange.

of one grand-parent, 23 parents and 1011 progenies. Individuals were structured into 35

full-sib cohorts, 14 from the "4 by 4" factorial mating design and 21 from a series of

multiple pair-mating designs. Family size ranged from 10 to 118, with an average of 26

individuals per family. The details of the final set are presented in the table 2.2.

Controlled crosses and installation of field evaluation

The great aptitude for vegetative propagation in poplar greatly facilitates controlled

crosses, notably in P. nigra. Male and female flowering shoots are collected during winter

with a pole or a rifle. The branches obtained are placed in plastic bags and stored in

a cold chamber to ensure the cold requirements for the break-up of dormancy. During

March, the male flowering shoots are placed in jars with water and in cages (Figure 2.2A).

On average about thirty male flowers were used for the pollen collection at a rate of

five flowers for large circumference branches and one to two flowers for the thinnest ones.

Flowering budburst occurred and polled was collected on a sheet from male flowers. The

pollen was then stored in a filter paper placed on silica gel for drying up. The pollen was

either stored in the refrigerator in this way for use within the year or stored in a tube

and placed in a freezer at -20°C for later use. A pollen germination test was carried out

before pollination by placing it on agar medium at 25°C for 24 hours and examining the

number of pollen tubes under a binocular magnifier.

The female flowering shoots were also taken out of the cold chamber and placed in

pots with holes to let in water input (Figure 2.2B). As the catkins develop, and before the
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flowers were fertile, a number of 30 were kept in cages to avoid genetic pollution. Around

the fertility peak, pollination took place. To do this, the pollen was placed in a petri dish

placed in another petri dish where a fine stream of water is present in order to slowly

re-wet it with the help of ambient humidity. The pollen was collected and deposited on

female flowers with a brush. The area around the female shoots was humidified to pin

down the flying extra pollen and the cage put back in place. The manual fertilization

step was done once or twice per day around the fertility peak (when the catkins are open

and when the flowers move away from each other). Once fertilization was successful, the

capsules develop on the catkins. They ripened after 15 days to 1.5 months. Once mature,

the capsules opened to release the cotton and seeds. Before the release was complete,

paper cups were placed on the catkins to collect the seeds and cotton. The seeds and

cottons are harvested and then separated. Between 100 and 150 seeds were mixed in

boxes containing water-soaked blotting paper to allow germination.

Once germination was complete, the seedlings were collected and planted in mini-

moots of compost, and then raised in mini-greenhouses to maintain a humidity level

propitious to their growth. They were then repotted following several stages before being

raised in greenhouses for the production of cuttings in Orléans nursery, as part of the

additional families for the thesis, or in the nursery of Guéméné-Penfao for the GIS families.

The aim was to have at least 6 cuttings of good circumference. The slicing of cutting took

place around the second half of January. The cuttings were stored in a cold room in

plastic bags hermetically sealed at 2°C. The cuttings were soaked 24 hours before being

placed on the ground at the end of March or at the beginning of April, in a six randomized

complete block design.

2.2.2 Phenotypic data

Because of their availability, their faster and cheaper acquisition, only juvenile traits

were used for this thesis. Field evaluations corresponded to four different measurement

campaigns. Recorded traits were height (at 1 and 2 years), circumference (at 2 years, as

proxy for growth), budburst, bud set, rust resistance (at 1 and 2 years), defoliation, and

the branch angle as an architecture assessment. The study used traits assessed on all

plants, being already of interest for breeding, and for which we expected to have different
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Figure 2.2: Steps of controlled crossings at the implementation of the mating design. 1.
Male flowering branches in cages to collect pollen; 2. Macro-photography of a male black
poplar flower; 3. Pollen in a petri dish; 4-5. Female flower shoots placed in pots to induce
floral budburst; 6. Macro-photography of a female black poplar flower receptive to pollen; 7.
Female containment cage; 8. brush fertilization of a catkins with female flowers; 9. Female
flowers after fecundation that have passed the pollen receptivity period; 10. Capsule
catkins after successful fertilization; 11. release of cotton and seeds; 12-13. De-cottoning
steps; 14. Black poplar seeds in a petri dish with water-soaked absorbent paper; 15.
Post-germination seedling cotyledonary stage; 16. Seedling after transplanting at the
cotyledonary stage; 15. 2nd to 3rd leaf stage seedlings after transplanting; 18. Seedlings
of a dozen leaves; 19. Last step of potting for greenhouse growing; 20. Greenhouse plants
after 3 months of growth; 21 Evaluation batches 2 months after the rooting of cuttings
and 22. Evaluation batches after two years of growth. Credits : Marie Pegard except for
15 : Marlène Lefèbvre (INRA) and 22 : Phillipe Poupart (ONF).
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Years 1999-2000 Years 2012-2013 Years 2014-2015 Years 2017-2018 Number of records
Rust year 1 1 1 1 1 4
Rust year 2 1 1 1 1 4
Defoliation 1 0 0 0 1

Height year 1 1 1 1 1 4
Height year 2 1 1 1 1 4

Diameter year 1 1 1 1 0 3
Circumference year 2 1 1 1 1 4

Budburst 0 1 1 1 3
Budset 0 1 1 1 3

branch angle 1 1 1 1 4

Table 2.3: Summary of available phenotypic data for each evaluation batches.

genetic architectures and heritabilities. Traits were recorded in the same geographical

location at Guéméné-penfao nursery but at different years and in different plots. The

table 2.3 summarised the availability and the year of measurements. The first phenotyping

campaign during 1999 and 2000 involved the factorial mating design with a total of 14

families and 413 offspring phenotyped. From the second campaign during 2012 and 2013,

126 phenotyped individuals in 6 families were evaluated. From the third campaigns in 2014

and in 2015, 105 in 5 families were evaluated. Lastly, the 10 additional full-sib families

were phenotyped between 2017 and 2018. In total, 367 individuals were phenotyped in

this last period. To complete phenotypic data, a budburst evaluation of factorial design

individuals at the INRA clonal park (Orléans) were performed during spring 2016.

Data acquisition protocol

The protocol for the data acquisition was the same for all the evaluations. Measurements

took place in the first and second year of growth. The notation of the rust took place in

early September when the rust pressure was maximal. Rust resistance was assessed with

scale notations from 1 (no symptom) to 9 (generalized symptoms) at year one (rust1)

and year two (rust2) (Figure 2.3). The growth was measured during the winters of the

first and second year of growth. Growth was assessed for stem circumference and height.

Stem circumference was considered at 1m for the second year (circ2). Height was assessed

with a graduated rod after one (heigth1) and two years of growth (heigth2). During the
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Figure 2.3: Melampsora foliar rust notation in nursery. 1 = no sore ; 2 = 1 to 10 sores
on less than 50% of the leaves; 3 = 1 to 10 sores on more than 50% of the leaves; 4 = 11
sores with 50% coverage on less than 50% of the leaves; 5 = 11 sores with 50% coverage
on more than 50% of the leaves; 6 = 50 to 75% of the leaf area covered on less than 50%
of the leaves; 7 = 50 to 75% of the leaf area covered on more than 50% of the leaves; 8 =
more than 75% of the leaf area covered on less than 50% of the leaves; and 9 = more than
75% of the leaf area covered on more than 50% of the leaves. Credits : Poplar GIS.

spring of the second growth year, budburst phenology of the main stem terminal bud

was evaluated by measuring its kinetics (every 3 or 5 days from March to April) from a

six-class rating scale rated from 0 to 5, where stage 0 corresponded to a completely closed

bud and stage 5 when stem internode elongation started (Figure 2.4 ; Castellani et al.

(1967)). A local polynomial regression model was used to predict a mean date for each

stage from 1 to 4 stages, even if not all were observed for the same given clone. Estimates

were in Julian days and given for stage 3 to assess individual susceptibility to late frosts

(Howe et al., 2000). Mean branch angle was scored on proleptic branches at two years old

with a 1 to 4 scoring scale (angbranch), where score 1 was given to the narrowest angle

between the branch and the trunk and score 4 to the widest angle (Figure 2.5).

Phenotype adjustments

All seven phenotypes were independently adjusted to field micro-environmental

heterogeneity with the breedR package (Muñoz and Sanchez (2018), implemented in

R3.3.1 platform). We used an individual-tree mixed model over all 4 evaluation batches

with random effects to fit bi-splines surfaces (Cappa and Cantet, 2007; Cappa et al.,

2015), which were nested to each evaluation batch (field experiment) (Supplementary

material). The model comprised all phenotyped individuals in the trials, involving
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Figure 2.4: Illustration of the six-classes measurement scale for vegetative budburst in
black poplar. Measurements of young plants aged 1 or 2 years in nurseries on the terminal
bud of the main axis. (Source : Catherine Bastien)

Figure 2.5: Young tree architecture with sylleptic branches (growth in the same vegetative
cycle than trunk) at the left and proleptic at right. The branch angle is measured on
proleptic branches according to a protractor’s scale and a score is assigned between defined
radiations. 1: between 0°and 30°; 2: between 30°and 40°; 3: Between 40°and 55°; 4: and
Between 55°and 90°.
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Figure 2.6: Marker density of 7540 SNPs from the chip in 500kb non-overlapping windows.

genotyped and non-genotyped individuals, and according to a single-step formulation

(Legarra et al., 2009). The use of all information in field trials with minimum gaps

allowed to predict with a maximum of precision the micro-environmental individual

effect. This effect was subtracted from the observed phenotype, and the resulting

spatially adjusted phenotype was used as raw phenotype for the rest of the study.

2.2.3 Genotypic datasets

Whole genome sequences

Available data : In the population, fourteen parents were already sequenced by

Genome Analyzer IIx from Illumina. The SNP detected in this latter paper were used

to design the Populus nigra 12K custom Infinium Bead-Chip (Illumina, San Diego, CA)

(Faivre-Rampant et al., 2016). The SNPs are not evenly spaced (Figure 2.6), the range

of density varied from 5 SNP/Mb to 80/Mb.

Sequences acquisition : For the others parents (22), 1 grandparent, 14 progenies

and 6 unrelated, Illumina paired-end shotgun indexed libraries were prepared from one

µg of DNA per accession, using Illumina TruSeq®DNA PCR-Free Sample Preparation

kit. Briefly, indexed library preparation was performed with DNA fragmentation by

AFA (Adaptive Focused Acoustics™) technology on Covaris focused-ultrasonicator, all

enzymatic steps and clean up were realized according to manufacturer’s instructions.
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Single or dual indexes were used. Final libraries were quantified by using qPCR using

KAPA Library Quantification Kit and Life Technologies QuantStudio™Real-Time PCR

system. Fragment size distribution of libraries was assessed by High Sensitivity DNA assay

either on Agilent 2100 Bioanalyzer or on Caliper LabChip®GX nucleic acid analyzer.

Equimolar pools of multiplexed samples, up to 11, were engaged in sequencing using 4

lanes. After clusters generation on CBot, paired-end sequencing 2 × 150 sequencing by

synthesis (SBS) cycles was performed either on an Illumina HiSeq®2000/2500 running

in high output mode (one lane) or on Illumina HiSeq®4000 (three lanes).

Polymorphism detection from sequences : The same protocol was used on

the available and new sequences. Reads were trimmed with Trimmomatic (v. 0.32)

(Bolger et al., 2014), and mapped to the P. trichocarpa version 3.1 genome (Tuskan et al.,

2006) using BWA-MEM 0.7.12- with default parameters (Li, 2013). Picard Tools (v.

2.0.1) ( http://broadinstitute.github.io/picard) were used to remove duplicated

reads. Local and Indel realignments were performed using a Genome Analysis Toolkit

(GATK v. 3.5) (DePristo et al., 2011; McKenna et al., 2010). The variant detection was

performed on all individuals by two variant callers: (1) in parallel with Freebayes (V1.0.0)

(Lajoie et al., 2013) and (2) by each individual separately with GATK HaplotypeCaller,

to be subsequently assembled using GenotypeGVCFs (called later gVCF-GATK). The

VCFtools 0.1.15 (Danecek et al., 2011) was used to filter variants with no missing data,

with a minimum quality score of 30 and a min depth of 2. Among selected SNPs, three

alleles were allowed, because mapping was done on another Populus species reference

genome, so it was possible to have two alternative alleles and no reference allele in the

aligned sequences. Finally, only SNPs and Indels that were detected by both callers and

whhich were consistent with Mendelian segregation were kept. To simplify, SNPs and

Indels (Insertion/ Deletion were both called SNPs hereafter. In average, 91.7% of reads

were mapped, 76.5% were paired and only 2.2% were singletons. The genome coverage

was calculated by individual, and it varied between 4X and 52X, with a mean coverage

of 13X (Supplementary data).

57

http://broadinstitute.github.io/picard


2.2. PLANT MATERIAL, PHENOTYPIC AND GENOTYPIC DATA

Low-density genotypic data

For the low-density genotypic data acquisition, two strategies were considered. Either

extra individuals could be genotyped by the same chip, which is best in terms of

compatibility with previous data but expensive, or genotyping by sequencing (GBS). This

second option was cheaper but required time costing bioinformatics analysis and protocol

adjustments to ensure a good quality of sequencing. A total of 54 individuals and 64

sequences (some repeated individuals) were genotyped by GBS with a Miseq Illumina

platform. It was found that few SNPs were in common between the Chip and the GBS:

by aggregating individuals, only 1072 common SNPs with many missing values between

individuals were obtained. Because of lack of time for further refinement and somehow

poor results, chip genotyping was used instead of genotypinge the extra individuals.

Therefore, all individuals were genotyped using the Populus nigra 12K custom Infinium

Bead-Chip (Illumina, San Diego, CA) (Faivre-Rampant et al., 2016). The original already

published run of genotyping comprised 6 parents, 1 grand-parent and 261 progenies in

the factorial mating design. The rest of the parents and progenies were genotyped with

the same chip in a second new run, with data availability in two batches: november 2016

and september 2017.

Genotype Data filtering and cleaning

Genotyping chip data cleaning and verification : The concordance between the

two genotyping runs was checked with a common control. This indicator showed that the

difference between the two chips was 2.18 % with 7806 common SNPs. The presence of

duplicate individuals allowed for verification between batches by estimating the proportion

of similarity between each pair of samples (equation 2.2.3) :

k = 1m(2− |gik − gjk|)/2m (2.2)

where m is the number of SNPs coded 0, 1, 2, i and j are the sample and k the

SNP. We used Plink software (Purcell et al., 2007) to estimate IBS. 43 individuals were

identified as replicated. Some verifications have been done for all of these replicates and
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Figure 2.7: Sum of missing values in the chip data by individual (left) and by SNP (right)

Figure 2.8: FImpute genotypes allelic dose (0, 1, 2) corrections after imputation, missing
values are coded 5.

decisions have been taken according to these analyses: for each replicate either the sample

was kept and merged or dropped. 10 of them were dropped because it was impossible to

know which one was the right one. The proportion of missing data by individuals and by

SNP was represented in figure 2.7.

The individuals and SNPs with more than 80% of missing values were removed.

Figure 2.7 showed the proportion of missing data by individual, ranging from 0 to 17%

with an average of 7%. Whereas for SNP, the proportion was mostly around 0, with some

SNPs reaching 70% of missing data. The genotype matrix included 4.81 % of missing

values and they were imputed with FImpute (Sargolzaei et al., 2014). FImpute has done

2% of genotypes corrections when the genotype was inconsistent between parents and

progenies (figure 2.8).

Sequence and chip information comparison : In total 9432 positions on 10223

expected positions from the chip were detected on the 43 individual sequences. From
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those, there were 9260 SNP completely identical at the genotype level with respect to the

chip, and remaining 963 SNPs were not identical due to different kind of errors. The most

common error affected 800 positions, for which there were too many missing values. The

second kind of errors came because the reference genome used for alignment belongs to

another species, which could lead in some situations to have two different alleles within our

panel being different to the one in the reference sequence. This occured in 115 positions,

and all were reintegrated into the data set. The last source of errors was when too many

alleles were detected, and 48 positions were concerned. At the end, 9375 SNPs were

detected without errors on our panel of 43 individuals.

The 43 individuals sequenced allowed to estimate the similarity between the SNPs

resulting from the sequences and those from the chip. A similarity matrix was estimated

between sequenced individuals and all genotyped individuals. The similarity between

two individuals was made with a comparison by identity, for each position the value

1 is assigned if the two genotypes were identical, 0 otherwise. The similarity was then

calculated as the percentage of identical markers in relation to the total number of markers

that were in common between the chip and the sequence. We defined a threshold at

0.85 of similarity between the chip and the sequences to consider they come from the

same individual, a lower similarity can result in wrong DNA or a pollution during the

process. The Parents-progenies trios were used to check the Mendelian segregation for

each sequence position. Some parents were not genotyped with the chip: 72131-036,

71034-2-406, 73193-091, 3824-3, H480, 72146-11 and 71069-914. They were imputed for

the chip markers by using information from their descendants and the complementary

parent. They were considered like the other individuals genotyped with the chip. As

the positions were detected with two different SNP-callers, the similarities were estimated

independently for each of them. Both were represented in figure 2.9.

The similarities between the genotype extracted from the sequence and the best hit

from the chip were around 95% for the majority of individuals. We compared the name of

the individuals from the sequences with the name of the most similar individual in the chip

(Best-hit). The individuals with a similarity under 0.8 were non-genotyped individuals and

they could not be imputed because they were unrelated to the other genotyped individuals.

The results were similar regardless the SNP-caller used. For the non-genotypes individuals,
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the chip information will be replaced with the sequence information at the same locations.

Sequence position filtering : A total of 27,475,756 SNPs and Indels were detected

by gVCF-GATK, whereas 26,489,941 SNPs were detected by Freebayes (table 2.4). After

scoring the SNPs on a quality criterion (Phred score >30), the number of trimmed

positions were twice as many with gVCF-GATK than with Freebayes (table 2.4). Among

the remaining positions, some were monomorphic between P. nigra individuals but

different from the reference sequence: about 1 million for gVCF-GATK and twice as

much for Freebayes. A total of 2,488,736 positions were common between the two callers

at that point of the filtering. Among these positions, 17% were Indels and 83% SNPs.

To have the best quality in genotype calling, we kept the positions where the genotype

calling was at least 95% similar between the two callers for all individuals. Mendelian

segregation was checked on available trios, and 142,974 positions for which the progeny

were inconsistent with parents were removed . We used the 7,540 SNPs from the chip to

imputed 1,466,586 SNPs from sequences along the 19 Chromosomes (Figure 2.10).

Table 2.4: Number of variants detected in the 43 sequenced individuals using two callers
with no filter and after filtering with different parameters to obtain the input dataset used
for imputation. In brackets, the number of Indels out of the total number of variants.

2.3 Genotype imputation

The details of this part are given in the Chapter 3 corresponding to the first article of this

thesis. We give here a quick overview of the method. We used the FImpute software (v 2.2)

(Sargolzaei et al., 2014), as many studies have already pinpointed its good performance

for imputation when compared to many other alternatives (Chud et al., 2015; Johnston

et al., 2011; Toghiani et al., 2016; Ye et al., 2018). FImpute can use different sizes of
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Figure 2.9: Genotype comparison between the sequence and the chip. Results obtained
with the two callers are shown, Freebayes on left and gVCF-GATK on right. In the top,
the best hits similarities are represented in boxplot. The lower part showed the similarities
of each sequenced individual with all the genotyped individuals in box plot. The sequenced
individual names were on left and the best hits individual name from the chip on right.
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Figure 2.10: Density marker comparison. Marker density of 7540 SNPs from the chip (left)
and from SNP calling (right) in 500kb non-overlapping windows.

rolling windows with a given overlap to scan the genomes of target and reference datasets.

The pedigree information is used to increase imputation accuracy. Therefore, FImpute

combines two sources of information for imputation: the pedigree and the LD.

2.3.1 Preliminary tests

Imputation software selection

A first test was designed to compare two imputation software based on the best results

found in the litterature. It was performed on the reduced factorial mating design (dark

green in table 2.2), composed by 294 individuals. These individuals were genotyped

with the 12K custom illumina Bead Chip (Faivre-Rampant et al., 2016). Markers with

more than 80% of missing values, SNPs with faulty segregation between parent and

progenies, and monomorphic SNPs were removed. A cross-validation scheme with a

masked proportion (10% or 50%) of genotypes for 75% of the progenies was set, with

all the parents with complete genotypes and the remaining 25% of the progenies. The

masked individuals and positions were randomly selected for each cross-validation run.
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The imputation was performed by the FImpute software (v 2.2) (Sargolzaei et al., 2014)

and BEAGLE 4.0 (Browning and Browning, 2007) software with the pedigree information

provided. The imputation error rate was estimated as the proportion of imputed alleles

differing from the true genotypes.

Preliminary sequence imputation in the factorial subsample

This test was the first full-scale test using available data in November 2016. We used the

complete Factorial mating design with 392 individuals (383 progrenies, 8 parents and 1

grand-parent). Genotype imputation was performed with FImpute software (Sargolzaei

et al., 2014), to impute 1% of missing data on the SNP chip panel. FImpute was also used

to phase and impute the genotypic data from 8K SNP (SNPchip) to 2.4 millions of SNP

(SNPSeq). To assess the imputation accuracy, a percentage of SNP correctly imputed

was calculated by cross validation. For this, each SNPSeq of sequenced individual was

masked and imputed in a leave-one-out scheme. Imputation was also tested in a more

challenging scheme with 6 sequenced individuals with no known relatives in the dataset.

The SNPs with more than 5% of error in the imputation were removed, and the most

frequent genotype outcome from all cross-validations was kept for the next steps. The

high density imputed dataset resulting at the end comprised 1 million of SNP, or 350K

with MAF <0.05.

2.3.2 Final imputation

A most substantial imputation scheme was between the sequence data (1,466,586) on 43

individuals and the genotypic data from the SNP chip (7540) on 1039 individuals. To

assess imputation accuracy, a leave-one-out cross validation scheme was performed among

the 43 sequenced individuals. The SNPseq were masked for one individual at a time,

and this individual with only SNPchip data was subsequently imputed with the rest of

individuals. There were several cases depending on the relationship between individuals.

The imputation software was able to use several types of information to perform the

imputation: (from most advantageous to least advantageous) 1. Information from

Brothers/Sisters, parents and half-brothers/sisters was available; 2. Information from

parents was available; 3. Information from one of the parents and the Brothers/Sisters
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or half-brothers/sisters was available; 4. Information from one of the parents was

available 5. Information from Brothers/Sisters or half-brothers/sisters was available

6. There was no related individual bringing information, the software used the global

information of the population. To have enough individuals in each case we divided the

individuals in : Factorial mating parents (they have more information and more sequenced

progenies); Multiple-pair mating parents (they are less related to each other); Factorial

mating progenies (they have more sequenced sull-sibs and half-sibs); Multiple-pair mating

progenies; unrelated individuals.

Differents statistics allow to assess the imputation quality or accuracy. One was the

proportion of alleles correctly imputed by individual (eq. 2.3), and by positions estimate

(eq. 2.4).

IAj = 1−
∑Mj

i=1 |gij − ĝij|
2×Mj

(2.3)

IAi = 1−
∑Ni

j=1 |gij − ĝij|
2×Ni

(2.4)

where gij is the observed allelic dosage (0,1,2) of the SNP i in individual j, gij is the

imputed allelic dosage (0,1,2) from FImpute, M is the total number of SNP and Niis the

number of individuals with called genotypes for SNP i.

The proportion of alleles correctly imputed by SNP might be subjected to frequency-

dependent bias, in the sense that imputation could be correct more often when the

imputed allele is already highly frequent. To overcome this, some authors (Badke et al.,

2013; Calus et al., 2014) have proposed alternatives statistic. The Pearson’s correlation

coefficient between true and imputed individuals or between true and imputed positions

(Calus et al., 2014). A correction of the proportion of alleles correctly imputed by the

probability of correct imputation by chance (Badke et al. (2013) : eq. 2.5).

IAfreq = p(AA)ref × p(AA)val + p(AB)ref × p(AB)val + p(BB)ref × p(BB)val (2.5)

where p(AA)refi, p(AB)refi, and p(BB)refi are the observed frequencies for genotypes

AA, AB, and BB for SNP i in the reference and p(AA)vali, p(AB)vali, and p(BB)vali
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are the predicted genotypic frequencies in the testing population for SNP i. IAfreq

can be interpreted as the expected probability of correctly imputing a genotype in the

testing population by assigning a randomly sampled genotype from the reference panel.

We estimated the proportion of correctly imputed alleles adjusted for MAF using the

equation 2.6 :

IAMAF = IA− IAfreq

1− IAfreq

(2.6)

where IA is computed as described in equation 2.4 and IAfreq in equation 2.5. FImpute

offers an imputation mode based on allelic frequency (option "random_fill"), which gives

us a lower bound for imputation accuracy and allow to illustrate the pedigree contribution

in the imputation process.

Factors affecting SNP imputation

Different factors were used to describe the heterogeneity between individuals and between

markers in terms of imputation quality. At the individual level: the sequence depth

and the level of relatedness defined according to the following categories : parent of

factorial, parent of multiple pair mating design, progeny of factorial, progeny of multiple

pair mating design and French wild population. At SNP level, the following factors

were considered: sequencing depth across individuals, per-site SNP quality from the SNP

calling, the minor allele frequency in the 43 sequenced individuals, the ratio between

the chip density and sequences density in non-overlapping 500kb windows, the p-value

of an exact Hardy-Weinberg Equilibrium test for each site as defined by Wigginton et al.

(2005) and the level of unique information contributed by each SNP given the level of LD

with neighbouring SNPs, and calculated as the weight obtained by the LDAK5 software

(Speed et al., 2017). The responses of the different variables to the factors considered

were analysed by a principal component analysis and a feature selection algorithm called

Boruta.

Genotype imputation impact

Linkage Disequilibrium : We were interested on the differences in linkage

disequilibrium before and after imputation. We used the Plink software (Chang et al.,
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2015; Purcell et al., 2007) to estimate the linkage disequilibrium parameter D’ (Gaunt

et al., 2007) in the chip dataset and after imputation in the sequence dataset.

Annotation analysis : We were interested in assessing to what extent imputation could

change the annotation profile of covered SNPs, notably given the fact that the process

involved a substantial change in density. Changes in annotation profiles from enriched

to non-enriched but denser genotypes could be of relevance when using the resulting

genotypes to fit prediction models for a large spectrum of traits. To get an annotation

profile, a gene annotation analysis was performed. The tool Annovar (v. 2017Jul16)

(Wang et al., 2010) was used with the command "–geneanno -buildver" in the Populus

trichocarpa v3.1 gene set.

The results are described and discussed in a first article. This article has been

submitted and the draft is available in Chapter 3.

2.4 Genomic Prediction

This exploratory study of the feasibility of genomic selection in black poplar was initially

conducted on the available factorial data (First test). This has allowed us to set up data

analysis pipelines from imputation to genomic selection. As genotyping and sequencing

data became available, firstly in November 2016 (Second test), then in September 2017

(All dataset), the models were tested again to refine our choice of methods and software.

The final result are presented in the draft of Article 2 in Chapter 4. In this section, I

retrace the different tests we have performed, while results will be presented in a section

of Chapter 4. After the genotype imputation, we extracted three marker sets of 50K,

100K and 250K to be used to test the impact of genotype information densification with

respect to our chip data set (7K SNP). The details of how we composed each marker set

are in the chapter 4.

2.4.1 Cross-validation strategy

Concerning cross-validation for assessing predicting abilities under the different evaluation

methods, we chose three proportions of training and validation sets (TS/VS) : 75/25,
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Figure 2.11: Density marker comparison. Marker density of 7540 SNPs from the chip; 50K
, 100K and 250K from SNP calling after imputation and filtering the best positions p in
500kb non-overlapping windows.
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50/50 and 25/75. We composed each training and validation set following several methods.

Training sets were composed with all the parents and completed with randomly selected

offspring from the global set. Between 4 (all dataset) and 12 (First and second test)

repetitions were sampled for cross-validation. We tried two cross-validations based on

the family sampling. Because parents were crossed with several other parents in the

factorial design, we expected to be able to predict any of their unobserved (or masked)

crosses from remaining crosses, in what constituted our training set for family sampling

in the first and second tests. The results were not satisfying, and we chose another

scenario for cross-validating families for the whole dataset. With all the data set, we

selected randomly a number of families to be present or absent in the training (absent or

present in the validation) in such a way that the resulting percentages of training versus

validation (75/25 and 25/75) were met. To avoid selecting the same families for training or

validation, we compared different random sets of families and took the ones with the most

complementary family composition. Finally, we tried to optimize the individual sampling

with a CDmean (Rincent et al., 2012) approach. We used CDmean inside families and

for the global data set.

2.4.2 Main evaluation methodologies

GBLUP

We used the genomic BLUP or GBLUP based on the classic mixed model approach for

genetic evaluations, replacing the relationship matrix A with a molecular relationship

matrix G (VanRaden, 2007; Habier et al., 2007). Matrix A gives an expected relationship,

ignoring the random sampling of parental alleles at each locus at the time of meiosis

(Mendelian segregation), and thus resulting in siblings having the same relationship value.

On the contrary, matrix G estimates the relatedness achieved by taking into account

Mendelian segregation. Thanks to this additional information on the segregational

variance, GBLUP can potentially achieve more accurate predictions of genetic values

than matrix A. As with pedigree-based BLUP, GBLUP has the benefit of using equations

with dimensions that remain reasonable, as it is linked to the number of pedigree records

rather than to the number of markers.
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Several methods for calculating G matrix have been proposed in the literature. The

Lynch method improved by Li (Lynch and Ritland, 1999; Li et al., 1993) uses a similarity

index applied to each locus and from which the relationship coefficient is calculated. This

method assumes that all alleles Identical by State (IBS) are IBD (Identical by Descent),

i. e. that each allele was originally present in a single copy in the founder population

(Eding and Meuwissen, 2001). Otherwise, the relatedness is overestimated. It is possible

to correct this by taking into account the probability that at a locus an allele is IBS but

not IBD. However, this correction is difficult to implement because it requires to know

the genotype of founders, which are often unavailable. An alternative method consists in

using allele frequencies to correct relatedness coefficients (VanRaden, 2007; Habier et al.,

2007). Ideally, the allelic frequencies must be those in the founder population. In practice,

these are often unknown and the allele frequencies of the population under study are used

instead. Forni et al. (2011) propose a method to "normalize" the previous relatedness

matrix so that the average value of its diagonal is 1. This method aims at obtaining

molecular relationships that are optimally compatible with pedigree-based relatedness,

especially in cases where the two types of relatedness are to be combined, for example

when jointly analyzing genotyped and non-genotyped individuals. Powell et al. (2010)

and Yang et al. (2010) proposed derivatives to the weighting of the G matrix. These

alternatives comprise a second adjustment using the variance associated to each marker

as weighting factor for the construction of G, in the sense that highly variable markers

are penalized. We tried the method proposed by Forni et al. (2011) together with that of

Powell et al. (2010) for our GBLUP. Given that results in a preliminary set were similar,

we kept the method proposed by Forni et al. (2011) based on VanRaden (2007) and Habier

et al. (2007) for the final data set analysis.

Marker weighting : Studies conducted in the zebra finch (Lopes et al., 2013) and

pork (Santure et al., 2010) showed that the best way to estimate relationships between

individuals was with markers in linkage equilibrium. We tried differents methods

to estimate relatedness from markers in linkage equilibrium or to weight markers’

contribution to relatedness according to their own contribution to linkage disequilibrium.

The first method is based on VIF (variance inflation factor) and is calculated with PLINK
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(Purcell et al., 2007). We defined the size of the sliding SNP window to be tested, the

number of SNPs for the offset of the window at each stage and VIF threshold. VIF is

calculated using the following equation 2.7.

V IF = 1
1−R2 (2.7)

where R2 is a multiple correlation coefficient for a SNP regressed on all SNPs

simultaneously. This factor considers the correlations between SNPs and between linear

combinations of SNPs. A VIF of say 10 is often used to represent collinearity problems

in multiple regression analysis (e.g. implies a R2 of 0.9). A V IF of 1 would imply

that the SNP is completely independent of all other SNPs. The second method was

proposed by Speed et al. (2012), and implemented in the LDAK software. This method

assesses patterns of local LD by estimating pairwise correlation matrix between SNPs.

LDAK would then determine a weight per marker (i.e. 0 for redundant markers, and

1 for irreplaceable markers) according to the degree of LD as a proxy of the degree of

independence of the information provided by markers.

RR-BLUP, BayesCπ and weighted GBLUP

Under the assumption of normal marker effects, the GBLUP is equivalent to the RR-

BLUP. Ridge regression (RR-BLUP), random regression BLUP or SNP BLUP (Meuwissen

et al., 2001) are different ways to denote the same application that uses mixed models to

predict the (random) effect of markers. Marker effects are summed up to obtain individual

breeding values. It is assumed that the variances of marker effects are the same across

markers. RR-BLUP and GBLUP are actually equivalent models, in the sense that both

give the same variance and individual predictions. The first datasets were analysed with

the GS3 software to estimate the markers effects and the individuals GEBV (Bayesian

equivalent to RR-BLUP). However, it usually took substantial amounts of computing

time, notably with high densities like 250K SNP. We chose to use GBLUP instead, and to

derive markers effects (u) with the following equation 2.8 (Strandén and Garrick, 2009):

u = WX ′G−1g (2.8)
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where W was a diagonal matrix of weights, either an identity matrix (GBLUP) or a

diagonal of weights (wGBLUP), X was the genotyping (n × p) matrix , g the genomic

estimated breeding values (GEBV).

The BayesCπ method Habier et al. (2011) is an extension of BRR (Bayesian random

regression (Pérez et al., 2010), which is the Bayesian version of RR-BLUP. The BayesCπ

therefore also considers that all markers have the same variance but assuming that a

proportion π of markers, estimated by the model, have no effect. For the remaining 1−π

markers, the BRR rules apply. The a priori beta distribution is assumed for π. With

π=0, BayesCπ is identical to BRR. We used GS3 software to assess BayesCπ. Unlike

previous definition of π, the BayesCπ in GS3 assumes π to be the proportion of markers

having an effect. The π was either estimated directly by GS3 or given as a fixed value

from the start (5%, 1% and 0.05% for the two first tests). Then with all the data, and

given the computational time that was required for BayesCπ, we changed for the weighted

GBLUP (WANG et al., 2012). Zhang et al. (2016) shows that weighted GBLUP is a good

proxy for BayesCπ, giving similar results but within a much shorter computing time as

there is no Gibbs sampling. For comparison purposes, BayesCπ was also tested with the R

package BGLR, and compared to that of GS3 for two traits and three different genotyping

densities.

We used one of the procedures described in (WANG et al., 2012) for the weighted

GBLUP (denoted wGBLUP hereafter). Unlike GBLUP, where all markers are assumed

to have the same variance and the same weight a priori, the derivative wGBLUP uses

transformed G according to marker weights to select SNP. Weights were obtained by

normalized the squared marker effects, and those were obtained with a first iteration of

GBLUP and subsequent derivation from Strandén and Garrick (2009) formula. Once the

weighting done, a second round of GBLUP with the new weighted G matrix was obtained.

The whole process was repeated three times, thus is three subsequent weightings.

Additional models with dominance and multiple-traits

The range of evaluation methodologies that were used in the study (BLUP, GBLUP,

wGBLUP and BayesCπ) are shown in the table 2.5, together with the information of the

evaluation dataset, the different genotyping datasets and the alternative models (additive,
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Table 2.5: Summary of statistical methods and models used depending on the dataset

Factorial mating design Test November 2016 Last Choice
SNP set ADD ADD + DOM MultiTrait ADD ADD + DOM MultiTrait ADD ADD + DOM MultiTrait

P-BLUP none Yes Yes Yes Yes Yes Yes Yes Yes Yes
P-BLUP 
corrected none Yes Yes Yes

GBLUP

7K Yes Yes Yes Yes Yes Yes Yes Yes Yes
50K Yes
100K Yes
250K Yes Yes Yes

wGBLUP

7K Yes Yes
50K Yes
100K Yes
250K Yes

BayesCπ ; π 
estimated by the 

model *

7K Yes Yes Yes Yes Yes
50K Yes
100K Yes
250K Yes Yes Yes Yes Yes

BayesCπ ; π fixed 
at 10%

7K Yes Yes Yes Yes
250K Yes Yes Yes Yes

BayesCπ ; π fixed 
at 1%

7K Yes Yes Yes Yes
250K Yes Yes Yes Yes

BayesCπ ; π at 
0.05%

7K Yes Yes Yes Yes
250K Yes Yes Yes Yes

* GS3 was used for the two first test and the package R BGLR with all the data set
Converge problem

With GS3 the convergence criteriaea still not converge
The results were similar between GBLUP and RR-BLUP and were changed for the weigthed GBLUP

Not tested

additive+dominance and multiple-trait). Not all methods were used in combination with

dominance effects as shown in table 2.5, the analyses were performed with the R package

breedR and sommer.

For dominance models with GBLUP, the dominance relationship matrix was calculated

with a modified method based on Vitezica et al. (2013), and normalized following Forni

et al. (2011). We also tried dominance with wGBLUP, by weighting the markers in the

corresponding dominance relationship matrix with the estimated dominance effect from

a previous iteration (see details in the Chapter 4). Multiple-trait models were obtained

with R package breedR, and involving the following traits : rust resistance, height and

cicumference in first and second year of growth, budburst and branch angle.

A method based on haplotypes

During my stay in the AGBU research unit (University of New England, NSW 2351,

Australia) under the supervision of Bruce Tier, we implemented a method to build

haplotype-based relationship matrixes. A haplotype is a group of alleles of different loci
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located on the same segment of a given parental chromosome and that segregate together

during meiosis. Using phased haplotypes and tracking their transmision from parents to

offspring would facilitate the distinction whether IBS and IBD between any two alleles in

a locus.

The aim of building a haplotype-based relationship matrix is to calculate a genomic

relationship matrix between the gametes in the population and subsequently use this

information to compute a relationship matrix of individuals (Tier and Sölkner, 1993).

The algorithm uses two matrices, of size n × p with n the number of gametes (twice the

number of individuals) and p the number of loci (or SNP). The first matrix contains the

phased gametes (see table 2.6 for a toy example).

Table 2.6: Example of an individual phasing by gamete for 10 SNP, 4 parents (P) and 2
progenies (D)

individu gametes SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10

P1
1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2

P2
3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4

P3
5 1 1 1 1 1 2 2 2 2 2
6 3 3 3 3 3 4 4 4 3 3

P4
7 2 2 2 2 1 1 1 1 1 1
8 4 4 4 4 4 4 4 3 3 3

D1
9 5 5 5 6 6 6 6 6 6 6
10 7 7 7 7 7 7 7 7 7 7

D2
11 8 8 8 8 8 8 8 8 8 8
12 4 4 4 4 4 5 5 5 5 5

The parents are considered as founders, and each homologous chromosome has its own

identification number to allow tracking down to progeny. The progenies are therefore

composed of a combination of two gametes derived from the recombination of each

parental chromosome (lines 5 and 6 matrix 1). The second matrix (table 2.7 for a toy

example) contains the genotyping coded 0 for allele a and 1 for allele A.

The algorithm compares genotyping and haplotypes to build the relationship matrix

between gametes. If the genotyping is the same between two gametes and both alleles

come from the same haplotype, the corresponding value in the gametic relationship matrix

is worth 1. If the genotyping is identical but does not come from the same haplotype,

then that relationship is worth p, with p being the haplotypic confidence interval between

0 and 1. Finally, if the genotyping is different, zero is added. Once all the gametes have
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Table 2.7: Individual genotyping by gamete for 10 SNP

individu gametes SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10

P1
1 0 1 0 1 0 0 1 1 0 1
2 0 1 0 0 1 1 0 1 0 1

P2
3 1 0 1 0 1 0 1 0 0 0
4 1 0 1 1 1 0 1 0 0 1

P3
5 0 1 0 1 0 1 0 1 0 1
6 1 0 1 0 1 0 1 0 0 0

P4
7 0 1 0 0 0 0 1 1 0 1
8 1 0 1 1 1 0 1 0 0 0

D1
9 0 1 0 0 1 0 1 0 0 0
10 0 1 0 0 0 0 1 1 0 1

D2
11 1 0 1 1 1 0 1 0 0 0
12 1 0 1 1 1 1 0 1 0 1

been compared on all the loci, we divide by the number of loci (table 2.8 example with

p=0.5).

Table 2.8: Gametic relationship matrix

1 2 3 4 5 6 7 8 9 10 11 12
1 1.0 0.3 0.0 0.1 1.0 0.0 0.5 0.1 0.3 0.4 0.1 0.1
2 0.3 1.0 0.2 0.1 0.3 0.2 0.8 0.1 0.5 0.4 0.1 0.1
3 0.0 0.2 1.0 0.4 0.0 1.0 0.1 0.4 0.2 0.1 0.4 0.4
4 0.1 0.1 0.4 1.0 0.1 0.4 0.0 1.0 0.1 0.0 0.5 1.0
5 1.0 0.3 0.0 0.1 1.0 0.0 0.5 0.1 0.3 0.4 0.1 0.1
6 0.0 0.2 1.0 0.4 0.0 1.0 0.1 0.4 0.2 0.1 0.4 0.4
7 0.5 0.8 0.1 0.0 0.5 0.1 1.0 0.0 0.4 0.5 0.0 0.0
8 0.1 0.1 0.4 1.0 0.1 0.4 0.0 1.0 0.1 0.0 0.5 1.0
9 0.3 0.5 0.2 0.1 0.3 0.2 0.4 0.1 1.0 0.4 0.1 0.1
10 0.4 0.4 0.1 0.0 0.4 0.1 0.5 0.0 0.4 1.0 0.0 0.0
11 0.1 0.1 0.4 0.5 0.1 0.4 0.0 0.5 0.1 0.0 1.0 0.5
12 0.1 0.1 0.4 1.0 0.1 0.4 0.0 1.0 0.1 0.0 0.5 1.0

The relationship between individuals (A*) (table 2.9) is calculated with the following

equation 2.9 :

A∗ = 0.5× (gii + gjj + gij + gji) (2.9)

where gii and gjj are the diagonal elements equal to 1, gij and gji the relationships

between the gamete i and the gamete j of an individual. When p = 0, the matrix A*

is equivalent to the matrix A, and when p = 1, A* is equivalent to G (VanRaden, 2007;

Habier et al., 2007), with allelic frequencies equal to 0.5 for all loci. We masked randomly

25% of the genotyped individuals to compare A* with A , H (Legarra et al., 2009) and

G (VanRaden, 2007; Habier et al., 2007). We compute A* with p = 0 to p = 1 by

implementing p by 0.1 and used in a BLUP model to estimate heritabilities and AIC
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criteria.

Table 2.9: Individual relationship matrix A*

P1 P2 P3 P4 D1 D2
P1 1.30 0.20 0.75 0.75 0.8 0.20
P2 0.20 1.40 0.75 0.75 0.2 1.15
P3 0.75 0.75 1.00 0.55 0.5 0.50
P4 0.75 0.75 0.55 1.00 0.5 0.75
D1 0.80 0.20 0.50 0.50 1.4 0.10
D2 0.20 1.15 0.50 0.75 0.1 1.50

Quality of prediction

We used cross-validation to assess the prediction quality for the different models and

evaluation methodologies. The basic parameter was the predicting ability, obtained as the

Pearson correlation between the phenotypes and the GEBV for each validation population.

For comparative purposes, the prediction accuracy was obtained as the ratio between the

predicting ability and the square root of the narrow sense heritability. The heritability

being the one obtained from the pedigree-based model for each trait. Other quality

parameters were also studied: the Spearman correlation between phenotypes and GEBV

and the slope of the regression of phenotypes on the GEBV. Additionally to the cross-

validation sets, we used an independent set of individuals, representing the next generation,

to assess the genomic prediction performance. The GEBV of the individuals in such

testing set were predicted with each of the calibration sets in the cross-validation, and

the same quality parameters were obtained as for the cross-validation.
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Chapter 3

Densification of the genotyping

information by imputation

3.1 Résumé du Chapitre

Ce chapitre se place dans la deuxième question de la thèse et cherche à répondre

à la question suivante : Sommes-nous capables d’améliorer les performance de la

prédiction génomique chez le peuplier en intégrant un plus grand nombre d’informations ?

Plus précisément, nous avons étudié les avantages de la densification génotypique par

l’imputation.

Tous les résultats présentés dans ce chapitre convergent vers le fait qu’une imputation

génotypique de bonne qualité est possible dans le contexte des populations d’amélioration

utilisées dans l’étude. Une stratégie de séquençage du génome relativement restreinte

impliquant quelques dizaines d’individus nodaux combinée à un processus d’imputation

a permis de multiplier par 185 le nombre de marqueurs disponibles pour plus de mille

individus, pour lesquels seules de faibles densités étaient disponibles. Toutefois, la qualité

de l’imputation est dans une certaine mesure hétérogène entre les marqueurs et les

individus. Le nombre relativement important d’individus séquencés par rapport à la

population à imputer, ainsi que les niveaux de parenté dans cette population impliquant

les parents, la progéniture et les frères et sœurs ont eu un impact positif sur la qualité des

résultats de l’imputation.

Nous montrons également dans ce chapitre que tous les facteurs de pré-imputation
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peuvent expliquer en partie les différences de qualité d’imputation, mais qu’aucun

d’entre eux ne peut être utilisé de manière opérationnelle pour filtrer les positions avant

imputation. L’un des rares facteurs sur lesquels nous avons un certain pouvoir décisionnel

est l’homogénéité de la couverture du panel de faible densité. Selon nos résultats en

matière de qualité d’imputation, la méthodologie mise en œuvre dans ce chapitre permet

d’acquérir un grand nombre de SNPs sur un grand nombre d’individus pour un coût

inférieur à celui d’un séquençage complet. L’une des rares exigences concerne l’installation

et les compétences pour l’utilisations des outils de bioinformatiques. De grandes capacité

de calculs ne sont pas nécessaires pour effectuer l’imputation pour un jeu de données

équivalent au nôtre.

3.2 Summary presentation of the chapter

This chapter is part of the second question of this thesis: Are we able to improve the

conditions for a quality genomic prediction in poplar by integrating extra information?

More precisely we investigated the advantages of genotyping densification through

imputation. Preliminary tests were made on a part of the factorial mating design

(table 2.2) to select the best imputation software, before performing substantial genotype

imputation from sequences in our global dataset. According to other studies (Chud et al.,

2015; Johnston et al., 2011; Toghiani et al., 2016; Ye et al., 2018), we selected two software

tools to perform this preliminary test: BEAGLE 4.0 (Browning and Browning, 2007) and

FImpute v2 (Sargolzaei et al., 2014). As a result, FImpute showed best results by masking

either 10% or 50% of the genotypes of the factorial mating progenies with the chip dataset.

Our final data set comprised 1033 individuals divided among 35 families and 6

unrelated individuals from French wild populations. We sequenced 43 nodal individuals

(grandparent, parents, progenies) and detected more than 1.4 millions of SNPs to impute

a thousand individuals genotyped with Illumina custom 12K Bead chip (7540 SNPs).

The imputation quality was assessed by a leave-one-out cross-validation of the sequenced

individuals. The imputation error rate or accuracy was calculated at the individual

and position levels. Different pre-imputation factors were studied and analyzed with

a principal component analysis and a classification algorithm called Boruta, in order to
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understand the factors affecting the imputation quality.

The preliminary results are shown in the first section of this chapter, before the

first Article. This article has been submitted to BMC genomics in August 2018, and

deposited to BioRxiv (Pegard et al., 2018). In this article, we presented the imputation

quality results, together with an assessment of the explaining factors and the impacts

of genotype imputation on linkage disequilibrium and annotation profile. Finally, to

close the chapter, we discussed the impact and the advantages of genotype densification

in relation to: (1) the detection of recombination events within chromosomes, (2) the

estimation the recombination rate within families to improve subsequent predictions in

silico of segregation; (3) the enrichment of genetic maps, and (4) the improvement of the

accuracy of GS.

3.3 Preliminary tests

3.3.1 Imputation software selection

Material and methods quick overview

The tests were performed on the reduced factorial mating design (table 3.1), composed

of 294 individuals genotyped with the 12K custom Illumina Bead Chip (Faivre-Rampant

et al., 2016). We masked 10% and 50% of genotype information for 75% of the progenies.

All the parents had their complete genotype information, as well as 25% of the progenies.

The individuals and positions to be masked were randomly selected. The imputation was

performed by the FImpute software (v 2.2) (Sargolzaei et al., 2014) and by BEAGLE 4.0

(Browning and Browning, 2007) software with the pedigree information provided. The

imputation error rate was estimated as the proportion of imputed alleles differing from

the true genotypes.

Results & discussion

The results reported in table 3.2 showed that both at 10% and 50% of masking FImpute

performed better than BEAGLE 4.0. Fimpute showed similar results between 10% and

50% of masking rate with an error rate of around 1%. The error imputation rate of
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Table 3.1: Factorial mating design used for the preliminary test of imputation

Male SAN-GIORGIO
Female SRZ BDG 71077-308

VGN-CZB25 55 57 54
71041-3-402 28 11
71072-501 25 28 29

BEAGLE 4.0 reached 13.24% when we masked 50% of the genotypes. The comparatively

poorer results of BEAGLE 4.0 may be due to the small number of individuals provided.

Indeed, Sargolzaei et al. (2014) indicate that BEAGLE works better with more than 300

individuals, slightly more than those used in this preliminary work. According to these

first results, we decided to use FImpute for the next steps of imputation. FImpute has

been already reviewed as being highly performant compared to other alternatives (Chud

et al., 2015; Johnston et al., 2011; Toghiani et al., 2016; Ye et al., 2018).

Table 3.2: Factorial mating design used for the preliminary test of imputation

Imputation Software Masking rate Imputation error rate

FImpute 10% 1.06%
50% 1.07%

BEAGLE 4.0 10% 2.16%
50% 13.24%

3.3.2 Sequence: the first full-scale test

Material and methods quick overview

We used the complete Factorial mating design containing 392 individuals. Genotype

imputation was performed with FImpute software (Sargolzaei et al., 2014), in order to

impute genotypic data from 8K SNP (SNPchip) to 2.4 millions of SNP (SNPSeq). The

assessment of the imputation accuracy, as the percentage of SNP correctly imputed, was

calculated by cross-validation in a leave-one-out scheme. For each sequenced individual,

the SNPSeq were masked and imputed from SNPchip data with all the information from

the rest of the population and relatives. Some of the sequenced individuals belonged to

unrelated populations and were used as challenging test for the imputation.
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Figure 3.1: Percentage of positions correctly imputed by Chromosomes

Results & discussion

The imputation accuracy by chromosomes (Figure 3.1) varied from 60% to 100%, and

with an average of 85%. All the chromosomes seemed to have similar ranges of variation

for the accuracy. Chromosomes 6, 8 and 10 were slightly better imputed than the rest.

The figure 3.2 represents the imputation accuracy by individuals, with large variations in

distribution across individuals. In the worst case scenario, accuracies were slightly higher

than 70%, while in the best cases values were higher than 90%. The figure 3.3 showed the

results of accuracy depending on the individual’s class, with three main classes (Parents,

progeny or unrelated). The unrelated individuals had the lowest imputation accuracy,

with the narrowest dispersion around the mean, whereas offspring was the group with

the highest accuracies. Parents showed multimodal distribution for accuracies, clearly

indicating heterogeneity in accuracies between some groups of parents. After trimming

the imputed position and keeping only those positions with an imputation accuracy higher

than 95%, there were 1 million of SNPs still available. When applying a filter on the minor

allele frequency at 5%, there were 350K SNP with higher MAF still available for the first

genomic selection test.

Several conclusions can be drawn from this full-scale imputation test. First, a good
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Figure 3.2: Percentage of positions correctly imputed by individuals
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Figure 3.3: Percentage of positions correctly imputed by individual’s class
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3.4. ARTICLE I: SEQUENCE IMPUTATION FROM LOW-DENSITY SINGLE
NUCLEOTIDE POLYMORPHISM PANEL IN A BLACK POPLAR BREEDING
POPULATION

imputation accuracy (more than 95% of similarity) was available when imputing from low

density (8K SNPs) to high density (1 million of SNPs), even with unrelated individuals.

There was a small variation between chromosomes in average and between individuals

depending on their relatedness class. The most important part of correctly imputed

positions involve rare alleles with a minor allele frequency lower than 5%. These results

led us to ask which factors have a strong influence on the imputation quality, and how

imputation works in a wider population. Some of these aspects were treated in the

following article.

3.4 Article I: Sequence Imputation from Low-

Density Single Nucleotide Polymorphism Panel

in a Black Poplar Breeding population

This paper was Submitted to BMC genomics on August 2018 and accepted on March

2019.
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RESEARCH ARTICLE

Sequence Imputation from Low Density Single
Nucleotide Polymorphism Panel in a Black Poplar
Breeding population
Marie Pégard1, Odile Rogier1, Aurélie Bérard2, Patricia Faivre-Rampant2, Marie-Christine Le Paslier2,
Catherine Bastien1, Véronique Jorge1 and Leopoldo Sánchez1*

Abstract

Background: Genomic selection accuracy increases with the use of high SNP (single nucleotide polymorphism)
coverage. However, such gains in coverage come at high costs, preventing their prompt operational
implementation by breeders. Low density panels imputed to higher densities offer a cheaper alternative during
the first stages of genomic resources development. Our study is the first to explore the imputation in a tree
species: black poplar. About 1000 pure-breed Populus nigra trees from a breeding population were selected and
genotyped with a 12K custom Infinium Bead-Chip. Forty-three of those individuals corresponding to nodal trees
in the pedigree were fully sequenced (reference), while the remaining majority (target) was imputed from 8K to
1.4 million SNPs using FImpute. Each SNP and individual was evaluated for imputation errors by leave-one-out
cross validation in the training sample of 43 sequenced trees. Some summary statistics such as Hardy-Weinberg
Equilibrium exact test p-value, quality of sequencing, depth of sequencing per site and per individual, minor
allele frequency, marker density ratio or SNP information redundancy were calculated. Principal component
and Boruta analyses were used on all these parameters to rank the factors affecting the quality of imputation.
Additionally, we characterize the impact of the relatedness between reference population and target population.

Results: During the imputation process, we used 7,540 SNPs from the chip to impute 1,438,827 SNPs from
sequences. At the individual level, imputation accuracy was high with a proportion of SNPs correctly imputed
between 0.84 and 0.99. The variation in accuracies was mostly due to differences in relatedness between
individuals. At a SNP level, the imputation quality depended on genotyped SNP density and on the original
minor allele frequency. The imputation did not appear to result in an increase of linkage disequilibrium. The
genotype densification not only brought a better distribution of markers all along the genome, but also we did
not detect any substantial bias in annotation categories.

Conclusions: This study shows that it is possible to impute low-density marker panels to whole genome
sequence with good accuracy under certain conditions that could be common to many breeding populations.

Keywords: Genotype Imputation; Low density arrays; Whole-Genome Resequencing; Populus nigra

Background
In genome-wide analyses, the accuracy of genomic
associations and predictions tends to increase with the
density of marker coverage [1, 2]. Although the cost
of genotyping has decreased steadily over the past
decade, it still represents a significant investment for
an improvement program. High-density genotyping of
a large number of individuals remains unaffordable
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1BioForA, INRA, ONF, 45075, Orléans, France, 2163 Avenue de la Pomme

de Pin CS 40001 ARDON, 45075 Orléans Cedex 2, France

Full list of author information is available at the end of the article

for non-domesticated and highly heterozygous
species. Low-density panels imputed to higher
densities offer an alternative to systematic genotyping
or sequencing of the entire population, at least
at the initial stages of compiling the minimum
amount of genomic resources. The idea of genotype
imputation as supplemental genotyping data was
described by Burdick et al. [3], using the term ”in
silico” genotyping. In this context, imputation refers
to the process of predicting genotyping data not
directly available for an individual. Imputation uses a
reference panel composed of genotyped individuals
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with high marker density to predict all missing
markers of another panel genotyped at lower density
coverage [2]. Imputation can be used in at least
three different scenarios: (i) to fill missing data that
occurred due to technical problems, (ii) to correct
for genotyping errors, and (iii) to infer data for
non-genotyped SNPs on a set of individuals [4].
Another more extreme scenario involving imputation
is to create all the genotype information of individuals
that are no longer available from their extant relatives
[5]. Imputation software uses two main strategies:
the first is based on pedigree and Mendelian
segregation [6–8], and the second relies on linkage
disequilibrium [9, 10]. Some authors use sequentially
or in a given combination both approaches [11].
The first strategy is the one implemented in
algorithms like Lander-Green [12], Elston-Steward
[13] or Monte-Carlo sampling algorithms [14, 15].
The second strategy is commonly used for samples
with low levels of kinship and unknown ancestors,
relying instead on the linkage disequilibrium between
markers within the reference population. It uses
heuristic algorithms as Expectation Maximization
(EM) algorithm, coalescence models and Markov’s
hidden strings (HMM) [16, 17]. Recently, a study
has compared eight machine learning methods to
impute a genotype dataset, but results are of lower
quality than those from Beagle, a reference software
in the domain of imputation [18, 19] which is based
on the forecited second strategy [20]. The imputation
accuracy depends on several factors. Among them,
there are the genotyping quality, the levels of linkage
disequilibrium (LD), the marker density which in
turn influences perceived linkage disequilibrium,
and the relatedness between reference and imputed
populations. Factors affecting imputation accuracy
have already been studied both with simulated and
empirical data. For instance, Hickey et al. [21] showed
that imputation accuracy increases with marker
density. The reference population constitution is
also a decisive factor for the imputation accuracy.
The reference population should be large enough to
capture all relevant haplotypes [6] and recombination
events, as well as to estimate correctly LD. The
relatedness between the reference and the target
panel favours imputation quality, with higher
accuracies as relatedness increases between the
two groups [22]. The effects of panel size, LD and
relatedness become more important with decreasing
marker density [6, 23]. Imputation of genotyping data
has several advantages, the first being the reduction
of genotyping costs [24], which can be very important
depending on the species. In addition, imputation
of genotyping data also improves the detection of

QTLs and the model’s prediction accuracy developed

in association studies or genomic selection [2]. The

imputation of genotyping data could be used in

genetic mapping to enrich genetic maps for a higher

coverage. Finally, imputation could correct to a

certain degree the eventual heterogeneity in marker

density related to constraints in chip design. Such

heterogeneity in marker density across the genome

happened to be the case of the chip used in our study

here [25]. Often, imputation involves a difference in

densities between reference and targeted panels of

less than 10-fold (i.e. 5K to 50K [26–28] or around

10-fold 50K to 500K [29, 30]). With the increasing

access to affordable genomic sequence data, the

possibility to use full sequences in the reference

panel for imputation becomes a reality, at least

for a limited number of individuals. Two studies

simulated sequences to find the better strategy

between imputation accuracy, number of sequenced

individuals and genome coverage [31, 32]. Both

studies suggest that a good compromise is sequencing

as many individuals as possible but at medium

coverage (x8). To our knowledge, only three studies

in animals have tried to impute successfully from

low and medium densities (13 K and 50-60K) to

real sequence data (350K and 13 millions) [33–35].

These studies show that inferring whole sequences

from low-density marker panels with good accuracy is

possible under certain conditions, notably with high

levels of relatedness and persistence of LD between

the markers across populations. Our study is one

of the first to explore the benefits of imputation

to densify SNP genotyping in a forest tree species,

usually less favored than livestock in genomic

resources. This paper is based on black poplar,

specifically on one of the breeding populations that

is used to produce hybrid poplars. In the context

of this breeding effort, imputation is expected to

enrich our knowledge, for the subsequent step of

predicting and selecting candidates, in three different

aspects: (1) to capture recombination events within

families to improve subsequent in silico predictions of

segregation; (2) to enriching the genetic map and (3)

to improve genomic evaluation accuracy. The main

objective of this study was to demonstrate to what

extent high quality imputation was feasible from low

density arrays. A complementary objective was to

identify the factors that contributed to the quality

of the imputation and its impact on the linkage

disequilibrium and the annotation profile of covered

positions.
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Table 1: Number of individuals and pedigree
information
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Description of black poplar breeding resources used in the

study, with mating designs involved and number of individuals

per family in the inner cells. Parental and family cells are

coloured by class in the mating regimes: yellow, factorial

mating progenies; orange, multiple pair mating progenies; red,

factorial mating parents; purple, multiple pair mating parents;

and dark cyan, unrelated individuals. In brackets, some

selected cells show the number of sequenced progenies, with

the figure in red involving 2 progenies that were subsequently

used as parental females (underlined codes) for the multiple

pair mating.

Methods
Plant material
For this study, 1,039 Populus nigra were made
available from the French breeding population. This
sample was structured into 35 families resulting
from 23 parents. Available families resulted from
two mating sets. As shown in the Table 1, the
first mating set corresponds to an almost complete
factorial mating design involving 4 female and 4
male parents, and resulting in 413 F1 individuals
structured into 14 full sib families. The second set
involved multiple pair mating schemes involving 8
female and 7 male parents, with a number of crosses
per parent ranging from 1 to 5, and resulting in 598
F1 individuals structured into 21 full sib families. Six
individuals originated from a collection of French wild
populations were also added to the population. All
1,039 individuals in this population were genotyped
and 43 of them were also sequenced. Among the
sequenced individuals, there were 1 grand-parent, 21
parents, 13 progenies and 2 female individuals that
were both progenies in the factorial mating design
and subsequently parents in the multiple pair mating
set (Table 1). The progenies to sequence were chosen
in such a way that all parents had at least one
sequenced offspring. The six sequenced individuals
originated from wild populations were added to assess
the imputation ability with unrelated individuals.
Detail of genotype list and origins are given in table
S1[see Additional file 1].

Genotyping and sequencing
We used the sequences of 6 parents previously
sequenced by Genome Analyzer IIx from Illumina
[25]. For the others parents (17), 1 grandparent,
14 progenies and 6 unrelated the DNA extraction
was made from leaf samples in the UMR0588-
BioForA collection, by using the Macherey-Nagel
Nucleospin®96 Plant II commercial kit. Illumina
paired-end shotgun indexed libraries were prepared
from one µg of DNA per accession, using Illumina
TruSeq®DNA PCR-Free Sample Preparation kit.
Briefly, indexed library preparation was performed
with DNA fragmentation by AFA (Adaptive
Focused AcousticsTM ) technology on Covaris
focused-ultrasonicator, all enzymatic steps and
clean up were realized according to manufacturer’s
instructions. Single or dual indexes were used. Final
libraries were quantified by using qPCR using KAPA
Library Quantification Kit and Life Technologies
QuantStudioTM Real-Time PCR system. Fragment
size distribution of libraries was assessed by High
Sensitivity DNA assay either on Agilent 2100
Bioanalyzer or on Caliper LabChip®GX nucleic acid
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analyser. Equimolar pools of multiplexed samples, up
to 11, were engaged in sequencing using 4 lanes. After
clusters generation on CBot, paired-end sequencing
2 × 150 sequencing by synthesis (SBS) cycles was
performed either on a Illumina HiSeq®2000/2500
running in high output mode (one lane) or on
Illumina HiSeq®4000 (three lanes ). Reads were
trimmed with Trimmomatic (v. 0.32) [36], and
mapped to the P.trichocarpa version 3.1 genome [37]
using BWA-MEM 0.7.12- with default parameters
[17]. Picard Tools (v. 2.0.1) [38] were used to remove
duplicated reads. Local and Indel realignments
were performed using Genome Analysis Toolkit
(GATK v. 3.5) [39, 40]. The variant detection was
performed on all individuals by two variant callers:
(1) all individuals at the same time with Freebayes
(V1.0.0) [41], and (2) by each individual separately
with GATK HaplotypeCaller, to be subsequently
assembled using GenotypeGVCFs (called later
gVCF-GATK). We have used the VCFtools 0.1.15
[42] to filter variants with no missing data, with a
minimum quality score of 30 and a minimum mean
depth of 2. We allowed among selected SNPs those
harboring three alleles, because mapping was done
on another Populus species reference genome, so it
was possible to have two alternative alleles and no
reference allele in the aligned sequences. We finally
kept only SNPs and Indels that were detected by both
callers and consistent with Mendelian segregation. To
simplify, SNPs and Indels were both called SNPs
hereafter. All individuals were genotyped using the
Populus nigra 12K custom Infinium Bead-Chip
(Illumina, San Diego, CA) [25]. We applied the same
quality filters as in Faivre-Rampant et al (2016):
markers with more than 90% of missing data were
removed and only Mendelian segregation consistent
markers were selected.

Genotype imputation
We used the FImpute software (v 2.2) [11], as many

studies have already pinpointed its good performance
for imputation when compared to many other
alternatives [16, 35, 43, 44]. FImpute can use different
sizes of rolling windows with a given overlap to scan
the genomes of target and reference datasets. The
pedigree information is used to increase imputation
accuracy. Therefore, FImpute combines both formerly
stated strategies for imputation: that based on
pedigree and that on LD. A first round of genotype
imputation was performed to predict 1% of missing
data still existing on the SNP chip panel. The second
and most substantial imputation scheme was between
the genotypic data from the chip SNP (SNPchip) and
the sequence data (SNPseq). To assess imputation

Sequenced
Individuals

Masqued sequenced
individual
Genotyped
individuals

SNPs

Repeat imputation
process for each

sequenced individual

1 0 1 2 0 0 1 2 0 1 0
2 1 2 0 0 1 1 0 2 0 2

...
43 0 2 2 ? ? 1 0 ? ? 1
44 1 2 0 ? ? 1 2 ? ? 0

...
1039 2 0 1 ? ? 0 1 ? ? 2

Comparison of real genotyping with genotyping from imputation
process for each sequenced individuals

Masqued sequenced
individual

SNPs

Real genotypes

Imputed genotypes

• Correlation by individual : Cori

• Proportion of correctly imputed
allele by individual (with
pedigree) :

Propi = 1 −
∑Mj

i=1
|gij−ĝij |

2×Mj

• Proportion of correctly imputed
allele by individual (with allelic
frequencies only):

lbPropi = 1 −
∑Mj

i=1
|gij−ĝij |

2×Mj

• Correlation by SNP : Cors

• Proportion of correctly imputed allele by SNP (with pedigree) :

Props = 1 −
∑Ni

j=1
|gij−ĝij |

2×Ni

• Proportion of correctly imputed allele by individual (with allelic frequencies

only): lbProps = 1 −
∑Ni

j=1
|gij−ĝij |

2×Ni

• Probability of correct imputation given the allelic frequencies :
Proba = p(AA)ref × p(AA)val + p(AB)ref × p(AB)val + p(BB)ref × p(BB)val

• Corrected Proportion of correctly imputed allele given the probability of
correct imputation : cProps = P rops−P roba

1−P roba

Figure 1: Metrics for the assessment of
imputation quality and accuracy by individuals
and by SNPs. The first upper panel depicts an
example of a toy genotyping matrix containing the
allelic doses, with markers in columns and individuals
in rows. First two individuals correspond to complete
genotypes from sequences; next two to sequences
with masked positions to be imputed for quality
assessment; and last individual to one genotype from
the SNP array. The lower panel represents the two
simplified genotyping matrices respectively with real
and imputed genotypes. Associated boxes contain the
different metrics that were used in the study: to
the right and across markers (columns), the metrics
by individual; at the bottom and across individuals
(rows), it can be found the metrics by marker. The
expressions for Prop-like metrics contain the following
variables: gij the observed allelic dosage (0,1,2) of the
SNP i in individual j; ĝij the imputed allelic dosage
(0,1,2) from FImpute; M the total number of SNP;
Ni the number of individuals with called genotypes for
SNP i; p(AA)refi, p(AB)refi, and p(BB)refi are the
observed frequencies for genotypes AA, AB, and BB
for SNP i in the reference and p(AA)vali, p(AB)vali,
and p(BB)vali are the predicted genotypic frequencies
in the testing population for SNP i.

accuracy, a leave-one-out cross validation scheme was



Pégard et al. Page 5 of 14

performed among the 43 sequenced individuals. The
SNPseq were masked for one individual at a time,
and this individual with only SNPchip data was
subsequently imputed with the rest of individuals.
To challenge the imputation scheme, an additional
set of 6 unrelated individuals with sequences were
added to the target panel. We estimated imputation
quality (or accuracy) using various statistics. One was
the proportion of alleles correctly imputed by each
leave-one-out individual (across SNPs, one proportion
per individual and per chromosome: Propi), and by
positions (across individuals, one proportion per
position: Props) (further explanations in Figure 1).
The proportion of alleles correctly imputed by SNP
might be subjected to frequency-dependent bias, in
the sense that imputation could be correct more
often than not when the imputed allele is already
highly frequent. To overcome this, Calus et al. [45]
have proposed the use of an alternative statistic, the
Pearson’s correlation coefficient between true and
imputed individuals (across SNPs, one correlation
value per individual and per chromosome: Cori)
and between true and imputed positions (across
individuals, one value per SNP position: Cors).
In our case, this latter correlation (Cors) was not
always available for computation. The reason was
that some SNPs had such a low allelic frequency that
monomorphic outcomes happened after imputation,
leading to zero variances. In order to account for
this frequency-dependent outcome, alternatively, we
used the option proposed by Badke et al. (2014)
[46] to correct the error rate by the probability of
correct imputation by chance (cProps: corrected SNP
proportion). FImpute offers an imputation mode
based on allelic frequency (option ”random fill”),
which gives us a lower bound for imputation accuracy
by individual (lbPropi : lower bound individual
proportion) and by SNP (lbProps: lower bound SNP
proportion).

Factors affecting SNP imputation
We considered different factors describing the
heterogeneity between individuals and between
markers imputations, and we checked to what extent
these factors affected imputation. The first factors
were at the individual level: the sequence depth
(MEAN DEPTH); and the level of relatedness
defined according to the following categories : parent
of factorial (Factorial parents), parent of multiple
pair mating design (MultiplePair parents), progeny
of factorial (Factorial progenies), progeny of multiple
pair mating design (MultiplePair progenies) and
French wild population (Unrelated). At SNP level,
the following factors were considered: sequencing

depth (DEPTH) across individuals; per-site SNP
quality from the SNP calling step (column QUAL
in the vcf file, extracted with vcftools v0.1.13
from the gVCF-GATK results files); minor allele
frequency (FreqOri); the ratio between SNPchip
density and SNPseq density in non-overlapping 500kb
windows (RatioDensity); the p-value of an exact
Hardy-Weinberg Equilibrium test (hweOri) for each
site as defined by Wigginton et al. (2005) [47] and the
level of unique information contributed by each SNP
given the level of LD with neighbouring SNPs, and
calculated as the weight (Weight) obtained by the
LDAK5 software [48]. The variation of the imputation
quality variables (Props, lbProps and cProps) were
analysed according to the different factors by a
principal component analysis. The factor’s relevance
to describe the imputation quality variables were
quantified with a Boruta algorithm which is a
wrapper built around the random forest classification
algorithm implemented in the R (R Core Team
2015) package Borut [49]. This algorithm created
”shadowMean”, ”shadowMax” and ”ShadowMin”
attribute values obtained by the shuffling of the
original attributes across objects. This set of created
attributes is used as a framework of reference. The
value of the importance of the factors tested, must be
different from the values of the attributes created, to
be considered as having importance in explaining the
observed variability.

Linkage Disequilibrium

Plink software [50, 51] was used to estimate the
linkage disequilibrium parameter D’ [52] in the
SNPchip dataset and after imputation in the SNPseq
dataset. Both sets were previously phased. The
SNPseq dataset was further filtered based on Props
(> 0.9) and cProps (> 0.8) variables, in order to
provide for the LD analysis positions with few or no
errors after imputation.

Annotation analysis

We were interested in assessing to what extent
imputation could change the annotation profile of
covered SNPs, notably given the fact that the process
involved a substantial change in density. Changes in
annotation profiles from enriched to non-enriched
but denser genotypes could be of relevance when
using the resulting genotypes to fit prediction models
for a large spectrum of traits. To get an annotation
profile, a gene annotation analysis was performed.
The tool Annovar (v. 2017Jul16) [53] was used with
the command “–geneanno -buildver” in the Populus
trichocarpa v3.1 gene set.
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Table 2: SNP Filter step
Filtering step Freebayes gVCF-GATK

No filter 26,489,941 27,475,756
vcftools (max allele=3, min

allele=2, minQ=30)

5,011,303 10,474,367

Monomorphic within P. nigra
individuals

1,246,546 2,504,973

Common positions between the
two callers

2,488,736 (375,566)

Homology between two callers
more than 95%

1,612,432

Consistent Mendelian
Segregation

1,466,586 (208,217)

Number of variants detected in the 43 sequenced individuals
using two callers with no filter and after filtering with different
parameters to obtain the input dataset used for imputation.
In brackets, the number of Indels out of the total number of
variants.

Results
Mapping and genotype calling results

Sequence datasets for every individual were mapped
on the P. trichocarpa reference genome v.3.1. In
average, 91.7% of reads were mapped, 76.5% were
paired and only 2.2% were singletons. The genome
coverage was calculated by individual, and it varied
between 4X and 52X, with a mean coverage of 13X
(Table S1[see Additional file 1]). A total of 27,475,756
SNPs and Indels were detected by gVCF-GATK,
whereas 26,489,941 SNPs were detected by Freebayes
(Table 2). After scoring the SNPs on a quality
criterion (Phred score > 30), the number of trimmed
positions were twice as many with gVCF-GATK than
with Freebayes (Table 2). Among the remaining
positions, some were monomorphic within P. nigra
individuals but different from the reference sequence:
about 1 million for gVCF-GATK and twice as much
for Freebayes. A total of 2,488,736 positions were
common between the two callers at that point of
the filtering. Among these positions, 17% were Indels
and 83% SNPs. To simplify, and given the relatively
low frequency of Indels (17% of variants), SNPs and
Indels in the study were both denoted under the same
acronym of “SNPs” hereafter. To have the best quality
in genotype calling, we kept the positions where the
genotype calling was at least 95% similar between the
two callers for all individuals. Mendelian segregation
was checked on available trios, and 142,974 positions
were removed for which the progeny were inconsistent
with parents. For the chip, after applying quality
filters, 7,540 SNPs were recovered for the population
under study and were used to impute 1,466,586 SNPs
from sequences along the 19 Chromosomes. In other
words, we imputed 99% of the data.
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Figure 2: Comparaison of two imputation
accuracy variables. Relationship between the
proportion of alleles correctly imputed by each
leave-one-out individual (Propi) and the Pearson’s
correlation coefficient between true and imputed
individual genotypes (Cori). The different panels
correspond to the different individual classes in
the mating regimes, and each point represents the
values for one chromosome and one individual. The
correlation value is given in each panel and derives
from the fitted regression line.

Imputation quality at the individual level
The Pearson’s correlation between true and

imputed individuals for each chromosome (Cori) was
strongly correlated with the individual proportion of
SNPs correctly imputed (Propi) per chromosome
(R2 = 0.991, Figure 2), with the former varying
between 0.5 and 0.96, and the latter between 0.84
and 0.99. The coefficient of correlation between
Cori and Propi was consistently high across
individual classes (MultiplePair parents: 0.929,
Factorial progenies: 0.938, MultiplePair progenies:
0.929 and Factorial parents: 0.984), even for unrelated
individuals where it was slightly lower with 0.896
(Figure 2). Propi versus Cori relatedness clouds
were differently clustered depending on the class of
individuals (Figure 2). In general, factorial mating
design progenies had higher Propi and Cori values
(respectively from 0.94 to 0.98 and from 0.81 to
0.95) than those in the Multiple pair mating design
progenies (from 0.93 to 0.96 and from 0.80 to 0.88).
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Figure 3: Proportion of individual correctly
imputed by chromosomes Distribution of the
proportion of SNPs correctly imputed by chromosomes
(Propi). White diamond symbol stands for the mean.

Progenies from either of the two schemes had higher
Propi and Cori values than those in the parental
groups (from 0.87 to 0.90 and from 0.57 to 0.65).
The parents of the factorial mating design resulted
in the most variable ranges for Propi and Cori
with respectively from 0.88 to 0.99 and 0.6 to 0.96,
respectively, although that class had on average
higher values than those found in parents in the
multiple pair mating scheme. Finally, the unrelated
individuals are in the lowest part of Propi and Cori
variation (with respectively from 0.89 to 0.90 and
from 0.62 to 0.63). There was no separate group
within individual’s categories (Figure 2) meaning
that the individual class ranking was consistent
along the chromosomes. The individual lower bound
for imputation accuracy (lbPropi) was moderately
correlated to Propi (Figure S1[see Additional file
2]). The ranking of individual classes was equivalent
between lbPropi and Propi. However, there appears
to be a higher gain in Propi with respect to lbPropi
(i.e., using pedigree and LD versus frequencies)
for the multiple pair-mating progenies, factorial
progenies and factorial parents than for the multiple
pair mating parents and unrelated individuals.
In Figure 3, Propi distribution is shown per
chromosome. This averaged imputation accuracy
was roughly similar for all chromosomes, except for

chromosomes 6 and 8 where means were substantially
higher (respectively 0.96, and 0.95). No relationship
between the sequencing depth (MEAN DEPTH)
and Propi was found at individual level whereas a
poorly significant correlation seems to be present
between depth (MEAN DEPTH) and lbPropi and
Cori (Figure S2 [see Additional file 3]). In summary,
at the individual level, imputation accuracy was high
with a proportion of SNP correctly imputed ranging
between 0.84 and 0.99. The variation was mostly due
to the relatedness between individuals and to a lesser
extent to sequencing quality or sequencing depth.
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Figure 4: Principal Component Analysis of
Factors affecting SNP imputation (A) Principal
Component Analysis factor map of factors calculated
at SNP level: Props: proportion of SNPs correctly
imputed; cProps: proportion of SNPs correctly
imputed and corrected by the minor allele frequency;
lbProps: lower bound proportion of SNPs correctly
imputed based only on allelic frequency; hweOri: p-
value of a Hardy-Weinberg Equilibrium test for each
site [47]; Weight: LD weight estimate obtained with the
LDAK5 software; FreqOri: original allelic frequency
in the sequenced individuals; QUAL: per-site SNP
quality from the calling step; DEPTH: sequencing
depth per site summed across all individuals ;
RatioDensity: ratio between SNPchip density and
SNPseq density in a 500kb window. (B) Correlations
between parameters calculated at SNP level and
dimension of the ACP from figure 3A.
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Figure 5: Comparaison of density marker before
and after imputation SNP density map before
imputation (top panel), corresponding to the SNP
chip genotyping, and after imputation from sequence
(bottom) in 500 kb windows. SNPs were selected
on two different criteria based on the percentage of
alleles correctly imputed: Props (> 0.90) and cProps
(> 0.80). The scale colour represents the density of
markers, with dark blue for low density and yellow for
high density.

Imputation quality at the SNP level
A strong correlation between Cors and cProps (0.94)
suggests that similar information was relayed by
these two variables despite the frequency-based
correction. The Figure S3 [see Additional file 4]
shows the variation of the three different estimates
of imputation quality at the SNP level (Props,
lbProps, cProps), as a function of different classes
of minor allele frequency (FreqOri). While for low
FreqOri, Props and lbProps distributions remained
similar, with increasing frequencies their respective
distributions tended to separate from each other.
The frequency dependent correction applied to
cProps was strongest at low frequencies, making
cProps much lower on average than the other
two counterparts. With increasing frequency, that
correction was weaker with cProps getting closer to
both Props and lbProps. This suggests that, while the
problem of sensibility to frequencies can be easily
overcome, cProps shows imputation qualities that
can be far lower than what is actually observed.

The first 5 axes of the principal component analysis
(PCA) considering the three estimates of imputation
quality and six factors that potentially affect this
quality, explained 90% of the variance (PC1 and
PC2, explained respectively 37.8 and 16.5% of the
variation; Figure 4A). Props showed the highest
independence with respect to the sequence depth
(DEPTH), the SNP quality (QUAL), cProps,
the ratio between SNPchip density and SNPseq
density (RatioDensity) and, to lesser extent, to
the level of unique information contributed by each
SNP (Weight). Props was negatively correlated
to the FreqOri and positively correlated to the
p-value of an exact Hardy-Weinberg Equilibrium test
(hweOri) and to lbProps. In Figure 4B, correlation
of each variable to the PCA dimensions are shown.
The first dimension was negatively correlated to
FreqOri (-0.94), and positively correlated to hweOri
(0.78), lbProps (0.92) and Props (0.87). Sequencing
quality parameter QUAL and DEPTH are highly
correlated to the second dimension (respectively
0.68 and 0.8). RatioDensity and cProps were
correlated to the third and fifth dimensions whereas
the Weight variable was only strongly correlated to
the fourth dimension. The Boruta analysis ranked
the importance of the different factors considered to
explain the variation in Props, cProps and lbProps
variables (Table 3). All factors were quantified
as being of higher importance than those of lower
bond references in shadow attributes. RatioDensity
resulted in the highest importance among all factors
for Props and cProps with effects respectively being
1,351 and 1,182, largely ahead of the rest of factors,
with effects ranging between 40 and 115 for Props,
33 and 132 for cProps. lbProps showed a different
ranking of factors, dominated by FreqOri with the
maximum effect among factors, which is expected
given the fact that it is based on allele frequency. In
summary, the quality of imputation at a SNPs level
strongly depended on RatioDensity and to a lesser
extent on FreqOri. By selecting SNP sets on Props
and cProps simultaneously, we obtained 190,392 SNP
with good imputation quality (Props > 0.90), while
their level of polymorphism was not forced towards
low allele frequencies (cProps > 0.80). The SNPs
distribution along the genome after imputation was
more homogeneous than what was initially available
with the SNPchip (Figure 5).

Linkage Disequilibrium
The linkage disequilibrium (D’) calculated in SNPchip
and SNPseq sets is represented in Figure 6A,
with density distributions showing that LD was
lower in SNPseq than in SNPchip. This difference
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Table 3: Estimation of importance of different
explanatory factors by Boruta analysis

Factor cProps lbProps Props
(Mean ± SD) (Mean ± SD) (Mean ± SD)

shadowMax 1.44 ± 0.93 1.48 ± 0.70 1.80 ± 1.30
shadowMean -0.05 ± 0.79 -0.22 ± 0.52 -0.01 ± 0.82
shadowMin -2 ± 0.53 -2.22 ± 1.25 -1.57 ± 0.91
hweOri 32.96 ± 1.04 39.84 ± 0.73 40.33 ± 1.99
QUAL 98.95 ± 5.12 67.83 ± 1.70 67.90 ± 1.76
Weight 131.86 ± 3.56 92.78 ± 4.20 101.57 ± 4.23
FreqOri 64.28 ± 2.19 110.92 ± 2.79 115.02 ± 3.28
DEPTH 114.21 ± 5.08 75.51 ± 1.67 114.81 ± 4.81

RatioDensity 1,182.87 ± 39.82 36.68 ± 1.50 1,351.57 ± 43.94

Boruta analyses for the different explanatory factors assumed
for imputation quality variables Props, cProps and lbProps.
Values correspond to averaged effects and their corresponding
standard deviations allowing for a ranking of importance of the
factors. The maximum value is bolded. Props: proportion of
SNPs correctly imputed; cProps: proportion of SNPs correctly
imputed corrected by the minor allele frequency; lbProps:
lower bound proportion of SNPs correctly imputed based
only on the allelic frequency; hweOri: p-value of a Hardy-
Weinberg Equilibrium test for each site [47] ; Weight: LD
weight estimate with the LDAK5 software; FreqOri: original
allelic frequency in the sequenced individuals; QUAL: per-
site SNP quality from the calling step; DEPTH: sequencing
depth per site summed across all individuals ; RatioDensity:
ratio between SNPchip density and SNPseq density in a 500kb
window. ”ShadowMean”, ”shadowMax” and ”ShadowMin”
correspond to effects obtained by shuffling the original
attributes across objects and used as a reference for deciding
which factors are truly important.

between sequence and chip sets was consistent over
classes of distances across the genome. Figure 6B
represents heat-maps for D’ values according to
physical distances. In general, D’ decreased with
increasing distances, as expected, although this
trend was noticeably clearer for SNPchip than for
SNPseq. For SNPchip, that D’ decay was noticeable
at the very shortest distance lags, with a bottom
value for the mean sitting at 0.25. Some increases
were observed at the highest distances, but this
corresponded to very few number of points. For
SNPseq, on the contrary, the weighted mean was
almost invariable over distances with a mean value of
0.2. The very large numbers of short distance pairs
with low D’ had a high impact on the pattern of
the weighted mean. Figure 6C presents the results
under an alternative view in order to explain the
differences in patterns between SNPchip and SNPseq.
D’ values are plotted as a function of distance and
product of MAF of involved alleles, with the idea
of checking to what extent the levels of D’ was the
result of low allelic frequencies in SNPseq. For the
SNPchip set, the highest values of D’ were found
distributed over different distances and levels of MAF
products, with a concentration of maximum values
at very short distances and relatively low levels of

Figure 6: Comparaison of linkage disequilibrium
before and after imputation Distribution of D’
values of linkage disequilibrium for the two SNP sets
in the study: SNPchip (pink) and SNPseq (blue) and
over different ranges of physical distances (panel A).
Panel B represents the distribution of D’ values versus
distances in a heat-plot with low densities in blue and
high densities in yellow, respectively for SNPchip (left)
and SNPseq (right). The red line is the average value
of D’ weighted by frequencies for a distance window of
500kb. Panel C represents the distribution of D’ values
as a function of distances between any two positions
and the product of the corresponding minor allele
frequencies in the pair of loci, with colour indicating
the average value of D’ weighted by frequencies for a
distance window of 500kb from low range (blue) to
high range (yellow), respectively for SNPchip (left)
and SNPseq (right).

MAF. The picture is substantially different with the

SNPseq, where the highest values of D’ were found

exclusively at a very narrow band of low frequencies,

suggesting that at least part of the levels in D’ could

be explained by the low polymorphisms brought

by the sequence. As a consequence, the imputation

did not appear to result in an increase of LD, but

rather the opposite due to the differences in spectra

of frequencies between SNPchip and SNPseq.
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Annotation

Table 4: Proportion of Annotated SNP in genomic
regions and mutation types

Value % (number)
SNPchip SNPseq

Region variant hit
downstream 2,43 (183) 6,23 (12338)

exonic 36,18 (2728) 14,96 (29607)
intergenic 3,78 (285) 32,28 (63901)

intronic 37,02 (2791) 30 (59377)
splicing 0,04 (3) 0,1 (192)

exonic; splicing 0 (0) 0,001 (3)
upstream 1,8 (136) 5,71 (11307)

UTR3 8 (603) 6,3 (12470)
UTR5 3,55 (268) 3,02 (5968)

UTR5; UTR3 0 (0) 0,01 (20)
upstream; downstream 0,6 (45) 1,18 (2340)

Annotated Positions 93,4 (7042) 99,79 (197523)
Total number of Positions 100 (7540) 100 (197932)
Mutation type

frameshift deletion 0 (0) 0,12 (246)
frameshift insertion 0 (0) 0,06 (118)

Non-frameshift deletion 0 (0) 0,08 (159)
Non-frameshift insertion 0,01 (1) 0,04 (84)

synonymous SNV 19,09 (1439) 6,64 (13133)
Non-synonymous SNV 16,92 (1276) 7,85 (15534)

Stop gain 0,15 (11) 0,15 (299)
Stop loss 0,01 (1) 0,02 (35)

Total number of exonic positions 36,18 (2728) 14,96 (29608)

Annotation results for SNPchip and SNPseq in percentage of
counts per annotation category, and number of corresponding
positions in brackets. For region variant hit: exonic;splicing
corresponds to a variant within exon region but close to
exon/intron boundary; UTR5;UTR3 corresponds to a variant
positioned where two coding regions overlapped, one in
forward and one in reverse; upstream;downstream corresponds
to a variant positioned in an intergenic region between two
neighbouring genes.

A total of 93.4% of SNPchip and 99.79% of SNPseq
were annotated (Table 4). Most categories in the
annotation catalog were enriched in the SNPseq
compared to the corresponding levels of enrichment
in the SNPchip. In the exonic region, SNPs were
categorized depending on different mutation types.
With SNPseq new locations, three new mutation
types were represented: frameshift deletion, frameshift
insertion and non-frameshift deletion. In summary,
the genotype densification not only brought a better
distribution of markers all along the genome, but also
no loss in annotation categories.

Discussion
In this study, we have shown that substantial
(26-fold) densification in marker coverage is possible
in up to 1000 individuals through imputation from a
few sequenced nodal individuals (43). Simultaneously,
we have achieved imputation qualities higher than
0.84, which is sufficient for a heterozygous species
like poplar but may be insufficient when working
with species involving inbred lines. This imputation

quality is similar to the one obtained on horses
[34] with Impute2 software or in cattle [33], and
higher than the one obtained on chickens [35]. The
study is based on a subset of a breeding population
in black poplar, with a relatively low effective
number of contributing parents, which could explain
partly the success of the imputation. However, this
situation is far from exceptional and could be easily
found in many other species going through breeding
activities, where an elite of a few dozens of parents
can contribute substantially to next generation [54].
Although relatedness between the group bringing
marker density and the group to be imputed is
key in the success of imputation [21, 24, 55], our
study demonstrated also that imputation works
with relatively small losses in quality when inferring
unrelated individuals taken from a diversity collection
of the natural range of the species in France.
Moreover, such a substantial 26-fold imputation did
not appear to increase artefactually the levels of
LD. The annotation of imputed positions showed no
loss in annotation categories compared to original
low density coverage. These two results suggest that
imputed data can be of enough quality to be the base
of subsequent studies in genome-wide predictions.

The use of a ”leave-one-out” cross validation
scheme allowed us to ascertain the actual quality
of the imputation, both by individuals and by SNP
positions. The proportion of alleles correctly imputed
by SNP gave the actual value of the imputation
quality, although with the drawback of an allele
frequency bias. Indeed, a selection based on that
proportion by SNP alone could potentially favor
positions with low MAF over the rest, as imputation
is easier when one of the alternative alleles is rare.
The correction we used based on the work of Badke
et al. [46] compensated this bias. This measure is
interesting whenever we wish to compare results
between different imputation methods or between
different software. However, it offers a less intuitive
criterion, not easily connected to the actual values of
imputation error. Therefore, we proposed to combine
the actual value of the imputation quality and the
frequency-based corrected measure to select SNPs
that fulfil both criteria with high level values. Both
criteria were given equal importance. The result in
our study led to positions with the highest imputation
quality while not necessarily resulting in an excess of
rare alleles in the imputed population.

Many factors can affect imputation quality like LD,
density ratio, minor allele frequency or relatedness
between target and reference populations [56, 57].
Our results showed that all these factors considered
in our study impacted to various degrees the quality
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of imputation. It seems difficult to provide general
predictor for the imputation quality based on these
or other factors. For instance, [4] suggest that there
is no obvious pre-imputation filter ensuring a good
imputation quality. However, one of the factors with
the highest impact on imputation quality in our study
was the marker density in the neighborhood of the
considered position for imputation. This is a somehow
logical outcome, in the sense that numerous markers
in dense regions would mutually facilitate their
imputation through the extent of LD. These results
were consistent with the fact that the imputation
accuracy decrease with increasing distance between
markers [58]. When designing a low-density chip, it is
therefore important to choose SNPs regularly spaced.
These results are consistent with the results of He et
al. 2018 [59], which showed that an evenly-spaced
SNPs combined with an increased minor allele
frequencies SNP panel showed the best results.

Imputation requires some degree of LD in existing
genomes to reconstruct missing positions [21].
Whenever the reconstruction comprises large
chunks of genomes, like in our case here, one could
hypothesize that there could be a risk of artefactually
increasing the frequency of certain extant haplotypes
and, therefore, exacerbate LD among imputed
positions. A similar hypothesis has been already
proposed by Pimentel et al. [27]. However, what we
found appears to be the opposite, with a reduction
in D’ from 0.25 in the chip to less than 0.2 in the
sequence, on average. The imputed sequence led to D’
values in the low range (close to zero), which could be
related to the fact that sequences harbor high number
of rare alleles for many positions. Some studies
[60, 61] showed that the upper limit of LD between
two SNPs is mathematically determined by their
difference in MAF. In case of extreme differences,
alleles cannot match, even at small distances between
SNPs, resulting in low LD. A decrease of LD between
SNPs could be problematic for subsequent studies
based on imputed data, especially at short distances.
Indeed, LD is used to capture the effect of nearby
quantitative traits loci (QTL), whenever SNPs are
not directly placed on the QTL. This potential
loss in capacity to capture QTL effects in the
imputed sequences might be compensated for by the
genotyping densification, which could extend the
reach of markers to unexplored regions involving new
QTLs. In summary, genotype densification allowed
to have a better repartition of the markers along
the genome and in different genomic regions. In our
case, the proportion of SNPs in intergenic regions
increased with the imputation, this compensated the
bias of our low-density SNP chip which was enriched

in coding regions [25]. Better marker repartition all
along the genome could be useful to detect causal
variants, as suggested by Jansen et al. [62]. They
showed that with the imputation of missing data, the
value of Phred-score genotype quality was improved.
This lead to a better genotyping quality, a better
causal variant identification in association studies
and a better variant annotation. Sequences in our
study have brought new spectra of allele frequencies,
involving a much higher proportion of rare alleles
compared to the chip data, which resulted from a
carefully selected set of highly polymorphic markers
[25]. While low frequencies could have some interest
in diversity studies or kinship assignment [63], their
use in the context of genomic evaluation or GWAS
would be challenging because of power issues unless
the involved rare alleles produce very large effects
and are captured with large sample sizes.

From an operational point of view, our results
showed that imputation can represent a good
strategy to reduce genotyping costs. By using a few
well-chosen sequenced individuals in the population,
very good imputation results could be obtained and
considerably increase the number of SNPs available.
It is therefore possible to create a low-density chip
to impute at high density via sequenced individuals.
This could minimize differences in imputation quality
along the genome and avoid any over-representation
of certain chromosome regions. This type of strategy
can be used in a breeding improvement program
on several generations. Yet, it would be required
to add high density genotyping or sequences every
generation [64] in order to keep a high imputation
accuracy. Not doing so could reduce the quality of
imputation and result in accumulating errors over
subsequent generations. Our study is a first step
before using gathered genotypes for genome-wide
predictions. The impact of imputation accuracy on
genomic selection accuracy was studied by several
authors. The genotype densification allowed to
increase the genomic evaluation accuracy depending
on the architecture of evaluated traits [65, 66].
Moreover, genomic selection accuracy increased with
better imputation accuracies [26, 28]. The marker
effect estimation could be biased and inbreeding
levels could be under-estimated [27], if the imputation
accuracy is too low.

Conclusion
In conclusion, we have demonstrated in this study
that high imputation quality is possible even from low
density marker sets. The relatedness had an important
impact on the imputation quality at the individual
level, but it is possible to impute unrelated individuals
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with a good performance. All factors studied here
had an impact on the imputation quality at the SNP
level, but there is no obvious way to use their effects
as criteria for a pre-imputation filter. The genotype
densification towards sequences induced a decrease of
linkage disequilibrium, due to the spectra of low allelic
frequencies. The densification allowed to correct bias
in variant annotation profile of the SNPchip marker
set, with a better distribution in all genomic region
categories.
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54. Pâques, L.E. (ed.): Forest Tree Breeding in Europe. Managing Forest

Ecosystems, vol. 25. Springer, Dordrecht (2013).

doi:10.1007/978-94-007-6146-9

55. Roshyara, N.R., Scholz, M.: Impact of genetic similarity on imputation

accuracy. BMC Genet. 16(1), 90 (2015).

doi:10.1186/s12863-015-0248-2

56. Hickey, J.M., Kinghorn, B.P., Tier, B., Van Der Werf, J.H., Cleveland,

M.A.: A phasing and imputation method for pedigreed populations

that results in a single-stage genomic evaluation. Genet. Sel. Evol.

44(1), 1–11 (2012). doi:10.1186/1297-9686-44-9

57. Pei, Y.-F., Li, J., Zhang, L., Papasian, C.J., Deng, H.-W.: Analyses and

Comparison of Accuracy of Different Genotype Imputation Methods.

PLoS One 3(10), 3551 (2008). doi:10.1371/journal.pone.0003551

58. van Binsbergen, R., Bink, M.C.A.M., Calus, M.P.L., van Eeuwijk, F.A.,

Hayes, B.J., Hulsegge, I., Veerkamp, R.F.: Accuracy of imputation to

whole-genome sequence data in Holstein Friesian cattle. Genet. Sel.

Evol. 46(1), 41 (2014). doi:10.1186/1297-9686-46-41

59. He, J., Xu, J., Wu, X.-L., Bauck, S., Lee, J., Morota, G., Kachman,

S.D., Spangler, M.L.: Comparing strategies for selection of low-density

SNPs for imputation-mediated genomic prediction in U. S. Holsteins.

Genetica 146(2), 137–149 (2018). doi:10.1007/s10709-017-0004-9

60. Lewontin, R.C.: The detection of linkage disequilibrium in molecular

sequence data. Genetics 140(1), 377–388 (1995)

61. Mueller, J.C.: Linkage disequilibrium for different scales and

applications. Brief. Bioinform. 5(4), 355–364 (2004).

doi:10.1093/bib/5.4.355

62. Jansen, S., Aigner, B., Pausch, H., Wysocki, M., Eck, S., Benet-Pagès,

A., Graf, E., Wieland, T., Strom, T.M., Meitinger, T., Fries, R.:

Assessment of the genomic variation in a cattle population by

re-sequencing of key animals at low to medium coverage. BMC

Genomics 14(1), 446 (2013). doi:10.1186/1471-2164-14-446

63. Eynard, S.E., Windig, J.J., Leroy, G., Binsbergen, R.V., Calus, M.P.L.:

The effect of rare alleles on estimated genomic relationships from

whole genome sequence data. BMC Genet. 16(1), 1–12 (2015).

doi:10.1186/s12863-015-0185-0

64. Judge, M.M., Purfield, D.C., Sleator, R.D., Berry, D.P.: The impact of

multi-generational genotype imputation strategies on imputation

accuracy and subsequent genomic predictions. J. Anim. Sci. 95(4),

1489 (2017). doi:10.2527/jas2016.1212

65. Frischknecht, M., Meuwissen, T.H.E., Bapst, B., Seefried, F.R., Flury,

C., Garrick, D., Signer-Hasler, H., Stricker, C., Bieber, A., Fries, R.,

Russ, I., Sölkner, J., Bagnato, A., Gredler-Grandl, B.: Short

communication: Genomic prediction using imputed whole-genome

sequence variants in Brown Swiss Cattle. J. Dairy Sci. 101(2), 1–5

(2017). doi:10.3168/jds.2017-12890

66. Zhang, C., Kemp, R.A.R.A., Stothard, P., Wang, Z., Boddicker, N.,

Krivushin, K., Dekkers, J., Plastow, G.: Genomic evaluation of feed

efficiency component traits in Duroc pigs using 80K, 650K and

whole-genome sequence variants. Genet. Sel. Evol. 50(1), 14 (2018).

doi:10.1186/s12711-018-0387-9

Additional Files
Additional file 1 : TableS1.pdf — Sequencing, pedigree and reference

information’s of each reference individuals.

Additional file 2 : FigureS1.pdf — Relationship between the proportion of

alleles correctly imputed by each leave-one-out individual (Propi) and the

lower bound individual proportion of SNP correctly imputed lbPropi).The

different colors correspond to the different individual classes in the mating

regimes, and each point represents the values for one chromosome and one

individual.

Additional file 3 : FigureS2.pdf — Relationship between the sequencing

depth and imputation quality variables at individual level. On the top of the

diagonal: Pearson’s correlations. The distribution of each variable is shown

on the diagonal. On the bottom of the diagonal: the bivariate scatter plots.

Additional file 4 : FigureS3.pdf — Variation of the three different estimates

of imputation quality at the SNP level (Props (Green), lbProps (Purple),
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3.5 Chapter Global discussion

All the results presented in this chapter converged to the fact that good quality genotype

imputation is possible in the context of the training populations used in the study. A

relatively restricted genome sequence strategy involving a few dozens of nodal individuals

combined with an imputation process have allowed to multiply by 185 the number of

available markers for more than thousand individuals, for which only low densities were

available. However, the quality of imputation was to some extent heterogeneous across

markers and individuals. The relatively important number of sequenced individuals

compared to the population to impute, together with the levels of relatedness in that

population involving parents, offspring and siblings crearly had a beneficial impact on

the quality of the imputation results. Between the first test and the study in the article,

the number of individuals had increased substantially. Maybe because of that factor, the

range of variation in imputation quality was substantially reduced. In general, the quality

of imputation was improved by 7%. Another difference between first and final tests was

the fact that differences across chromosomes became more evident in the latter. In this

chapter, we also showed that all pre-imputation factors can explain part of the differences

in imputation quality but that none of them can be operationally used to filter positions

before imputation. One of the few factors, on which we have some decisional power, is

the coverage homogeneity of the low density panel. According to our results in quality

imputation, the methodology implemented in this chapter can be used to acquire a large

number of positions over a large number of individuals at a lower cost than going through

sequencing all the way. One of the few requirements is computing facilities and skills. As

for computing, there is no need of large clusters for performing imputation in a dataset

of our size. Some restrictions may however apply and must be kept in mind. The main

limitation of our methodology is the size of the data sets and their storage. Sequence data

can take up to a considerable amount of space of several terabytes, especially assuming

that some bioinformatics steps often multiply the versions of files. In addition, genome

assembly evolves and improves over time, leading to the need to update sequence mapping

regularly. In our case, this could happen if a reference sequence in P. nigra is published.

A sequence in the same species would definitely improve the quality of all the steps from
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mapping to detecting SNPs, their location and organization on the physical map and

therefore of the resulting imputation. Each time new sequenced individuals are added

to the panel, it will be necessary to make a new detection with all individuals to ensure

the quality of the calling genotype. The previous data is not lost, and quality imputed

positions can be used to help the different steps of the imputation. This is especially

true since FImpute corrects the original genotyping when it turns out to disagree with

the pedigree. One last risk is the dependency on the FImpute software and its evolutions.

The set of imputed data represents a pool of information. Depending on the objectives and

the selection criteria for the selected SNPs, different data sets may be defined with varying

densities. The results showed already by several authors on the genotype densification

are propitious for implementing GS (Cleveland and Hickey, 2013; Tsai et al., 2017).
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Chapter 4

Genomic evaluation

4.1 Résumé du Chapitre

Dans ce chapitre 4 de la thèse, nous avons abordé la question de la faisabilité de

l’évaluation génomique par rapport à la méthode d’évaluation basée sur le pedigree

actuellement utilisée. Plus précisément, sommes-nous capables de prédire les phénotypes

de nouveaux individus avec suffisamment de précision à partir de la population

d’amélioration, et quels sont les principaux facteurs qui influencent sur la qualité de

cette prédiction ?

Dans cette partie, nous présentons les résultats de notre étude de validation de principe

pour l’évaluation génomique avec un millier d’individus et quatre ensembles de marqueurs

de densités différentes (7K, 50K, 100K et 250K). Ce chapitre contient les travaux les plus

avancés en termes d’évaluation de la prédiction génomique chez le peuplier noir, dans

le but principal d’identifier les conditions dans lesquelles cette évaluation pourrait être

compétitive.

La stratégie d’échantillonnage s’est avérée avoir un impact conséquent sur la

précision de la prédiction, contrairement à la proportion d’individus dans la population

d’entraînement. Un échantillonnage individuel avec une représentation de chaque famille

dans la population d’entraînement a donné les meilleurs résultats, ce qui pourrait

correspondre sur le plan opérationnel à l’augmentation de l’intensité de la sélection au

sein des familles par l’évaluation génomique. L’optimisation de l’échantillonnage via

le CDmean obtenue avec un rééchantillonnage classique ou via un un algorithm de
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“simulated annealing” optimisant les rééchantillonnage n’a pas conduit à de meilleures

populations d’entraînement.

Ce chapitre met en lumière plusieurs faits :

1. Premièrement, un avantage systématique en termes de prédiction n’est pas

nécessairement corrélé à la proportion de variance additive captée par le modèle.

2. Les modèles basés sur le génome, et en particulier le GBLUP, ont donné les meilleures

précisions de prédiction, suivis de près par les modèles basés sur le pedigree après

correction des erreurs via l’information des marqueurs.

3. Les avantages apportés par un génotypage plus dense dépendent des caractères et

sont plus évidents avec l’association de modèles de sélection de variable (wGBLUP).

4. Les modèles basés sur le génome ont d’une certaine manière mieux réussi que

les modèles basés sur le pedigree dans les situations les plus difficiles, avec une

population de validation totalement indépendante ou avec des phénotypes moins

précisément évalués.

5. L’utilisation de différents critères de qualité a révélé d’autres avantages des modèles

basés sur le génome par rapport aux modèles généalogiques.

D’après nos résultats sur l’exactitude de la prédiction, il est nécessaire d’utiliser

plusieurs méthodes, plusieurs critères de qualité et plusieurs densités de marqueurs afin

de trouver les conditions obtimales pour la prédiction génomique. Parmi tous ces modèles

et ensembles de données, la combinaison du modèle wGBLUP à la première itération

combinée avec l’ensemble des SNPs 50K a donné généralement les meilleurs résultats.

4.2 Summary presentation of the chapter

In this Chapter 4 of the thesis, we addressed the question of the feasibility of GS in relation

to the pedigree-based evaluation method used currently. More specifically, are we able to

predict phenotypes of new individuals with enough precision from the breeding population,

and what are the main drivers affecting the quality of this prediction? These are surely

not new questions and were already raised by all precedent experiences on GS on different
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species. We needed to raise it again, as often the performance of GS is context-dependent.

We identified the conditions for which the new evaluation methodology could eventually

be feasible and competitive, after considering the benefits of new modelling approaches

like multiple-trait models, models with non-additive effects, different genetic architectures,

marker densification, or the use of less repeatable phenotypes. We considered different

ways of designing the training and assessed the subsequent impacts on evaluation

performances.

Preliminary tests were performed on a restricted part of the factorial mating design

composed of 294 individuals, divided into eight families, from three males and three

females. Different methods and cross-validation stratégies were tested. The results were

confronted with the results obtained with a larger dataset in terms of individuals but

especially with more SNP markers. The process is briefly presented and discussed with

the addition of some complementary results in this section, and before showing the second

article of this thesis. The submission of this second article is planned before the end of

the year to the G3 journal. In this article, we presented the results of our proof of concept

study for GS with a thousand individuals, and four marker sets of different densities

(7K, 50K,100K, and 250K). This paper contains the most advanced work in terms of

assessment of GS in the thesis, with the main aim of identifying the conditions in which

this evaluation could be competitive.

4.3 Preliminary tests

4.3.1 First test

Methods

A subsample of the factorial mating design was used for this first test of GS (table 3.1) with

the genotyping information from the chip (Faivre-Rampant et al., 2016). Seven traits were

evaluated, as explained in chapter 2, in a complete randomized block design for height,

circumference and rust resistance at one and two years of age, and for proleptic branch

angle. The phenotypes were adjusted for micro-environmental effects with a pedigree-

based model involving a bi-spline approach for capturing microenvironmental effects at
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4.3. PRELIMINARY TESTS

individual level (package R breedR; Muñoz and Sanchez 2017; R3.3.1 platform).

Two genomic methods were used: Ridge-Regression BLUP and BayesCπ, both

implemented in the GS3 software. Gibbs sampling chains were obtained to derive

the posterior distribution for the different parameters in the model (chain parameters:

iterations = 100,000, burning = 20,000 and thinning = 1/1,000). Convergence of the

Markov Chains was evaluated graphically for every trait and method as presented in

Figure 4.1 by using the R package coda (Plummer et al., 2006).

Seven cross-validation schemes were used to estimate prediction abilities:

T75V25Rand, 75% of individuals was used for model calibration and the remaining

25% of individuals were used for prediction, with a 4-fold cross validation and 10

repetitions; T50V50Rand, 50% for calibration and 50% for prediction, again with 4-fold

cross validation and 10 repetitions; T75V25CDmean and T50V50CDmean, both with a

CDmean optimization for the choice of individuals within each family (Rincent et al.,

2012) and only one repetition; T75V25CDmeanG and T50V50CDmeanG, both with a

CDmean optimization for the choice of individuals in the global population and with

one repetition; and TFamily : two rows (or columns) in the factorial were used for

calibration, and the remaining row (or column) for prediction, with six repetitions. This

strategy allowed to assess the ability of the GS to predict new parental crosses with at

least two other parents in the training population.

For each of the 7 cross-validation schemes, predicting ability was calculated as the

correlation between the GEBV and the phenotype (spatially-adjusted clonal mean). To

assess the benefits of GS, the same cross-validation scenario and data were used with a

pedigree-based BLUP. GS3 software allowed the fitting of models with additive genetic

effects (ADD) and with additive and dominance effects (ADDetDOM). At this step,

PBLUP with additive and dominance effects was not obtained.

Results & Discussion

The results of average predicting ability were summarized in the figure 4.2. This first

test showed that BayesCπ with a π value fixed at 1% gave the best results most of the

time across traits, sampling strategies, and model complexity (additive versus dominance).

The optimization of the population training sampling with the CDmean method seemed
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Figure 4.1: Markov chains verification obtained with Bayesian RRBLUP and the 7K SNP
set for the trait Rust1. Upper panels represent different posterior parameters for the
environmental variance, and bottom panels for the additive variance. Leftmost panels
represent estimated variance distribution. Central panels are the autocorrelation analysis
between estimated values evaluated with R Package Coda. Rightmost panels are the
densities of the posterior distribution of the effect.

to be advantageous compared to the random method for growth and resistance traits with

the additive model and for a training composed with 75% of the data. In all other cases,

there was not a clear advantage of any of the training strategies.

In most of the cases, predicting unobserved descendants from a single parent in the

factorial was less performing than a prediction of a random validation. Models including

dominance were less performing and with larger variances among cross validations than

their additive counterparts. Predicting abilities for the best of the models overall,

BayesCπ1, fitted with dominance were 5% lower than those in the purely additive

counterpart, although this arrived with large variations across scenarios, with up to 55%

losses in predicting abilities and attaining at the best 11% advantages, always with respect

to the additive model.

Results of this first tests are generally encouraging for the genomic selection

implementation. They revealed the necessity to compare several evaluation methodologies

and sampling strategies. It also showed that there was an interest in the CDmean

optimization test. The next step was to do CDmean optimization with a simulating
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4.3. PRELIMINARY TESTS

Figure 4.2: Predicting abilities for the factorial mating design with 7K SNP. The different
evaluation methodologies used to estimated EBV are in columns, and organized by traits.
Upper panels correspond to additive models (ADD), while botton panels are for dominance
models (ADDetDOM). The sampling strategies for training are represented by different
color trends.

annealing approach instead of a “greedy” simpler approach, and to use different random

starts to reach the best combination of individuals between the training and the validation

population.

4.3.2 First genomic selection test with sequences

Material and methods

For this test, the complete factorial mating design was used, it was composed of 392

individuals from four mothers and four fathers. Parents were initially assumed to be

unrelated but genetic analysis showed that two of the fathers were half-brothers. The

father of these two male parents was added to the analysis, and the pedigree was corrected

in consequence. The factorial mating design contained fourteen families of 383 offspring.

Evaluated traits were growth (height and circumference), rust resistance at one and

two years of age and proleptic branch angle. We tried two phenotype datasets. First,

the original phenotype evaluated and adjusted with 6 blocks. Second, phenotypes were

somehow “downgraded” by obtaining estimations from only 3 of the blocks. That latter
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4.3. PRELIMINARY TESTS

option allowed to check the impact of less precise phenotyping on both pedigree-based

and genomic-based evaluations. We used the information from the 12K newly-developed

custom Infinium BeadChip (Illumina, San Diego, CA) (Faivre-Rampant et al., 2016),

which after filtering (Chapter 2) produced 8K SNPs. The 350K SNPs resulting from the

first imputation test from the sequence (results Chapter 3 part 3.3.2) were used for this

genomic selection test.

GS models The family structure was estimated with the A-matrix based on pedigree

information, calculated with the R package nadiv (Wolak, 2012). This matrix was

compared with a normalized genomic relationship matrix (GN 4.1) (VanRaden, 2007;

Habier et al., 2007; Forni et al., 2011) obtained with the SNPchip dataset (GNchip) and

with the SNPSeq dataset (GNSeq) following:

GN = (M − P )(M − P )′
trace[(M − P )(M − P )′]/n (4.1)

where M was the genotype matrix with m markers in columns and n individuals rows,

P a matrix (n × m) containing the frequency of the second allele (pi ) at the marker

i. According to Forni et al. (2011) the denominator should assure compatibility with A.

The matrix was computed in R3.3.1 platform. To assess the dominance genetic effect, a

dominance matrix based on the pedigree information was calculated with the R package

nadiv (Wolak, 2012) and the genomic dominance equivalent was calculated according to

Su et al. (2012) with:

DN = (X −W )(X −W )′∑ 2piqi(1− 2piqi)
(4.2)

where X was the genotyping n×m matrix with code 0 for homozygous and 1 for the

heterozygous, and W a n×m matrix containing the heterozygous frequency (2piqi). Three

models were used for genomic estimated breeding values (GEBV) for each trait: GBLUP

(Whittaker, 2000; Meuwissen et al., 2001), ridge regression best linear unbiased prediction

(RR-BLUP) (Meuwissen et al., 2001) and BayesCπ (Kizilkaya et al., 2010; Habier et al.,

2011). They were compared with our reference model, the best linear unbiased prediction

based on pedigree information (PBLUP) (Henderson, 1975).
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The model GBLUP and PBLUP were fitted within the package breedR, and those of

RR-BLUP and BayesCπ were implemented in GS3 software. In the case of BayesCπ, we

estimated π value jointly with the complete dataset by traits, and the obtained values

were the ones used for the cross-validation subsequently. The parameters for the Gibbs

sampling chain were: iterations = 5,000,000, burning = 20,000 and thinning = 1/5,000

for the SNP chip panel, and 10,000,000, 20,000 and 1/10,000, respectively for the SNPSeq

panel.

Prediction accuracy and Cross-Validation As in the previous tests, five cross-

validation scenarios were used for the assessment of prediction abilities: T75V25Rand,

T50V50Rand, T75V25CDmeanG, T50V50CDmeanG, and TFamily, similar to those

already described for the first test. CDmean optimization was made with an adhoc

simulated annealing algorithm instead of the greedy algorithm that came by default. For

each scenario, predicting abilities were calculated as in previous tests. To assess the

benefits of GS, the same method was used with a pedigree-based BLUP. To compare

BLUP and genomic results at a repetition basis, a Student’s t-test for paired samples was

performed.

Results & Discussion Results presented in Figure 4.3 showed a slight improvement

of the predicting ability with GS. The difference was less important than our previous

test with the chip overall, across traits, training strategy and model complexity (additive

versus additive + dominance). Differences between additive and additive plus dominance

models in performance was very small for most of the traits and evaluation methodologies,

excepting RRBLUP for Angle01. There was a trend giving some advantage for RRBLUP

over other methodologies for growth traits, while for resistance and architectural traits

BayesCπ seemed to have a slight advantage. The optimization of CDmean sampling for

training with a simulated annealing algorithm did not improve the predicting abilities

over the random sampling strategies, and the slight advantage of CDmean training in the

reduced dataset of previous test disappeared in this enlarged dataset. Results with the

sequences set were not shown here for two reasons.

First, the RRBLUP model with a G matrix build from sequences gives the exact same

results as those from a chip dataset. Second, BayesCπ and RRBLUP models did not
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converge after several weeks of computing. This results led us to reconsider the use of

BayesCπ and Bayesian RR-BLUP for the rest of the study. We decided to use GBLUP

instead, extract marker effects from the GEBV (Strandén and Garrick, 2009) and use the

weighted GBLUP approach proposed by Legarra et al. (2009) to test a method able to

selecting variables. This simpler and faster method showed similar results to those from

BayesCπ (Zhang et al., 2016; Teissier et al., 2018).

There was a slight reduction in predicting ability by using only 3 of the 6 available

blocks in the obtention of the mean genotype, although differences were negligible

compared to the variability across repetitions. This reduction affected similarly all 3

evaluation methodologies, pedigree-based and genomic-based (Figure 4.4). One effect

of the downgrading to 3 field replicates was, however, the larger variance in prediction

abilities within each scenario.

4.4 Article II: Conditions under which genomic

evaluation outperforms classical pedigree

evaluation are highlighted by a proof-of-concept

study in Poplar

This paper was submitted at frontiers in plant sciences on November, 2018.
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1 abstract

Forest trees like Poplar are particular in many ways compared to other domesticated species.

They have long juvenile phases, ongoing crop-wild gene flow, extensive outcrossing, and slow

growth. All these particularities tend to make the conduction of breeding programs and

evaluation stages costly both in time and resources. Perennials like trees are therefore good

candidates for the implementation of genomic selection (GS) which is a good way to accelerate

the breeding process, by unchaining selection from phenotypic evaluation without affecting

precision. In this study, we tried to compare GS to pedigree-based traditional evaluation, and

evaluate under which conditions genomic evaluation outperforms classical pedigree. Several

conditions were evaluated as the constitution of the training population by cross-validation, the

implementation of multi-traits, single traits, additive and non-additive models with differents

estimation methods (G-BLUP, weighted G-BLUP or BayesCπ), finally the impact of the marker

densification was tested through four marker sensity set (7K, 50K, 100K and 250K). The

population under study corresponds to a pedigree of 24 parents and 1011 offspring, structured

into 35 full-sib cohorts. Four evaluation batches were planted in the same location and 7 traits

were evaluated on one and two years old trees. The quality of prediction was reported by the

accuracy, the Spearman rank correlation and prediction bias and tested with a cross-validation

and an independent individual test set. Our results show that genomic evaluation performance

could be comparable to the already well optimized pedigree-based evaluation under certain

standard conditions. Genomic evaluation appeared to be advantageous when using independent

test set and a set of less precise phenotypes. Our study also showed that looking at ranking

criteria as Spearman rank correlation can reveal benefits to genomic selection hidden by biased

predictions.

2 Background

Forest tree species of interest for domestication like Poplar are particular in many ways compared

to other domesticated species, notably when it comes to breeding. Among the various particulari-

ties, forest trees have long juvenile phases, ongoing crop-wild gene flow, and extensive outcrossing

(Miller and Gross, 2011). All of these hamper the process of controlled recombination by the

breeder. Slow growth and cumbersomeness typical of trees do not facilitate either the conduction

of breeding programs, notably with evaluation stages being costly both in time and resources.

One of the poplar’s particularities is clonality or the possibility of asexual reproduction, which is

a powerful tool in evaluation and operational breeding (Bisognin, 2011). However, benefits rarely

go hand in hand with facility. Typically for developing a new poplar variety, a first year is used

for mating and seedling growth in nurseries. A second year is used to propagate the cuttings

and install the designs to do evaluations in different environments, and many subsequent years

pass before we can assess genotype-by-environment (G × E) interactions (Grüneberg et al.,

2009), or late maturation traits like wood quality. Selection in poplars proceeds typically via

independent level stages, with early stages involving screening for fast-growing, disease-resistant
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individuals from large numbers of candidates. Late stages focus on a reduced remainder to

select on final growth, architecture, disease resistance, and wood properties. This has been so

far operationally efficient considering the constraints imposed by the particularities of trees, but

it remains time consuming and lacks precision at the early stages.

For previous and additional reasons, perennials like trees are good candidates for the

implementation of genomic selection (GS) (Meuwissen et al., 2001). GS can potentially accelerate

the breeding process, by unchaining selection from phenotypic evaluation without affecting

precision. When applied early at the seedling stage, GS could potentially save evaluation

resources and reduce the time required for evaluation of late maturation traits. GS involves

ranking and selecting individuals by using a genome-wide marker set and prediction models

calibrated previously in a training set. GS has been made possible thanks to easy access to

cheap genotyping data, and to recent developments in evaluation methodology (de los Campos

et al., 2009). Recent studies of GS in forest trees were conducted on several species: eucalypts

(Resende et al., 2012b; Müller et al., 2017; Tan et al., 2017, 2018), spruce (Gamal El-Dien et al.,

2015; Ratcliffe et al., 2015; Gamal El-Dien et al., 2016; Lenz et al., 2017) and pines (Resende

et al., 2012a; de Almeida Filho et al., 2016; Ratcliffe et al., 2017). Given the differences among

forest species in general, and between their breeding programs in particular, assessments of GS

feasibility at a case-by-case basis are often desirable.

According to Hayes et al. (2009), several parameters are involved in genomic evaluation

accuracy. First, the extent of linkage disequilibrium in the population. Linkage facilitates the use

of markers as proxies of unknown QTLs in estimating genetic effects. Two additional parameters

affect linkage disequilibrium: effective population size and marker density (Grattapaglia and

Resende, 2011; Wientjes et al., 2013). The second parameter of importance for accuracy is the

composition of the training set. Such a set must be representative of the candidates for which a

prediction is required. Several studies developed methods to optimize the composition of the

training set (Rincent et al., 2012; Isidro et al., 2015; Akdemir et al., 2015). The third parameter

is trait genetic architecture, usually unknown or poorly understood, but that has an influence on

the performances of the different evaluation methods (Wimmer et al., 2013). Some evaluation

methods, such as those using some efficient strategy to focus only on relevant variables like

the family of bayesian methods, appear to be more efficient with traits with fairly uneven

distributions of gene effects. Other methods with less stringent a priori on the distribution of

gene effects work generally well with highly polygenic traits, like G-BLUP. Other modelling

approaches intent to capture the underlying complexity of genetic architectures, by including

non-additive effects like dominance and epistatic interactions (Toro and Varona, 2010; Su et al.,

2012; Vitezica et al., 2013; Muñoz et al., 2014; Vitezica et al., 2017; Martini et al., 2017), and

by considering multiple correlated traits. The latter have not been often used, despite some

promising simulation studies (Calus and Veerkamp, 2011; Guo et al., 2014), empirical studies

(Jia and Jannink, 2012), and the known fact from classical evaluation that genetic correlations

can back accuracies of poorly heritable traits or those harbouring many missing values in the

dataset (Gilmour et al., 2008).
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In the present study, we intended to benefit from the large corpus of knowledge already

established around the concept of GS to carry out a proof-of-concept study on the feasibility of

the methodology in the context of the black poplar breeding program in France. Black poplar is

the leading European species of riparian forest, with a wide distribution area, and contributing

as a parent together with Populus deltoides to one of the most widely used hybrid (Populus ×
canadensis) tree in the wood industry. This study is the first GS study for a Populus species.

One of the main objectives of the study was to compare GS to pedigree-based traditional

evaluation, by assessing different modelling options including non-additive genetic effects and

multiple-trait evaluation. The study also considered the role of marker densification in the

performance of GS, by benefiting from a recent imputation study (Pegard et al., 2018). Finally,

the design of the calibration and validation sets was taken into account as an additional factor

in the comparison. Globally, the study intended to identify the situations in which GS could be

a feasible option for poplar, and also the assessments required to reveal any eventual advantage.

3 Material and Methods

3.1 Plant material

The population under study corresponds to a pedigree of 24 parents and 1011 offspring, structured

into 35 full-sib cohorts, and involving a 4 by 4 factorial mating design together with a series

of multiple pair-mating designs (Pegard et al., 2018). Most of the parents were sampled from

natural populations or were high-performance trees already used at nurseries. The population

used corresponds therefore to the offsprings of these individuals obtained by controlled crosses

at the glass house. We can consider that the population was relatively close to the natural

population in diversity terms. The effective size was estimated between 4 and 12 from coancestry

matrices computed respectively with a set of independent set of markers and with pedigree.

Family size ranged from 10 to 118, with an average of 26 individuals per family. Field evaluations

also corresponded to four different campaigns. The first batch (2000 and 2001) involved the

factorial mating design with a total of 14 families and 413 offspring phenotyped. In second and

third batches, 126 individuals in 6 families and 105 in 5 families were phenotyped (2012/2013

and 2014/2016, respectively). Finally, in order to reinforce the connectivity between the different

evaluation batches, 10 additional full-sib families with some parents already in use in previous

batches were added in 2015 and phenotyped in 2017/2018. In total, 367 individuals were

phenotyped in this last batch.

3.2 Phenotyping

At their respective time-frames, all 1011 offspring and the 24 parents were vegetatively prop-

agated, and field evaluated in separate experiments according to the same six randomized

complete block design. All four evaluation batches were planted in the same location (47°37’59”

N, 1°49’59” W, Gumn-Penfao, France) with small variations in plot orientation and with common
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genotypes as controls across batches.

Phenotyping involved 7 different measurements over different years, and for 5 different traits.

Growth was assessed as stem circumference and tree height. Stem circumference was considered

at 1m for the second year (circ2). Height was assessed with a graduated rod after one (heigth1)

and two years of growth (heigth2). Mean branching angle was scored on proleptic branches at

the age of two years with a 1 to 4 scoring scale (angbranch), where score 1 was given to the

narrowest angle between the branch and the trunk and score 4 to the widest angle. The scale

for angbranch was calibrated in such a way that resulting measures in the same population

of reference results in phenotyping distributions being close to normality. Rust resistance was

assessed with a 1 (no symptom) to 9 (generalized symptoms) scale (Legionnet et al., 1999)

at year one (rust1) and year two (rust2). Budburst phenology of the stem terminal bud was

evaluated by measuring its kinetics (every 3 or 5 days from March to April) with a 0 to 5

scale, where stage 0 corresponded to a completely closed bud while stage 5 corresponded to the

initiation of stem internode elongation (Castellani et al., 1967). A local polynomial regression

model was fitted between stages and dates for each individual and this model was further used

to predict the date in Julian days at which the terminal bud was at stage 3 and in order to

assess individual susceptibility to late frosts (Howe et al., 2000). As a result of such fitting for

Budburst, distributions were continuous and close to normality.

All seven phenotypes were independently adjusted to field micro-environmental heterogeneity

with the breedR package (Muñoz and Sanchez (2018), implemented in R3.3.1 platform (R Core

Team, 2018)). We used an individual-tree mixed model over all 4 evaluation batches with

random effects to fit bi-splines surfaces (Cappa and Cantet, 2007; Cappa et al., 2015), which

were nested within each evaluation batch (field experiment). Bi-splines were anchored at a given

number of knots for rows and columns, which were optimised by an automated grid search

based on the Akaike information criterion (Akaike 1974) provided by breedR. Data from all

blocks were used as input to the adjustment model. The same adjustment was also performed

with data from three of the blocks (blocks 1, 3 and 5), to assess the prediction models behaviour

with a less precise phenotype. The model comprised genotyped and non-genotyped individuals

according to a single-step formulation (Legarra et al., 2009), and in order to use all available

information in field trials with minimum gaps to predict the micro-environmental individual

effect. The micro-environmental individual effect was subtracted from the observed phenotype

to obtain a spatially adjusted phenotype. A clonal mean of spatially adjusted phenotypes was

estimated and used as raw phenotype for the rest of the study. All measurements were tested

for deviations from normality by a randomised Q-Q plot.

3.3 Genotyping

All 1,033 individuals in this population were genotyped using the Populus nigra 12K custom

Infinium Bead-Chip (Illumina, San Diego, CA) (Faivre-Rampant et al., 2016), and the genome

of 43 individuals was also sequenced. The individuals selected for genome sequencing comprised:

one identified grandparent, 22 parents, 14 progenies and 6 unrelated individuals from natural
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populations. Progenies were chosen in such a way that all parents had at least one offspring with

its genome sequenced. The set of unrelated individuals were used to assess the imputation ability

under challenging conditions. In a previous study (Pegard et al., 2018) genotype imputation from

7K (effective SNPs out of 12K in array) to 1,466,586 SNPs was performed attaining imputation

qualities higher than 0.84 per individual, and evaluated by a leave-one-out cross-validation

scheme (CV). Resulting imputation was used in the present study to constitute alternative sets

of selected markers for genotyping. For quality assessment and selection of the marker sets, we

used the proportion of alleles correctly imputed by genomic position across individuals (Props),

and Props corrected by the probability of correct imputation by chance (Badke et al. (2013);

cProps). Among the imputed SNPs, we selected those with Props higher than 0.90, with cProps

higher than 0.60 and a minor allele frequency (MAF) higher than 0.05, to obtain a set of 249,805

SNPs (250K). That latter set comprised the totality of the 7K from the chip. We selected five

alternative downgraded marker sets: 100K (with 118,747 SNPs), 50K (with 50,565 SNPs), 25K

(with 26,183 SNPs), 12K (with 12,906 SNPs) and 7K (with 7,048 SNPs) where coverage and

homogeneity of density was optimised over the original 7K array. These five sets were composed

by selecting respectively 1 SNPs every 500 bp, 1000 bp, 10,000 bp, 25,000 bp, 50,000 bp out of

the 250K set. Whenever more than one candidate SNPs were available for the same window, we

selected the one that had highest Props and cProps. We used as a medium-density panel the

genotypes from the chip.

3.4 Models

We estimated variance components and heritabilities with the complete data set and single trait

models, and genetic correlations with a genomic multiple-trait model (GBLUP). The Akaike

Information Criterion (AIC) was used to assess for each given trait the quality of each model.

Three alternative methods were used to calculate genomic estimated breeding values for each

trait: the best linear unbiased prediction based on genomic information (GBLUP) (Whittaker

et al., 2000; Meuwissen et al., 2001), the weighted GBLUP (wGBLUP; Legarra et al. (2009);

Zhang et al. (2016)) and BayesCπ (Kizilkaya et al., 2010; Habier et al., 2011). They were

all compared to the best linear unbiased prediction based on pedigree information (PBLUP)

(Henderson, 1975). The models for GBLUP (and PBLUP) using matrix notation for additive

and non-additive effects was given by:

y = Xβ + Zu+ ε (1)

y = Xβ + Zu+Wd+ ε (2)

where y was the clonal mean, β is a vector of fixed effects, u the vector of random additive

effects following N(0,Gσ2
a) with σ2

a the additive variance and G (or A in PBLUP) the relationship

matrix, d was the vector of random dominance effects following N(0,Dσ2
d) with σ2

d the dominance

variance and D the dominance relationship matrix, ε the vector of residual effects following
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N(0,Iσ2
e) with σ2

e the residual variance, and X, Z, W , and I are identity matrix relating the

clonal mean to the fixed effects and random effects. The model for BayesCπ was given as follows:

yij = µ+
k∑

j=1

xijbjδj + ε (3)

where µ was the overall mean, xij an indicator covariate linking i-th individual to j-th locus

allelic content, bj the random additive effect, and δj an indicator variable taking value of 1 if

marker has non-zero effect or 0 otherwise, following a binomial distribution with probability π

(proportion of markers with non-zero effect). In our case, π was estimated by the model. The

shortest Gibbs sampling chain, giving the same results as the longer chains, was used to obtain

a sequence of observations to approximate the joint distribution with the following parameters:

iterations = 20,000, burning = 5,000 and thinning = 1/10. The PBLUP and GBLUP single-trait

analyses were performed with the R packages breedR (Muñoz and Sanchez, 2018) The BayesCπ

single-trait model was performed with the package BGLR (de los Campos and Perez Rodriguez,

2018) while breedR was used for the multiple-trait analysis. We performed Multi-trait analysis

with the pedigree information and the chip SNP panel for genomic evaluation with an additive

model. Whereas for BayesCπ we performed single trait analysis with an additive model with

SNP sets of 7k, 50K and 100K as shown in table 1.

3.5 Relationship matrix estimation

The ARM (additive relationship matrix) was built from the known pedigree at the moment of

the controlled crossings, and denoted hereafter as A. However, a preliminary marker assessment

in this study showed that there were errors in the pedigree. Pedigree was corrected based on

these results and a new reconstructed ARM was obtained, denoted hereafter as Acor. Pedigree

errors involved in most cases a wrong paternity attribution, and less frequently individuals

supposed to be different genetically. The total number of parent did not change because a father

was added and a mother was removed. The main change concerned the number of families that

went from 39 to 35. Both A and Acor were calculated with the R package nadiv (Wolak, 2012).

Both matrices were kept for the comparison in order to show the potential loss due to pedigree

errors and the maximum performance attainable by pedigree. We used normalized genomic

relationship matrix (G equ.4) calculated following VanRadens formulation (VanRaden, 2007;

Habier et al., 2007) and the scaling proposed by Forni et al. (2011) to assure compatibility with

A, for each genotyping set (7K, 50K, 100K and 250K) :

G =
(M − P1)Wa(M − P1)

′

trace[(M − P1)Wa(M − P1)′]/n
(4)

where M was a genotyping matrix with m markers in columns and n individuals rows, P1 was

a matrix (n× p) containing the frequency of the second allele (pi), at the marker i, and Wa was

a matrix of weights described below. Ad hoc scripts in R were used to make the computations

for G (R3.3.1 platform). To assess dominance effects, a dominance matrix based on the pedigree
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information was calculated with the R package nadiv (Wolak, 2012) with expected and observed

pedigree information (D and Dcor). The genomic dominance matrix was calculated as:

D =
(X − P2)Wd(X − P2)

′

trace[(X − P2)Wd(X − P2)′]/n
(5)

where X was the genotyping (n× p) matrix code ”0” for the homozygous and ”1” for the

heterozygous, P2 was an (n× p) matrix containing the heterozygous frequency (2piqi) according

to Vitezica et al. (2013) and normalized in the same way than G in equation 4, and Wd was a

matrix of weights described below.. We used one of the procedures of Wang et al. (2012) for

calculating weights in wGBLUP. Unlike GBLUP, where all markers have the same variance and

therefore the same weight, the derivative wGBLUP uses transformed G according to marker

weights to select markers. The weights were calculated as wj = û2j where wj was the weight for

the SNP j and ûj was the estimated marker effect was obtained as

ûa = WaXG
−1ĝ (6)

ûd = WdXD
−1d̂, (7)

where Wa,d was a diagonal of weights, either a identity matrix (GBLUP) or a diagonal of w

weights (wGBLUP) for additive (Wa) or dominance (Wd) relationship matrix, ĝ the genomic

estimated breeding values (GEBV) and d̂ the estimated dominance effects. Several iterations of

recomputed ûa, ûd, ĝ, and d̂ were performed to update G, following recommendation by Wang

et al. (2012), and according to the following steps:

1. Define i = 1, WW(a,d)i = I and Gi as eq 3

2. Compute ĝi using GBLUP approach

3. Compute additive SNP effects as equation 6 and dominance SNP effects as equation 7

4. Calculate SNP weights as waj+1 = û2ai and wdj+1 = û2di

5. Scale waj+1 and wdj+1

6. Calculate Gi+1 as equation 4

7. Calculate Di+1 as equation 5

8. i = i+ 1

9. Iterate from 2 until i = 3

3.6 Prediction accuracy and Cross-Validation

We assessed the impact of the composition of the training (TS) and validation sets (VS) on the

performance of the genomic evaluation by trying two TS/VS sizes and two different TS/VS

compositions in a 4-fold cross-validation scheme. Two sizes for the samples of training set were
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tested, with 50% (T50) and 25% (T25) of the individuals evaluated in the 2000/2001, 2012/2013,

2014/2016 field batches. The last field evaluation batch of 2017/2018 was used as an extra

independent validation set for each of the four TS. The two composition scenarios for TS and VS

involved: a sampling of individuals independently of their family membership, and a sampling of

different family sets to be part of TS and VS. These sets were randomly composed by sampling

individuals or families in such a way that the desired percentage (50 or 25%) was fulfilled. The

performance of the models was evaluated following different criteria. Firstly, predictive ability

(Predab), which was defined as the Pearson correlation coefficient between the phenotypes and

the GEBVs of the samples in the VS, or in the test set (Predabtest). The accuracy (Accuracy

and Accuracytest) of the models were estimated by dividing each predictive ability by the

square root of the narrow sense heritability of the corresponding A model for the given trait.

Additionally, the Spearman rank correlation between the phenotypes and the GEBVs of the

individuals in the VS was calculated (Spearman). We estimated the Spearman and Pearson

correlation of the top 5% of the trait, for the section between 5 and 10%, and between 10

and 50% within the VS. Finally, we assessed for potential bias in the genomic prediction by

estimating the intercept and the slope of the linear regression between the phenotypes and the

GEBV of each model in the VS and the test set.

3.7 Testing factor importance

In order to assess the main factors accounting for genomic evaluation performance, we applied

the Random Forest algorithm (Liaw and Wiener, 2002) that is included in the Boruta R package

(Kursa and Rudnicki, 2010). These main factors (or features) were: Trait, Matrix (A, Acor, G,

Gw1, Gw2, Gw3, D, Dcor, Dw1, Dw2, Dw3), GeneticEffect (Additive, Additive and Dominance),

ST MT (Single-Trait, Multiple-Trait), GenoSet (none, 7K, 50K, 100K, 250K), Type (Individual,

Family) and Perc (T50, T25). Classification of features was done for each of the performance

variables available: predicting ability, Accuracy, Spearman correlation, Intercept and slope. The

number of standard deviations from a reference point derived by the algorithm of each feature

was used to determine the importance of each factor with respect to the performance variable.

4 Results

4.1 Estimated variances and heritabilities

All heritabilities with their corresponding variance components are shown for all models and

traits in figure 1, while Akaike Information Criterion (AIC) are presented in the supplemental

table S1 . In general, most traits showed intermediate to high heritabilities (average of 0.73),

with height2 and rust2 showing the highest average values, and budburst correspondingly the

lowest. In terms of models and under additive action, G-based analyses produced generally

the highest heritabilities, followed by the first step weighted G and BayesCπ. Comparatively,

pedigree-based analyses produced lower heritability estimates. However, under models involving
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also dominance, G-based analyses resulted in a somehow reduced level of heritability compared

to the additive counterpart, while the rest of the approaches (pedigree and weighted G) was

comparatively unaffected. In general, dominance variation was detected for all traits under

genomic based evaluations, with amounts of variation being less important than those for the

additive counterpart or the residuals. On pedigree-based evaluations, however, the patterns for

dominance variation across traits was more heterogeneous, with traits for which it represented

most of the variance while for others no dominance was detected. The increase in the density of

markers used in the genomic evaluation was accompanied almost monotonically by an increase in

heritability, with the highest averages in heritability being for the 250K sets. All these genomic

scenarios resulted in general with higher heritabilities than their pedigree-based counterparts.

4.2 Accuracies estimated by cross-validation with different models

Cross-validation accuracies are shown in Figure 2 for five traits (the remaining traits are shown

in figure S1 ) and type of relationship matrix, and considering four different training scenarios

(size and composition). Results correspond to single-trait additive models with ARM based on

the 7K SNP panel. Accuracies varied between -0.3 and 1.3 across all scenarios and traits. It is

important to note that, because of the choice of a particular model of reference to provide a

basis heritability (pedigree-based model with the A matrix), accuracies larger than one could be

obtained.

Accuracies responded greatly to changes in the way the training set was constituted, by

the percentage and the composition. The fact of using different families for training than for

validation had a large impact on the accuracy when compared to the alternative scenario where

the splitting between training and validation occurred mostly within families. Basically, as

expected, predicting different families was less accurate than predicting different individuals

within the same cohort, with losses in accuracy averaging 25%. This pattern was found for

all traits, except for one training scenario in angbranch, where differences between the two

compositions were also the weakest. Concerning the percentage, the effect of reducing the

training set from T50 to T25 had also an impact on accuracy, although mostly when training

and validation involved different families. On average, reduction in accuracy with decreasing

training set size was around 2.6% for the training composition based on individuals, and around

26% for that based on families.

To a lesser extent accuracies responded also to the differences in modelling the additive

relationship (pedigree versus marker-based models). The behavior of the different models

in terms of accuracies depended greatly on traits and on the training scenario. With T50,

more often than not G-based models had advantages in accuracy over the pedigree-based

counterparts, both for the individual and the family training compositions. Although these

differences were only really conspicuous for rust1 and budburst. With T25, however, no global

advantage of a single model was evident, with pedigree-based models performing similarly to

their G-based equivalents. With the most challenging training scenario, however, the model

based on uncorrected A had generally poorer accuracies than those shown by the corrected A.
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Also, G-models based on weighting matrices had generally lower accuracies than the model with

unweighted G, with each step of weighting reducing further the accuracy. Overall, the models

based on Acor and plain G had the best accuracies.

Although not shown in detail in Figure 2, the four repetitions of the cross-validation had a

ranking of accuracies that was generally well preserved for any given trait across the different

models, and whenever training was based on individual sampling. With family sampling,

however, such ranking was no longer kept across models, and differences amongst repetitions

were larger at any given scenario than those for the individual sampling.

We compared the results obtained from weighted GBLUP models with those of BayesCπ

models for two traits: angbranch and rust2, as these were traits for which the weighted alternative

worked better (Figure 2 and Figure S1). The Bayesian model gave no real advantage over

weighted methods in terms of accuracy (Figure S2). By adding a dominance effect to the single

trait model for each trait with the 7K SNP panel, we did not observe a substantial change in

accuracy with respect to the purely additive model (figure S3). Overall, dominance did not

led to losses in accuracy, with similar to slight increases in performance across traits, except

budburst for which accuracies were lower than those under the additive model.

We evaluated a multi-trait additive model in terms of accuracies (figure S4). The advantages

of a multiple-trait approach over the single-trait counterpart were clearly dependent on the

trait and the training scenario, although more often than not the single-trait approach had

a superior performance. For instance, rust1 and circ2 showed clearly no benefit in using a

multiple-trait prediction, while for height1 the multiple-trait prediction had an advantage when

training over families. For the other two traits, budburst and angbranch, the multiple-trait

approach brought a benefit in the most challenging training scenario, that for families and T25.

Concerning the comparison over models, the multiple-trait approach did not seem to benefit one

matrice modelling over the others (pedigree-based versus G-based). Therefore, the multiple-trait

prediction did not bring a clear-cut advantage across traits and training scenarios. Genetic

correlations between the traits involved in the multiple-trait analysis are shown in (figure S5

in supplementary data). In summary, the accuracy of unweighted G-based models appeared

to be slightly better than with pedigree-based models, although in most cases Acor model

obtained comparable levels of performance to the best G-based method. The cross-validation

sampling strategy (individual/family) impacted the accuracy in all cases and for all traits, with

individual scenarios being less challenging than family scenarios. The percentage of individuals

in the training population (T50/T25) showed a less important impact on accuracy than that of

composition. More advanced models involving dominance effects and multiple-traits did not

improve the performance of genomic predictions.

4.3 Effect of of marker density on accuracies

Three out of seven traits (budburst, height1, and rust1) were selected to show the effect of

an increase in marker density on prediction accuracy over different modelling approaches in

figure 3 (the remaining traits are in figure S6 to S12). Selected traits were representative of
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the patterns found across the seven traits for the effect of marker density. We compared the

accuracies obtained with four markers sets of increasing density with a single-trait additive

model, and T50 individual sampling scheme for cross-validation.

For some traits like budburst (add others in S6, like angbranch) densification resulted in

decreased accuracies, and this happened no matter the modelling approach used to produce

the G matrix. For this trait, Gw1 showed a less sensible reduction in accuracy across densities

than that observed for G-BLUP. For some other traits like height1 (and also height2 in S6),

however, densification brought an increase in accuracy, notably from 7K to 50K. For height1,

weighted G benefited the most from densified marker sets compared to plain 7K sets. Finally,

for traits like rust1 (or circ2 and rust2 in S5), the benefits of densification were dependent on

the kind of modelling for the matrice G that was in use. Under unweighted G, density was

not beneficial for accuracy to the point of making highest densities non competitive compared

to pedigree-based methods. Contrarily, densification with weighted G modelling, notably first

and second steps, had little or no detrimental effect on accuracies. Therefore, the benefit of

densification for accuracy was trait-dependent and often results were more evident under models

imposing some variable selection, resulting in a competitive scenario against pedigree-based

methods.

A global analysis of accuracies pooling results from all traits, with a single-trait additive

model and comparing marker densities across the four cross-validation strategies is shown in

figure S13. No differences in accuracy are to be found between the different modelling strategies

for relatedness (pedigree-based versus G-based), and this pattern is repeated across the different

densities.

4.4 Challenging prediction models with new individuals and de-

graded phenotypes

We used a completely independent set of individuals representing the next generation of selection

candidates to evaluate the different prediction models with 7K SNP and across two different

training scenarios (T25 and T50). Results of accuracies from this independent set are presented

for three traits in Figure 4.

Accuracies were substantially lower under the new more challenging testing scenario than

those already shown for the cross-validation scheme (see Figure 2). In general, marker-based

models resulted in a less affected level of accuracy compared to the pedigree-based counterparts,

notably in the most challenging training scenarios involving different families and T25. Some

exceptions are to be noted for height1, however, where Acor model obtained the best performances

in the less challenging training schemes. For the rest of the cases, G-based model and Gw1 were

overall the best performers with an independent validation set.

Adjusted phenotypes for all traits resulted from averaging 6 replicates. To test whether

number of replications had an effect on the differences in performance between pedigree and

genomic-based evaluations, new evaluations were produced based only on 3 out of 6 replicates.

Resulting accuracies under this new evaluation scheme are presented in Figure 5, comprising
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different cross-validation schemes (T50, T25, families and individuals), and two marker density

sets (7K and 50K). The prediction accuracy was particularly affected by the reduction in

repetitions with the 7K panel and across all models and training scenarios, with an average drop

in accuracy from 0.75 to 0.25. However, with a denser panel of 50K, accuracies were greatly

recovered for the marker-based models, attaining levels that were close to those with the full set of

6 repetitions (0.75). Therefore, downgrading the phenotype with less repetitions affected greatly

pedigree-based predictions, while marker-based models remained almost unaffected whenever the

SNP panel had a high enough marker density. This latter interaction of downgrading repetitions

with marker density showed the limits of the basic 7K panel compared to the 50K in fully

recovering the genetic signal.

4.5 Evaluation of prediction models with complementary criteria

Figure 6 shows the slope of the regression between phenotypes and GEBV in the validation

population for the different models, cross-validation scenarios and marker densities. Trends for

slope across models showed that the pedigree-based approaches had the most robust behavior

with values always around 1. Contrarily, G-based approaches showed often higher slopes denoting

biased predictions. This deviation was always more pronounced for G-BLUP than for weighted

G-BLUP, with a decreasing trend in slope with increasing steps of weighting. Marker densities

had the effect of increasing slopes, notably for G-BLUP and G-BLUP schemes with fewer steps

of weighting. With a less pronounced effect, the change in training scenarios from individuals to

families and from T50 to T25 increased slopes. In general, G-BLUP schemes showed the largest

deviation in slopes due to changes in training scenarios. The intercept revealed a systematic

bias for genomic evaluation models, which was not detected with the pedigree based model.

Contrary to the accuracy, when evaluating prediction quality by the Spearman correlation

some advantages were observed with dominance and multiple-trait modeling over their simpler

additive, single-trait counterparts (figure 7, figS14, and figS15). Some models involving domi-

nance showed improvements in Spearman correlation with respect to their additive equivalents

(0.8 and 0.7, respectively, for circ2), although this was not a general trend over traits, with

examples like rust1 with no advantage. Regarding multiple-trait models, Spearman correlation

offered a different picture than that of Pearson, with some favorable advantages shown for some

traits like height1 with respect to the single-trait equivalent (0.7 and 0.5, respectively). Again,

this advantage was not general across traits, and some like anglebranch did not show significant

differences.

Figure 8 represents the prediction quality in terms of Spearman correlations between

phenotypes and GEBV for a choice of three representative traits (budburst, height1, rust1),

and across the four marker densities and four G-based models. Most traits (figure S16 to S22),

including the 3 in the figure 8, showed a large advantage in Spearman of some G-based models

over pedigree-based equivalents, notably for rust and height1. These advantages were maximized

in the case of the weighted G models, notably Gw1. Although weighted G models with extra

weighting cycles holded well against pedigree-based counterparts, they obtained somehow lower
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performances than Gw1 and comparable to G-BLUP. The use of high density panels generally

favoured the advantage of G-based models over their pedigree equivalents, notably between

7K and 50K panels as shown for height1. For the other traits, the contribution of increasing

densities was especially noticeable under G-BLUP and, to a less extent, for Gw1. Therefore,

Spearman correlation tended to show a clearer advantage of the G-BLUP over pedigree based

models in terms of prediction quality based on ranking than that shown by the Pearson criterion.

Moreover, Spearman criterion also revealed more clearly the benefits of densifying beyond the

7K panel.

In order to check the behavior of the two correlations, Pearson and Spearman, over different

sections of the distribution of predicted individuals, we compared them for the top 5%, for the

section between 5 and 10%, between 10 and 50%, and for the whole distribution. Results are

shown in figure 9 (for other traits figures S23 to S28). With the 7K panel, Pearson and Spearman

correlation were similar within each of the 3 distribution sections. With 50K, 100K, and 250K

SNP and for the top 5%, Pearson correlation attained higher values than Spearman . The

difference between the two correlations tended to disappear from 5% and onwards the middle

of the distribution. Finally, there was a complete inversion between the two correlations, with

higher values for Spearman than for Pearson, when considering the total validation population.

These observations were consistent for all traits. In other words, Pearson was relevant when

discerning prediction qualities for the top individuals, while Spearman showed higher values

overall, with a trend that was accentuated by increasing marker densities. We tested intermediate

genotyping densities for a trait (height at 1 year) in the hope of observing an inflection point.

The results show that a set of 7K SNPs homogeneously distributed may be sufficient to improve

prediction accuracy. More denser set of markers allows to increase slowly the quality of prediction

before to reach a plateau.

4.6 Ranking of factors impacting prediction accuracies

The Boruta algorithm evaluated the different features explaining variability for accuracy,

Spearman correlation and the slope. Results in terms of Z-score for all features are shown

in Figure 10, with different results depending on the dependent variable. Although not with

the same ranking, trait, type of sampling and percentage of individuals in the cross-validation

strategy were the most explicative features (Z-score > 50) for the Accuracy and the Spearman

correlation. Regarding the slope, the most important features were the matrix used for the

model and the marker density (GenoSet).
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5 Discussion

5.1 Genomics does not improve substantially prediction accuracy

over pedigree in standard conditions

This study was conceived as a proof-of-concept of the genomic evaluation in the black poplar

breeding program in order to evaluate feasibility and performance in a situation close to

operational conditions. Several main messages could be drawn from this study. Firstly, genome-

based models captured higher heritabilities and higher additive variances than their pedigree

equivalents, although this did not led to a systematic advantage in terms of prediction accuracy

for the former over the latter. G-BLUP obtained in general the best prediction accuracies, but it

was very closely followed by the evaluation based in a genomically corrected pedigree. Secondly,

the benefit of densification of the marker panel for the prediction quality was mostly trait-

dependent, and its advantages were more easily revealed by models operating variable selection.

Finally, the most clear advantages of genome-based methods and of marker densification were

particularly found in challenging situations: when using an independent validation and when

degrading the phenotype. The use of alternative criteria to assess prediction quality also

pinpointed the combination of genome-based methods and denser marker sets as being generally

better than the pedigree-based counterparts.

The genomic evaluation captured generally more genetic variance than pedigree evaluation,

regardless of the trait. The number of markers fitted in the model generally increased the

proportion of genetic variance explained by the model, but this occurred mostly under G-BLUP.

When using a weighted GBLUP, the proportion of genetic variance explained by the model

decreased with the cycles of weighting. Without variable selection, increasing the number of

markers favoured a better coverage of all genomic regions, including those close or inside relevant

QTLs. Variable selection in weighted GBLUP supposedly eroded relevant variation, affecting

the proportion of captured variation. This type of behavior could reflect an infinitesimal-like

trait architecture rather than a few underlying QTLs with a substantial effect (Zhang et al.,

2016). Among all the traits studied, resulting heritabilities and genetic variances for budburst

were the ones with the least equivalences with the literature. Often this is a trait found to have

very high heritabilities (0.61 - 0.70: Teissier du Cros (1977); Pichot and Tessier Du Cros (1988),

contrarily to our findings under pedigree and genomic evaluations. Apart from a fairly small

genetic variance in our training set for that trait, no other likely explanation could be found for

this discrepancy.

The fact of capturing more genetic variance with marker-based models did not result

automatically into a better prediction of the phenotype than using plain A models. Our

prediction accuracy was already relatively high under pedigree evaluation, probably due to

the fact of using a good evaluation design with enough repetitions and spatial adjustments at

individual level. Markers did not help to improve this scenario or very little. Globally, if there

was a difference between pedigree-based and genomic predictions, the genomic prediction was

better with G or Gw1 matrices. Using several weighting cycles (Gw2 and Gw3) did not show
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in any case better results. Comparable results with decreasing efficiency of several cycles of

weighting were found in other recent studies (Teissier et al., 2018).

Together with the fact that pedigree evaluations obtained already high levels of prediction

accuracy, there is also the point that correcting pedigrees had generally a large beneficial effect,

making resulting model truly competitive in some situations and with some traits compared

to genome-based models. This is not new in forest assessments, given the fact that controlled

crosses are cumbersome and prone to errors. In loblolly pine (Munoz et al., 2014) and in

maritime pine (Bartholomé et al., 2016), pedigree errors led to decreases in predicting ability,

and by completing or correcting the pedigree the predicting ability could be increased. In the

maritime pine study (Bartholomé et al., 2016), the predicting ability was improved by the

completion of the pedigree information in such a way that the genomic evaluation had little

extra room for improvement in predicting ability. In our pedigree, the error rate was of 15%,

involving in most cases wrong paternity attribution of complete or partial families, or individuals

supposed to be different genetically. In the same way, more complex prediction models, as

multi-trait evaluation or adding non-additive genetic effects in the prediction model, did not

further improve the prediction accuracy. Our results were in line with other studies, where

the gain in accuracy or predicting ability by adding non-additive genetic effects was negligible

(Gamal El-Dien et al., 2016; Tan et al., 2017).

Apart from the general trends between pedigree versus genomic models, results of prediction

accuracy were fundamentally trait-dependent and mostly driven by the kind of training scenario

being applied. This is clearly shown by the results of the Boruta algorithm, which found trait

and training scenarios to be key features in explaining predicting accuracies. Similarly to other

authors (Norman et al., 2018),we observed that prediction accuracy performed better when

the training and validation populations were closely related, as when the split between the two

occured at within family levels. On the contrary, prediction accuracy could be greatly affected

when resulting from distant, independent validation sets. In our study, the cross-validation with

individual sampling performed better than with family sampling, and this somehow limited

the use of genomic evaluations to predict unobserved crosses in our population with current

approaches. The size of the training set used to develop prediction calibration is often cited as

an important factor (Nakaya and Isobe, 2012). Curiously, the differences between our T50 and

T25 schemes (50% and 25% of individuals to construct the calibration model, respectively) was

not as large as one could expect. This is presumably very dependent on the properties of the

populations being used for training.

5.2 Genomic prediction advantages are mostly observed in challeng-

ing conditions

The choice of the training and validation sets is known to have a non negligible impact on the

prediction accuracy (Rincent et al., 2012). In that sense, our results showed that there was a

substantial variation around each cross-validation realization, although often the ranking in

performance between realizations was preserved across scenarios, notably for the individual
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sampling. In general, these cross-validation cases corresponded to operational situations where

validation contributes with extra selection intensities, for instance, with new crosses from known

parents or additional sibs across families to select from. One additional scenario of training

that could be considered as specially challenging, corresponded to the validation set of newly

obtained crosses from parents that were mostly underrepresented in the cross-validation sets.

This could be seen as an operational demand to incorporate comparatively new material for

selection. Our results showed that such challenge affected substantially the prediction accuracy

across models, although G-BLUP and Gw1 were generally the most robust performers and

pedigree-based evaluations the ones with the greatest loss overall. In the cross-validation scheme,

the factorial design had a relatively large influence in demographic terms in the training set.

Being a system that creates a well interconnected network of families (Sørensen et al., 2005),

the factorial design seemingly favoured pedigree predictions to a level that made it competitive

compared to genomic predictions in the cross-validation. However, the new testing set possed a

challenging prediction problem to pedigree-based models, as its relatedness was less populated

as to support quality predictions. Despite of that, the situation was not always a clear-cut

difference between pedigree and genome-based evaluations, as shown by traits like height1.

If the extent of relatedness thanks partly to the factorial design could have facilitated

the competitiveness of pedigree-based predictions, the fact of using a high quality adjusted

phenotype involving 6 repetitions was another element that could have a role in diminishing the

differences between pedigree and genome-based performances in prediction terms. Indeed, our

results showed that downgrading the quality of clonal means used as phenotypes clearly had

a differential effect between pedigree and genome-based predictions, with the latter retaining

prediction quality at a level without replicate reduction. It is important to note that this

challenge revealed also the limitations of the 7K genotyping set, which did not allow a full

recovery of prediction quality, as the one shown by the 50K set. This evaluation simplification

has also important operational implications for field evaluation, which need to be balanced with

the genomic investments.

5.3 Genomic prediction enables the ranking of candidates to selec-

tion

One of the main objectives of genetic evaluation is to rank individuals according to their breeding

values, in order to use subsequently final selections as reproductors for the next generation. In

that sense, pinpointing breeding values with accurate predictions is therefore a key element in

genetic progress, and the use of predicting abilities based on a parametric correlation between

predictions and true breeding values one of the most common means of quality assessment

(Daetwyler et al., 2013). This latter correlation shows a linear relationship with the genetic

response (Falconer, 1981). For the poplar breeding program, however, the stress is given to the

selection of genotypes for clonal dissemination at the production stage directly, rather than

for gametic dispersion in seed orchards. This essential difference leads to the importance of

ranking in selection decisions for poplars, as for any other domesticated species with clonal
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selection. When assessing the potential of genomic evaluations, it is essential to take into

account the way predictions will be used for. In that sense, we used alternative measures of

prediction quality, like the slope of the regression of true breeding values on estimated breeding

values. This slope represents a way to assess departures due to bias in predictions, generally

caused by unequal representations of lineages in the training (Patry and Ducrocq, 2011). Our

results suggest that G-BLUP was particularly affected by biases problems, with large departures

towards greater slopes, i.e. best phenotypes gave proportionally higher predictions than worst

phenotypes. To a lesser extent, the best weighted G-BLUP (Gw1) also presented departures in

slope. Comparatively, pedigree-based predictions were perfectly unbiased with slopes of one.

This result casted some doubts on the relevance of rankings derived from G-BLUP genomic

predictions. We added an alternative measure of prediction quality, the Spearman correlation

between predictions and true breeding values, which is a non-parametric estimate measuring

the variation of the ranking. Moreover, this focus on ranking appeared as an appealing feature

in the context of poplar breeding. Although less frequent in the literature than Pearson-based

predicting abilities, a few authors used Spearman correlation to evaluate the prediction quality

and to serve as criterion to select evaluation approaches (González-Recio et al., 2009; Mota

et al., 2018). Some other authors suggest that individual ranking strategies could be more

efficient (Blondel et al., 2015).

Our results using Spearman showed a quite different picture of the comparison between

pedigree and genomic-based predictions to that obtained from the Pearson counterpart. Firstly,

the comparison of Spearman correlations revealed some benefits of non-additive and multiple-trait

G-BLUP models that were otherwise invisible under Pearson. The most clear picture brought by

the Spearman correlation, however, came when comparing the benefits of densification of marker

panels. The switch from 7K to 50K panels boosted substantially the Spearman correlation of

G-BLUP to place it well above the levels of pedigree-based evaluations. Nevertheless, a plateau

in Spearman coefficients was reached from 50K onwards in our study. These plateaus over

densities were already reported in other species, although not for Spearman: in cocoa (Romero

Navarro et al., 2017), wheat (Norman et al., 2018) and eucalyptus (Kainer et al., 2018). For

eucalyptus, the plateau in correlation was still not reached at 500K, while for cocoa and wheat

it was reached after thousands or tens of thousands of markers. In our case, it remains to be

explored whether there is an inflexion point in correlation between 7K and 50K. Similarly, it

seems from our homogenous 7K that the limits of the 7K chip (Faivre-Rampant et al., 2016)

came from an irregular coverage of the genome. Our results suggested that with an homogeneous

set of marker, the number of markers could be reduced and gives good results. These may be

due the fact our effective size (between 4 and 12), is smaller than we expected from individuals

of few selection generation.

Another factor of importance in the comparison of performances via Spearman versus Pearson

is the fact that their values differed across the distribution of predictions in the validation set.

This implies different outcomes for the two criteria according to the levels of selection intensity,

or weights given to each trait in an index. Usually, the interesting part of the distribution is the
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top percentiles. However, in some cases the interest lays in intermediate values, like for budburst.

The goal here is to have trees that do not budburst too early to avoid late frosts, nor too late

to avoid shortening the growing season. Basically, Pearson showed the highest correlations for

the top percentile selections, while Spearman was generally better for the middle and whole

distribution. In conclusion, a criterion based on ranking might be a reasonable option, notably

when ranking is more important than prediction itself, or when multivariate compromises force

selection differentials towards the middle of the distribution, there where Pearson appeared to

be less advantageous.

6 Conclusions and perspectives

Our proof-of-concept study shows that genomic evaluation advantages are context-dependent.

Its performance could be comparable to the already well optimized pedigree-based evaluation

under certain standard conditions and with access to low to medium SNP density panels.

Genomic evaluation appeared to be truly advantageous under less standard scenarios with a

certain degree of challenge which have been clearly been pinpointed in present work. Our study

focused on a fairly advanced stage of the evaluation in the breeding program, where a substantial

part of the variation has already been let aside by using less efficient early selections at the

nursery. We believe that genomic selection could be an interesting option at that early stage,

where selection precision is typically poor and genetic variability abundant. Our study also

showed that it is important to assess performances by looking at other alternative criteria, like

those related to ranking, notably when these criteria respond to the operational context of the

breeding program under scrutiny.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or

financial relationships that could be construed as a potential conflict of interest.

Author Contributions

MP performed the analyses and drafted the manuscript. FM developed the scripts for spatial

adjustment of phenotypes. VS contributed to the discussion on analytical models and data

preparation, providing as well valuable scripts. CB provided access to plant material and

contributed to the view of the breeding program and ways of optimization as the scientist

responsible for the Populus nigra breeding program. VJ and LS designed the study, discussed the

analyses, assisted in drafting the manuscript and obtained funding. All co-authors significantly

contributed to the present study, and read and approved the final manuscript.

18



Funding

This study was funded by the following sources : the INRA AIP Bioressource, EU NovelTree

(FP7 - 211868), EU Evoltree (FP6-16322), and INRA SELGEN funding program (project

BreedToLast) have funded sequencing and genotyping data. MP PhD grant was jointly funded

by INRA SELGEN funding program (BreedToLast) and by Region Centre - Val de Loire funding

council.

Acknowledgments

The authors acknowledge the GIS peuplier, the UE GBFOR and PNRGF (ONF) for access,

maintenance, and sampling of plant material. The authors want to thank Vanina Gurin and

Corinne Buret for their work on DNA extraction. The authors acknowledge Patricia Faivre-

Rampant, Marie-Christine Le Paslier and Aurlie Brard from US EPGV for the genotyping and

the sequencing.

Data Availability Statement

The datasets [GENERATED/ANALYZED] for this study can be found in the [NAME OF

REPOSITORY] [LINK].

References

Akdemir, D., Sanchez, J. I., and Jannink, J. L. (2015). Optimization of genomic selection

training populations with a genetic algorithm. Genet. Sel. Evol. 47, 1–10. doi:10.1186/

s12711-015-0116-6

Badke, Y. M., Bates, R. O., Ernst, C. W., Schwab, C., Fix, J., Van Tassell, C. P., et al. (2013).

Methods of tagSNP selection and other variables affecting imputation accuracy in swine.

BMC Genet. 14, 1–14. doi:10.1186/1471-2156-14-8
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Figure captions

6.1 Tables

Table 1: Combination of models and marker sets tested.

Methodes ADD ADD + DOM MultiTrait SNP set
P-BLUP Yes Yes Yes none

P-BLUPcor Yes Yes Yes none

GBLUP

Yes Yes Yes 7K
Yes Yes No 50K
Yes Yes No 100K
Yes Yes No 250K

wGBLUP

Yes Yes No 7K
Yes Yes No 50K
Yes Yes No 100K
Yes Yes No 250K

BayesCpi

Yes No No 7K
Yes No No 50K
Yes No No 100K
No No No 250K

6.2 Figures
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Figure 1: Heritability and variance components estimated with the complete dataset with
different models and different traits. The results were organized with traits in columns and
model matrices in rows. The matrices were classified by Model (Additive (ADD), Dominance
(ADDetDOM), single-trait (ST), multi-trait (MT)) and by number of marker (none, 7K, 50K,
100K, 250K). The variance components were represented by the barplot: in light-grey the
proportion of variance due to additive genetic effect, in medium-grey the proportion of variance
due to the dominance genetic effect and in dark-grey the proportion of variance due to the
residual effect.
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Figure 2: Cross-validation prediction accuracies using an additive model with 7K SNP for five
traits grouped by the proportion of individuals in training sets 50% (T50) and 25% (T25). The
color of boxplot showed the sampling strategy: in blue, the individual sampling strategy and in
green the family sampling strategy. Each boxplot represented the accuracy of four repetitions
for each relationship matrix. The gray lines represented the paired repetitions.
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Figure 3: Marker densification impact on predictive accuracy of a single trait additive model
with T50 individual cross-validation for four genomic relationships matrices (in columns) and
three different traits (in rows) : height1, budburst and rust1. The range of accuracies obtained
with the pedigree information was represented in grey and the boxplot colors represent the
number of markers. The grey lines represent paired repetitions of cross-validations.
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Figure 4: Prediction accuracy of the independent test sets for five traits grouped by the
proportion of individuals in training sets 50% (T50) and 25% (T25) with 7K SNP. The color of
boxplot showed the sampling strategy: in blue the individual sampling strategy and in green
the family sampling strategy. Each boxplot represented the accuracy of four repetitions for a
relationship matrix. The grey lines represented the paired repetitions.
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Figure 5: Prediction accuracy of cross-validation strategies with depreciated phenotypes (3
blocks) for 7K SNP and 50K SNP, and 6 matrices. Each boxplot represented accuracy values
for pooled traits obtained with the different relationship matrices classified by cross-validation
strategy in columns and by the number of markers in rows.
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Figure 6: Regression slopes between phenotypes and estimated breeding value in a validation
population. Each boxplot represented accuracy values for pooled traits according to relationship
matrices used, and were classified by cross-validation strategy in columns and by the number of
markers in rows.
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Figure 7: Spearman’s correlation between phenotypes and estimated breeding value trained
with phenotypes. The results were obtained by cross-validation type T50 with 7K SNP. The
upper part of the figure compared single-trait models with additive genetic effect (blue) against
single-trait with additive and dominance genetic effect (pink) for the rust1 and the circ2. Only
the results of the individual sampling cross-validation were showed. The lower part, compared
results of single-trait models with individual sampling (blue); single-trait models with family
sampling (green); multiple-trait models with individual sampling (orange); multiple-trait models
with family sampling (yellow).
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Figure 8: Marker densification impact on Spearman’s correlation for four genomic relationships
matrices (in columns) for three different traits (in rows) : height1, budburst and rust1. The
Spearman’s correlation obtained with the pedigree information was represented in grey and the
boxplot colors represent the number of markers: in blue 7K, in green 50K, in orange 100K and
in yellow 250K. The grey lines represent the repetitions. The results were obtained with T50
individual cross-validation scenario.
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Figure 9: Comparison of Spearmans (orange) and Pearsons (purple) correlations between
phenotypes and estimated breeding value. The matrices were in columns and grouped by the
number of SNP. In rows the proportion of individuals to estimate the correlations. 0-5% were
the 5% best individuals, 5-10% the 5% to 10% best individuals, 10-50% the 10% to 50% best
individuals based on phenotypes inside the validation population (T50 individual sampling
strategy). 100% represented the Spearman and Pearsons estimated using all the individuals in
the validation population.
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Figure 10: Importance (Z-score) for each features estimated with Boruta algorithm to explain
Accuracy, slope and Spearman’s correlation (Spearman) variability. Boruta shadow features
were ShadowMin, ShadowMean and ShadowMax. The test factors were Trait (rust1, rust2,
height1, height2, circ2, budburst, angbranch), Matrix (A, Acor, G, Gw1, Gw2, Gw3, D, Dcor,
Dw1, Dw2, Dw3), GeneticEffect (Additive, Additive and Dominance), ST MT (Single-Trait,
Multiple-Trait), GenoSet (none, 7K, 50K, 100K, 250K), Type (Individual, Family) and Perc
(T50, T25). Algorithm decision for each factor based on the significativity of the difference
between factors and the shadow features are in color: Blue: Shadow features, Green: Confirmed
and Pink Rejected.
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4.4. ARTICLE II: CONDITIONS UNDER WHICH GENOMIC EVALUATION
OUTPERFORMS CLASSICAL PEDIGREE EVALUATION ARE HIGHLIGHTED BY
A PROOF-OF-CONCEPT STUDY IN POPLAR
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Figure 4.3: Predicting ability on the extended factorial mating design with 7K SNP, with
75% random sampling of population for training and 25% for validation. The methods
used to estimate EBVs are in columns, organized by traits. Upper panel is for additive
models and lower panel for additive + dominance models. The stars represented the
Student’s t-test p-value for paired samples p-value : " " > 0.05 "*" > 0.01 "**" > 0.001 >
"***"
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4.4. ARTICLE II: CONDITIONS UNDER WHICH GENOMIC EVALUATION
OUTPERFORMS CLASSICAL PEDIGREE EVALUATION ARE HIGHLIGHTED BY
A PROOF-OF-CONCEPT STUDY IN POPLAR

Figure 4.4: Predicting ability on the extended factorial mating design with 7K SNP, with
75% sampling with CDmean algorithm of population for training and 25% for validation,
and an additive model. The methods used to estimate EBV are in columns, and organized
by number of repetitions (Block6 : 6 repetitions and Block3 : 3 repetitions). Two traits:
circumference at two years of age (left) and rust resistance in the first year of growth
(right).The stars represented the Student’s t-test p-value for paired samples p-value : " "
> 0.05 "*" > 0.01 "**" > 0.001 > "***".
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4.5. ADDITIONAL RESULTS

4.5 Additional results

4.5.1 Estimated markers effects within different shrinkage

weights

The use of weighted GBLUP and the subsequent extraction of marker effects from GEBV

allowed us to represent the distribution of effects across the genome. In (Figure 4.5), the

distribution of marker effects for circumference at the age of 2 is shown for three steps of

successive weightings in wGBLUP. Other traits presented similar patterns. At each new

weighting, from the upper panel to the bottom panel in the figure the scale of the effects

is augmented, given that a few markers accentuated their value with the weighting, while

most of the remaining markers were pushed towards zero.

The trait, however, presented a rather flat landscape, with most effects being of the

same magnitude. This is somehow a hint of the infinitesimal architecture of the trait, that

had markers across all chromosomes. This infinitesimal aspect was confirmed with marker

densification in figure 4.6, where wGBLUP at the first weighting iteration is shown over

three different densities (7K, 50K and 250K). The fact of covering more efficiently all the

genomic regions brought higher marker effects with densification. Marker effects were at

least multiplied by a factor of six with the 50K SNP set and by a factor of ten for the

250K SNP set. The densest set with 250K SNPs brought more chromosomal regions with

important effects.

4.5.2 Haplotype approach

The haplotypes of each individual were extracted from the 7K chip after imputation to

remove the 1% of missing values. An ad-hoc script was developed to affiliate each of the

two alleles in each marker and for each descendant to one of the four possible parental

chromosomes (2 maternal homologous, 2 paternal).

The figure 4.7 represent the haplotype blocks along the chromosome 1 for a given

progeny. The first relevant feature of the graph is the fact that there are relatively narrow

regions with the same breaking point across many individuals. This could correspond

to recombination hotspots, to mapping errors with wrong SNP location, to error in
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Figure 4.5: Marker effects estimated for the circumference at two years old with the 7K
SNP with three weightings in the GBLUP: top panel, no weights in GBLUP; Middle
panel, weights after a first iteration of wGBLUP (Gw1); bottom panel, third iteration of
wGBLUP (Gw3).
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4.5. ADDITIONAL RESULTS

Figure 4.6: Markers effects estimated for the circumference at two years old with a first
iteration of wGBLUP (Gw1) for three SNP sets : top panel, 7K SNPs; Middle panel, 50K
SNPs; bottom panel, 250K SNPs.
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Recombinaison inside 
 the half−sibs famillies from 662200037 
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Figure 4.7: Haplotype visualization after phase reconstruction with the FImpute software
of the Chromosome 1 (SNP in columns) for all the progenies (in rows) of the female parent
662200037. The dark gray and light gray represented the membership at either of the
two homologous parental chromosomes. The SNPs were ordered following the physical
position from the chip (Faivre-Rampant et al., 2016)

the reference sequence assembly or to lack of information in those particular regions to

reconstruct the segregation information. Another feature is that there were in general a

substantial amount of recombinations within the family.

The haplotype blocks reconstruction allowed to estimate the recombination rate in a

half-sib family (Figure 4.8) and among all progenies (Figure 4.9) for the chromosome 1.

Chromosomes 1, 6, 8 and 10 showed different hotspot recombination regions surrounded

by regions with little or no recombination. However, the 7K SNP chip had too many gaps

in terms of coverage to take these maps as representative of the actual distribution of

recombination events. Some chromosomes like 9 or 18 had little or no density in some of

their regions, for instance.

Despite this lack of coverage across all chromosomes, in the absence of the denser sets

that were available latter on in the thesis, we used haplotype blocks to compute the A*

matrix and compare resulting relationship with other relationship methods in terms of

heritability and Akaike criterion (AIC). Figure 4 4.10 shows the comparison of different

models with varying p, where p designed the similarity to A (p = 0) or to G (p = 1),

and noting that G was set to be an hybrid matrix involving partly pedigree (25%) and
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Figure 4.8: Recombination map between all the SNPs of Chromosome 1 ordered following
the physical position from the chip (Faivre-Rampant et al., 2016), estimated from all the
progenies of 662200037.

partly genomics (75%). Regardless the traits, heritabilities increased with of p, thus with

the preponderance of G, except for the circumference at two years, where there was a

very slight decline after p = 0.6. Regarding AIC, most traits presented the lowest values

towards p = 1 (rust2, height1, height2), some had an inflexion point just before p =

1 (rust1 and angbranch), or at intermediate p (budburst), and one trait had best value

contrarily at p = 0. However, for some traits the difference in AIC between models was

very small being difficult to tell apart between them on that criterion alone. Results with

p = 1 were not shown due to converge problems. We suspect inconsistencies between the

genotyping and the haplotype information.

We compared the best A* based on the AIC to a H matrix (combining 25% of ancestral

pedigree and 75% of marker-based relatedness), and to the G matrix from VanRaden

(2007). The models are compared depending on heritabilities and AIC (Figure 4.11).

Regardless the traits, G presented the lowest AIC, followed by A*, with H and A being

the ones with the highest criterion. A* seemed to be more efficient than H when 25% of

the individuals were not genotyped. Models were more performant when all individuals

were genotyped.
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Figure 4.9: Recombination map by chromosomes, an average recombination was estimated
via non-overlapping window of 100 base pair among all progenies.

Figure 4.10: Heritabilities and Akaike Information Criterion (AIC) for seven traits obtained
following BLUP models with an A* matrix for varying values of p.
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Figure 4.11: Heritabilities and Akaike Information Criterion (AIC) for seven traits following
BLUP models with the G Matrix (VanRaden, 2007), best A*, the H matrix and the A
matrix.

4.6 Chapter Global discussion

This chapter presented the results of the first genomic selection proof-of-concept in a black

poplar breeding population. From the first test on a restricted number of individuals

(292) to the latest test with more than thousand individuals, results indicated that the

advantages of genomic selection were context dependent, and highlighted the need to try

and compare different models and sampling strategies for cross-validation.

The sampling strategy proved to have a substantial impact on the prediction accuracy,

in a more substantial way than the proportion of individuals in the training set. An

individual sampling with a representation of each family in the training population gave

the best results, which could correspond operationally to increase the selection intensity

within families via GS. CDmean optimization obtained with a greedy optimizer or via a

more efficient simulated annealing did not lead necessarily to better training sets.

Concerning the models, the BayesCπ was a promising option in the first test, but with

the augmentation of the population the results were not different from the infinitesimal
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methods. This suggests that QTLs with substantial effects may be present in the

restricted context of the factorial mating design, and that could become less important

in a larger context. The second test with the first implementation of a larger set of SNPs

from imputation had firstly an impact on the computing time. It also revealed some

convergence difficulties with BayesCπ. This motivated the use of faster and easier to

implement alternatives like wGBLUP (Legarra et al., 2009; WANG et al., 2012). These

two preliminary tests improved our strategy to setup the basis for the second article of

this thesis presented in this chapter.

This article highlighted several facts:

• First, a systematic advantage in term of prediction is not necessarily correlated to

the proportion of additive variance captured.

• Genome-based models, and in particular GBLUP, gave the best prediction

accuracies, closely followed by pedigree-based models with marker-corrected

pedigree.

• The benefits brought by denser SNPs set were trait-dependent and were more

evident with the association of variable selection models (wGBLUP).

• Genome-based models succeeded somehow better than the pedigree counterparts in

the most challenging situations, with a completely independent set of validation or

with downgraded phenotypes.

• Using different quality criteria revealed some other advantages of genome-based

models over the pedigree models.

According to our results in prediction accuracy, this study showed the need for multiple

methods, prediction quality criteria and different density marker sets to find comfort zones

in the use of genomic prediction. Among all these models and datasets, the combination

of wGBLUP model at the first iteration combined with the 50K SNPs set gave generally

the best results. However, predictions in genome-based models were affected by upward

bias in the slope leading to overdispersion of the distribution of GEBV. Bias can lead

eventually to wrong selection of individuals.
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Model deficiencies can a priori explain this bias, notably due to wrong variance

estimation (Sorensen and Kennedy, 1984), unbalanced data (Blair and Pollak, 1984) or

pre-selected individuals (Patry and Ducrocq, 2011b). In our case, one of the possible

causes of bias could be the use of biased variances in the model. Sometimes, models were

hard to get converged, although all results corresponded to converged runs, and there was

also some lack of correlation between the additive variance explained by the model and

the prediction accuracy that was obtained.

When the prediction quality was assessed through non parametric estimates like

Spearman rank correlations, the performance of the different models was substantially

altered, and advantages in correlation of G-based methods, notably wGBLUP, over

between pedigree-based were clearer. Spearman’s criterion also revealed more clearly

the benefits of densifying beyond the 7K panel, with optima in 50K. One could argue that

for species with clonal dissemination as poplars, predicting accurately the ranking is as

important as getting correctly the phenotype.

Further investigations are still necessary to improve the model prediction in terms

of accuracy, but also to reduce systematic and overdispersion biases. The slope bias

seemed to be positively correlated with the number of markers, while the use of variable

selection models like wGBLUP was able to reduce somehow the slope bias. It appeared

that the density and marker distribution of original 7K chip did not allow GS to get

a clear advantage over the pedigree-based counterpart. Other marker densities between

7K and 50K could be tested to find an eventual inflexion point in performance, while

keeping low bias. The marker selection can be optimized to select the best number of the

marker but also their repartition. There are many possible ways to optimize a genotyping

chip composition in markers, among which a homogeneous repartition seems one of the

first logical options. We tested a constant repartition all along the genome, but some

regions would need more SNPs than others. The marker repartition could follow the

recombination rate in the genome with more SNPs around recombination hotspots. In

that sense, the preliminary work with haplotypes could be of help. Apart from being

useful for targeting recombinant regions, haplotype derived relationships could also be of

help in prediction. Some adjustment and further test with a denser SNP set, however, are

necessary to know whether A* can improve predictabilities or not. Additionally, a denser
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chip could eventually help the performance of the CDmean method for designing training

sets, although it seems difficult to believe that a 7K chip does not capture already in an

efficient way the relatedness in the population.

As it stands, genome-based models appear to give some advantages in prediction

accuracy, notably when considering ranking individuals. The implementation of genomic

selection in the poplar breeding program could be a way to increase genetic gain, shorten

the selection cycles and valorize the genetic variability at an early stage.

157



4.6. CHAPTER GLOBAL DISCUSSION

158



Chapter 5

General discussion

5.1 Résumé du Chapitre

Cette thèse a été conçue pour évaluer la faisabilité de l’évaluation génomique dans

un sous-échantillon du programme de sélection du peuplier noir dans une situation

proche des conditions opérationnelles. La méthode d’évaluation de référence, celle qui

est actuellement utilisée et fondée sur l’information contenue dans le pedigree, possède

déjà une précision de sélection relativement élevée, du moins dans ses dernières étapes.

Cependant, cela n’implique pas un manque complet d’intérêt et d’avantages dans la

mise en œuvre de la prédiction génomique dans le programme de sélection. En effet,

les avantages de l’évaluation génomique dépendent du contexte, et certaines de ces

situations sont intéressantes sur le plan opérationnel. Les modèles basés sur le génome

capturent généralement des héritabilités et des variances additives plus élevées que leurs

équivalents généalogiques, mais l’avantage en matière de précision des prédictions n’est pas

systématique. La qualité de la prédiction peut tirer parti de la densification des marqueurs

et de l’utilisation de modèles capables de sélectionner les marqueurs pertinents. Dans cette

thèse, nous avons montré qu’une densification substantielle de la couverture des marqueurs

est possible pour des milliers d’individus par imputation à partir de quelques individus

nodaux séquencés. Les étapes de densification par un processus d’imputation ont permis

d’avoir une meilleure distribution des marqueurs le long du génome, dans différentes

régions génomiques, sans augmentation du déséquilibre de liaison résultant. Les avantages

des méthodes basées sur le génome ont été démontrés dans des situations difficiles lors
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de l’utilisation d’un ensemble de validation indépendant ou lors de la dégradation du

phénotype, ces deux méthodes pouvant être considérées comme intéressantes et réalistes

sur le plan opérationnel. Les modèles fondés sur le pedigree n’ont pas été en mesure

de prédire correctement les phénotypes d’un jeu de données complètement indépendant,

contrairement aux modèles fondés sur le génome. L’utilisation de moyennes clonales

calculées sur un nombre plus restreint de copie pour l’entraînement du modèle a eu un effet

différentiel entre les prédictions fondées sur le pedigree et les prédictions fondées sur le

génome, ces dernières conservant une qualité prédictive similaire à celle d’un entraînement

du modèle avec l’ensemble des répétitions.

La densification a également mis en évidence les limites du jeu de données issus du

génotypage avec la puce de SNPs de 7K. Celle-ci ne semble pas adapté à la mise en

œuvre de la prédiction génomique dans notre programme d’amélioration. Nos résultats

ont montré que les SNPs du jeu de données 50K semblent être suffisants, même si le

choix de ces SNP de 50K aurait sans doute besoin d’être amélioré, et d’autres que celui

basé exclusivement sur la couverture. Il est également nécessaire de rechercher le point

d’inflexion entre 7K et 50K SNPs, et de définir qu’elles sont les limitations de la puce,

sont-elles due à une couverture hétérogène, à la composition particulière des SNPs ou à

une combinaison des deux.

Un autre point intéressant, compte tenu de la façon dont la sélection se fait dans le

programme sur le peuplier, est le fait que les modèles basés sur le génome ont été en

mesure d’atteindre une bonne performance dans la prédiction précise du classement des

candidats à la sélection. Pour rappel, la corrélation Spearman de wGBLUP était bien

supérieure aux niveaux des évaluations fondées sur le pedigree pour tous les caractères

sauf pour l’évaluation de la rouille. Dans le cas d’une espèce où le gain génétique est

disséminé par des clones, la prédiction précise du classement des phénotypes candidats

non observés est une caractéristique précieuse. Cette caractéristique était particulièrement

évidente après la densification des marqueurs de SNP de 7K à 50K et au-delà. Ces résultats

semblent encourageants, en ce sens que l’on pourrait obtenir un gain génétique important

en apportant une telle précision dès les premiers stades. Reste cependant la question du

biais dans la prédiction de la valeur des candidats, de ses causes et de la façon dont il

pourrait nuire à la performance dans les modèles basés sur le génome.

160



5.2. IN RELATION TO THE OBJECTIVES OF THE THESIS

L’une des principales limites de l’étude est probablement l’utilisation d’une population

d’entraînement dont la conception ne correspondait pas nécessairement à ce qui se

fait habituellement dans l’amélioration du peuplier. En effet, le modèle d’accouplement

factoriel, bien que potentiellement intéressant du point de vue de la variabilité parentale,

était plus orienté pour les études cartographiques. Ceci a été en partie surmonté par l’ajout

de familles et de croisements supplémentaires, bien liés au programme d’amélioration. En

ce sens, une population d’entraînement véritablement représentative de la population de

base du programme d’amélioration aurait pu permettre de généraliser plus facilement les

résultats de l’étude. Un autre aspect est lié à l’étape à laquelle l’évaluation génomique a

été mise en œuvre : à un stade de la sélection où une grande partie de la variation a déjà

été examinée.

De la même manière, nous avons utilisé une puce disponible qui a été principalement

conçue pour des études de cartographie et d’association avec un certain enrichissement

en caractères d’intérêt. Cette situation a également été partiellement surmontée par

l’approche d’imputation.

5.2 In relation to the objectives of the thesis

This thesis was conceived as a proof-of-concept of the genomic evaluation in a subsample

of the black poplar breeding program, and in order to evaluate the feasibility and

performances in a situation close to operational conditions. The evaluation method of

reference, the one in use currently and based on pedigree-based BLUPs, had already

a relatively high selection accuracies, at least in its final steps. This high accuracy may

appear counterintuitive in highly heterozygous species and with the assumption of families

harbouring very large Mendelian segregation variances for an evaluation system based on

pedigrees. Important Mendelian sampling variation are known to be more challenging for

pedigree-based models (Hill and Weir, 2011). Part of the competitiveness of this pedigree-

based system could be in the use of proper designs, with high number of clonal repetitions

and spatial adjustments at the individual level. Another part of the explanation may lie

in the well-interconnected network of families given by the factorial system. The factorial

design seemingly favored pedigree predictions to a level that made it competitive compared
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to genomic predictions in the cross-validation. With an increasing number of crosses, the

risk of labelling errors could also increase. However, when correcting pedigrees with

the use of markers, which could be a few for parental analyses, such a pedigree-based

evaluation became truly competitive compared to genome-based models.

However, such a competitiveness of the pedigree-based methodology currently in use

does not imply a complete lack of interest and absence of benefit in the implementation

of genomic prediction in the breeding program. Indeed, the genomic evaluation

advantages were context-dependent, and some situations where genomic predictions were

advantageous are operationally interesting. Genome-based models captured generally

higher heritabilities and additive variances than their pedigree equivalents, but the

advantage regarding prediction accuracy was not systematic. The prediction quality can

take advantage of marker densification, and using models that are able to do selection

of relevant markers or efficient shrinkage. In this thesis, we showed that substantial

densification in marker coverage is possible for thousand individuals through imputation

from a few sequenced nodal individuals. The densification steps through an imputation

process allowed to have a better distribution of the markers along the genome, in different

genomic regions, with no increase in the resulting linkage disequilibrium. The advantages

of genome-based methods were shown in challenging situations when using an independent

validation set or when degrading the phenotype, which both could be considered as

operationally interesting and realistic. The pedigree-based models were not able to

correctly predict the phenotypes of a completely independent set of individuals, unlike

to the genome-based models. The downgrading of the quality of clonal means used as

phenotypes for calibration had a differential effect between pedigree and genome-based

predictions, with the latter retaining predicting quality at a level similar to that without

replicate reduction.

The densification also highlighted the limitations of the 7K SNPs genotyping set.

It seemed to be not well adapted for the implementation of genomic prediction in our

breeding programme. Our results showed that 50K SNPs could be sufficient, even if the

choice of this 50K SNPs would undoubtedly need improvement, and other than one based

exclusively on coverage. It is still necessary to explore where the inflexion point lays

between 7K and 50K SNPs, and validate whether the limitations of the lower density chip
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are due to heterogeneous coverage or to the particular composition in SNPs.

Another point of interest, considering the way selection is done in the poplar program,

is the fact that genome-based models were able to attain a good performance in predicting

accurately the ranking in the validation sets. As a reminder, the Spearman correlation

of wGBLUP was well above the levels of pedigree-based evaluations for all traits except

for rust evaluation. With a species where the genetic gain is disseminated by clones,

predicting accurately the ranking of unobserved candidate phenotypes is a valuable feature.

Such feature was particularly evident after marker densification from 7K to 50K SNPs

and beyond. These appeared to be encouraging results, in that gain could be produced by

nailing accurately the ranking and by bringing such accuracy at early stages. It remains,

however, the question of the bias in predicting abilities, its causes and the way it could

impair performance in genome-based models.

One of the main limitations of the study was probably the use of a training population

with a design that did not correspond necessarily to what is routinely done in poplar

breeding. Indeed, the factorial mating design, although potentially interesting in terms

of the parental variability, was more oriented for mapping studies. This was partially

overcome by the addition of extra families and crosses, well connected to the breeding

program. In that sense, a training population truly representative of the base population

for the breeding program could have made more easily generalizable the results of the

study. Another aspect connected to the population and that will be treated later on is

the step at which the genomic evaluation was implemented: at a stage of the selection

where a big part of the variation has already been screened. In the same way, we used

an available chip that was mainly designed for mapping and association studies with

some enrichment in traits of interest. This was also partially overcome by the imputation

approach.

5.3 How to increase the genomic selection accuracy

5.3.1 Increase and Optimization of the training set size

The size and composition of the training population is known to have a large impact

on the accuracy (Grattapaglia and Resende, 2011). The constitution of an international
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consortium could increase the size of a reference population for any given species. For

instance, an international collaboration for the pooling of reference populations has been

set up for Holstein dairy cattle (Eurogenomics Consortium). The constitution of this

consortium allowed for a population being 3 to 4 times larger than each of the national

populations. The accuracy of genomic evaluations has thus been increased by 10% (Lund

et al., 2011). In the same way, several selection programs exist at European level for

tree species and for poplar, all with very similar selection criteria. An eventual grouping

of improvement populations would certainly bring a panel with greater diversity and

representativeness. However, the case of cattle is certainly unique because of their very

good pregenomic organization, including a pre-existing system to collect evaluation data

in a very centralized way.

Resampling in the existing population is a good way to improve the training population

and increase the prediction accuracy. For instance, to include 6 to 8 trees per family and

evaluation site appears to be sufficient to guarantee an accurate estimation of genetic

parameters for wood density and growth in an open pollinated test of black spruce (Perron

et al., 2013). For some species (Cros et al., 2015; Tayeh et al., 2015), CDmeans has given

good results in optimizing the training population (Rincent et al., 2012). Our test did

not allow to find an advantage for such an optimal procedure, and one of the reasons

could be the lack of differentiation within the population to derive truly different training

sets. The optimal procedure could also be tried with a denser SNP set, like the 50K.

Another strategy to optimize the training step would be to integrate existing information

in the pedigree and from genetic association studies in the way proposed by Cericola et al.

(2017).

5.3.2 New ways of modelling phenotypes

With the rapid expansion of genomic selection, new methods and models have emerged.

Among them, the integration of major QTLs as fixed effects in the model showed good

results in plants (Moore et al., 2017). The weighted GBLUP showed also a good

performance when integrating directly SNPs effects of a major QTL (Teissier et al.,

2018), or even with no a priori information other than what is implicitly derived from the

iterative process. Other methods go beyond the traditional modelling by, for instance,
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taking into account the results of inferred gene-based networks to weight relevant SNPs

(Riedelsheimer and Melchinger, 2013; Westhues et al., 2017).

Some low-cost methods have recently been proposed with encouraging results, like the

“phenomic selection” in wheat and poplar (Rincent et al., 2018). This approach uses NIRS

(Near Infrared Spectroscopy) to predict different traits by using a full range of different

spectra as markers instead of genotypes to compute relationship matrix. Results suggest

that phenomic selection could be competitive compared to genomic evaluation, with the

possibility also of using it at very early ages with good accuracy.

Multi-trait and multi-environment evaluations are essential in plant and tree breeding

programs, although performing single-step analyses in these circumstances could be

methodologically and computationally challenging. In that sense, Montesinos-Lopez

et al. (2018) have proposed efficient heuristic methods based on multi-trait deep learning

(MTDL), which appear to be well adapted when data is highly unbalanced, contain missing

values data and there is a need for accommodating different design factors.

5.4 Proposition of a genomic breeding scheme

5.4.1 Actual breeding scheme

The present proof-of-concept study fits at a particular step in the poplar breeding program,

as illustrated in (Figure 5.1), specifically when evaluating selected candidates on juvenile

traits in the nursery. The current selection scheme was the result of optimizing for many

constraints derived from the phenotypic evaluation and operational factors over the years.

It comprises several steps of selection conducted at the greenhouse, at the nursery, in the

laboratory via in vitro tests and later in field trials, with each step implying different

selection intensities and notably different selection accuracies. It is important to note

that each selection step is done sequentially and conditionally onto the precedent (i.e.

independent culling levels), instead of jointly and simultaneously, leading to inefficiencies

with the risk of losing in the first steps important variation for subsequent steps. First

steps of selection at the greenhouse and nursery are the less accurate, but the ones

that screen most of the variation. Conversely, later steps at the lab and in the fields

are relatively accurate but screen through a subsample of original variation. Therefore
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accuracy and genetic variation do not meet in a single same step for maximum efficiency

in the current scheme.

Our test of genomic selection was performed with moderate to high heritability traits,

well evaluated in field trials, and on a relatively reduced set of individuals that were the

result of two previous steps of selection conducted typically with a low precision and at

a relatively high selection intensity (see Figure 5.1, with the red circle indicating where

genomic evaluation was tested). Therefore, there is room for improvement in the way

genomic evaluation is integrated in the scheme, there where extra precision is specially

required (see Figure 5.2 with new proposition at earlier stages). In that sense, our test was

placed on a step that was not particularly favourable for the genomic evaluation. There

would be, however, in the new schemes proposed in Figure 5.2 the challenge of training

a relevant genomic evaluation model in the diversity rich context of the first steps of the

breeding program.

5.4.2 What is the genomic selection added value?

By looking at each of the parameters of the classic breeder’s equation, G = irσA/L, we

can review briefly where genomic selection brings potentially an added value to the genetic

improvement:

• The first parameter (i) is the selection intensity, representing the proportion of

individuals in the candidate population that are selected. GS can have a direct

impact on i by selecting at a seedling stage a greater number of candidates than

those phenotyped, making it particularly interesting for costly phenotyping and for

late maturation traits.

• The parameter (r) is the accuracy of selection. Well designed genome-based

models allow to increase r by capturing extra genetic variance relevant for the

target traits, either for single traits taken independently or for traits evaluated

simultaneously and genetically correlated. Multi-trait evaluation can help the

prediction at compensating too many missing values in different traits and poor

heritabilities (Calus and Veerkamp, 2011; Jia and Jannink, 2012) and can reduce

prediction bias (Kadarmideen et al., 2003). The implementation of non-additive
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effects, as dominance and epistasis, can also boost selection accuracy, notably when

selecting mates is relevant for breeding (Toro and Varona, 2010), or for clonal

dissemination of particular genotypic combinations.

• The third parameter is the genetic variation (σA), usually not modulable by the

breeder in an advanced breeding program. However, the construction of the training

population and the decision of the place where genomic evaluation takes place in the

improvement scheme would have a real impact on the amount of genetic variation

that are made available for selection.

• The last parameter is the generation interval (L), and one on which genomic

evaluation could have a large impact by radically reducing the time between two

generations (Heffner et al., 2009). Candidates can be selected at very early ages,

providing that they have enough biomass for yielding DNA. In poplars, this could

happen at the stage of seedlings with few weeks of growth in the greenhouse.

5.4.3 How implementing genomic evaluation?

GS can contribute to accelerate genetic gain by increasing the individual selection accuracy

at early stages, thus shortening the generation interval, and by increasing the selection

intensity. We propose to implement GS sooner in the cycle, at the seedling stage, than

what was assessed in this thesis.

Short term horizon

In the short term, a genomic selection scheme at the seedling stage (Figure 5.2A),

when there is a great number of individuals taking up the least space, would be of

great benefit to the breeding program. Such an early scheme combined to a multi-

trait approach with a selection index can increase the genetic gain in the short term for

most traits simultaneously, even for those phenotyped at maturity like wood properties.

For now, only the P. nigra parents could be selected with such early genome-based

approach, and in order to identify the best black poplar parents at the same year as

the controlled-crosses to produce both pure species descendants and hybrids with other

species. Time-consuming and resource-intensive evaluations could then take place only
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on those genomically preselected parents, with the possibility to enlarge the panel of

preselections.

Long term horizon

In the longer term (Figure 5.2B), GS can be implemented in the other parental species, P.

deltoides, and even at the hybrid progeny, depending on the breeding strategy for hybrids.

In this case, in addition to the step at the nursery evaluation, new steps at the laboratory

can focus on other targeted traits, like interaction genotype × rust strain and woolly

aphid resistance for hybrids, increasing the accuracy of prediction for costly traits related

to resistance. Such proposition could save eventually from 5 up to 9 years in the breeding

program. One of the evaluations for which time gains are expected is that related to wood

quality, with the interesting possibility of predicting potential uses at the individual level

according to the wood properties.

However, there are limits to the rapid advancements of the cycle. One is a regulatory

constraint, another is biology. Even if accurate genomic evaluation is available at very

early stages, the release of varieties will require under current regulations evaluations

under production conditions in several environments, which usually takes 10 years.

Biological constraints are related to the sexual maturity. Indeed, if we want to use a

selected individual from a parental species for hybridization, it is necessary to wait until

sexual maturity at around seven years of age.

5.4.4 What is missing for this?

The first point in the implementation of genomic selection in P. deltoides or in the hybrids

is the construction of adapted genotyping resources. At the moment only P. trichocarpa

and P. nigra have some genotyping tools at their disposal. The construction of a chip

for P. nigra is not necessarily the best cost-wise solution, even if high quality genotyping

is available. This solution is still expensive requiring usually the engagement of several

thousands of individuals to be genotyped. When starting from scratch, the genotyping-by-

sequencing (GBS) approach can be a good option if it is combined with efficient imputation

and an optimization of the restriction enzymes. The quality of genomic predictions from

this genomic resource could be similar to those typically from chip-arrays (Elbasyoni et al.,
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Figure 5.1: Evolution of the number of individuals and the selection rate during the
different steps of selection after crossings (year 0). Numbers correspond to one cycle of
selection. Selection rate values correspond to a rate relative to the previous step. The
genome-based evaluation test was represented in the red circle.
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Figure 5.2: Representation of the number of individuals and the different levels of selection
depending on the timeline of the implementation of genomic selection in Short term horizon
(left) and Long term horizon (right).
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2018). A cost-efficient alternative could be the use of a multi-species chip for all populus

species or for a combination of economically important species including populus in an

international consortium. In that sense, the parental species and their hybrids could be

genotyped with the same tool, and the fact of including a large portfolio of species in

the tool would increase the portfolio of clients, reducing genotyping cost. A complete

implementation of genomic selection in the poplar breeding program would need also new

investments in phenotyping. Selection at the seedling stage requires to guarantee ability

to root and to resprout of most candidates, and the knowledge whether this traits have

or not any antagonism with traits of interest. Similar requirements exist for the sexual

determinism, which is not known at early stages. Therefore, predicting at an early age

the sex of individuals would allow maintaining even sex proportions in the candidate

population, to select parents in a cross and to maintain genetic diversity in the breeding

population.

There is also a lack of fast and cost effective phenotypic evaluations. Laboratory tests

are time consuming and expensive. For example, the woolly aphid resistance test on

hybrids takes 85 days to evaluate ten genotypes. Similarly, wood quality can only be

assessed after ten years of growth. For wood quality evaluation at an early stage, the

use of NIRS (Near Infra-Red Spectroscopy) can be a feasible alternative. A recent study

showed that NIRS prediction of wood quality and wood chemical contents is feasible with

reasonable accuracy from 2 years old trees (Gebreselassie et al., 2017). If we want to

combine this approach with a genomic selection at the seedling stage, it will be necessary

to build a NIRS calibration model from leaves instead of wood and use it extensively in

the training population. Another limitation is the ability to predict hybrid performance

with a genome-based approach, which so far has not been done in poplar. Examples from

eucalyptus show that genomic evaluation of hybrids have little advantage over classical

evaluation schemes (Tan et al., 2017).
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5.5 Genomic selection impacts

5.5.1 Impacts on costs

Genomic selection represents a significant investment. In the best case, for instance, very

competitive genotyping could be obtained at 14€ per individual for a 12K SNP chip

and with a minimum use of 8 000 individuals (H2020 project B4EST). Such conditions

could well be unattainable for many breeding programs in forestry, requiring international

consortia to attract providers. Gorjanc et al. (2017) showed that the effective cost of

genomic selection can be optimized by using imputation methods and by increasing the

intensity of selection leding to a fast return on investment. However, implementing a

cost-effective genomic selection scheme could often require a whole rethinking of the

breeding program, as proposed already in this discussion, requiring probably additional

investments to those of genotyping. In any case, it is difficult to believe that cost-effective

implementation is possible into an already operationally optimized program.

We demonstrated that genome-based evaluation could be efficient with a large enough

marker set, even if phenotypes were obtained less accurately. From an operational point

of view, an evaluation simplification reducing the number of replicates and simplifying

the design could be used to save monetary resources for genotyping or to invest in

increasing the number of evaluated individuals. Genotyping could be done cost-effectively

by using extensively imputation. Our results showed that imputation could represent

an excellent strategy to reduce genotyping costs. We used few well-chosen sequenced

individuals in the population, resulting in excellent imputation quality and considerably

increasing the number of SNPs available. This would require the availability of a well

designed low-density chip and a permanent monitoring and optimization to choose new

individuals for sequencing to support future imputation. Indeed, the fact of not updating

the reference population of sequences could reduce the quality of imputation and thus

result in accumulating errors over subsequent generations. After the first investment, the

costs in subsequent years would represent the maintenance of this training population in

terms of new accessions or the phenotyping of new traits. The information accumulation

is expected to lead to increasing accuracies along the selection cycles, with a potential

return of investment.
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However, current forestry sector is not necessarily ready to absorb a rapid renewal

of varieties and a large number of them. Poplar wood producers have their favorite

cultivars and they are known to secure their investments by keeping their habits. Out

of the 40 poplar varieties available in the commercial catalogue, roughly 10 are used

to some extent although with great differences. Something similar existed for the dairy

cattle before the arrival of genomic selection, with a system of “star ” bulls that heavily

affected the acceptance of new accessions. Changements could be initiated by the peeling

industry, which could be interested in cultivars with particular wood characteristics. In

the long term, genomic selection could represent the way to screen and to provide a

choice of varieties with customized characteristics according to production and industrial

objectives. If the forest sector is interested in customized cultivars, part of the research

to produce them could be financed by a tax on producers. This kind of tax exists already

in France in other sectors, as fruit and vegetable production, although it does not exist

for the French Forest sector which relies entirely on publicly funded breeding programs.

In a longer-term perspective, with increasing protective environment policies and the

objective of reducing plastics, poplar wood has a promising future as a biodegradable

packaging material. Moreover, poplar production does not take the place of arable land for

food, as it is often produced in seasonally flooded areas that are of no use for conventional

agriculture. Also, poplar production does not require the addition of inputs to ensure

proper production and only requires weeding in the early years. A negative impact

of poplar production that is controversial depending on author sources is the genetic

pollution of the wild compartment by the cultivated compartment. While some studies

showed that pollution to be negligible, others estimated it to be around 13% (Pospíšková

and Šálková, 2006; Rathmacher et al., 2010). In any case, this risk could be somehow

minimized by increasing the portfolio of varieties thanks to genomic selection, partially

avoided by cultivars with floral phenologies being extreme or different to those in the wild,

or completely avoided by producing sterile hybrids.
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5.5.2 Impacts on genetic diversity and how to turn it into

benefit

Recent research in genomic selection has been mostly focused on factors affecting

prediction accuracies. Comparatively, little was done on the impacts that this extra

accuracy might have on genetic diversity at whole genome scale, and through the

accelerated cycles of selection propitiated by the approach. Genomic selection could

accelerate the development of inbreeding per year in the population, as a consequence of

the shortening of the generation interval (Daetwyler et al., 2007). The study of the impacts

of several genomic selection cycles on the genetic diversity is therefore essential. If the

implementation of genomic evaluation is going to produce a rethinking of the breeding

strategy, it is essential to incorporate the management of the genetic diversity to the

improvement of genetic gain.

Indeed, our study population consisted on a series of multiple-pair matings, with

advantages for evaluating parental performance and also non-additive components in

the genetic variation. Such a system is also useful for mate selection, or the choice

of the best performing crosses among all available between selected candidates. It

would be interesting to evaluate the impact of these mating choices in terms of genetic

diversity, by the use of algorithms to optimize the genetic contribution of parents in

the next generation or to select mates. Solutions do exist, mostly from the pedigree-

based era, that optimize breeding for maximum gain over the long-term, like optimum

contribution selection (OCS, Meuwissen and Goddard (1997); Howard et al. (2018) or

mate selection, Toro and Varona (2010)). However, these existing solutions rely on the

setting of constraints on average information, like marker-based coancestry. Thus, the

information across markers or genomic regions is neglected when devising the diversity

constraints. Although some recent solutions go beyond average-based constraints and

account for marker variation (Sun et al., 2013; Gómez-Romano et al., 2016), they do not

correspond to an integrated selection and mating system that can fit conveniently the

breeding scheme for all species. There is therefore a need to devise a genomic selection

strategy that is able to maximize Mendelian segregation at the phase of mate allocation,

by accounting for parental information across genomes. In poplar, where dissemination

174



5.5. GENOMIC SELECTION IMPACTS

is by clonal selection, the mate choice is essential together with a maximum exploitation

of the Mendelian segregation.

Unlike most field crops, forest trees including poplars have breeding populations that

are still very close and genetically linked to wild populations. The incorporation of

new accessions if required by optimal algorithms would not require a complex system

of backcrosses to recover the previous genetic gain. There is currently no protocol for

storing poplar seeds, which puts a higher emphasis on the realization of controlled crosses.

These are easily managed as already stated in Chapter 2. Currently, our results indicated

that predictions of unobserved crosses are not accurate, limiting somehow the use of a

mate selection system. Further research would be required with new models and denser

genotyping to validate a mate selection strategy as feasible. A single controlled cross of

poplar can easily provide several thousands of seeds, which allows for efficient exploitation

of Mendelian segregation, a priori only available to genome-based evaluations. Such an

use and management of the Mendelian sampling term is also the key to long-term gain

with little impact on inbreeding (Avendaño et al., 2004).

The management of the genetic diversity is not simple, even by proposing unrelated

and diversified cultivars, producers are still able to plant only one or two per plot. This

has been shown already as risky, mostly due to the facilitation of pest dispersal in case

of outbreak, with all the economic consequences of losses in productivity. The "star"

system in cattle was changed by genomic selection, with the proposal of a wider portfolio

of young elite bulls that changes often. There are different ways to compel producers to

use a diversified portfolio of cultivars. At the political level, the legislation can force to

plant different cultivars at the landscape level. A priori, GS allows for a widening of the

set of selections without the need of extra phenotypic evaluation, with the possibility to

select different profiles of resistances across cultivars without loss of performances for the

rest of the traits. Such a coctel of cultivars could be proposed as mixed clones varieties

(MCV). A highly performing MCV can more easily attract producers, while assuring high

levels of diversity at the production and landscape levels.

Finally, the use of genomic information not only allows for genomic evaluation, as this

thesis has shown, but also opens the door to a level of diversity management that was not

at hand before, by accessing to the level of variation across the genomes. Such a double
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use of genomics is probably the key to short and long-term breeding in poplar.
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Final Conclusion

The results indicate that genomic selection (GS) implementation is feasible in the black

poplar breeding program and should provide the opportunity to select multiple traits at a

seedling stage. In doing so, a decrease in the average generation interval and an increase

in the intensity of breeding, resulting in a genetic gain beyond that of the traditional

breeding method. The use of imputation as a method of optimizing genotyping effort to

reduce the cost of implementing GS has proven its effectiveness, significantly increasing

the number of markers. However, further studies are required to complete the results

obtained in this thesis before the practical application of GS.

The main objective is now to complete phenotyping in order to test the prediction of

vegetative propagation ability and recovery from the seedling stage as well as the sex of

the individual. This will allow for a larger study confirming the ability of GS to predict

large numbers of individuals at an early age. In the perspective of the implementation of

SG, the feasibility study of the complementary parent (P. deltoides) and the prediction

of the hybrid value should be considered. From a methodological point of view, future

research should use the new models that have been developed because they are potentially

more effective, particularly through the consideration of other non-additive effects or

the integration of transcriptomic information. Secondly, the construction of models

for the implementation of genetic diversity management in poplar genomic selection is

necessary to ensure that genetic gain is maintained in the long term. Finally, more

ambitious approaches should be considered, such as the use of SG models combining the

results of crossover tests performed in different environments, molecular information and

environmental variables. This would make it possible to predict the interactions between

Genotypes × Environment.

In conclusion, the study shows that, in the current context where agricultural
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production must increase at an unprecedented rate to meet demand while ensuring the

maintenance of the genetic diversity necessary to cope with health risks, SG undeniably

has a role to play in genetic improvement in general and in poplar in particular.

178



Conclusion générale

Les résultats indiquent que l’implémentation de sélection génomique (SG) est faisable

dans le programme d’amélioration du peuplier noir et devrait apporter la possibilité

de sélectionner plusieurs caractères à un stade plantule. Ce faisant, une diminution de

l’intervalle moyen de génération et un accroissement de l’intensité de sélection, aboutissant

à un gain génétique dépassant celui de la méthode de sélection traditionnelle. L’utilisation

de l’imputation comme méthode d’optimisation de l’effort de génotypage dans le but de

réduire le coût de mise en place de la SG a montré son efficacité, permettant de multiplier

considérablement le nombre de marqueurs. Cependant, des études supplémentaires sont

requises pour compléter les résultats obtenus dans cette thèse avant l’application pratique

de la SG. Le principal objectif étant désormais de compléter le phénotypage afin de tester

la prédiction de l’habileté à la multiplication végétative et la reprise dès le stade plantule

ainsi que le sex de l’individu. Cela permettra de faire une étude plus grande ampleur

confirmant la capacité de la SG de prédire un grand nombre d’individus au plus jeune âge.

Dans la perspective de la mise en œuvre de la SG, l’étude de la faisabilité chez le parent

complémentaire (P. deltoides) et la prédiction de la valeur hybrides sont à considérer.

Du point de vue méthodologique, les futures recherches devraient utiliser les nouveaux

modèles qui ont été développés car ceux-ci sont potentiellement plus efficaces, notamment

grâce à la prise en compte d’autres effets non additifs ou d’intégration informations

de transcriptomiques. Dans un second temps, la construction de modèles permettant

la mise en place d’un gestion de la diversité génétique dans le cadre de la sélection

génomique du peuplier est nécessaire pour garantir le maintien du gain génétique à long

terme. Dans un dernier temps, des approches plus ambitieuses devraient être envisagées,

comme l’utilisation de modèles de SG combinant les résultats de tests en croisements

réalisés dans différents environnements, des informations moléculaires et des variables
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environnementales. Ceci permettrait de prédire les de prédire les interactions Génotypes

x Environnement. Enfin, il ressort de cette étude que, dans le contexte actuel où la

production agricole doit augmenter à un rythme jamais atteint pour faire face à la

demande tout en garantissant le maintien d’une diversité génétique nécessaire pour faire

face aux risques sanitaires, la SG a indéniablement un rôle à jouer pour l’amélioration

génétique en générale et tout particulièrement pour le peuplier.
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Chapitre 2 : Estimated

micro-environnemental effects
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Figure A.1: Micro-environmental effects estimated with BreedR (Muñoz and Sanchez,
2018) for the Branch angle and by evaluation batch (columns), with a H matrix (Legarra
et al., 2009). The effect’s magnitude was represented in color: blue: the environment tend
to gives lower values and red : environment tend to gives higher values.
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Figure A.2: Micro-environmental effects estimated with BreedR (Muñoz and Sanchez,
2018) for the budburst and by evaluation batch (columns), with a H matrix (Legarra et al.,
2009). The effect’s magnitude was represented in color: blue: the environment tend to
gives lower values and red : environment tend to gives higher values.
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Figure A.3: Micro-environmental effects estimated with BreedR (Muñoz and Sanchez, 2018)
for the height at one year old and by evaluation batch (columns), with a H matrix (Legarra
et al., 2009). The effect’s magnitude was represented in color: blue: the environment tend
to gives lower values and red : environment tend to gives higher values.
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Figure A.4: Micro-environmental effects estimated with BreedR (Muñoz and Sanchez, 2018)
for the height at two year old and by evaluation batch (columns), with a H matrix (Legarra
et al., 2009). The effect’s magnitude was represented in color: blue: the environment tend
to gives lower values and red : environment tend to gives higher values.
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Figure A.5: Micro-environmental effects estimated with BreedR (Muñoz and Sanchez,
2018) for the circumference at two year old and by evaluation batch (columns), with a H
matrix (Legarra et al., 2009). The effect’s magnitude was represented in color: blue: the
environment tend to gives lower values and red : environment tend to gives higher values.
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Figure A.6: Micro-environmental effects estimated with BreedR (Muñoz and Sanchez,
2018) for the rust resistance at one year old and by evaluation batch (columns), with a H
matrix (Legarra et al., 2009). The effect’s magnitude was represented in color: blue: the
environment tend to gives lower values and red : environment tend to gives higher values.
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Figure A.7: Micro-environmental effects estimated with BreedR (Muñoz and Sanchez,
2018) for the rust resistance at two year old and by evaluation batch (columns), with a H
matrix (Legarra et al., 2009). The effect’s magnitude was represented in color: blue: the
environment tend to gives lower values and red : environment tend to gives higher values.
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Appendix B

Chapitre 3 : Article Supplementary

material

Additional file 1 : TableS1.pdf — Sequencing,

pedigree and reference information’s of each reference

individuals.
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Additional file 2 : FigureS1.pdf — Relationship

between the proportion of alleles correctly imputed

by each leave-one-out individual (Propi) and the

lower bound individual proportion of SNP correctly

imputed lbPropi).The different colors correspond

to the different individual classes in the mating

regimes, and each point represents the values for one

chromosome and one individual.
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Additional file 3 : FigureS2.pdf — Relationship

between the sequencing depth and imputation quality

variables at individual level. On the top of the

diagonal: Pearson’s correlations. The distribution

of each variable is shown on the diagonal. On the

bottom of the diagonal: the bivariate scatter plots.
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Additional file 4 : FigureS3.pdf — Variation of the

three different estimates of imputation quality at the

SNP level (Props (Green), lbProps (Purple), cProps

(Orange)), as a function of different classes of minor

allele frequency (FreqOri).
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1 Supplementary Tables and Figures

1.1 Tables

Table 1: Akaike Information Criterion (AIC) and nerrow sense heritabilities by Traits, Matrices,
Models, Single or Multiple trait (ST MT), and GenoSet

Trait Matrice h2 AIC Model ST MT GenoSet

angbranch A 0.74 19313.62 ADD MT none

angbranch A 0.65 347.87 ADD ST none

budburst A 0.53 19313.62 ADD MT none

budburst A 0.33 367.89 ADD ST none

circ2 A 0.59 19313.62 ADD MT none

circ2 A 0.65 390.46 ADD ST none

height1 A 0.63 19313.62 ADD MT none

height1 A 0.67 463.02 ADD ST none

height2 A 0.78 181.48 ADD ST none

height2 A 0.68 19313.62 ADD MT none

rust1 A 0.69 19313.62 ADD MT none

rust1 A 0.60 673.54 ADD ST none

rust2 A 0.69 19313.62 ADD MT none

rust2 A 0.92 214.17 ADD ST none

angbranch Acor 0.72 19397.86 ADD MT none

angbranch Acor 0.63 343.82 ADD ST none

budburst Acor 0.54 19397.86 ADD MT none

budburst Acor 0.28 351.58 ADD ST none

circ2 Acor 0.60 19397.86 ADD MT none

circ2 Acor 0.67 391.97 ADD ST none

height1 Acor 0.59 19397.86 ADD MT none

height1 Acor 0.70 453.53 ADD ST none

height2 Acor 0.70 178.94 ADD ST none

height2 Acor 0.68 19397.86 ADD MT none

rust1 Acor 0.62 19397.86 ADD MT none

rust1 Acor 0.60 657.22 ADD ST none

rust2 Acor 0.71 19397.86 ADD MT none

rust2 Acor 0.91 212.21 ADD ST none

angbranch AcorD 0.62 341.89 ADDetDOM ST none

budburst AcorD 0.28 288.12 ADDetDOM ST none

circ2 AcorD 0.50 381.79 ADDetDOM ST none

height1 AcorD 0.70 447.49 ADDetDOM ST none

height2 AcorD 0.99 256.03 ADDetDOM ST none

Continued on next page
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Table 1 – Continued from previous page

Trait Matrice h2 AIC Model ST MT GenoSet

rust1 AcorD 0.60 630.26 ADDetDOM ST none

rust2 AcorD 0.92 211.05 ADDetDOM ST none

angbranch AD 0.65 347.35 ADDetDOM ST none

budburst AD 0.29 301.82 ADDetDOM ST none

circ2 AD 0.55 384.70 ADDetDOM ST none

height1 AD 0.68 450.25 ADDetDOM ST none

height2 AD 0.91 174.46 ADDetDOM ST none

rust1 AD 0.60 649.73 ADDetDOM ST none

rust2 AD 0.92 214.02 ADDetDOM ST none

angbranch BayesC 0.57 NA ADD ST 7K

angbranch BayesC 0.86 NA ADD ST 50K

angbranch BayesC 0.86 NA ADD ST 100K

rust2 BayesC 0.57 NA ADD ST 7K

rust2 BayesC 0.88 NA ADD ST 50K

rust2 BayesC 0.88 NA ADD ST 100K

angbranch G 1.00 19142.88 ADD MT 7K

angbranch G 0.49 335.57 ADD ST 7K

angbranch G 1.00 356.74 ADD ST 50K

angbranch G 1.00 393.98 ADD ST 100K

angbranch G 1.00 436.33 ADD ST 250K

budburst G 1.00 19142.88 ADD MT 7K

budburst G 0.60 233.29 ADD ST 7K

budburst G 0.40 548.09 ADD ST 100K

budburst G 0.64 579.20 ADD ST 250K

budburst G 0.16 595.34 ADD ST 50K

circ2 G 1.00 19142.88 ADD MT 7K

circ2 G 0.54 395.44 ADD ST 7K

circ2 G 1.00 459.44 ADD ST 50K

circ2 G 1.00 515.81 ADD ST 100K

circ2 G 1.00 583.57 ADD ST 250K

height1 G 1.00 19142.88 ADD MT 7K

height1 G 1.00 207.99 ADD ST 50K

height1 G 1.00 276.60 ADD ST 100K

height1 G 1.00 353.06 ADD ST 250K

height1 G 0.44 427.42 ADD ST 7K

height2 G 0.53 163.27 ADD ST 7K

height2 G 1.00 19142.88 ADD MT 7K

height2 G 1.00 433.59 ADD ST 50K

Continued on next page
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Table 1 – Continued from previous page

Trait Matrice h2 AIC Model ST MT GenoSet

height2 G 1.00 471.10 ADD ST 100K

height2 G 1.00 505.24 ADD ST 250K

rust1 G 1.00 19142.88 ADD MT 7K

rust1 G 0.60 565.66 ADD ST 7K

rust1 G 1.00 654.30 ADD ST 50K

rust1 G 1.00 693.77 ADD ST 100K

rust1 G 1.00 751.20 ADD ST 250K

rust2 G 1.00 19142.88 ADD MT 7K

rust2 G 0.57 197.93 ADD ST 7K

rust2 G 1.00 237.35 ADD ST 50K

rust2 G 1.00 281.48 ADD ST 100K

rust2 G 1.00 330.80 ADD ST 250K

angbranch GD 0.42 327.54 ADDetDOM ST 7K

budburst GD 0.51 209.57 ADDetDOM ST 7K

circ2 GD 0.47 394.77 ADDetDOM ST 7K

height1 GD 0.35 407.39 ADDetDOM ST 7K

height2 GD 0.47 156.59 ADDetDOM ST 7K

rust1 GD 0.54 552.75 ADDetDOM ST 7K

rust2 GD 0.55 197.33 ADDetDOM ST 7K

angbranch GDw1 0.69 4.28 ADDetDOM ST 7K

budburst GDw1 0.69 -161.36 ADDetDOM ST 7K

circ2 GDw1 0.76 131.99 ADDetDOM ST 7K

height1 GDw1 0.54 148.35 ADDetDOM ST 7K

height2 GDw1 0.62 -81.14 ADDetDOM ST 7K

rust1 GDw1 0.65 154.49 ADDetDOM ST 7K

rust2 GDw1 0.71 -61.11 ADDetDOM ST 7K

angbranch GDw2 0.86 -208.87 ADDetDOM ST 7K

budburst GDw2 0.79 -392.56 ADDetDOM ST 7K

circ2 GDw2 0.84 -97.26 ADDetDOM ST 7K

height1 GDw2 0.66 -42.96 ADDetDOM ST 7K

height2 GDw2 0.72 -231.63 ADDetDOM ST 7K

rust1 GDw2 0.75 -32.31 ADDetDOM ST 7K

rust2 GDw2 0.79 -195.47 ADDetDOM ST 7K

angbranch GDw3 0.89 -319.15 ADDetDOM ST 7K

budburst GDw3 0.83 -487.40 ADDetDOM ST 7K

circ2 GDw3 0.89 -219.60 ADDetDOM ST 7K

height1 GDw3 0.73 -128.21 ADDetDOM ST 7K

height2 GDw3 0.81 -299.85 ADDetDOM ST 7K

Continued on next page
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Table 1 – Continued from previous page

Trait Matrice h2 AIC Model ST MT GenoSet

rust1 GDw3 0.79 -114.58 ADDetDOM ST 7K

rust2 GDw3 0.83 -253.65 ADDetDOM ST 7K

angbranch Gw1 0.76 21.99 ADD ST 7K

angbranch Gw1 0.81 364.04 ADD ST 50K

angbranch Gw1 1.00 371.72 ADD ST 100K

angbranch Gw1 1.00 373.16 ADD ST 250K

budburst Gw1 0.72 -142.79 ADD ST 7K

budburst Gw1 0.73 285.06 ADD ST 50K

budburst Gw1 0.54 345.67 ADD ST 100K

budburst Gw1 0.00 947.00 ADD ST 250K

circ2 Gw1 0.77 127.99 ADD ST 7K

circ2 Gw1 0.87 485.08 ADD ST 50K

circ2 Gw1 0.96 507.25 ADD ST 100K

circ2 Gw1 1.00 513.21 ADD ST 250K

height1 Gw1 0.58 158.88 ADD ST 7K

height1 Gw1 0.89 193.29 ADD ST 50K

height1 Gw1 1.00 205.53 ADD ST 100K

height1 Gw1 1.00 207.17 ADD ST 250K

height2 Gw1 0.66 -70.89 ADD ST 7K

height2 Gw1 1.00 424.94 ADD ST 50K

height2 Gw1 1.00 444.60 ADD ST 100K

height2 Gw1 1.00 451.98 ADD ST 250K

rust1 Gw1 0.70 168.49 ADD ST 7K

rust1 Gw1 0.79 640.43 ADD ST 50K

rust1 Gw1 0.97 644.99 ADD ST 100K

rust1 Gw1 1.00 668.57 ADD ST 250K

rust2 Gw1 0.71 -61.33 ADD ST 7K

rust2 Gw1 1.00 218.99 ADD ST 50K

rust2 Gw1 1.00 227.90 ADD ST 100K

rust2 Gw1 1.00 238.85 ADD ST 250K

angbranch Gw2 0.89 -206.02 ADD ST 7K

angbranch Gw2 0.43 406.81 ADD ST 50K

angbranch Gw2 0.58 409.20 ADD ST 250K

angbranch Gw2 0.51 425.60 ADD ST 100K

budburst Gw2 0.80 -382.93 ADD ST 7K

budburst Gw2 0.53 351.18 ADD ST 50K

budburst Gw2 0.58 368.47 ADD ST 100K

circ2 Gw2 0.85 -96.32 ADD ST 7K

Continued on next page
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Table 1 – Continued from previous page

Trait Matrice h2 AIC Model ST MT GenoSet

circ2 Gw2 0.64 601.57 ADD ST 250K

circ2 Gw2 0.52 615.29 ADD ST 50K

circ2 Gw2 0.52 633.28 ADD ST 100K

height1 Gw2 0.69 -30.28 ADD ST 7K

height1 Gw2 0.70 244.76 ADD ST 250K

height1 Gw2 0.61 273.16 ADD ST 100K

height1 Gw2 0.54 275.37 ADD ST 50K

height2 Gw2 0.75 -226.69 ADD ST 7K

height2 Gw2 0.73 475.29 ADD ST 250K

height2 Gw2 0.63 478.13 ADD ST 50K

height2 Gw2 0.64 483.64 ADD ST 100K

rust1 Gw2 0.78 -35.86 ADD ST 7K

rust1 Gw2 0.46 713.36 ADD ST 50K

rust1 Gw2 0.49 719.52 ADD ST 100K

rust1 Gw2 0.50 723.59 ADD ST 250K

rust2 Gw2 0.78 -192.35 ADD ST 7K

rust2 Gw2 0.62 262.17 ADD ST 250K

rust2 Gw2 0.63 264.76 ADD ST 100K

rust2 Gw2 0.57 268.75 ADD ST 50K

angbranch Gw3 0.92 -322.43 ADD ST 7K

angbranch Gw3 0.50 463.80 ADD ST 50K

angbranch Gw3 0.56 491.10 ADD ST 250K

angbranch Gw3 0.72 508.82 ADD ST 100K

budburst Gw3 0.85 -479.80 ADD ST 7K

budburst Gw3 0.70 450.33 ADD ST 50K

budburst Gw3 0.67 475.67 ADD ST 100K

circ2 Gw3 0.89 -215.48 ADD ST 7K

circ2 Gw3 0.58 764.45 ADD ST 50K

circ2 Gw3 0.57 774.30 ADD ST 250K

circ2 Gw3 0.67 797.75 ADD ST 100K

height1 Gw3 0.76 -116.36 ADD ST 7K

height1 Gw3 0.92 360.97 ADD ST 250K

height1 Gw3 0.64 382.85 ADD ST 100K

height1 Gw3 0.76 383.75 ADD ST 50K

height2 Gw3 0.82 -303.17 ADD ST 7K

height2 Gw3 0.83 556.50 ADD ST 250K

height2 Gw3 0.74 558.77 ADD ST 100K

height2 Gw3 0.83 563.18 ADD ST 50K

Continued on next page
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Table 1 – Continued from previous page

Trait Matrice h2 AIC Model ST MT GenoSet

rust1 Gw3 0.82 -127.37 ADD ST 7K

rust1 Gw3 0.77 818.41 ADD ST 50K

rust1 Gw3 0.76 828.20 ADD ST 100K

rust1 Gw3 0.70 830.30 ADD ST 250K

rust2 Gw3 0.82 -249.37 ADD ST 7K

rust2 Gw3 0.62 304.75 ADD ST 250K

rust2 Gw3 0.58 323.48 ADD ST 100K

rust2 Gw3 0.62 327.09 ADD ST 50K

1.2 Figures

Figure 1: Cross-validation prediction accuracies using an additive model with 7K SNP for two
traits grouped by the proportion of individuals in training sets 50% (T50) and 25% (T25). The
color of boxplot showed the sampling strategy: in blue, the individual sampling strategy and in
green the family sampling strategy. Each boxplot represented the accuracy of four repetitions
for each relationship matrix. The gray lines represented the paired repetitions.
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Figure 2: Cross-validation prediction accuracies using a single-trait additive model with 7K
SNP for two traits with a training set of 50% sampled by individuals. Each boxplot represents
the accuracy of four repetitions : wGBLUP from weighting iteration 1 to 3, and BayesCπ. The
grey lines between boxplots link paired repetitions.
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Figure 3: Cross-validation prediction accuracies using a single-trait additive model and additive
plus dominance model with 7K SNP, for three traits and proportions of individuals in training
sets of 50% (T50) and 25% (T25). The blue and light purple boxplots correspond to the
sampling strategy based on individuals, and green and dark purple on families. The additive
model is represented in blue and green boxplots, whereas the additive plus dominance model is
in light and dark purple. Each boxplot represented the accuracy of four repetitions. The grey
lines between boxplots link paired repetitions. 8



Figure 4: Cross-validation prediction accuracies using a single-trait and multiple-trait additive
model with 7K SNP for two traits and proportions of individuals in training sets of 50% (T50)
and 25% (T25). The blue and yellow boxplots correspond to the individual sampling strategy,
green and orange boxplots to the family sampling strategy. Blue and green boxplots are for
single trait model, and yellow and orange for the multiple-trait model. Each boxplot represented
the accuracy of four repetitions. The grey lines between boxplots link paired repetitions.
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Figure 5: Genetic correlation between traits estimated with a GBLUP additive multiple trait
model with a 7K SNPs genotyping.

10



Figure 6: Marker densification impact on predictive accuracy of a single trait additive model
with T50 family cross-validation, considering four genomic relationships matrices derived from
different marker densities (in columns), and for three different traits (in rows) : height1, budburst
and rust1. The range of accuracies obtained with the pedigree information was represented in a
grey band. The grey lines between boxplots link paired repetitions.
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Figure 7: Marker densification impact on predictive accuracy of a single trait additive model
with T50 individual cross-validation, considering four genomic relationships matrices derived
from different marker densities (in columns), and for four different traits (in rows) : angbranch,
circ2, height2, and rust2. The range of accuracies obtained with the pedigree information was
represented by a grey band. The grey lines between boxplots link paired repetitions.
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Figure 8: Marker densification impact on predictive accuracy of a single trait additive model
with T50 family cross-validation, considering four genomic relationships matrices derived from
different marker densities (in columns), and for four different traits (in rows) : angbranch,
circ2, height2, and rust2. The range of accuracies obtained with the pedigree information was
represented by a grey band. The grey lines between boxplots link paired repetitions.
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Figure 9: Marker densification impact on predictive accuracy of a single trait additive model with
T25 individual cross-validation, considering four genomic relationships matrices derived from
different marker densities (in columns), and for four different traits (in rows) : budburst, height1,
and rust1. The range of accuracies obtained with the pedigree information was represented by a
grey band. The grey lines between boxplots link paired repetitions.
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Figure 10: Marker densification impact on predictive accuracy of a single trait additive model
with T25 family cross-validation, considering four genomic relationships matrices derived from
different marker densities (in columns), and for four different traits (in rows) : budburst, height1,
and rust1. The range of accuracies obtained with the pedigree information was represented by a
grey band. The grey lines between boxplots link paired repetitions.
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Figure 11: Marker densification impact on predictive accuracy of a single trait additive model
with T25 individual cross-validation, considering four genomic relationships matrices derived
from different marker densities (in columns), and for four different traits (in rows) : angbranch,
circ2, height2, and rust2. The range of accuracies obtained with the pedigree information was
represented by a grey band. The grey lines between boxplots link paired repetitions.
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Figure 12: Marker densification impact on predictive accuracy of a single trait additive model
with T25 family cross-validation, considering four genomic relationships matrices derived from
different marker densities (in columns), and for four different traits (in rows) : angbranch,
circ2, height2, and rust2. The range of accuracies obtained with the pedigree information was
represented by a grey band. The grey lines between boxplots link paired repetitions.

17



Figure 13: Prediction accuracy of cross-validation strategies by different relationship matrix
strategies, by marker sets of different density, and by cross-validation strategies. Boxplot
represent pooled results across traits.
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Figure 14: Independent test prediction accuracies using a single-trait additive model and additive
plus dominance model with 7K SNP, for different traits grouped and proportions of individuals
in training sets of 50% (T50) and 25% (T25). The blue and light purple boxplots correspond to
the individual sampling strategy, green and dark purple to the family sampling strategy, blue
and green to the additive model, and light and dark purple to additive plus dominance model.
Each boxplot represented the accuracy of four repetitions. The grey lines between boxplots link
paired repetitions. 19



Figure 15: Independant test prediction accuracies using a single-trait and multiple-trait additive
model with 7K SNP, for different traits and proportions of individuals in training sets of 50%
(T50) and 25% (T25). The blue and yellow corresponds to the individual sampling strategy,
green and orange to the family sampling strategy, blue and green for the single trait model, and
yellow and orange for the multiple-trait model. Each boxplot represented the accuracy of four
repetitions. The grey lines between boxplots link paired repetitions.
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Figure 16: Marker densification impact on Spearman correlation of a single trait additive model
with T50 family cross-validation, for four genomic relationships matrices (in columns) and three
different traits (in rows) : height1, budburst and rust1. The range of accuracies obtained with
the pedigree information was represented by a grey band. The grey lines between boxplots link
paired repetitions.
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Figure 17: Marker densification impact on Spearman correlation of a single trait additive model
with T50 individual cross-validation, for four genomic relationships matrices (in columns) and
for four different traits (in rows) : angbranch, circ2, height2, and rust2. The range of accuracies
obtained with the pedigree information was represented by a grey band. The grey lines between
boxplots link paired repetitions.
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Figure 18: Marker densification impact on Spearman correlation of a single trait additive model
with T50 family cross-validation, for four genomic relationships matrices (in columns) and for
four different traits (in rows) : angbranch, circ2, height2, and rust2. The range of accuracies
obtained with the pedigree information was represented by a grey band. The grey lines between
boxplots link paired repetitions.
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Figure 19: Marker densification impact on Spearman correlation of a single trait additive model
with T25 individual cross-validation, for four genomic relationships matrices (in columns) and for
four different traits (in rows) : budburst, height1, and rust1. The range of accuracies obtained
with the pedigree information was represented by a grey band. The grey lines between boxplots
link paired repetitions.
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Figure 20: Marker densification impact on Spearman correlation of a single trait additive model
with T25 family cross-validation, for four genomic relationships matrices (in columns) and for
four different traits (in rows) : budburst, height1, and rust1. The range of accuracies obtained
with the pedigree information was represented by a grey band. The grey lines between boxplots
link paired repetitions.
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Figure 21: Marker densification impact on Spearman correlation of a single trait additive model
with T25 individual cross-validation, for four genomic relationships matrices (in columns) and
for four different traits (in rows) : angbranch, circ2, height2, and rust2. The range of accuracies
obtained with the pedigree information was represented by a grey band. The grey lines between
boxplots link paired repetitions.
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Figure 22: Marker densification impact on Spearman correlation of a single trait additive model
with T25 family cross-validation, for four genomic relationships matrices (in columns) and for
four different traits (in rows) : angbranch, circ2, height2, and rust2. The range of accuracies
obtained with the pedigree information was represented by a grey band. The grey lines between
boxplots link paired repetitions.
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Figure 23: Comparison of Spearmans (orange) and Pearsons (Purple) correlations between
phenotypes and estimated breeding values of the first year of rust evaluation. Relationship
matrixes are in columns, grouped by the number of SNPs. In rows the proportion of individuals
to estimate the correlations: 0-5% were the 5% best individuals, 5-10% the 5% to 10% best
individuals, 10-50% the 10% to 50% best individuals based on phenotypes inside the validation
population (T50 individual sampling strategy). 100% represented the Spearman and Predab
values for all the individuals in the validation population.
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Figure 24: Comparison of Spearmans (orange) and Pearsons (Purple) correlations between
phenotypes and estimated breeding values of the second year of rust evaluation. Relationship
matrixes are in columns, grouped by the number of SNPs. In rows the proportion of individuals
to estimate the correlations: 0-5% were the 5% best individuals, 5-10% the 5% to 10% best
individuals, 10-50% the 10% to 50% best individuals based on phenotypes inside the validation
population (T50 individual sampling strategy). 100% represented the Spearman and Predab
values for all the individuals in the validation population.
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Figure 25: Comparison of Spearmans (orange) and Pearsons (Purple) correlations between
phenotypes and estimated breeding values of the second year of circumference evaluation.
Relationship matrixes are in columns, grouped by the number of SNPs. In rows the proportion
of individuals to estimate the correlations: 0-5% were the 5% best individuals, 5-10% the 5% to
10% best individuals, 10-50% the 10% to 50% best individuals based on phenotypes inside the
validation population (T50 individual sampling strategy). 100% represented the Spearman and
Predab values for all the individuals in the validation population.
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Figure 26: Comparison of Spearmans (orange) and Pearsons (Purple) correlations between
phenotypes and estimated breeding values of the second year of height evaluation. Relationship
matrixes are in columns, grouped by the number of SNPs. In rows the proportion of individuals
to estimate the correlations: 0-5% were the 5% best individuals, 5-10% the 5% to 10% best
individuals, 10-50% the 10% to 50% best individuals based on phenotypes inside the validation
population (T50 individual sampling strategy). 100% represented the Spearman and Predab
values for all the individuals in the validation population.
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Figure 27: Comparison of Spearmans (orange) and Pearsons (Purple) correlations between
phenotypes and estimated breeding values of angbranch evaluation. Relationship matrixes are
in columns, grouped by the number of SNPs. In rows the proportion of individuals to estimate
the correlations: 0-5% were the 5% best individuals, 5-10% the 5% to 10% best individuals,
10-50% the 10% to 50% best individuals based on phenotypes inside the validation population
(T50 individual sampling strategy). 100% represented the Spearman and Predab values for all
the individuals in the validation population.
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Figure 28: Comparison of Spearmans (orange) and Pearsons (Purple) correlations between
phenotypes and estimated breeding values of the budburst evaluation. Relationship matrixes are
in columns, grouped by the number of SNPs. In rows the proportion of individuals to estimate
the correlations: 0-5% were the 5% best individuals, 5-10% the 5% to 10% best individuals,
10-50% the 10% to 50% best individuals based on phenotypes inside the validation population
(T50 individual sampling strategy). 100% represented the Spearman and Predab values for all
the individuals in the validation population.
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Marie PEGARD
Nouveaux modèles pour la mise en œuvre de l’évaluation

pan-génomique dans le programme d’amélioration du peuplier

Résumé :
Les espèces forestières sont particulières à bien des égards par rapport aux autres espèces
domestiquées. Les arbres forestiers ont de longues phases juvéniles, entrainant de long et couteux
cycles de sélection et nécesitant une sélection en plusieurs étapes indpendantes. Bien que cette
méthode soit efficace du point de vue opérationnel, elle reste couteuse en temps et en ressources,
entrainant une dillution de l’intensité et de la précision de sélection. Au vu de ces contraintes,
les arbres sont de bons candidats pour la mise en œuvre de l’évaluation génomique. La sélection
génomique (SG) repose sur le classement et la sélection d’individus à partir de l’information
contenu dans leur génome sans utilisé une étape d’évaluation phénotypique et ainsi accélérer
le processus de sélection.Ce travail visait à identifier les situations, les critères et les facteurs
dans lesquelles la SG pourrait être une option réalisable pour le peuplier. Notre étude a montré
que les avantages de l’évaluation génomique dépendent du contexte. C’est dans des situations
les moins avantageuse que l’évaluation génomique se montre la plus performante, elle profite
également de la densification de l’inforamtion génétique de faible à moyenne suite à une étape
d’imputation de haute qualité. La sélection génomique pourrait être une option intéressante à
stade précoce, où la précision de la sélection est généralement faible et la variabilité génétique
abondante. Notre travail a également montré qu’il est important d’évaluer les performances
avec des critères alternatifs, comme ceux liés au classement, notamment lorsque ces critères
répondent au contexte opérationnel du programme d’élevage étudié.

Mots clés : Populus nigra, Selection génomique, Imputation vers la séquence

New models for implementation of Genome Wide Evaluation in
poplar breeding program

Abstract :
Forest species are unique in many ways compared to other domesticated species. Forest trees
have long juvenile phases, leading to long and costly selection cycles and requiring selection
in several independent stages. Even if this method is operationally effective, it remains costly
in terms of time and resources, resulting in a diluted intensity and accuracy of selection.
In view of these constraints, trees are good candidates for the implementation of genomic
evaluation. Genomic selection (SG) is based on the classification and selection of individuals
from the information contained in their genome without using a phenotypic evaluation step
and thus accelerating the selection process, in order to identify the situations, criteria and
factors in which SG could be a feasible option for poplar. Our study showed that the benefits
of genomic evaluation are context-dependent. Genomic evaluation is most effective in the
less-advantageous situations, it also benefits from low to medium density genetic information
following a high-quality imputation step. Genomic selection could be an interesting option at an
early stage, when the accuracy of selection is generally low and genetic variability is abundant.
Our work has also shown that it is important to evaluate performance with alternative criteria,
such as those related to ranking, especially when these criteria fit the operational context of the
breeding programme under study.

Keywords : populus nigra, genomic selection, sequence imputation, proof of concept
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