S. Decramer, Urine in clinical proteomics, Mol Cell Proteomics, vol.7, pp.1850-62, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00360866

M. Frantzi, Developing proteomic biomarkers for bladder cancer: towards clinical application, Nat Rev Urol, vol.12, pp.317-347, 2015.

H. Mischak, Clinical proteomics: A need to define the field and to begin to set adequate standards, Proteomics Clin Appl, vol.1, pp.148-56, 2007.

W. B. Dunn, Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry, Nat Protoc, vol.6, pp.1060-83, 2011.

G. A. Gowda and D. Djukovic, Overview of mass spectrometry-based metabolomics: opportunities and challenges, Methods Mol Biol, vol.1198, pp.3-12, 2014.

K. Kim, Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment, PLoS One, vol.9, p.86223, 2014.

C. E. Brown, Urinary proteomic biomarkers to predict cardiovascular events, Proteomics Clin Appl, vol.9, pp.610-617, 2015.

J. Metzger, Diagnosis of subclinical and clinical acute T-cell-mediated rejection in renal transplant patients by urinary proteome analysis, Proteomics Clin Appl, vol.5, pp.322-355, 2011.

J. Metzger, Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders, Gut, vol.62, pp.122-152, 2013.

L. U. Zimmerli, Urinary proteomic biomarkers in coronary artery disease, Mol Cell Proteomics, vol.7, pp.290-298, 2008.

S. Decramer, Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis, Nat Med, vol.12, pp.398-400, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00122384

J. Klein, Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV), Sci Transl Med, vol.5, pp.198-106, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00853060

J. P. Schanstra, Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides, J Am Soc Nephrol, vol.26, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01907604

B. Schonemeier, Urinary Peptide Analysis Differentiates Pancreatic Cancer From Chronic Pancreatitis, Pancreas, 2016.

M. Posada-ayala, Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease, Kidney Int, vol.85, pp.103-114, 2013.

X. Zhao, Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits, Metabolomics, vol.6, pp.362-374, 2010.

X. Wang, Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease, Mol Cell Proteomics, vol.11, pp.370-80, 2012.

A. H. Emwas, Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review, Metabolomics, vol.11, pp.872-894, 2015.

J. K. Nicholson, Metabolic phenotyping in clinical and surgical environments, Nature, vol.491, pp.384-92, 2012.

R. Ramautar, Capillary Electrophoresis-Mass Spectrometry for Clinical Metabolomics, Adv Clin Chem, vol.74, pp.1-34, 2016.

H. G. Gika, E. Macpherson, G. A. Theodoridis, and I. D. Wilson, Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples, J Chromatogr B Analyt Technol Biomed Life Sci, vol.871, pp.299-305, 2008.

L. Novakova, L. Matysova, and P. Solich, Advantages of application of UPLC in pharmaceutical analysis, Talanta, vol.68, pp.908-926, 2006.

N. Gray, Development of a Rapid Microbore Metabolic Profiling Ultraperformance Liquid Chromatography-Mass Spectrometry Approach for High-Throughput Phenotyping Studies, Anal Chem, vol.88, pp.5742-51, 2016.

N. Gray, M. R. Lewis, R. S. Plumb, I. D. Wilson, and J. K. Nicholson, High-Throughput Microbore UPLC-MS Metabolic Phenotyping of Urine for Large-Scale Epidemiology Studies, J Proteome Res, vol.14, pp.2714-2735, 2015.

R. Ramautar, G. W. Somsen, and G. J. De-jong, CE-MS for metabolomics: developments and applications in the period, Electrophoresis, vol.34, pp.86-98, 2010.

R. Ramautar, G. W. Somsen, and G. J. De-jong, CE-MS for metabolomics: developments and applications in the period 2012-2014, Electrophoresis, vol.36, pp.212-236, 2015.

N. L. Kuehnbaum, A. Kormendi, and P. Britz-mckibbin, Multisegment injection-capillary electrophoresis-mass spectrometry: a high-throughput platform for metabolomics with high data fidelity, Anal Chem, vol.85, pp.10664-10673, 2013.

R. Ramautar, J. M. Busnel, A. M. Deelder, and O. A. Mayboroda, Enhancing the coverage of the urinary metabolome by sheathless capillary electrophoresis-mass spectrometry, Anal Chem, vol.84, pp.885-92, 2012.

W. Zhang, T. Hankemeier, and R. Ramautar, Next-generation capillary electrophoresis-mass spectrometry approaches in metabolomics, Curr Opin Biotechnol, vol.43, pp.1-7, 2016.

S. Harada, Metabolomic profiling reveals novel biomarkers of alcohol intake and alcohol-induced liver injury in communitydwelling men, Environ Health Prev Med, vol.21, pp.18-26, 2016.

K. Kami, Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry, Metabolomics, vol.9, pp.444-453, 2013.

T. Kimura, Identification of biomarkers for development of end-stage kidney disease in chronic kidney disease by metabolomic profiling, Sci Rep, vol.6, p.26138, 2016.

T. Soga, Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry, Anal Chem, vol.74, pp.2233-2242, 2002.

C. A. Smith, E. J. Want, G. O'maille, R. Abagyan, and G. Siuzdak, XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal Chem, vol.78, pp.779-87, 2006.

J. Li and L. Wong, Emerging patterns and gene expression data, Genome Inform, vol.12, pp.3-13, 2001.

P. Du, W. A. Kibbe, and S. M. Lin, lumi: a pipeline for processing Illumina microarray, Bioinformatics, vol.24, pp.1547-1555, 2008.

C. R. Pelz, M. Kulesz-martin, G. Bagby, and R. C. Sears, Global rank-invariant set normalization (GRSN) to reduce systematic distortions in microarray data, BMC Bioinformatics, vol.9, p.520, 2008.

F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust Statistics: The Approach Based on Influence Functions, 1986.

P. Huber, J. Robust Statistics, 1981.

E. J. Maxwell and D. D. Chen, Twenty years of interface development for capillary electrophoresis-electrospray ionization-mass spectrometry, Anal Chim Acta, vol.627, pp.25-33, 2008.

, Scientific RepoRts |, vol.6, p.34453

M. C. Tseng, Y. R. Chen, and G. R. Her, A beveled tip sheath liquid interface for capillary electrophoresis-electrospray ionization-mass spectrometry, Electrophoresis, vol.25, pp.2084-2093, 2004.

A. Gleiss, M. Dakna, H. Mischak, and G. Heinze, Two-group comparisons of zero-inflated intensity values: the choice of test statistic matters, Bioinformatics, vol.31, pp.2310-2317, 2015.

G. Fda-&-industry, Bioanalytical Method Validation, Food and Drug Administration: A Guidance. Centre for Drug Valuation and Research (CDER, 2001.

S. Taylor and K. Pollard, Hypothesis tests for point-mass mixture data with application to 'omics data with many zero values, Stat Appl Genet Mol Biol, vol.8, 2009.

M. Dakna, Addressing the challenge of defining valid proteomic biomarkers and classifiers, BMC Bioinformatics, vol.11, p.594, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00624800

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. R. Statist. Soc. B, vol.57, pp.289-300, 1995.

H. Mischak, Recommendations for biomarker identification and qualification in clinical proteomics, Sci Transl Med, vol.2, pp.46-88, 2010.

P. Begley, Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum, Anal Chem, vol.81, pp.7038-7084, 2009.

E. Zelena, Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum, Anal Chem, vol.81, pp.1357-64, 2009.

G. Y. Chen, H. W. Liao, Y. J. Tseng, I. L. Tsai, and C. H. Kuo, A matrix-induced ion suppression method to normalize concentration in urinary metabolomics studies using flow injection analysis electrospray ionization mass spectrometry, Anal Chim Acta, vol.864, pp.21-30, 2015.

S. S. Waikar, V. S. Sabbisetti, and J. V. Bonventre, Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate, Kidney Int, vol.78, pp.486-94, 2010.

V. Chadha, U. Garg, and U. S. Alon, Measurement of urinary concentration: a critical appraisal of methodologies, Pediatr Nephrol, vol.16, pp.374-82, 2001.

Y. Wu and L. Li, Determination of total concentration of chemically labeled metabolites as a means of metabolome sample normalization and sample loading optimization in mass spectrometry-based metabolomics, Anal Chem, vol.84, pp.10723-10754, 2012.

M. Assfalg, Evidence of different metabolic phenotypes in humans, Proc Natl Acad Sci, vol.105, pp.1420-1424, 2008.

P. Bernini, Individual human phenotypes in metabolic space and time, J Proteome Res, vol.8, pp.4264-71, 2009.

S. Wallner-liebmann, The impact of free or standardized lifestyle and urine sampling protocol on metabolome recognition accuracy, Genes Nutr, vol.10, p.441, 2015.

S. Decramer, J. L. Bascands, and J. P. Schanstra, Non-invasive markers of ureteropelvic junction obstruction, World J Urol, vol.25, pp.457-65, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409592

A. A. Boldyrev, G. Aldini, and W. Derave, Physiology and pathophysiology of carnosine, Physiol Rev, vol.93, pp.1803-1848, 2013.

V. Peters, Intrinsic carnosine metabolism in the human kidney, Amino Acids, vol.47, pp.2541-50, 2015.

H. Kurata, Renoprotective effects of l-carnosine on ischemia/reperfusion-induced renal injury in rats, J Pharmacol Exp Ther, vol.319, pp.640-647, 2006.

E. Riedl, Carnosine prevents apoptosis of glomerular cells and podocyte loss in STZ diabetic rats, Cell Physiol Biochem, vol.28, pp.279-88, 2011.

A. Yay, Antioxidant effect of carnosine treatment on renal oxidative stress in streptozotocin-induced diabetic rats, Biotech Histochem, vol.89, pp.552-559, 2014.

B. Janssen, Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1, Diabetes, vol.54, pp.2320-2327, 2005.

V. Peters, CNDP1 genotype and renal survival in pediatric nephropathies, J Pediatr Endocrinol Metab, 2016.

C. Desveaux, Identification of Symptomatic Fetuses Infected with Cytomegalovirus Using Amniotic Fluid Peptide Biomarkers, PLoS Pathog, vol.12, p.1005395, 2016.

G. C. Tseng, M. K. Oh, L. Rohlin, J. C. Liao, and W. H. Wong, Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects, Nucleic Acids Res, vol.29, pp.2549-57, 2001.

D. S. Wishart, HMDB 3.0-The Human Metabolome Database in 2013, Nucleic Acids Res, vol.41, pp.801-808, 2013.

J. Hastings, The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013, Nucleic Acids Res, vol.41, pp.456-63, 2013.

M. Kanehisa, Data, information, knowledge and principle: back to metabolism in KEGG, Nucleic Acids Res, vol.42, pp.199-205, 2014.

C. Kuhl, R. Tautenhahn, C. Bottcher, T. R. Larson, and S. Neumann, CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Anal Chem, vol.84, pp.283-292, 2012.

D. Meyer, E. Dimitriadou, K. A. Hornik, and L. ;. Tu-wien, E1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), 2015.

, Bibliographie woiD j9i ppris à lireD et en je souhite ç à personne 3

C. Léodagan-de, , 2006.

, World Medical Association Declaration of Helsinki : Recommendations Guiding Physicians in Biomedical Research Involving Human Subjects, vol.277, p.100

M. Abedi and Y. Gheisari, Nodes with high centrality in protein interaction networks are responsible for driving signaling pathways in diabetic nephropathy. PeerJ, 3:e1284. Cité 3 fois, pp.31-32, 2015.

K. Abirami, Urinalysis in Clinical Practice (Akin to Liquid Kidney Biopsy). 2(1):12. Cité 1 fois, p.71, 2001.

J. Adachi, C. Kumar, Y. Zhang, J. V. Olsen, and M. Mann, The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins, Genome Biology, vol.7, issue.9, 2006.

S. Ahn and R. J. Simpson, Body uid proteomics : Prospects for biomarker discovery, PRO-TEOMICS CLINICAL APPLICATIONS, vol.1, issue.9, p.64, 2007.

G. Alanis-lobato, M. A. Andrade-navarro, and M. H. Schaefer, HIPPIE v2.0 : Enhancing meaningfulness and reliability of proteinprotein interaction networks, Nucleic Acids Research, vol.45, p.14, 2017.

I. Albert and R. Albert, Conserved network motifs allow protein-protein interaction prediction, Bioinformatics, vol.20, issue.18, p.5, 2004.

R. Albert, Scale-free networks in cell biology, Journal of Cell Science, vol.118, issue.21, p.17, 2005.

R. Albert, H. Jeong, and A. Barabási, Error and attack tolerance of complex networks, Nature, vol.406, issue.6794, p.17, 2000.

M. R. Arkin and J. A. Wells, Small-molecule inhibitors of proteinprotein interactions : Progressing towards the dream, Nature Reviews Drug Discovery, vol.3, p.8, 2004.

M. Ashtiani, A. Salehzadeh-yazdi, Z. Razaghi-moghadam, H. Hennig, O. Wolkenhauer et al., A systematic survey of centrality measures for protein-protein interaction networks, BMC Systems Biology, issue.1, p.24, 2018.

W. Aulbert and M. J. Kemper, Severe antenatally diagnosed renal disorders : Background, prognosis and practical approach, Pediatric Nephrology, vol.31, issue.4, p.63, 2016.

W. Aulbert and M. J. Kemper, Severe antenatally diagnosed renal disorders : Background, prognosis and practical approach, Pediatric Nephrology, vol.31, issue.4, p.91, 2016.

Ö. Babur, A. Luna, A. Korkut, F. Durupinar, M. C. Siper et al., Causal interactions from proteomic proles : Molecular data meets pathway knowledge, Systems Biology, p.45, 2018.

G. D. Bader and C. W. Hogue, An automated method for nding molecular complexes in large protein interaction networks, BMC Bioinformatics, p.32, 2003.

M. Bakun, M. Niemczyk, D. Domanski, R. Jazwiec, A. Perzanowska et al., Urine proteome of autosomal dominant polycystic kidney disease patients, Clinical Proteomics, vol.9, issue.1, pp.45-54, 2012.

A. Barabási, Network Medicine From Obesity to the Diseasome, New England Journal of Medicine, vol.357, issue.4, p.5, 2007.

A. Barabasi and R. Albert, Emergence of Scaling in Random Networks. 286:5. Cité 2 fois, pp.17-19, 1999.

A. Barabási, N. Gulbahce, and J. Loscalzo, Network medicine : A network-based approach to human disease, 5668. Cité 2 fois, vol.12, pp.38-39, 2011.

A. Barabási and Z. N. Et-oltvai, Network biology : Understanding the cell's functional organization, Nature Reviews Genetics, vol.5, issue.2, p.17, 2004.

J. A. Barnes, Class and Committees in a Norwegian Island Parish, Human Relations, vol.7, issue.1, p.43, 1954.

J. Barratt and P. Topham, Urine proteomics : The present and future of measuring urinary protein components in disease, Canadian Medical Association Journal, vol.177, issue.4, p.2, 2007.

F. Barrenas, S. Chavali, P. Holme, R. Mobini, and M. Benson, Network Properties of Complex Human Disease Genes Identied through Genome-Wide Association Studies, e8090. Cité 2 fois, vol.4, pp.26-27, 2009.

M. Barrios-rodiles, K. R. Brown, B. Ozdamar, R. Bose, Z. Liu et al., High-Throughput Mapping of a Dynamic Signaling Network in Mammalian Cells, Science, vol.307, issue.5715, p.9, 2005.

O. Basha, R. Barshir, M. Sharon, E. Lerman, B. F. Kirson et al., The TissueNet v.2 database : A quantitative view of protein-protein interactions across human tissues, Nucleic Acids Research, vol.45, p.35, 2017.

K. D. Belanger, Using Anity Chromatography to Investigate Novel ProteinProtein Interactions in an Undergraduate Cell and Molecular Biology Lab Course, CBELife Sciences Education, vol.8, issue.3, p.9, 2009.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate : A Practical and Powerful Approach to Multiple Testing, Journal of the Royal Statistical Society : Series B (Methodological), vol.57, issue.1, pp.68-103, 1995.

D. P. Benson, L. Sej, and . Nadler, Enzyme activity in the amniotic uid resides both in amniotic cells and in the cell-free supernatant. Current data indicate that cell-free amniotic uid is not a reliable index of the enzyme status of the fetus, Section of Obstetrics & Gynacology, vol.64, p.3, 1970.

, Cité 1 fois, p.89

T. Berggård, S. Linse, and P. James, Methods for the detection and analysis of proteinprotein interactions, PROTEOMICS, vol.7, issue.16, p.7, 2007.

S. Berry, R. Smith, M. Dombrowski, K. Puder, D. Cotton et al., Predictive value of fetal serum B2-microglobulin for neonatal renal function, The Lancet, vol.345, issue.8960, p.91, 1995.

F. Boizard, V. Brunchault, P. Moulos, B. Breuil, J. Klein et al., A capillary electrophoresis coupled to mass spectrometry pipeline for long term comparable assessment of the urinary metabolome, Scientic Reports, vol.6, issue.1, p.70, 2016.

P. Bonacich, Power and Centrality : A Family of Measures, American Journal of Sociology, vol.92, issue.5, p.20, 1987.

S. P. Borgatti, Centrality and network ow, Social Networks, vol.27, issue.1, p.21, 2005.

Y. Bromberg, Chapter 15 : Disease Gene Prioritization, e1002902. Cité 1 fois, vol.9, p.36, 2013.

F. C. Brosius and W. Ju, The Promise of Systems Biology for Diabetic Kidney Disease, Advances in Chronic Kidney Disease, vol.25, issue.2, p.27, 2018.

C. E. Brown, N. S. Mccarthy, A. D. Hughes, P. Sever, A. Stalmach et al., , 2015.

, Urinary proteomic biomarkers to predict cardiovascular events, PROTEOMICS -Clinical Applications, vol.9, p.64

F. J. Bruggeman and H. V. Westerhoff, The nature of systems biology, Trends in Microbiology, vol.15, issue.1, p.2, 2007.

R. S. Burt, Positions in Networks*. Social Forces, vol.55, issue.1, p.18, 1976.

R. Calderon-margalit, K. Skorecki, and A. Vivante, History of Childhood Kidney Disease and Risk of Adult End-Stage Renal Disease, New England Journal of Medicine, vol.378, issue.18, p.17501752, 2018.

, Cité 1 fois, p.90

W. Chang, J. Cheng, J. J. Allaire, Y. Xie, and J. Mcpherson, Shiny : Web Application Framework for R. Cité 1 fois, p.66, 2019.

S. Chavali, F. Barrenas, K. Kanduri, and M. Benson, Network properties of human disease genes with pleiotropic eects, BMC Systems Biology, vol.4, issue.1, pp.26-27, 2010.

C. Chen, H. Shen, L. Zhang, J. Liu, X. Cao et al., Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer, International Journal of Molecular Medicine, vol.37, issue.6, p.15761586, 2016.

, Cité 1 fois, p.33

G. Chen, Y. Li, Y. Su, L. Zhou, H. Zhang et al., Identication of candidate genes for necrotizing enterocolitis based on microarray data, 2018.

, Cité 3 fois, Gene, vol.661, pp.45-54

L. Chindelevitch, D. Ziemek, A. Enayetallah, R. Randhawa, and B. Sidders,

E. S. Huang, Causal reasoning on biological networks : Interpreting transcriptional changes, 2012.

, Bioinformatics, vol.28, issue.8, p.45

H. N. Chua, W. Sung, and L. Wong, Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions, Bioinformatics, vol.22, issue.13, p.12, 2006.

J. Cijiang-he, P. Y. Chuang, A. Ma'ayan, and R. Iyengar, Systems biology of kidney diseases, 2239. Cité 2 fois, vol.81, pp.27-28, 2012.

E. Coffman and J. Richmond-bryant, Multiple biomarker models for improved risk estimation of specic cardiovascular diseases related to metabolic syndrome : A cross-sectional study, Population Health Metrics, vol.13, issue.1, pp.64-105, 2015.

K. S. Cook, R. M. Emerson, M. R. Gillmore, and T. Et-yamagishi, The Distribution of Power in Exchange Networks : Theory and Experimental Results, The American Journal of Sociology, vol.89, issue.2, p.18, 1983.

K. M. Corapi, J. L. Chen, E. M. Balk, and C. E. Gordon, Bleeding Complications of Native Kidney Biopsy : A Systematic Review and Meta-analysis, American Journal of Kidney Diseases, vol.60, issue.1, p.2, 2012.

M. C. Costanzo, The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD) : Comprehensive resources for the organization and comparison of model organism protein information, Nucleic Acids Research, vol.28, issue.1, p.15, 2000.

G. Csardi and T. Nepusz, The igraph software package for complex network research, pp.19-55, 2006.

É. Cs®sz, G. Kalló, B. Márkus, E. Deák, A. Csutak et al., Quantitative body uid proteomics in medicine A focus on minimal invasiveness, Journal of Proteomics, vol.153, p.3043, 2017.

, Cité 2 fois, pp.2-64

P. Danziger, D. R. Berman, K. Luckritz, K. Arbour, and N. Laventhal, Severe congenital anomalies of the kidney and urinary tract : Epidemiology can inform ethical decision-making, Journal of Perinatology, vol.36, issue.11, pp.97-99, 2016.

K. Davalieva, S. Kiprijanovska, S. Komina, G. Petrusevska, N. C. Zografska et al., Proteomics analysis of urine reveals acute phase response proteins as candidate diagnostic biomarkers for prostate cancer, Proteome Science, issue.1, p.28, 2015.

A. P. Davis, C. J. Grondin, R. J. Johnson, D. Sciaky, R. Mcmorran et al., The Comparative Toxicogenomics Database : Update, Nucleic Acids Research, vol.47, p.56, 2019.

J. De-las-rivas and A. De-luis, Interactome Data and Databases : Dierent Types of Protein Interaction, Comparative and Functional Genomics, vol.5, issue.2, p.8, 2004.

J. De-las-rivas and C. Fontanillo, ProteinProtein Interactions Essentials : Key Concepts to Building and Analyzing Interactome Networks, ):e1000807. Cité 4 fois, vol.6, pp.14-15, 2010.

S. Decramer, A. G. De-peredo, B. Breuil, H. Mischak, B. Monsarrat et al., Urine in Clinical Proteomics, Molecular & Cellular Proteomics, vol.7, issue.10, p.45, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00360866

S. Decramer, O. Parant, S. Beaufils, S. Clauin, C. Guillou et al., Anomalies of the TCF2 Gene Are the Main Cause of Fetal Bilateral Hyperechogenic Kidneys, Journal of the American Society of Nephrology, vol.18, issue.3, p.91, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409591

S. Decramer, S. Wittke, H. Mischak, P. Zürbig, M. Walden et al., Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis, Nature Medicine, vol.12, issue.4, p.64, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00122384

M. Deng, S. Mehta, F. Sun, and T. Chen, Inferring DomainDomain Interactions From Pro-teinProtein Interactions. Protein Interactions, p.12, 2002.

C. Desveaux, J. Klein, M. Leruez-ville, A. Ramirez-torres, C. Lacroix et al., Identication of Symptomatic Fetuses Infected with Cytomegalovirus Using Amniotic Fluid Peptide Biomarkers, PLOS Pathogens, vol.12, issue.1, pp.101-102, 2016.

Z. Dezs®, Y. Nikolsky, T. Nikolskaya, J. Miller, D. Cherba et al., Identifying disease-specic genes based on their topological signicance in protein networks, BMC Systems Biology, vol.3, issue.1, pp.37-39, 2009.

F. Ding, A. Tan, W. Ju, X. Li, S. Li et al., The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network, e0156024. Cité 2 fois, vol.11, pp.34-35, 2016.

N. T. Doncheva, J. H. Morris, J. Gorodkin, and L. J. Jensen, Cytoscape stringApp : Network analysis and visualization of proteomics data. bioRxiv. Cité 1 fois, p.16, 2018.

P. Dousdampanis, K. Trigka, and C. Fourtounas, Diagnosis and Management of Chronic Kidney Disease in the Elderly : A Field of Ongoing Debate, Aging and Disease, vol.3, issue.5, p.63, 2012.

S. Dray and J. Josse, Principal component analysis with missing values : A comparative survey of methods, Plant Ecology, vol.216, issue.5, p.67, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01260054

J. E. Eckel-passow, A. L. Oberg, T. M. Therneau, and H. R. Et-bergen, An insight into high-resolution mass-spectrometry data, Biostatistics, vol.10, issue.3, p.65, 2009.

A. M. Edwards, B. Kus, R. Jansen, D. Greenbaum, J. Greenblatt et al., , 2002.

, Bridging structural biology and genomics : Assessing protein interaction data with known complexes, Trends in Genetics, vol.18, issue.10, p.33

C. Eliasmith, Not really a philosopher, p.107, 2015.

S. Erten, G. Bebek, R. M. Ewing, and M. Koyutürk, DA DA : Degree-Aware Algorithms for Network-Based Disease Gene Prioritization, BioData Mining, issue.1, pp.39-41, 2011.

E. Estrada, Virtual identication of essential proteins within the protein interaction network of yeast, PROTEOMICS, vol.6, issue.1, p.24, 2006.

E. Estrada and J. A. Rodríguez-velázquez, Subgraph centrality in complex networks, Physical Review E, vol.71, issue.5, pp.20-24, 2005.

E. Estrada and G. J. Ross, Centralities in simplicial complexes. Applications to protein interaction networks, Journal of Theoretical Biology, vol.438, p.24, 2018.

I. Feldman, A. Rzhetsky, and D. Vitkup, Network properties of genes harboring inherited disease mutations, Proceedings of the National Academy of Sciences, vol.105, issue.11, p.26, 2008.

S. Fields and O. Song, A novel genetic system to detect proteinprotein interactions, Nature, vol.340, issue.6230, p.9, 1989.

S. Filip, C. Pontillo, J. P. Schanstra, A. Vlahou, H. Mischak et al., Urinary proteomics and molecular determinants of chronic kidney disease : Possible link to proteases, Expert Review of Proteomics, vol.11, issue.5, p.45, 2014.

D. Fliser, J. Novak, V. Thongboonkerd, À. Argilés, V. Jankowski et al., Advances in Urinary Proteome Analysis and Biomarker Discovery, Journal of the American Society of Nephrology, vol.18, issue.4, p.63, 2007.

A. Force, M. Lynch, F. B. Pickett, A. Amores, Y. Yan et al., Preservation of Duplicate Genes by Complementary, Degenerative Mutations, p.17, 1999.

H. B. Fraser, A. E. Hirsh, D. P. Wall, and M. B. Et-eisen, Coevolution of gene expression among interacting proteins, Proceedings of the National Academy of Sciences, vol.101, issue.24, p.12, 2004.

L. C. Freeman, Centrality in social networks conceptual clarication, Social Networks, vol.1, issue.3, p.19, 1978.

L. C. Freeman, Going the Wrong Way on a One-Way Street :Centrality in Physics and Biology, p.18, 2008.

F. Fu, X. Wei, J. Liu, and N. Mi, Bioinformatic analysis of specic genes in diabetic nephropathy, Renal Failure, vol.37, issue.7, pp.30-32, 2015.

M. Garcia-diaz and K. Bebenek, Multiple Functions of DNA Polymerases, Critical Reviews in Plant Sciences, vol.26, issue.2, p.7, 2007.

J. Garrels, YPD-A database for the proteins of Saccharomyces cerevisiae, Nucleic Acids Research, vol.24, issue.1, p.13, 1996.

A. Gavin, M. Bösche, R. Krause, P. Grandi, M. Marzioch et al., Functional organization of the yeast proteome by systematic analysis of protein complexes, Nature, vol.415, issue.6868, p.17, 2002.

S. Ge, Y. Wang, M. Song, X. Li, X. Yu et al., , 2018.

, Type 2 Diabetes Mellitus : Integrative Analysis of Multiomics Data for Biomarker Discovery, OMICS : A Journal of Integrative Biology, vol.22, issue.7, p.106

N. Gehlenborg, S. I. O'donoghue, N. S. Baliga, A. Goesmann, M. A. Hibbs et al., Visualization of omics data for systems biology, Nature Methods, vol.7, issue.S3, p.15, 2010.

J. Gertz, G. Elfond, A. Shustrova, M. Weisinger, M. Pellegrini et al., Inferring protein interactions from phylogenetic distance matrices, Bioinformatics, vol.19, issue.16, p.12, 2003.

M. Ghasemi, H. Seidkhani, F. Tamimi, M. Rahgozar, and A. Masoudi-nejad, Centrality Measures in Biological Networks, Current Bioinformatics, vol.9, issue.4, p.21, 2014.

L. Giot, A Protein Interaction Map of Drosophila melanogaster, Science, vol.302, issue.5651, p.17, 2003.

R. J. Glassock, Con : Kidney biopsy : An irreplaceable tool for patient management in nephrology, Nephrology Dialysis Transplantation, vol.30, issue.4, p.2, 2015.

K. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal et al., The human disease network, Proceedings of the National Academy of Sciences, vol.104, issue.21, pp.26-27, 2007.

M. W. Gonzalez and M. G. Et-kann, Chapter 4 : Protein Interactions and Disease, e1002819. Cité 2 fois, vol.8, pp.7-8, 2012.

I. Grgic, A. F. Hofmeister, G. Genovese, A. J. Bernhardy, H. Sun et al., Discovery of new glomerular diseaserelevant genes by translational proling of podocytes in vivo, Kidney International, vol.86, issue.6, p.34, 2014.

E. W. Grijseels, P. E. Van-hornstra, L. C. Govaerts, T. E. Cohen-overbeek, R. R. De-krijger et al., Outcome of pregnancies complicated by oligohydramnios or anhydramnios of renal origin, Prenatal Diagnosis, vol.31, issue.11, p.99, 2011.

D. Guala and E. L. Sonnhammer, A large-scale benchmark of gene prioritization methods, Scientic Reports, vol.7, issue.1, p.40, 2017.

J. Guespin-michel and C. Ripoll, La pluridisciplinarité dans les sciences de la vie : Un nouvel obstacle épistémologique, la non-linéarité. Aster, (30), p.1, 2000.

M. W. Hahn and A. D. Kern, Comparative Genomics of Centrality and Essentiality in Three Eukaryotic Protein-Interaction Networks, Molecular Biology and Evolution, vol.22, issue.4, pp.21-22, 2005.

L. Hakes, D. L. Robertson, S. G. Oliver, and S. C. Lovell, Protein Interactions from Complexes : A Structural Perspective, Comparative and Functional Genomics, p.11, 2007.

A. Hamosh, Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders, D514D517. Cité 1 fois, vol.33, p.39, 2004.

J. J. Han, N. Bertin, T. Hao, D. S. Goldberg, G. F. Berriz et al., Evidence for dynamically organized modularity in the yeast proteinprotein interaction network, Nature, vol.430, issue.6995, p.5, 2004.

J. A. Hanley and B. J. Mcneil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, vol.143, issue.1, p.104, 1982.

G. T. Hart, A. K. Ramani, and E. M. Marcotte, How complete are current yeast and human protein-interaction networks ?, Genome Biology, vol.7, issue.11, p.11, 2006.

L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray, From molecular to modular cell biology, C47C52. Cité 2 fois, vol.402, pp.5-17, 1999.

L. He, Y. Sun, M. Takemoto, J. Norlin, K. Tryggvason et al., The Glomerular Transcriptome and a Predicted ProteinProtein Interaction Network, Journal of the American Society of Nephrology, vol.19, issue.2, pp.33-34, 2008.

X. He and J. Zhang, Why Do Hubs Tend to Be Essential in Protein Networks ?, PLoS Genetics, vol.2, issue.6, p.19, 2006.

H. Hermjakob, L. Montecchi-palazzi, G. Bader, J. Wojcik, L. Salwinski et al., The HUPO PSI's Molecular Interaction formata community standard for the representation of protein interaction data, Nature Biotechnology, vol.22, p.13, 2004.

C. Hernandez-ferrer and . Gonzalez, CTDquerier : Package for CTDbase Data Query, Visualization and Downstream Analysis, J. R, p.56, 2018.

N. R. Hill, S. T. Fatoba, J. L. Oke, J. A. Hirst, C. A. O'callaghan et al.,

F. D. Hobbs, Global Prevalence of Chronic Kidney Disease A Systematic Review and Meta-Analysis, e0158765. Cité 1 fois, vol.11, p.1, 2016.

A. Hindryckx and L. Et-de-catte, Prenatal diagnosis of congenital renal and urinary tract malformations. Facts Views Vis Obgyn, vol.3, p.63, 2011.

Y. Ho, A. Gruhler, A. Heilbut, G. D. Bader, L. Moore et al.,

M. F. Moran, D. Durocher, M. Mann, C. W. Hogue, D. Figeys et al., Systematic identi R cation of protein complexes in Saccharomyces cerevisiae by mass spectrometry, vol.415, p.4, 2002.

, Cité 1 fois, p.5

J. Hogan, M. Dourthe, E. Blondiaux, J. Jouannic, C. Garel et al., Renal outcome in children with antenatal diagnosis of severe CAKUT, Pediatric Nephrology, vol.27, issue.3, p.497502, 2012.

, Cité 2 fois, pp.91-99

J. J. Hogan, M. Mocanu, and J. S. Berns, The Native Kidney Biopsy : Update and Evidence for Best Practice, Clinical Journal of the American Society of Nephrology, vol.11, issue.2, p.2, 2015.

M. C. Hogan, K. L. Johnson, R. M. Zenka, C. Charlesworth, M. Madden et al., Subfractionation, characterization, and in-depth proteomic analysis of glomerular membrane vesicles in human urine, Kidney International, vol.85, issue.5, p.28, 2014.

P. W. Holland and S. Leinhardt, Transitivity in Structural Models of Small Groups. page 18. Cité 1 fois, p.17, 1971.

D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick et al., The future of biocuration : Big data, Nature, vol.455, issue.7209, p.13, 2008.

C. Hsu, Y. Huang, C. Hsu, and U. Yang, Prioritizing disease candidate genes by a gene interconnectedness-based approach, S25. Cité 5 fois, vol.12, pp.53-56, 2011.

H. Huang, B. M. Jedynak, and J. S. Bader, Where Have All the Interactions Gone ? Estimating the Coverage of Two-Hybrid Protein Interaction Maps, PLoS Computational Biology, vol.3, issue.11, p.10, 2007.

S. Hwang, C. Y. Kim, S. Yang, E. Kim, T. Hart et al., HumanNet v2 : Human gene networks for disease research, Nucleic Acids Research, vol.47, p.41, 2018.

S. Hwang, C. Y. Kim, S. Yang, E. Kim, T. Hart et al., HumanNet v2 : Human gene networks for disease research, Nucleic Acids Research, vol.47, p.38, 2019.

T. Ideker and N. J. Et-krogan, Dierential network biology. Molecular Systems Biology, 8. Cité 2 fois, pp.33-59, 2012.

T. Ideker and R. Sharan, Protein networks in disease, Genome Research, vol.18, issue.4, p.32, 2008.

F. Iris, M. Gea, P. Lampe, and P. Santamaria, Modélisation intégrative prédictive et biologie expérimentale : Un processus synergique remarquablement ecace au service de la recherche médicale. médecine/sciences, p.59, 2009.

K. Ishii, T. Washio, T. Uechi, M. Yoshihama, N. Kenmochi et al., Characteristics and clustering of human ribosomal protein genes, BMC Genomics, p.7, 2006.

M. Jalili, A. Salehzadeh-yazdi, S. Gupta, O. Wolkenhauer, M. Yaghmaie et al., Evolution of Centrality Measurements for the Detection of Essential Proteins in Biological Networks, Frontiers in Physiology, vol.7, pp.21-24, 2016.

L. J. Jensen and P. Bork, BIOCHEMISTRY : Not Comparable, But Complementary. Science, vol.322, issue.5898, p.8, 2008.

H. Jeong, S. P. Mason, A. Barabási, and Z. N. Et-oltvai, Lethality and centrality in protein networks, Nature, vol.411, issue.6833, pp.20-24, 2001.

L. Jia, W. Fu, R. Jia, L. Wu, X. Li et al., Identication of potential key protein interaction networks of BK virus nephropathy in patients receiving kidney transplantation, 2018.

, Scientic Reports, vol.8, issue.1, p.30

L. Jia, L. Zhang, C. Shao, E. Song, W. Sun et al., An Attempt to Understand Kidney's Protein Handling Function by Comparing Plasma and Urine Proteomes, PLoS ONE, vol.4, issue.4, p.45, 2009.

G. Jimenez-sanchez, B. Childs, and D. Valle, Human disease genes, Nature, vol.409, issue.6822, p.24, 2001.

S. Jin, J. Wu, Y. Zhu, W. Gu, F. Wan et al., Comprehensive Analysis of BAP1 Somatic Mutation in Clear Cell Renal Cell Carcinoma to Explore Potential Mechanisms in Silico, Journal of Cancer, vol.9, issue.22, p.30, 2018.

P. F. Jonsson and P. A. Bates, Global topological features of cancer proteins in the human interactome, Bioinformatics, vol.22, issue.18, p.27, 2006.

J. Jouannic, J. A. Hyett, P. P. Pandya, B. Gulbis, C. H. Rodeck et al., , 2003.

, Perinatal outcome in fetuses with megacystis in the rst half of pregnancy, Prenatal Diagnosis, vol.23, issue.4, p.99

M. P. Joy, A. Brock, D. E. Ingber, and S. Huang, High-Betweenness Proteins in the Yeast Protein Interaction Network, Journal of Biomedicine and Biotechnology, issue.2, p.22, 2005.

P. Kaiser, D. Meierhofer, X. Wang, L. Huang, J. Walker et al., Tandem Anity Purication Combined with Mass Spectrometry to Identify Components of Protein Complexes, éditeurs : Genomics Protocols, vol.439, p.9, 2008.

M. Kanai, A. Raz, and D. S. Goodman, Retinol-binding protein : The transport protein for vitamin A in human plasma, Journal of Clinical Investigation, vol.47, issue.9, p.7, 1968.

U. Kang, S. Papadimitriou, J. Sun, and H. Tong, Centralities in Large Networks : Algorithms and Observations, Proceedings of the 2011 SIAM International Conference on Data Mining, vol.1, p.18, 2011.

M. G. Kann, Protein interactions and disease : Computational approaches to uncover the etiology of diseases, Briengs in Bioinformatics, vol.8, issue.5, p.26, 2007.

G. Kar, A. Gursoy, and O. Keskin, Human Cancer Protein-Protein Interaction Network : A Structural Perspective, PLoS Computational Biology, vol.5, issue.12, p.36, 2009.

F. Karinthy, CHAIN-LINKS. Cité 1 fois, p.17, 1929.

A. K. Kenworthy, Imaging Protein-Protein Interactions Using Fluorescence Resonance Energy Transfer Microscopy, Methods, vol.24, issue.3, p.10, 2001.

K. Prasad, T. S. Goel, R. Kandasamy, K. Keerthikumar, S. Kumar et al., Human Protein Reference Database2009 update, Nucleic Acids Research, vol.37, p.767, 2009.

, Cité 2 fois, D772, pp.14-33

O. Keskin, N. Tuncbag, and A. Gursoy, Predicting ProteinProtein Interactions from the Molecular to the Proteome Level, Chemical Reviews, vol.116, issue.8, pp.15-16, 2016.

J. Klein, S. Jupp, P. Moulos, M. Fernandez, B. Buffin-meyer et al., The KUPKB : A novel Web application to access multiomics data on kidney disease, The FASEB Journal, vol.26, issue.5, p.21452153, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726822

, Cité 1 fois, p.16

J. Klein, C. Lacroix, C. Caubet, J. Siwy, P. Zurbig et al., Fetal Urinary Peptides to Predict Postnatal Outcome of Renal Disease in Fetuses with Posterior Urethral Valves (PUV), Science Translational Medicine, vol.5, pp.99-103, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00853060

S. Köhler, S. Bauer, D. Horn, and P. N. Robinson, Walking the Interactome for Prioritization of Candidate Disease Genes, 949958. Cité 5 fois, vol.82, pp.45-55, 2008.

D. Koschutzki and F. Schreiber, Comparison of Centralities for Biological Networks, p.24, 2004.

M. Kotlyar, C. Pastrello, Z. Malik, and I. Jurisica, IID 2018 update : Context-specic physical proteinprotein interactions in human, model organisms and domesticated species, Nucleic Acids Research, vol.47, pp.35-59, 2019.

A. Krämer, J. Green, J. Pollard, and S. Tugendreich, Causal analysis approaches in Ingenuity Pathway Analysis, Bioinformatics, vol.30, issue.4, pp.28-29, 2013.

A. Krämer, J. Green, J. Pollard, and S. Tugendreich, Causal analysis approaches in Ingenuity Pathway Analysis, Bioinformatics, vol.30, issue.4, p.45, 2014.

M. Krnc, J. Sereni, R. Krekovski, and . Yilma, Eccentricity of networks with structural constraints, Discussiones Mathematicae Graph Theory. Cité, vol.1, p.21, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01385481

N. Kumar, P. Nakagawa, B. Janic, C. A. Romero, M. E. Worou et al., The anti-inammatory peptide Ac-SDKP is released from thymosin-B4 by renal meprin? and prolyl oligopeptidase, American Journal of Physiology-Renal Physiology, vol.310, issue.10, pp.1026-1034, 2016.

, Cité 1 fois, p.102

C. Lacroix, C. Caubet, A. Gonzalez-de-peredo, B. Breuil, D. Bouyssié et al., , 2014.

, Label-free Quantitative Urinary Proteomics Identies the Arginase Pathway as a New Player in Congenital Obstructive Nephropathy, vol.13, pp.45-54

W. Lan, J. Wang, M. Li, W. Peng, and F. Wu, Computational approaches for prioritizing candidate disease genes based on PPI networks, Tsinghua Science and Technology, vol.20, issue.5, p.500512, 2015.

, Cité 1 fois, p.38

A. D. Lander, The edges of understanding, BMC Biology, vol.8, issue.1, pp.15-16, 2010.

J. D. Lantos and B. A. Warady, The evolving ethics of infant dialysis, Pediatric Nephrology, vol.28, issue.10, p.98, 2013.

C. Lazar, L. Gatto, M. Ferro, C. Bruley, and T. Burger, Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies, Journal of Proteome Research, vol.15, issue.4, p.67, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02083850

A. S. Levey and J. Et-coresh, Chronic kidney disease. The Lancet, vol.379, p.44, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02445392

A. S. Levey, A. Levin, and J. A. Kellum, Denition and Classication of Kidney Diseases, 2013.

, American Journal of Kidney Diseases, vol.61, issue.5, p.44

M. Li, Q. Li, G. U. Ganegoda, J. Wang, F. Wu et al., Prioritization of orphan diseasecausing genes using topological feature and GO similarity between proteins in interaction networks, 2014.

, Cité 2 fois, Science China Life Sciences, vol.57, issue.11, pp.37-38

A. Liaw and M. Wiener, Classication and Regression by randomForest, R News, vol.2, issue.3, pp.68-103, 2002.

L. Licata, L. Briganti, D. Peluso, L. Perfetto, M. Iannuccelli et al., MINT, the molecular interaction database : 2012 update, Nucleic Acids Research, vol.40, p.14, 2012.

M. T. Lindenmeyer, F. Eichinger, K. Sen, H. Anders, I. Edenhofer et al., Systematic Analysis of a Novel Human Renal Glomerulus-Enriched Gene Expression Dataset, PLoS ONE, vol.5, issue.7, p.33, 2010.

E. Linder, A. Burguet, F. Nobili, and R. Vieux, Neonatal renal replacement therapy : An ethical reection for a crucial decision, Archives de Pédiatrie, vol.25, issue.6, p.97, 2018.

S. Loos and M. J. Kemper, Causes of renal oligohydramnios : Impact on prenatal counseling and postnatal outcome, Pediatric Nephrology, vol.33, issue.4, p.97, 2018.

D. A. Luke and J. K. Harris, Network Analysis in Public Health : History, Methods, and Applications. Annual Review of Public Health, vol.28, p.5, 2007.

F. Ma, T. Sun, M. Wu, W. Wang, and Z. Xu, Identication of key genes for diabetic kidney disease using biological informatics methods, Molecular Medicine Reports, vol.16, issue.6, pp.31-32, 2017.

P. L. Mabry, D. H. Olster, G. D. Morgan, and D. B. Abrams, Interdisciplinarity and Systems Science to Improve Population Health, American Journal of Preventive Medicine, vol.35, issue.2, pp.211-224, 2008.

, Cité 1 fois, p.108

J. Mackay, M. Sunde, J. Lowry, M. Crossley, and J. Matthews, Protein interactions : Is seeing believing ?, Trends in Biochemical Sciences, vol.32, issue.12, p.13, 2007.

P. Magalhães, M. Pejchinovski, K. Markoska, M. Banasik, M. Klinger et al., Association of kidney brosis with urinary peptides : A path towards non-invasive liquid biopsies ?, Scientic Reports, vol.7, issue.1, p.99, 2017.

M. Maizi, Le protéome urinaire : caractérisation et intérêt pour la recherche de biomarqueurs de pathologies, p.63, 2017.

V. Malan, L. Bussières, N. Winer, J. Jais, A. Baptiste et al., Eect of Cell-Free DNA Screening vs Direct Invasive Diagnosis on Miscarriage Rates in Women With Pregnancies at High Risk of Trisomy 21 : A Randomized Clinical TrialEect of Cell-Free DNA Screening on Miscarriage in Women With Pregnancies at High Risk of Trisomy 21Eect of Cell-Free DNA Screening on Miscarriage in Women With Pregnancies at High Risk of Trisomy 21, J. et for the SAFE 21 Study Group, vol.320, issue.6, p.99, 2018.

C. J. Marcotte and E. M. Marcotte, Predicting functional linkages from gene fusions with condence, Applied Bioinformatics, p.12, 2002.

S. Maslov, Specicity and Stability in Topology of Protein Networks, 910 913. Cité 1 fois, vol.296, p.5, 2002.

K. Mehler, I. Gottschalk, K. Burgmaier, R. Volland, A. K. Büscher et al., Prenatal parental decision-making and postnatal outcome in renal oligohydramnios, Pediatric Nephrology, vol.33, issue.4, pp.91-97, 2018.

J. Menche, A. Sharma, M. Kitsak, S. D. Ghiassian, M. Vidal et al., Uncovering disease-disease relationships through the incomplete interactome, Science, vol.347, issue.6224, p.11, 2015.

H. W. Mewes, D. Frishman, C. Gruber, B. Geier, D. Haase et al., MIPS : A database for genomes and protein sequences, p.15, 2000.

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. ;. Leisch et al., E1071 : Misc Functions of the Department of Statistics, Probability Theory Group (Formerly : E1071), 2019.

, Cité 2 fois, pp.68-103

H. Mischak, Pro : Urine proteomics as a liquid kidney biopsy : No more kidney punctures ! Nephrology Dialysis Transplantation, vol.30, pp.2-45, 2015.

H. Mischak, G. Allmaier, R. Apweiler, T. Attwood, M. Baumann et al., Recommendations for Biomarker Identication and Qualication in Clinical Proteomics, 2010.

, 46ps4246ps42. Cité 1 fois, vol.2, p.67

H. Mischak, G. Allmaier, R. Apweiler, T. Attwood, M. Baumann et al., Recommendations for Biomarker Identication and Qualication in Clinical Proteomics, 2010.

, 46ps4246ps42. Cité 1 fois, vol.2, p.97

H. Mischak, C. Delles, A. Vlahou, and R. Vanholder, Proteomic biomarkers in kidney disease : Issues in development and implementation, Nature Reviews Nephrology, vol.11, issue.4, p.63, 2015.

H. Mischak, A. Vlahou, and J. P. Ioannidis, Technical aspects and inter-laboratory variability in native peptide proling : The CEMS experience, Clinical Biochemistry, vol.46, issue.6, p.99, 2013.

D. Mistry, R. P. Wise, and J. A. Et-dickerson, DiSLC : A graph centrality method to detect essential proteins of a protein-protein interaction network, PLOS ONE, vol.12, issue.11, p.24, 2017.

K. Miura, An Overview of Current Methods to Conrm Protein-Protein Interactions, Protein & Peptide Letters, vol.25, issue.8, pp.8-10, 2018.

K. G. Moons, D. G. Altman, J. B. Reitsma, J. P. Ioannidis, P. Macaskill et al., Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) : Explanation and ElaborationThe TRIPOD Statement : Explanation and Elaboration, Annals of Internal Medicine, vol.162, issue.1, pp.1-73, 2015.

, Cité 1 fois, p.103

K. G. Moons, A. P. Kengne, D. E. Grobbee, P. Royston, Y. Vergouwe et al.,

M. Woodward, Risk prediction models : II. External validation, model updating, and impact assessment, Heart, vol.98, issue.9, pp.67-94, 2012.

J. S. Morris and V. Baladandayuthapani, Statistical contributions to bioinformatics : Design, modelling, structure learning and integration, Statistical Modelling : An International Journal, vol.17, issue.4-5, p.65, 2017.

R. Morris, G. Malin, K. Khan, and M. Kilby, Antenatal ultrasound to predict postnatal renal function in congenital lower urinary tract obstruction : Systematic review of test accuracy : Antenatal ultrasound to predict postnatal renal function in LUTO, BJOG : An International Journal of Obstetrics & Gynaecology, vol.116, issue.10, p.63, 2009.

R. Morris, G. Malin, K. Khan, and M. Kilby, Antenatal ultrasound to predict postnatal renal function in congenital lower urinary tract obstruction : Systematic review of test accuracy : Antenatal ultrasound to predict postnatal renal function in LUTO, BJOG : An International Journal of Obstetrics & Gynaecology, vol.116, issue.10, p.91, 2009.

V. Nair, C. V. Komorowsky, E. J. Weil, B. Yee, J. Hodgin et al., A molecular morphometric approach to diabetic kidney disease can link structure to function and outcome, Kidney International, vol.93, issue.2, p.28, 2018.

S. Navlakha and C. Kingsford, The power of protein interaction networks for associating genes with diseases, Bioinformatics, vol.26, issue.8, p.40, 2010.

M. J. Newman, A measure of betweenness centrality based on random walks, Social Networks, vol.27, issue.1, p.20, 2005.

S. Ng and S. Tan, DISCOVERING PROTEINPROTEIN INTERACTIONS, Journal of Bioinformatics and Computational Biology, vol.01, issue.04, p.12, 2004.

N. Nicolaou, K. Y. Renkema, E. M. Bongers, R. H. Giles, and . Et-knoers, , 2015.

, Genetic, environmental, and epigenetic factors involved in CAKUT, 720731. Cité 2 fois, vol.11, pp.90-91

R. Nicoll, L. Robertson, E. Gemmell, P. Sharma, C. Black et al., Models of care for chronic kidney disease : A systematic review : Models of care for chronic kidney disease, Nephrology, vol.23, issue.5, p.27, 2018.

D. Nitsch, L. Tranchevent, J. P. Goncalves, J. K. Vogt, S. C. Madeira et al., PINTA : A web server for network-based gene prioritization from expression data, Nucleic Acids Research, vol.39, p.41, 2011.

E. Nkuipou-kenfack, P. Zürbig, and H. Mischak, The long path towards implementation of clinical proteomics : Exemplied based on CKD273, PROTEOMICS -Clinical Applications, vol.11, issue.5-6, pp.91-99, 2017.

D. Noble, The Music of Life, Biology beyond the Genome. Seuil. Cité, vol.1, p.1, 2006.

I. M. Nooren, NEW EMBO MEMBER'S REVIEW : Diversity of protein-protein interactions, The EMBO Journal, vol.22, issue.14, p.7, 2003.

M. R. O'connell, R. Gamsjaeger, and J. P. Mackay, The structural analysis of proteinprotein interactions by NMR spectroscopy, PROTEOMICS, vol.9, issue.23, p.9, 2009.

S. Oliver, Guilt-by-association goes global. 403:3. Cité 1 fois, p.36, 2000.

J. L. Oncley, E. Ellenbogen, D. Gitlin, and F. R. Gurd, , vol.56, p.7, 1952.

S. Orchard, S. Kerrien, S. Abbani, B. Aranda, J. Bhate et al., Protein interaction data curation : The International Molecular Exchange (IMEx) consortium, Nature Methods, vol.9, issue.4, p.13, 2012.

S. Orchard, S. Kerrien, P. Jones, A. Ceol, A. Chatr-aryamontri et al., Submit Your Interaction Data the IMEx Way : A Step by Step Guide to Trouble-free Deposition, PROTEOMICS, vol.7, issue.S1, p.13, 2007.

G. Östlund, M. Lindskog, and E. L. Sonnhammer, Network-based Identication of Novel Cancer Genes, Molecular & Cellular Proteomics, vol.9, issue.4, p.41, 2010.

M. Oti, Predicting disease genes using protein-protein interactions, Journal of Medical Genetics, vol.43, issue.8, pp.40-45, 2006.

N. Papanikolaou, G. A. Pavlopoulos, T. Theodosiou, and I. Iliopoulos, Proteinprotein interaction predictions using text mining methods, Methods, vol.74, p.12, 2015.

S. V. Parikh, A. Malvar, H. Song, V. Alberton, B. Lococo et al., Characterising the immune prole of the kidney biopsy at lupus nephritis are dierentiates early treatment responders from non-responders, Lupus Science & Medicine, vol.2, issue.1, p.28, 2015.

M. Parker, Protein Structure from X-Ray Diraction, Journal of Biological Physics, vol.29, issue.4, p.10, 2003.

G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos, S. Kossida et al., Using graph theory to analyze biological networks, BioData Mining, vol.4, issue.1, p.21, 2011.

T. Pawson, Specicity in Signal Transduction, Cell, vol.116, issue.2, p.7, 2004.

L. Perisic, M. Lal, J. Hulkko, K. Hultenby, B. Önfelt et al., Plekhh2, a novel podocyte protein downregulated in human focal segmental glomerulosclerosis, is involved in matrix adhesion and actin dynamics, Kidney International, vol.82, issue.10, p.34, 2012.

J. Petschnigg, J. Snider, and I. Stagljar, Interactive proteomics research technologies : Recent applications and advances, Current Opinion in Biotechnology, vol.22, issue.1, p.8, 2011.

E. M. Phizicky and S. Fields, Protein-Protein Interactions : Methods for Detection and Analysis, MICROBIOL. REV, vol.59, pp.7-9, 1995.

R. Pieper, C. L. Gatlin, A. M. Mcgrath, A. J. Makusky, M. Mondal et al., Characterization of the human urinary proteome : A method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots, PROTEOMICS, vol.4, issue.4, p.45, 2004.

C. J. Pirola and S. Et-sookoian, Multiomics biomarkers for the prediction of nonalcoholic fatty liver disease severity, World Journal of Gastroenterology, vol.24, issue.15, p.106, 2018.

A. Poret and C. Guziolowski, Therapeutic target discovery using Boolean network attractors : Improvements of kali, Royal Society Open Science, vol.5, issue.2, p.60, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01395079

R. Rabieian, M. Abedi, and Y. Gheisari, Central Nodes in Protein Interaction Networks Drive Critical Functions in Transforming Growth Factor Beta-1 Stimulated Kidney Cells, 18. Cité 2 fois, vol.18, pp.30-32, 2017.

V. S. Rao, K. Srinivas, G. N. Sujini, and G. N. Kumar, Protein-Protein Interaction Detection : Methods and Analysis, International Journal of Proteomics, pp.8-10, 2014.

N. Rauniyar, X. Yu, J. Cantley, E. Z. Voss, J. Belcher et al., Quantication of Urinary Protein Biomarkers of Autosomal, Proteomics clinical application, issue.5, pp.45-54, 2018.

J. Ren, L. Shang, Q. Wang, and J. Li, Ranking Cancer Proteins by Integrating PPI Network and Protein Expression Proles, BioMed Research International, vol.45, issue.18, pp.46-53, 2019.

V. Reznik and N. Budorick, Prenatal detection of congenital renal disease, The Urologic clinics of North America, vol.22, issue.1, p.63, 1995.

P. H. Richter, A network theory of the immune system, European Journal of Immunology, vol.5, issue.5, p.15, 1975.

M. M. Rinschen, P. F. Huesgen, and R. E. Koch, The podocyte protease web : Uncovering the gatekeepers of glomerular disease, American Journal of Physiology-Renal Physiology, vol.315, issue.6, p.1812, 2018.

, F1816. Cité 1 fois, p.34

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., Limma powers dierential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, vol.43, issue.7, p.57, 2015.

E. Robotti, M. Manfredi, and E. Marengo, Biomarkers Discovery through Multivariate Statistical Methods : A Review of Recently Developed Methods and Applications in Proteomics, Journal of Proteomics & Bioinformatics, p.105, 2013.

P. Romagnani, G. Remuzzi, R. Glassock, A. Levin, K. J. Jager et al., Chronic kidney disease, Nature Reviews Disease Primers, pp.27-63, 2017.

J. Rual, K. Venkatesan, T. Hao, T. Hirozane-kishikawa, A. Dricot et al.,

J. S. Albala, J. Lim, C. Fraughton, E. Llamosas, S. Cevik et al., Towards a proteome-scale map of the human proteinprotein interaction network, Nature, vol.437, issue.7062, pp.5-15, 2005.

J. Ruiz and J. Philippe, La médecine personnalisée et la face cachée de la lune, p.109, 2012.

A. Rusinowska, R. Berghammer, H. De-swart, and M. Grabisch, Social Networks : Prestige, Centrality, and Inuence, de Swart, H., éditeur : Relational and Algebraic Methods in Computer Science, vol.6663, p.20, 2011.

A. Ryckewaert-d'halluin, G. Le-bouar, S. Odent, J. Milon, D. D'hervé et al., Diagnosis of fetal urinary tract malformations : Prenatal management and postnatal outcome, Prenatal Diagnosis, vol.31, issue.11, p.10131020, 2011.

, Cité 1 fois, p.99

N. Safari-alighiarloo, M. Taghizadeh, M. Rezaei-tavirani, B. Goliaei, and A. A. Peyvandi, Protein-protein interaction networks (PPI) and complex diseases, p.8, 2014.

H. Sasaki, N. Sasaki, T. Nishino, K. Nagasaki, H. Kitamura et al., , 2014.

, Quantitative Trait Loci for Resistance to the Congenital Nephropathy in Tensin 2-Decient Mice, e99602. Cité 1 fois, vol.9, p.34

J. P. Schanstra, P. Zürbig, A. Alkhalaf, A. Argiles, S. J. Bakker et al., Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides, Journal of the American Society of Nephrology, vol.26, issue.8, pp.65-99, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01907604

A. Schrohl, S. Würtz, E. Kohn, R. E. Banks, H. J. Nielsen et al., Banking of Biological Fluids for Studies of Disease-associated Protein Biomarkers, Molecular & Cellular Proteomics, vol.7, issue.10, p.64, 2008.

B. Schuster-böckler and A. Bateman, Protein interactions in human genetic diseases, R9. Cité 1 fois, vol.9, p.8, 2008.

G. J. Schwartz, A. Muñoz, M. F. Schneider, R. H. Mak, F. Kaskel et al., New Equations to Estimate GFR in Children with CKD, Journal of the American Society of Nephrology, vol.20, issue.3, p.100, 2009.

B. Schwikowski, P. Uetz, and S. Fields, A network of proteinprotein interactions in yeast, Nature Biotechnology, vol.18, issue.12, pp.5-15, 2000.

T. Sevimoglu and K. Y. Arga, The role of protein interaction networks in systems biomedicine, Computational and Structural Biotechnology Journal, vol.11, issue.18, p.15, 2014.

J. Shen, J. Zhang, X. Luo, W. Zhu, K. Yu et al., Predicting protein-protein interactions based only on sequences information, Proceedings of the National Academy of Sciences, vol.104, issue.11, p.12, 2007.

S. N. Simões, D. C. Martins, C. A. Pereira, R. F. Hashimoto, and H. Brentani, NERI : Network-medicine based integrative approach for disease gene prioritization by relative importance, BMC Bioinformatics, vol.16, issue.S19, p.37, 2015.

S. N. Simões, D. C. Martins-jr, H. Brentani, and R. Fumio, Shortest Paths Ranking Methodology to Identify Alterations in PPI Networks of Complex Diseases, Proceedings of the ACM Conference on Bioinformatics, p.561563, 2012.

, Cité 2 fois, pp.45-55

A. Singh, B. Gautier, C. P. Shannon, F. Rohart, M. Vacher et al., DIABLO : From multi-omics assays to biomarker discovery, an integrative approach, Bioinformatics. Cité, vol.1, p.106, 2016.

M. S. Smyth and J. H. Martin, X Ray crystallography, Molecular Pathology, vol.53, issue.1, p.9, 2000.

J. Snider, M. Kotlyar, P. Saraon, Z. Yao, I. Jurisica et al., Fundamentals of protein interaction network mapping, Molecular Systems Biology, vol.11, issue.12, p.8, 2015.

M. Snyder, Untangling the protein web, p.13, 2009.

E. Spaggiari, G. Faure, S. Dreux, I. Czerkiewicz, J. J. Stirnemann et al., Sequential fetal serum B2-microglobulin to predict postnatal renal function in bilateral or low urinary tract obstruction : Sequential fetal serum ? 2-microglobulin, Ultrasound in Obstetrics & Gynecology, vol.49, issue.5, p.63, 2017.

E. Spaggiari, G. Faure, S. Dreux, I. Czerkiewicz, J. J. Stirnemann et al., Sequential fetal serum B2-microglobulin to predict postnatal renal function in bilateral or low urinary tract obstruction : Sequential fetal serum ? 2-microglobulin, Ultrasound in Obstetrics & Gynecology, vol.49, issue.5, pp.91-99, 2017.

E. Sprinzak and H. Margalit, Correlated sequence-signatures as markers of protein-protein interaction, Journal of Molecular Biology, vol.311, issue.4, p.12, 2001.

U. Stelzl, U. Worm, M. Lalowski, C. Haenig, F. H. Brembeck et al., A Human Protein-Protein Interaction Network : A Resource for Annotating the Proteome, Cell, vol.122, issue.6, p.15, 2005.

L. A. Stevens and A. S. Levey, Measured GFR as a Conrmatory Test for Estimated GFR, Journal of the American Society of Nephrology, vol.20, issue.11, p.63, 2009.

D. K. Stevenson and A. Goldworth, Ethical dilemmas in the delivery room, Seminars in Perinatology, vol.22, issue.3, p.98, 1998.

K. Strimbu and J. A. Tavel, What are biomarkers ?, Current Opinion in HIV and AIDS, vol.5, issue.6, p.63, 2010.

M. P. Stumpf, T. Thorne, E. De-silva, R. Stewart, H. J. An et al., , 2008.

, Estimating the size of the human interactome, Proceedings of the National Academy of Sciences, vol.105, issue.19, p.11

B. Stynen, H. Tournu, J. Tavernier, and P. Et-van-dijck, Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies : From the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System, Microbiology and Molecular Biology Reviews, vol.76, issue.2, p.8, 2012.

M. Suderman and M. Hallett, Tools for visually exploring biological networks, Bioinformatics, vol.23, issue.20, p.15, 2007.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al.,

C. Mering, STRING v10 : Proteinprotein interaction networks, integrated over the tree of life, D447D452. Cité 1 fois, vol.43, p.54, 2015.

D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder et al., STRING v11 : Proteinprotein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Research, vol.47, pp.18-31, 2019.

D. Theodorescu, S. Wittke, M. M. Ross, M. Walden, M. Conaway et al.,

H. F. Frierson, Discovery and validation of new protein biomarkers for urothelial cancer : A prospective analysis. page 11. Cité 1 fois, p.102, 2006.

R. Thomas, A. Kanso, and J. R. Sedor, Chronic Kidney Disease and Its Complications. Primary Care : Clinics in Oce Practice, vol.35, p.44, 2008.

S. Thomas, L. Hao, W. A. Ricke, and L. Li, Biomarker discovery in mass spectrometry-based urinary proteomics, PROTEOMICS -Clinical Applications, vol.10, issue.4, p.63, 2016.

M. Tomaszewski, J. Eales, M. Denniff, S. Myers, G. S. Chew et al., Renal Mechanisms of Association between Fibroblast Growth Factor 1 and Blood Pressure, Journal of the American Society of Nephrology, vol.26, issue.12, p.33, 2015.

P. Trairatphisan, M. Wiesinger, C. Bahlawane, S. Haan, and T. Sauter, A Probabilistic Boolean Network Approach for the Analysis of Cancer-Specic Signalling : A Case Study of Deregulated PDGF Signalling in GIST, PLOS ONE, vol.11, issue.5, p.60, 2016.

L. Tranchevent, F. B. Capdevila, D. Nitsch, B. De-moor, P. De-causmaecker et al., A guide to web tools to prioritize candidate genes, Briengs in Bioinformatics, vol.12, issue.1, p.2232, 2011.

, Cité 1 fois, p.36

C. L. Tucker and S. Fields, Lethal combinations, Nature Genetics, vol.35, issue.3, p.10, 2003.

P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson et al., A comprehensive analysis of proteinprotein interactions inSaccharomyces cerevisiae, Nature, vol.403, issue.6770, p.36, 2000.

M. Uhlen, L. Fagerberg, B. M. Hallstrom, C. Lindskog, P. Oksvold et al., , 2015.

, Cité 2 fois, Science, vol.347, issue.6220, pp.5-6

I. A. Vakser, Protein-Protein Docking : From Interaction to Interactome, Biophysical Journal, vol.107, issue.8, pp.11-12, 2014.

A. Valdeolivas, L. Tichit, C. Navarro, S. Perrin, G. Odelin et al., Random walk with restart on multiplex and heterogeneous biological networks, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01946427

, Bioinformatics, vol.35, issue.3, p.55

O. Vanunu and R. Sharan, A Propagation-based Algorithm for Inferring Gene-Disease Associations, vol.39, pp.40-41, 2010.

W. N. Venables and B. D. Ripley, Modern Applied Statistics with S. page 504. Cité 1 fois, p.103, 2002.

K. Venkatesan, J. Rual, A. Vazquez, U. Stelzl, I. Lemmens et al., An empirical framework for binary interactome mapping, Nature Methods, vol.6, issue.1, p.11, 2009.

J. Voss, C. Young-ah-goo, K. Woods, N. Jarrett, M. Smith et al., Searching for the Noninvasive Biomarker Holy Grail : Are Urine Proteomics the Answer ?, Biological Research For Nursing, vol.13, issue.3, p.2, 2011.

J. Wang, G. Chen, M. Li, and Y. Et-pan, Integration of breast cancer gene signatures based on graph centrality, S10. Cité 1 fois, vol.5, p.27, 2011.

P. Wang, J. Lu, and X. Yu, Identication of Important Nodes in Directed Biological Networks : A Network Motif Approach, PLOS ONE, vol.9, issue.8, p.24, 2014.

R. Wang, A. Saadatpour, and R. Albert, Boolean modeling in systems biology : An overview of methodology and applications, Physical Biology, vol.9, issue.5, p.60, 2012.

G. Warsow, N. Endlich, E. Schordan, S. Schordan, R. K. Chilukoti et al., PodNet, a proteinprotein interaction network of the podocyte, Kidney International, vol.84, issue.1, p.34, 2013.

G. Warsow, B. Greber, S. S. Falk, C. Harder, M. Siatkowski et al., ExprEssence -Revealing the essence of dierential experimental data in the context of an interaction/regulation net-work, BMC Systems Biology, vol.4, issue.1, p.34, 2010.

D. J. Watts and S. H. Strogatz, Collective dynamics of`small-world' networks. 393:3. Cité 1 fois, p.17, 1998.

R. Wei, J. Wang, M. Su, E. Jia, S. Chen et al., Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data, Scientic Reports, vol.8, issue.1, p.67, 2018.

W. Wei, Y. Lv, Z. Gan, Y. Zhang, X. Han et al., Identication of key genes involved in the metastasis of clear cell renal cell carcinoma, Oncology Letters. Cité, vol.1, p.30, 2019.

H. C. White, S. A. Boorman, and R. L. Breiger, Social Structure from Multiple Networks. I. Blockmodels of Roles and Positions, American Journal of Sociology, vol.81, issue.4, p.7, 1976.

S. Wuchty and P. F. Stadler, Centers of complex networks, Journal of Theoretical Biology, vol.223, issue.1, pp.21-24, 2003.

E. Wühl, K. J. Van-stralen, E. Verrina, A. Bjerre, C. Wanner et al., Timing and Outcome of Renal Replacement Therapy in Patients with Congenital Malformations of the Kidney and Urinary Tract, Clinical Journal of the American Society of Nephrology, vol.8, issue.1, p.90, 2013.

C. B. Wulff, T. A. Gerds, L. Rode, C. K. Ekelund, O. B. Petersen et al., Risk of fetal loss associated with invasive testing following combined rst-trimester screening for Down syndrome : A national cohort of 147 987 singleton pregnancies : Procedure-related risk of fetal loss, Ultrasound in Obstetrics & Gynecology, vol.47, issue.1, p.3844, 2016.

, Cité 1 fois, p.99

K. Wüthrich, The way to NMR structures of proteins, nature structural biology, vol.8, issue.11, p.10, 2001.

E. Yeger-lotem, S. Sattath, N. Kashtan, S. Itzkovitz, R. Milo et al., Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction, Proceedings of the National Academy of Sciences, vol.101, issue.16, p.59345939, 2004.

, Cité 2 fois, vol.20, p.17

S. Yook, Z. N. Oltvai, and A. Barabási, Functional and topological characterization of protein interaction networks, PROTEOMICS, vol.4, issue.4, p.17, 2004.

H. Yu, P. Braun, M. A. Yildirim, I. Lemmens, K. Venkatesan et al., High-Quality Binary Protein Interaction Map of the Yeast Interactome Network, Science, vol.322, issue.5898, p.15, 2008.

H. Yu, D. Greenbaum, H. X. Lu, X. Zhu, and M. Et-gerstein, ):227231. Pagination error in this issue, see Publisher's note in Vol, Trends in Genetics, vol.20, issue.6, p.18, 2004.

H. Yu, P. M. Kim, E. Sprecher, V. Trifonov, and M. Et-gerstein, The Importance of Bottlenecks in Protein Networks : Correlation with Gene Essentiality and Expression Dynamics, PLoS Computational Biology, vol.3, issue.4, p.22, 2007.

J. Zachwieja, J. Soltysiak, P. Fichna, K. Lipkowska, W. Stankiewicz et al., Normal-range albuminuria does not exclude nephropathy in diabetic children, Pediatric Nephrology, vol.25, issue.8, p.63, 2010.

G. Zanotti, C. Folli, L. Cendron, B. Alfieri, S. K. Nishida et al., Structural and mutational analyses of protein-protein interactions between transthyretin and retinol-binding protein : Transthyretin-retinol-binding protein interactions, FEBS Journal, vol.275, issue.23, p.7, 2008.

X. Zhan, T. Zhou, T. Cheng, and M. Lu, Recognition of Multiomics-Based Molecule-Pattern Biomarker for Precise Prediction, Diagnosis, and Prognostic Assessment in Cancer, Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations, 2019.

, Cité 1 fois, p.106

Q. Zhang and D. Et-rothenbacher, Prevalence of chronic kidney disease in population-based studies : Systematic review, BMC Public Health, vol.8, issue.1, p.1, 2008.

J. Zhao, T. Yang, Y. Huang, and P. Holme, Ranking Candidate Disease Genes from Gene Expression and Protein Interaction : A Katz-Centrality Based Approach, PLoS ONE, vol.6, issue.9, p.24306, 2011.

, Cité 3 fois, vol.38, p.37

M. Zhao, M. Li, Y. Yang, Z. Guo, Y. Sun et al., A comprehensive analysis and annotation of human normal urinary proteome, Scientic Reports, vol.7, issue.1, 2017.

, Cité 3 fois, pp.5-6

L. Zhou, S. Qiu, L. Lv, Z. Li, H. Liu et al., Integrative Bioinformatics Analysis Provides Insight into the Molecular Mechanisms of Chronic Kidney Disease, Kidney and Blood Pressure Research, vol.43, issue.2, p.30, 2018.

C. Zhu, A. Kushwaha, K. Berman, and A. G. Jegga, A vertex similarity-based framework to discover and rank orphan disease-related genes, BMC Systems Biology, issue.6, p.37, 2012.

G. Zinzalla and D. E. Thurston, Targeting proteinprotein interactions for therapeutic intervention : A challenge for the future, Future Medicinal Chemistry, vol.1, issue.1, p.8, 2009.

E. Zotenko, J. Mestre, D. P. O'leary, and T. M. Et-przytycka, Why Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential : Reexamining the Connection between the Network Topology and Essentiality, PLoS Computational Biology, vol.4, issue.8, p.24, 2008.