E. Soit-un-graphe-g-=-(v, Nous rappelons que le Laplacien de ce graphe (introduit à la est L = D ? A, où D est la matrice des degrés de G, id est d i,j vaut le degré du noeud i si i = j

R. Barriot, P. Langendijk-genevaux, Y. Quentin, and G. Fichant, Graph partitioning in genomic data analysis, High performance linear and nonlinear methods for scale applications, Workshop Innovative clustering methods for large graphs and block methods, 2015.

P. Pons and M. Latapy, Computing communities in large networks using random walks (long version), 2005.

T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Transactions on Mathematical Software, vol.38, issue.1, pp.1-14, 2011.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, A neural probabilistic language model, Journal of Machine Learning Research, vol.3, pp.1137-1155, 2003.

N. Asher, J. Hunter, M. Morey, B. Farah, and S. Afantenos, Discourse structure and dialogue acts in multiparty dialogue : the STAC corpus, Proceedings of the 20th International Conference on Language Resources and Evaluation, pp.2721-2727, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02124399

M. Qi, Use of deep learning approaches for the prediction of discourse srtuctures, 2018.

S. Fortunato and D. Hric, Community detection in networks : A user guide, CoRR, 2016.

F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, Defining and identifying communities in networks, Proceedings of the National Academy of Sciences, vol.101, issue.9, pp.2658-2663, 2004.

J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell, vol.22, pp.888-905, 2000.

S. Mouysset, H. Zbib, S. Stute, J. Girault, J. Charara et al., Segmentation of Dynamic PET Images with Kinetic Spectral Clustering, Physics in Medicine and Biology, vol.58, pp.6931-6944, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01130660

M. Girolami, Mercer kernel-based clustering in feature space, Trans. Neur. Netw, vol.13, pp.780-784, 2002.

C. Laclau, I. Redko, B. Matei, Y. Bennani, and V. Brault, Co-clustering through optimal transport, of Proceedings of Machine Learning Research, vol.70, pp.1955-1964, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01539101

I. S. Dhillon, S. Mallela, and D. S. Modha, Information-theoretic co-clustering, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03, pp.89-98, 2003.

Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein, Spectral Biclustering of Microarray Data : Coclustering Genes and Conditions, Genome Res, vol.13, issue.4, pp.703-716, 2003.

M. Onizuka, T. Fujimori, and H. Shiokawa, Graph partitioning for distributed graph processing, Data Science and Engineering, vol.2, pp.94-105, 2017.

Y. Zhu and A. H. Sameh, How to generate effective block jacobi preconditioners for solving large sparse linear systems, Advances in Computational Fluid-Structure Interaction and Flow Simulation : New Methods and Challenging Computations, pp.231-244, 2016.

B. L. Chamberlain, Graph partitioning algorithms for distributing workloads of parallel computations, 1998.

S. Acer, E. Kayaaslan, and C. Aykanat, A recursive bipartitioning algorithm for permuting sparse square matrices into block diagonal form with overlap, SIAM J. Scientific Computing, vol.35, 2013.

T. Drummond, I. Duff, R. Guivarch, D. Ruiz, and M. Zenadi, Partitioning Strategies for the Block Cimmino Algorithm, Journal of Engineering Mathematics, 2014.
URL : https://hal.archives-ouvertes.fr/inria-00581285

F. Sukru-torun, M. Manguoglu, and C. Aykanat, A novel partitioning method for accelerating the block cimmino algorithm, SIAM Journal on Scientific Computing, vol.40, p.2017

E. Vecharynski, Y. Saad, and M. Sosonkina, Graph partitioning using matrix values for preconditioning symmetric positive definite systems, SIAM J. Scientific Computing, vol.36, issue.1, pp.63-87, 2014.

M. Idel, A review of matrix scaling and Sinkhorn's normal form for matrices and positive maps, 2016.

D. Hartfiel and J. Spellman, A role for doubly stochastic matrices in graph theory, Proceedings of The American Mathematical Society -PROC AMER MATH SOC, vol.36, p.1972

P. B. Slater, Hubs and Clusters in the Evolving U. S. Internal Migration Network, 2008.

E. Seneta, Non-Negative Matrices and Markov Chains, 2006.

P. A. Knight, The sinkhorn-knopp algorithm : Convergence and applications, SIAM J. Matrix Anal. Appl, vol.30, pp.261-275, 2008.

P. A. Knight, D. Ruiz, and B. Uçar, A Symmetry Preserving Algorithm for Matrix Scaling, SIAM Journal on Matrix Analysis and Applications, vol.35, issue.3, p.25, 2014.
URL : https://hal.archives-ouvertes.fr/inria-00569250

A. Lancichinetti and S. Fortunato, Community detection algorithms : A comparative analysis, Physical Review E, vol.80, p.56117, 2009.

V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics : Theory and Experiment, vol.10, p.10008, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01146070

R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math, vol.21, pp.343-348, 1967.

A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering : Analysis and an algorithm, Proceedings of the 14th International Conference on Neural Information Processing Systems : Natural and Synthetic, NIPS'01, pp.849-856, 2001.

M. E. Newman, Finding community structure in networks using the eigenvectors of matrices, Physical review E, vol.74, issue.3, p.36104, 2006.

I. S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '01, pp.269-274, 2001.

R. A. Brualdi, Combinatorial Matrix Classes. Encyclopedia of Mathematics and its Applications, 2006.

A. Berman and R. J. Plemmons, Chapt. 2 -Nonnegative Matrices, pp.26-62, 1979.

A. Pothen and C. Fan, Computing the block triangular form of a sparse matrix, ACM Transactions on Mathematical Software, vol.16, pp.303-324, 1990.

P. Conde-césepdes and J. Marcotorchino, Modularisation et recherche de communautés dans les réseaux complexes par unification relationnelle, Revue des Nouvelles Technologies de l'Information, pp.71-98, 2012.

F. Wang, P. Li, A. C. König, and M. Wan, Improving clustering by learning a bi-stochastic data similarity matrix, Knowledge and Information Systems, vol.32, pp.351-382, 2012.

F. Gargiulo, A. Caen, R. Lambiotte, and T. Carletti, The classical origin of modern mathematics, EPJ Data Science, vol.5, p.26, 2016.

V. Calderon, R. Barriot, Y. Quentin, and G. Fichant, Crossing isorthology and microsynteny to resolve multigenic families functional annotation, 22nd International Workshop on Database and Expert Systems Applications, pp.440-444, 2011.

P. Conde-céspedes, Modélisation et extension du formalisme de l'analyse relationnelle mathématique à la modularisation des grands graphes, 2013.

M. E. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E, vol.69, p.26113, 2004.

J. Oswinski and S. Zadrozny, Structuring a regional problem : aggregation and clustering in orderings, Appl. Stoch. Models and Data An, vol.2, pp.83-95, 1986.

P. Michaud and J. Marcotorchino, Modèles d'optimisation en analyse des données relationnelles, Math. Sci. hum, vol.67, pp.7-38, 1979.

C. Zahn, Approximating symmetric relations by equivalence relations, SIAM Journal on Applied Mathematics, vol.12, pp.840-847, 1964.

L. Lovász, Random walks on graphs : A survey, Combinatorics, Paul erdos is eighty, vol.2, issue.1, pp.1-46, 1993.

M. Rosvall and C. T. Bergstrom, Maps of random walks on complex networks reveal community structure, Proceedings of the National Academy of Sciences, vol.105, issue.4, pp.1118-1123, 2008.

M. Rosvall, D. Axelsson, and C. T. Bergstrom, The map equation, The European Physical Journal Special Topics, vol.178, issue.1, pp.13-23, 2009.

J. Delvenne, S. N. Yaliraki, and M. Barahona, Stability of graph communities across time scales, Proceedings of the National Academy of Sciences, vol.107, issue.29, pp.12755-12760, 2010.

B. Karrer and M. E. Newman, Stochastic blockmodels and community structure in networks, Phys. Rev. E, vol.83, p.16107, 2011.

M. E. Newman, Equivalence between modularity optimization and maximum likelihood methods for community detection, Phys. Rev. E, vol.94, p.52315, 2016.

N. Veldt, D. F. Gleich, and A. Wirth, A correlation clustering framework for community detection, International World Wide Web Conferences Steering Committee, pp.439-448, 2018.

R. Campigotto, P. Conde-céspedes, and J. Guillaume, A generalized and adaptative method for community detection, 2014.

M. E. Newman, Analysis of weighted networks, Physical review E, vol.70, issue.5, p.56131, 2004.

M. Newman, Mixing patterns in networks, Physical Review E, vol.70, p.56131, 2004.

S. Cafieri, P. Hansen, and L. Liberti, Locally optimal heuristic for modularity maximization of networks, Physical Review E, vol.83, p.56105, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00934660

U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer et al., On modularity clustering, IEEE Transactions on knowledge and data engineering, vol.20, pp.172-188, 2008.

S. Fortunato and M. Barthélemy, Resolution limit in community detection, Proceedings of the National Academy of Sciences, vol.104, issue.1, pp.36-41, 2007.

M. Girvan and M. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci., USA, vol.99, pp.7821-7826, 2002.

E. Demaine and N. Immorlica, Correlation clustering with partial information, Proceedings of the 6th international workshop on approximation algorithms for combinatorial optimization problems and 7th international workshop on randomization and approximation techniques in computer science, 2003.

P. Conde-céspedes and J. Marcotorchino, Comparison of linear modularization criteria of networks using relational metrics, 2013.

P. A. Knight and D. Ruiz, A fast algorithm for matrix balancing, IMA Journal of Numerical Analysis, vol.33, pp.1029-1047, 2013.

A. Clauset, M. E. Newman, and C. Moore, Finding community structure in very large networks, Physical Review E, vol.70, p.66111, 2004.

Z. Yang, R. Algesheimer, and C. J. Tessone, A comparative analysis of community detection algorithms on artificial networks, 2016.

A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing community detection algorithms, Physical review E, vol.78, p.46110, 2008.

A. L. Fred and A. K. Jain, , pp.128-136, 2003.

J. M. Kumpula, J. Saramäki, K. Kaski, and J. Kertész, Limited resolution in complex network community detection with potts model approach, The European Physical Journal B, vol.56, pp.41-45, 2007.

S. Fortunato, Community detection in graphs, Physics reports, vol.486, issue.3, pp.75-174, 2010.

S. E. Schaeffer, Graph clustering, Computer Science Review, vol.1, issue.1, pp.27-64, 2007.

D. Fritzsche, V. Mehrmann, D. B. Szyld, and E. Virnik, An SVD approach to identifying metastable states of Markov chains, Electronic Transactions on Numerical Analysis, vol.29, pp.46-69, 2008.

U. and V. Luxburg, A tutorial on spectral clustering, Statistics and computing, vol.17, issue.4, pp.395-416, 2007.

J. Lei and A. Rinaldo, Consistency of spectral clustering in stochastic block models, The Annals of Statistics, vol.43, issue.1, pp.215-237, 2015.

G. Frobenius, Ueber matrizen aus nicht negativen elementen, Sitzungsber. Königl. Preuss. Akad. Wiss, pp.456-477, 1912.

O. Perron, Zur theorie der matrices, Mathematische Annalen, vol.64, issue.2, pp.248-263, 1907.

B. Bekka, Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche, 2007.

A. Pothen, H. D. Simon, and K. P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix Analysis and Applications, vol.11, issue.3, pp.430-452, 1990.

M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal, vol.23, issue.2, pp.298-305, 1973.

F. R. Chung, Spectral Graph Theory, 1997.

B. Slininger, Fiedler's theory of spectral graph partitioning, 2018.

L. Labiod and M. Nadif, A unified framework for data visualization and coclustering, IEEE Transactions on Neural Networks and Learning Systems, vol.26, pp.2194-2199, 2015.

G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal, vol.2, issue.2, pp.205-224, 1965.

G. Plassman, A survey of singular value decomposition methods and performance comparison of some available serial codes, Tech. Rep. NASA, 2005.

C. Musco and C. Musco, Randomized block krylov methods for stronger and faster approximate singular value decomposition, Advances in Neural Information Processing Systems, vol.28, pp.1396-1404, 2015.

G. W. Stewart, Matrix Algorithms. Society for Industrial and Applied Mathematics, 2001.

A. L. Dulmage and N. S. Mendelsohn, Coverings of bipartite graphs, Canadian Journal of Mathematics, vol.10, pp.517-534, 1958.

J. Canny, A computational approach to edge detection, IEEE Transactions Pattern Analysis and Machine Intelligence, vol.8, pp.679-698, 1986.

J. Groß, On the product of orthogonal projectors, Linear Algebra and its Applications, vol.289, issue.1, pp.141-150, 1999.

G. H. Golub and C. F. Van-loan, Matrix Computations, ch. Computing Subspaces with the SVD, 1996.

J. P. Bagrow, Communities and bottlenecks : Trees and treelike networks have high modularity, Physical Review E, vol.85, issue.6, p.66118, 2012.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn : Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

S. Mouysset, J. Noailles, and D. Ruiz, Using a global parameter for gaussian affinity matrices in spectral clustering, VECPAR, vol.5336, pp.378-390, 2008.

D. Sculley, Web-scale k-means clustering, Proceedings of the 19th International Conference on World Wide Web, WWW '10, pp.1177-1178, 2010.

J. H. Ward, Hierarchical grouping to optimize an objective function, Journal of the American Statistical Association, vol.58, issue.301, pp.236-244, 1963.

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD'96, pp.226-231, 1996.

F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly et al., Spectral redemption in clustering sparse networks, Proceedings of the National Academy of Sciences, vol.110, issue.52, pp.20935-20940, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01223434

I. S. Dhillon, S. Mallela, and D. S. Modha, Information-theoretic co-clustering, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03, pp.89-98, 2003.

J. M. Kleinberg, Authoritative sources in a hyperlinked environment, J. ACM, vol.46, pp.604-632, 1999.

G. Csardi and T. Nepusz, The igraph software package for complex network research, InterJournal, p.1695, 2006.

S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine, Computer Networks and ISDN Systems, vol.30, pp.107-117, 1998.

M. Manguoglu, M. Koyutürk, A. H. Sameh, and A. Grama, Weighted matrix ordering and parallel banded preconditioners for iterative linear system solvers, SIAM J. Scientific Computing, vol.32, issue.3, pp.1201-1216, 2010.

Y. Saad and M. H. Schultz, Gmres : A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput, vol.7, pp.856-869, 1986.

I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a sparse matrix, SIAM J. Matrix Anal. Appl, vol.22, pp.973-996, 2000.

G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput, vol.20, pp.359-392, 1998.

I. Duff, R. Guivarch, D. Ruiz, and M. Zenadi, The Augmented Block Cimmino Distributed method, SIAM Journal on Scientific Computing, vol.37, 2015.

A. Kongthon, C. Sangkeettrakarn, S. Kongyoung, and C. Haruechaiyasak, Implementing an online help desk system based on conversational agent, Proceedings of the International Conference on Management of Emergent Digital EcoSystems, MEDES '09, 2009.

R. Kumar, S. Lattanzi, and P. Raghavan, An algorithmic treatment of strong queries, Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM '11, pp.775-784, 2011.

G. Salton and M. J. Mcgill, Introduction to Modern Information Retrieval, 1986.

G. Tambouratzis, S. Sofianopoulos, and M. Vassiliou, Language-independent hybrid Mt with Presemt, Proceedings of HYTRA-2013 Workshop, held within the ACL-2013 Conference, pp.123-130, 2013.

T. Van-de-cruys, La génération de poésies en français, Conférence sur le Traitement Automatique des Langues Naturelles, TALN 2019, pp.113-123, 2019.

J. Pennington, R. Socher, and C. Manning, Glove : Global vectors for word representation, Proceedings of the conference on empirical methods in natural language processing, pp.1532-1543, 2014.

C. Osgood, G. Suci, and P. Tenenbaum, The Measurement of meaning, 1957.

C. Fabre and A. Lenci, Distributional Semantics Today Introduction to the special issue, Traitement Automatique des Langues, vol.56, issue.2, pp.7-20, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01259695

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, Indexing by latent semantic analysis, Journal of the American Society for Information Science, vol.41, issue.6, pp.391-407, 1990.

K. Lund and C. Burgess, Producing high-dimensional semantic spaces from lexical co-occurrence, Behavior Research Methods, Instruments, & Computers, vol.28, pp.203-208, 1996.

E. Rostand, Cyrano de Bergerac, p.1897

P. D. Turney and P. Pantel, From frequency to meaning : Vector space models of semantics, J. Artif. Int. Res, vol.37, pp.141-188, 2010.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, CoRR, 2013.

R. Higashinaka, K. Imamura, T. Meguro, C. Miyazaki, N. Kobayashi et al., Towards an open-domain conversational system fully based on natural language processing, Proceedings of the 25th International Conference on Computational Linguistics : Technical Papers, pp.928-939, 2014.

T. Zhao, R. Zhao, and M. Eskenazi, Learning discourse-level diversity for neural dialog models using conditional variational autoencoders, Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pp.654-664, 2017.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation, vol.9, issue.8, pp.1735-1780, 1997.

D. P. Kingma and J. Ba, Adam : A method for stochastic optimization, 3rd International Conference on Learning Representations, 2015.

T. Pellegrini and S. Mouysset, Inferring phonemic classes from CNN activation maps using clustering techniques, Annual conference Interspeech (INTERSPEECH 2016), pp.1290-1294, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01474886

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol.1, pp.281-297, 1967.

I. S. Dhillon, Y. Guan, and B. Kulis, Kernel k-means : spectral clustering and normalized cuts, Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.551-556, 2004.

S. Mouysset, J. Noailles, and D. Ruiz, Using a global parameter for gaussian affinity matrices in spectral clustering, High Performance Computing for Computational Science-VECPAR, pp.378-390, 2008.

S. Afantenos, E. Kow, N. Asher, and J. Perret, Discourse parsing for multi-party chat dialogues, Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp.928-937, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535954

J. Perret, S. Afantenos, N. Asher, and M. Morey, Integer linear programming for discourse parsing, Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics : Human Language Technologies, pp.99-109, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02124414

M. Taboada and W. C. Mann, Rhetorical Structure Theory : looking back and moving ahead, Discourse Studies, vol.8, issue.3, pp.423-459, 2006.

S. D. Afantenos and N. Asher, Testing sdrt's right frontier, Proceedings of the 23rd International Conference on Computational Linguistics, COLING '10, pp.1-9, 2010.

R. Mcdonald, F. Pereira, K. Ribarov, and J. Haji?, Non-projective dependency parsing using spanning tree algorithms, Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pp.523-530, 2005.

Y. Chu and T. Liu, On the shortest arborescence of a directed graph, 1965.

J. Edmonds, Optimum branchings, Journal of Research of the National Bureau of Standards, vol.71, pp.233-240, 1967.

J. A. Hartigan, Direct clustering of a data matrix, Journal of the American Statistical Association, vol.67, issue.337, pp.123-129, 1972.

W. Yang, D. Dai, and H. Yan, Biclustering of microarray data based on singular value decomposition, Emerging Technologies in Knowledge Discovery and Data Mining, pp.194-205, 2007.

S. Borgatti and M. Everett, Models of core/periphery structures, Social Networks, vol.21, pp.375-395, 1999.

J. Yang, M. Zhang, K. Ning-shen, X. Ju, and X. Guo, Structural correlation between communities and core-periphery structures in social networks : Evidence from twitter data, Expert Systems with Applications, vol.111, p.2017

P. A. Knight and A. Aleidan, Bipartivity Measures and Methods, 28th Biennal Conference on Numerical Analysis, 2019.

H. Zha, X. He, C. Ding, H. Simon, and M. Gu, Bipartite graph partitioning and data clustering, Proceedings of the Tenth International Conference on Information and Knowledge Management, CIKM '01, pp.25-32, 2001.

I. Duff, P. Knight, L. Le-gorrec, S. Mouysset, and D. Ruiz, Uncovering hidden block structure for clustering, 2018.

R. A. Brualdi, Convex sets of non-negative matrices, Canadian Journal of Mathematics, vol.20, pp.144-157, 1968.

M. Benzi, E. Estrada, and C. Klymko, Ranking hubs and authorities using matrix functions, Linear Algebra and its Applications, vol.438, issue.5, pp.2447-2474, 2013.

L. Le-gorrec, S. Mouysset, I. Duff, P. Knight, and D. Ruiz, Uncoverring Hidden Block Structure for Clustering, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, p.2019

. Conférences, -. I. De-sélection, P. Duff, L. Knight, S. Le-gorrec et al., Algorithm based on spectral analysis to detect numerical blocks in matrices, 2017.

-. Duff, P. Knight, L. Le-gorrec, S. Mouysset, and D. Ruiz, An Algorithm Based on Spectral Analysis to Detect Block Structures on Matrices, SIAM Workshop on Combinatorial Scientific Computing, 2018.

-. L. Le-gorrec, S. Mouysset, and D. Ruiz, Doubly-stochastic scaling of adjacency matrices for community detection, Conference on Graphs, Networks, and their Applications, p.2019

-. L. Le-gorrec, S. Mouysset, and D. Ruiz, Doubly-stochastic scaling of adjacency matrices for community detection, 28th Biennal Conference on Numerical Analysis, p.2019

-. L. Le-gorrec, S. Mouysset, I. Duff, P. Knight, and D. Ruiz, Détection automatiques de structures blocs sur des matrices, Conférence sur l'Apprentissage Automatique, p.2019

-. L. Le-gorrec, S. Mouysset, and D. Ruiz, Doubly-stochastic scaling of adjacency matrices for community detection, 5th International Conference on Computational Social Science, p.2019

S. Rapports-de-recherche--l.-le-gorrec, D. Mouysset, and . Ruiz, Evaluation de la qualité des découpages en communautés dans le cas de graphes non orientés pondérés, 2018.

-. L. Le-gorrec, S. Mouysset, and S. Afantenos, Evaluation d'un réseau BiLSTM pour l'identification des actes de dialogue par des méthodes de clustering, p.2019

-. Duff, P. Knight, L. Le-gorrec, S. Mouysset, and D. Ruiz, Uncoverring hidden block structure for clustering, 2018.